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Abstract - This paper presents the effect of an axial magnetic field imposed on incompressible flow of electrically 

conductive fluid between two horizontal coaxial cylinders. The imposed magnetic field is assumed uniform and 

constant, we also take into account the effect of heat generation due to viscous dissipation for some cases. The inner 

and outer cylinders are maintained at different and uniform temperatures and concentrations. The movement of the 

fluid is due to the rotation of the cylinders with a constant speed.  An exact solution of the governing equations for 

momentum and energy are obtained in the form of Bessel functions. A finite difference implicit scheme was used in 

the numerical solution to solve the governing equations of convection flow and mass transfer. The concentration and 

temperature distributions were obtained with and without the magnetic field. The results show that for different 

values of the Hartmann number, the concentration between the two cylinders decreases as the Hartmann number 

increases. Also, it is found that by increasing the Hartmann number, the local Nusselt and Sherwood numbers 

decreases.  
 

Keywords: Rotating cylinders, Heat transfer, Mass transfer, Magnetic field, Bessel function, Finite 

difference. 

 

 

1. Introduction 
The study of flow of electrically conductive fluids, called magnetohydrodynamic (MHD) has 

attracted much attention due to its various applications. In astrophysics and geophysics, it is applied to the 

study of stellar structures, terrestrial cores and solar plasma. In industrial processes, it finds its application 

in MHD pumps, nuclear reactors, the extraction of geothermal energy, metallurgical and crystal growth in 

the field of semiconductors, the control of the behavior of fluid flow and heat and mass transfer and the 

stability of convective flows. Several studies have been conducted to evaluate the effect of magnetic field 

on the convective flows for different conditions. M. Molki et al (1990) applied the naphthalene 

sublimation technique to an annulus with a rotating inner cylinder in order to study heat transfer in the 

entrance region to obtain heat transfer data for laminar flows and compare them with results of mass 

transfer. H. Ben Hadid, and D. Henry (1996) investigated numerically the effect of a constant magnetic 

field on a three-dimensional buoyancy-induced flow in a cylindrical cavity, they put in light the structural 

changes of the flow induced by the magnetic field for each field orientation. Singh S. K. et al (1997) 

presented exact solutions for fully developed natural convection in open-ended vertical concentric annuli 
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under a radial magnetic field. Kefeng Shi, Wen-Qiang Lu (2006) simulated numerically the 

characteristics of transient double-diffusive convection in a vertical cylinder using a finite element 

method. Mohamed A. Teamah (2009) carried out. a numerical study of double-diffusive laminar mixed 

convection within a two-dimensional, horizontal annulus rotating cylinders. The results for both average 

Nusselt and Sherwood numbers were correlated in terms of Lewis number, thermal Rayleigh number and 

buoyancy ratio. Bessaih R., et al (2009) studied the MHD stability of an axisymmetric rotating flow in a 

cylindrical enclosure containing liquid metal (Pr = 0.015), with an aspect ratio equal to 2, and subjected to 

a vertical temperature gradient and an axial magnetic field.  W. Wrobel et al (2010) presented an 

experimental and numerical analysis of a thermo-magnetic convective flow of paramagnetic fluid in an 

annular enclosure with a round rod core and a cylindrical outer wall under gravitational and magnetic 

environments. Venkatachalappa M., et al (2011) carried out numerical computations to investigate the 

effect of axial or radial magnetic field on the double-diffusive natural convection in a vertical cylindrical 

annular cavity. R.H Mozayyeni and A.B Rahimi (2012) investigated numerically the problem of mixed 

convection of a fluid in the fully developed region between two horizontally concentric cylinders with 

infinite lengths, in the presence of a constant magnetic field with a radial MHD force direction, 

considering the effects of viscous heat dissipation in the fluid in both steady and unsteady states. Seth 

G.S. and Singh J.K. (2013) presented a study of the unsteady MHD Couette flow of class- in a rotating 

system with Hall effects in the presence of a uniform transverse magnetic field. 

Although the exact solutions for the Hartmann flow and the MHD Couette flow have been achieved 

for more than seventy years, the solutions for a heat transfer in flow between concentric rotating 

cylinders, also known as Taylore Couette flows, under external magnetic field have been restricted to 

high Hartmann numbers.  

The aim of the present study is to examine analytically and numerically the effects of an external 

axial magnetic field applied to the forced convection flow of an electrically conducting fluid between two 

horizontal concentric cylinders, considering the effects of viscous heat dissipation in the fluid.  Also we 

investigated numerically the effects of the magnetic field on the mass transfer in the annular cavity. 

 

2. Formulation of the Problem 
Consider a laminar flow of a viscous incompressible electrically conductive fluid between two 

coaxial cylinders. The inner cylinder of radius r1 is rotated at a constant speed Ω1 and the outer cylinder of 

radius r2 is fixed. The inner and outer walls are maintained at a constant and different temperatures and 

concentrations, but their values for the inner are higher than the outer, while the top and bottom walls are 

insulated and impermeable. The two cylinders are electrically isolated. The flow is subjected to a 

magnetic field B0 of constant magnitude, uniform and axially oriented. We assume that the magnetic 

Reynolds number is neglected. When the magnetic field is uniform and externally applied, its time 

variations can be neglected and the set of flow equations further simplified to involve only the Navier-

Stokes equations and the conservation of the electric current. Also we assume that the electric field is 

zero. In this study the viscous dissipation term in the energy equation is considered. 

 

3. Analytical Study 

The flow is assