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Abstract: In this study, a new effective approach for detection and classification of stator winding faults in induction motors is
presented. The approach is based on current analysis. It uses multiple features extraction techniques, where Park transform,
zero crossing time signal, and the envelope are extracted from the three-phase stator currents. Then, statistical features are
calculated from time and frequency domains of each extracted signal. The Features selection techniques (ReliefF, minimum
redundancy and max relevancy, and support vector machine approach based on recursive feature elimination) are used to
select from the extracted features the most relevant ones. As a classifier, the self-organising map neural network is used. The
proposed procedure is experimentally studied using stator current signals obtained from various faulty cases and a healthy
induction motor at different load variations. The experimental results verify that the proposed strategy is able to distinguish the
faulty cases from the healthy ones. Also, it effectively identifies the faulty phase in addition to the extent of the fault.

1 Introduction
Electrical rotating machines have wide applications in various
industrial fields and represent the mainstay of many critical sectors
such as petrochemical, nuclear, and aeronautics. These fields
require accurate efficiency and continuous operation. Despite their
reliability and robustness, the electrical rotating machines are still
susceptible to a variety of failures due to several issues such as
power quality, overloads, mechanical vibrations and stress, severe
operating environments and conditions, or even manufacturing
defects [1].

One of the most common faults in alternating current rotating
machines is the stator winding inter-turn short circuits, where
investigations have shown that up to 38% of breakdowns of
electric motors are caused by stator winding failures [2]. It is
believed that the stator winding faults begin with a short circuit
involving a few turns in a coil, and then evolve into a hazardous
short circuit among two phases or phase to ground (machine frame)
short circuit [3]. These faults lead inevitably to the motor failure
and consequently influence the effective and safe operation of the
whole system or plant with consequences in costs and safety.

Hence, early detection and diagnosis of such faults are quite
necessary for the motor protection and for achieving high
reliability and safety. Therefore, several systems for stator
windings’ fault detection and diagnosis are proposed [4–6]. These
fault diagnosis systems can be decomposed into model- and signal-
based systems.

For the model-based fault detection techniques, a mathematical
dynamic model with a set of input and output signals of the
machine is used to detect the machine condition [7, 8]. However,
these techniques are very sensitive to the motor parameter
variations [9].

For the signal-based approaches, the faults can be detected by
monitoring and analysing different signals measured from the
motor such as stator currents [4, 10–15], voltage [16],
instantaneous power and flux [17], vibrations [18], temperature and
thermal analysis [19], and electromagnetic or mechanical torque
[20, 21].

Although these techniques are important, the current analysis is
the most explored and well-known approach. This is due to their
low cost, non-invasive nature, and a large number of failures that

can be detected [6]. This technique involves various signal-
processing tools, such as classical frequency domain analysis [10]
and high-resolution techniques [11]. Time-frequency domain
techniques like discrete wavelet transform [12], Park's transform
[4], envelope analysis [13, 14], and zero crossing time (ZCT)
signal [15].

Although these approaches can achieve high performances,
when dealing with growing faults and particularly at an unbalanced
power supply and noisy condition, the diagnosis of the inter-turn
short circuit becomes more challenging. Moreover, a low fault
detection performance leads to the appearance of false alarms and
lot of misclassified cases due to the interference of the power
supply, resulting in unnecessary inspection or major maintenance
fees. These common signal-processing methods require also a prior
expert knowledge of the stator winding fault effects for accurate
failure detection and diagnosis. Thus, an automatic decision-
making tool for classifying the motor condition into different
health condition categories is needed. Actually, the combination of
artificial intelligence (AI) tools with signal processing methods has
drawn the attention of many researchers in last few years. These
AI-based approaches comprise support vector machine (SVM)
[22], fuzzy logic [23], and artificial neural networks [14, 20, 21]
among others.

A diagnosis process based on the AI technique and multiple
signatures should be more reliable in stator fault detection and
severity evaluation. Such a system can also reduce the effect of
some misinterpreted signatures that cause false alarms or
misclassified cases. Nonetheless, it can weigh down the
classification process since much time is needed to calculate the
results from the high dimensionality feature set [14]. Therefore,
feature selection is an option to select the features that contain the
most discriminative information. Feature selection, in general,
improves the accuracy and reduces computational and training time
of the fault classifier by reducing the dimensionality of the
features’ set.

This study aims at developing a new automatic fault detection
and classification approach for various cases of stator winding
inter-turns, a short circuit with load variation and unbalanced
power supply. The proposed methodology, compared with those
previously cited, exhibits high accuracy and no false alarms or
misclassified cases. It is based on multiple signature analysis
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extracted from the time and frequency domains of the three-phase
stator currents by different techniques. The decision-making
system is based on the self-organising map (SOM) neural network.
To enhance the capability and reliability of the SOM, three
different feature selection techniques are used to select the most
appropriate and effective fault indicators. These techniques are the
ReliefF algorithm, the minimum redundancy and max relevancy

(mRMR) technique, and the SVM approach based on recursive
feature elimination (SVM-RFE).

The rest of the paper is arranged as follows: Section 2 presents
a detailed description of the proposed diagnosis methodology and
some theoretical background about the adopted tools.
Subsequently, the experimental implementation is presented in
Section 3. Section 4 presents results and discussion of the
developed approach. Finally, Section 5 presents conclusions,
perspectives, and future work.

2 Proposed fault detection method and materials
The aim of the present study is to investigate the detection and
classification of stator winding faults using multiple fault
signatures extracted from the stator currents.

For this purpose, the three-phase stator currents are first
acquired from the test motors. The adopted procedure combines
three pre-processing tools of the stator currents, which are Park's
vector magnitude, the envelope, and the ZCT signal. Then
statistical parameters are extracted as fault signatures from the time
and frequency domains of each pre-processed signal. To improve
the diagnosis process performances, the ReliefF, mRMR and SVM-
RFE feature selection techniques are used for data dimension
reduction and selection of the most significant features. For the
decision-making step, the Kohonen SOM neural network is used as
a classifier. The effectiveness of each feature extraction method is
separately analysed and compared with the whole and selected
features by the three feature selection techniques. The developed
algorithm flowchart is depicted in Fig. 1. 

2.1 Three-phase stator current pre-processing

The purpose of signal pre-processing is to clean (suppress noise)
and to transform the original measured signal to another form that
contains useful information and excludes the data which are less
characteristic of the motor failures.

In this study, Park's vector magnitude, the ZCT, and the
envelope of the three phase currents are extracted.

2.1.1 Park's vector magnitude: The effect of unbalanced stator
currents due to winding fault can be observed using the Park
transformation [4]. This technique provides greater insight into the
severity of stator faults.

According to the currents of phases isa, isb and isc, the Park's
vector components isd, isq are given by the following expressions:

isd = 2/ 3 isa − 1/ 6 isb − 1/ 6 isc, (1)

isq = 1/ 2 isb − 1/ 2 isc . (2)

Graphically, under healthy conditions, Lissajou's curve isq = f (isd)
takes a circle form, whereas it takes an elliptic form in the case of
stator faults. This deformation can be quantified by the calculation
of the magnitude (modulus) of Park's vector given by:

isdq(t) = isd(t)2 + isq(t)2 . (3)

For improved feature extraction, this calculated signal is
normalised by eliminating its mean value.

Lissajou's curve and Park's vector modulus of healthy and
faulty motors are shown in Fig. 2. 

2.1.2 Three-phase stator current envelope: Geometrically, the
envelope of the three-phase stator currents is the geometric line
curve of its instantaneous maximum amplitude [13].

Under healthy conditions, the envelope should be constant, but
it can show some fluctuations due to stator unbalance as shown in
Fig. 3. 

Therefore, the envelope of the stator currents contains important
information about the stator winding condition.

The applied technique to extract the three-phase stator current
envelope consists of first isolating the ripple of the three-phase

Fig. 1  Flowchart of the proposed stator defect classification system
 

Fig. 2  Park's vector (left) and magnitude (right) for
(a) Healthy motor, (b) Motor with stator fault
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stator current and then extracting only the positive peak of each
period in each phase. The extracted points are interpolated to detect
the dynamic behaviour of the envelope [13]. Finally, the signal is
normalised by eliminating its mean value.

2.1.3 Zero crossing times: The analysis of the ZCT signal has
been widely investigated in stator and rotor induction motor defect
diagnosis [15].

The ZCT signal is a succession of data values, acquired at each
zero crossing of the three-phase stator currents. The values of the
data are defined as the time difference between two successive
zero-crossing instants (T(n) − T(n − 1)) minus the natural
reference time of the ZCT signal [14]:

TZC(n) = T(n) − T(n − 1) − Tref . (4)

Due to the discrete sampling time, it is impossible to find the exact
time at which the current is equal to zero. Therefore, by assuming
that the current is linear in a small time interval (i.e. sampling time
(n – 1) to (n)) as presented in Fig. 4. 

Then detecting when the product of two successive values of
the current is negative (I(n − 1) ∗ I(n) < 0. The approximate zero
crossing point at that moment T(k) can be calculated as [15]:

T(k) = T(n) − I(n)[T(n) − T(n − 1)]
I(n) − I(n − 1) . (5)

Fig. 5 shows the zero crossing signal for a healthy motor and a
faulty motor with a stator winding short-circuit. 

As shown in this figure, the stator short circuit influences the
behaviour and amplitude of the zero crossing signal. These
variations can be determined easily by some statistical parameters.

As shown in the previous figures of the calculated signals,
Park's vector magnitude, the envelope and the ZCT signal in the
healthy case are not exactly constant. This is due to the unbalance
of the power supply during experiments that can obscure the fault
detection.

2.2 Feature extraction

Feature extraction is the transformation of high-dimensional data
sets into a reduced representation with minimal loss of information.
Feature extraction leads also to significant improvements in fault
detection performances.

In the present study, after stator current signals were acquired
from the test motors and the three current pre-processing
techniques were applied, nine statistical indicators from the time
domain and 13 from the frequency domain are extracted as fault
signatures from each previously calculated signal. Thus, a total of
66 indicators are extracted. The mathematical expressions of these
statistical indicators [24] are presented in Tables 1 and 2. 

2.3 Feature selection

Many attributes from the extracted feature dataset can be irrelevant
or redundant. The feature-selection process objective is to remove
irrelevant, redundant, or noisy features and select those that bring
satisfying precision for prediction or classification of the motor
condition. In addition, this leads to improved learning accuracy and
fault classification process [24]. A comparative study of three
feature selection techniques will be presented.

The feature selection techniques are the ReliefF algorithm, the
mRMR technique and the SVM-RFE.

2.3.1 mRMR algorithm: The mRMR procedure is a filter-based
feature selection technique that measures the relevance and
redundancy of the feature candidates based on mutual information
and selects the most relevant features having minimal redundancy
and maximal relevance [25].

The mutual information I(gi, c) of given gi which represents the
feature i, and the class label c is defined in terms of their
frequencies of appearances P(gi), P(c) and I(gi, c) as follows:

I(gi, c) = ∫ ∫ p(gi, c)ln p(gi, c)
p(gi)p(c)dgidc . (6)

Fig. 3  Stator current envelope for
(a) Healthy motor, (b) Motor with stator fault

 

Fig. 4  Calculation of approximate ZCT
 

Fig. 5  ZCT signal for
(a) Healthy motor, (b) Motor with stator fault
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The maximum-relevance criterion selects the best m features in the
descending order of I(gi, c), i.e. the best m features associated with
the class labels:

max
S

1
|S| = ∑

gi ∈ S
I(gi, c) . (7)

Due to the very large dependency of the selected features based on
Max-relevance only, we can get a lot of redundancy. For this
reason, the Min-redundancy criterion is introduced:

min
S

1
|S|2 = ∑

gi, gj ∈ S
I(gi, gj) . (8)

The principle of the Min-redundancy is to select the features,
which are mutually maximally dissimilar. An mRMR feature
selection framework is obtained by optimising the conditions in (7)
and (8) simultaneously.

2.3.2 ReliefF algorithm: ReliefF algorithm is a simple and
efficient technique to estimate the quality of features in machine
learning problems with strong dependencies between features [26].
In practice, ReliefF is frequently applied in data pre-processing as a
feature selection method and exhibited excellent performance in
both supervised and unsupervised learning. The key idea of the
ReliefF is to estimate the quality of attributes according to how
well their values distinguish between instances that are close to
each other [26].

Given a randomly selected instance Insm from class L, ReliefF
searches for K of its nearest neighbours from the same class called
nearest hits H, and also K nearest neighbours from each of the
different classes, called nearest misses M. It then updates the
quality estimation Wi for attribute i based on their values for Insm,
H and M. If Insm and H have different values on attribute i, then the
quality estimation W will decrease. On the other hand, if Insm and
M have different values on the attribute i, W will increas. The
whole process is repeated n times which is set by users. The basic
algorithm of the ReliefF technique is shown in Fig. 6. 

2.3.3 SVM-RFE algorithm: SVMs are a set of supervised
learning tools that are usually used for classification purposes [27,
28]. The SVM has many variants. SVM-RFE is one that was used
for feature selection or ranking.

The SVM-RFE algorithm is an iterative elimination process.
The outline of this algorithm is presented in Fig. 7. 

Its main idea is to eliminate redundant features and select better
and more effective feature set. In the iteration process, irrelevant
and redundant features are removed sequentially, whereas the
important ones are kept using a class interval in the SVM algorithm
as the evaluation criterion [27].

The SVM-RFE algorithm can be decomposed into four steps:

i. Train an SVM on the training set.
ii. Use the weights of the resulting classifier to calculate the score

of each feature.
iii. Eliminate the feature with the smallest score.
iv. Repeat the process with the training set limited to the

remaining features.

The output of the SVM-RFE algorithm is a feature list arranged
according to their importance.

2.4 Kohonen SOM

The SOM (also known as Kohonen map) is an unsupervised
artificial neural network, which is a powerful method for clustering
and visualising high-dimensional data [29] based on structural
units called neurons, arranged as a two-dimensional lattice (map)
called the topological map. Two layers of neurons comprise a SOM
network. The first one called input layer (composed of N neurons,

Table 1 Features from frequency domain
F1 = ∑k = 1

K s(k)/K; F2 = ∑k = 1
K (s(k) − F1)2/(K − 1)

F3 = ∑k = 1
K (s(k) − F1)3/ K F2

3

F4 = ∑k = 1
K ((s(k) − F1)4/KF2

2

F5 = ∑k = 1
K f ks(k)/∑k = 1

K s(k)

F6 = ∑k = 1
K ( f k − F5)2s(k)/K

F7 = ∑k = 1
K f k

2s(k)/∑k = 1
K s(k)

F8 = ∑k = 1
K f k

4s(k)/∑k = 1
K f k

2s(k)

F9 = ∑k = 1
K f k

2s(k)/ ∑k = 1
K (s(k)∑k = 1

K f k
4s(k)

F10 = F6/F5; F11 = ∑k = 1
K ( f k − F5)3s(k)/KF6

3

F12 = ∑k = 1
K ( f k − F5)4s(k)/KF6

4

F13 = ∑k = 1
K ( f k − F5)1/2s(k)/K F6

s(k) is a spectrum for k = 1, 2,…, K, K is the number of spectrum lines; fk is the
frequency value of the kth spectrum line.

 

Table 2 Features from time domain

XRMS = 1
N ∑

i = 1

n
xi

2; σ = 1
N ∑

i = 1

n
(xi − x̄)2

XPPV = ( max (xi) − min (xi))/2;

XKUR = 1
N ∑

i = 1

n (xi − x̄
σ ; XSKE = 1

N ∑
i = 1

n (xi − x̄
σ

3

XCLI = max( | xi | )/ 1/N∑i = 1
n |xi|

2

XIF = max( | xi | )/ 1
N ∑

i = 1

n
|xi|

XCF = max( | xi | )/ 1
N ∑

i = 1

n
(xi

2)

XSF = 1
N ∑

i = 1

n
(xi

2)/ 1
N ∑

i = 1

n
|xi|

xi is a signal samples for i = 1, 2,…, N, N is the number of data samples.
 

Fig. 6  Basic relief algorithm
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one for each input variable). It is responsible for receiving and
transmitting information from outside to the output layer. The
output layer (composed of M neurons) is in charge of information
processing as well as the construction of map features. Usually,
neurons in the output layer are arranged in a rectangular or
hexagonal two-dimensional map [29] as shown in Fig. 8. 

The network is initialised by sampling random values for the
preliminary reference vectors from a uniform distribution having
limits defined by the input data. Another option is to use linear
initialisation, which is faster and less computationally arduous than
the classic random initialisation [30]. During the training, the input
vectors are first mapped one by one to particular neurons, called
the best matching units (BMUs) on the basis of the smallest n-
dimensional distance (Euclidean distance) between the input vector
and the reference vectors. Next, the nearest neighbours of an
activated neuron are likewise activated according to a
neighbourhood function (e.g. Gaussian distribution) which depends
on the network topology. Finally, the reference vectors of all
activated neurons are updated and the next input vector is
processed in the same manner.

After the training phase of the SOM, its quality can be
evaluated by two parameters: quantisation error (QE) and
topographic error (TE). The QE is the average distance between
each input vector and its BMU. The TE is defined as the proportion
of all input vectors for which the first and second BMUs are not
adjacent [29]. Lower QE and TE values specify superior mapping
quality [30].

3 Experimental validation
3.1 Test rig and data acquisition

The investigations for the proposed stator-winding fault diagnosis
were carried out using data from the LAII laboratory (France) [31].
The motor under test is a two-pole pair three-phase squirrel cage
induction motor with 1.1 kW rated power, 220/380 V, and 50 Hz
voltage supply.

Three Hall effect current sensors are used to measure the three-
stator currents at 2 kHz sampling frequency for 1 s of sampling
time. The currents are then filtered using a fourth-order anti-
aliasing filter with a cross-over frequency fixed at 500 Hz.

For testing the stator short circuit fault diagnosis task, in
addition to the healthy case, the induction machine was operated
under six different stator fault conditions:

• A short-circuit of 18 turns over 464 in the phase A winding.
• A short-circuit of 40 turns over 464 in the phase A winding.
• A short-circuit of 29 turns over 464 in the phase B winding.
• A short-circuit of 58 turns over 464 in the phase B winding.
• A short-circuit of 18 turns on phase A and 29 turns on phase B

windings.
• A short-circuit of 58 turns on each one of phase A and phase B

windings

In each case, eight different load levels were used: (torque T = 
0–7 Nm).

During experiments, it was noted that the power supply voltage
is not exactly balanced. This can obscure the classification task.

3.2 Implementation

The collected experimental stator currents were decomposed into
336 segments corresponding to the different motor conditions (48
representatives from each case).

Then the 66 features were calculated from each of the 336
segments to construct a database (size is 336 × 66). Two-third (2/3)
of this database serve to train the SOM, and the rest (1/3) were kept
to test the trained map. The SOM network was implemented by
using the SOM toolbox for Matlab [32]. A label is associated with
each motor condition as presented in Table 3. 

The classification performance of the SOM can be analysed by
projecting the testing data sets on the trained maps. The best
matching unit from the map will be found for each data sample
[30]. Classification accuracy can be evaluated as a fraction of
correctly classified input samples.

4 Results and discussion
The three feature extraction methods have been studied separately
and compared with each other for feature performance evaluation.

Fig. 9 shows a histogram for the classification accuracy of the
feature extraction techniques separated and combined. 

The time domain features of the extended Park's vector (EPV)
are better than the time or frequency domain of the envelope and
the ZCT signal techniques where it gives 89.29% classification
accuracy. However, the combination of the time and frequency
domain features of Park's vector magnitude (EPV) gives better
results compared with the other methods where we get 92.86%
classification accuracy.

The combination of the whole (66) extracted features from the
three pre-processing techniques gives 94.64% classification
accuracy, which is the best result.

So, we can note that the combination of all the extracted
features is more effective than the extracted features separately.

After evaluating the feature extraction techniques separately
and combined, we present the whole dataset to dimensionality

Fig. 7  Basic algorithm of the SVM-RFE
 

Fig. 8  SOM architecture
 

Table 3 Associated label to test motor conditions
Motor condition Fault condition & level Associated

label
healthy motor 0 NOR
motor with stator winding
short circuit

18 turns on phase A A18
29 turns on phase B B29
40 turns on phase A A40
58 turns on phase B B58
18 on A & 29 on B A18B29
58 on A & 58 on B A58B58
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reduction based on ReliefF, mRMR and SVM-RFE feature
selection approaches.

The feature selection techniques (mRMR, ReliefF and SVM-
RFE) are implemented starting with the number of selected
features from one to 66 in order to detect the optimal number of
features.

Fig. 10 presents the classification performances of the trained
SOM versus the number of selected features by the three feature
selection algorithms. 

According to this figure, the optimal number of selected
features is 14 for the ReliefF technique, 20 for the SVM-RFE, and
30 for the mRMR technique.

Each one of the trained maps using the selected features by the
feature selection techniques exhibits 100% classification accuracy
that means there is no false alarms or misclassified cases.

After the training phase and the classification performance
evaluation, the result of the Kohonen map (SOM) can be
interpreted also by a topological two-dimensional network with the
associated labels of the different classes. This representation gives
a topological knowledge of the distribution of the training data on
the map and offers a clear visualisation of the distance between the
classes on the map.

Fig. 11a shows the trained SOM map using the whole extracted
features, whereas Figs. 11b–d present the obtained maps using the
selected features by the mRMR, SVM-RFE and ReliefF
algorithms, respectively. Each SOM map consists of 72 (12 × 6)
neurons. 

The visual inspection of the trained maps shows the associated
labels of the seven training conditions, which were classified into
different classes.

The trained map using the whole data (Fig. 11a) shows no real
separation between different classes. Moreover, it presents an
overlap between some classes where we see some neurons are
activated for more than one class (two colours in one neuron). This
is considered as a training error. Fig. 11a shows also that each class
has several representative neurons, which means that there are
some dissimilarities in the whole feature set

In the trained maps by the selected features (by ReliefF, mRMR
and SVM-RFE algorithms) (Figs. 11b–d), the classes are well
separated and have a better distribution compared with the trained
map using the whole feature set. This is due to the elimination of
the redundant and insignificant features by the three feature
selection techniques.

Fig. 11d shows the trained map obtained by using the ReliefF
selected features, showing more homogeneity in the separation
between classes. Where the samples collected from the healthy
motor (NOR) are mostly concentrated in the upper left corner.
While those belonging to the faulty conditions are extensively

Fig. 9  Performance comparison of features from the three pre-processing
methods

 

Fig. 10  Classification accuracy versus number of selected features using the three feature selection techniques
 

Fig. 11  Obtained trained maps using the different selected feature sets
(a) All features, (b) mRMR, (c) SVM-RFE, (d) ReliefF
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distributed on the upper right, middle left and the bottom of the
map. Furthermore, it can be noted that the samples collected from
faulty conditions in the same phase are grouped closely to each
other on the SOM map. For instance, the faults on phase A (A18
and A40) are located on the upper right side of the map. Also, the
bottom side comprises the two classes of faults on phase B (B29
and B58). Whereas the two classes of combined faults on A and B
(A18B29 and A58b58) are located in the mid left areas of the
trained SOM map.

It should be noticed that for all the trained maps, the load effect
has not been observed even with the use of different load levels in
the training dataset. The power supply unbalance noticed in the
calculated signals also has no effect on the trained maps using the
feature selection techniques.

For better analysis and evaluation of the feature selection
techniques, more performance parameters of the four trained SOM
maps are presented in the performance radar chart in Fig. 12. 

Radar charts or spider charts are sometimes called as valuable
tools for comparing and evaluating multiple quantitative variables
at the same time. Each variable value is plotted along its provided
axis that starts from the centre. All axes are arranged radially, and
all the variables in a dataset are connected together to form a
polygon.

The parameters used to evaluate the trained SOMs consist of a
number of features, training time, training and test errors,
quantisation and topographic errors.

Performances are measured by the area of the shape marked by
the formed polygon in this chart. So the smaller the shape, the
better the performances.

The radar chart clearly depicts that the trained map using the
whole dataset is the worst in overall performance. This is due to
poor quality and redundancy of some features in the extracted
feature set.

By comparing the results of the trained maps using the feature
selection techniques ReliefF, mRMR, and the SVM-RFE, it can be
seen that the three feature selection techniques have the same
performance in terms of training, test and topographic errors.
However, in terms of the number of selected features, training
time, and quantisation error, the ReliefF algorithm results are much
better than the mRMR and SVM-RFE.

Therefore, it can be noticed that the use of the feature selection
techniques can improve and enhance the training of SOM in the
stator fault detection system. However, the ReliefF feature
selection technique is more reliable where it gives best or at least
the same classification performance, with lower training time
consumption than the mRMR and SVM-RFE techniques.

5 Conclusion
This study presents a methodology for stator winding short circuit
fault detection and diagnosis based on multiple features extraction
and selection techniques. Three current pre-processing techniques
that include Park's vector magnitude, the ZCT signal and the

envelope are used. Multiple statistical signatures are then
calculated from the time and frequency domains of each signal. To
improve the effectiveness of the fault detection process, the
ReliefF, mRMR, and SVM-RFE feature selection techniques are
used to select the most appropriate features.

From the experimental results based on motors with different
stator fault situations, at different load levels, it can be concluded
that using multiple features extraction techniques gives better
results in terms of classification accuracy than using these
techniques separately.

The integration of the feature selection techniques (ReliefF,
mRMR and SVM-RFE) has improved extensively the classification
accuracy and quality of the trained SOMs, but the ReliefF
algorithms give the best or at least the same performance than the
two other algorithms with reduced training time and lower number
of selected features.

Therefore, this proposed stator fault detection and diagnosis
approach is a very effective and efficient tool, since it is not only
possible to detect the short circuit faults, but it is also able to locate
the faulty phase and estimate its extent by separating the different
faulty conditions with a high reliability.

Further investigations will be carried out in a way to apply the
proposed technique for other electrical faults of rotating machines
and implement this strategy in a real-time application.
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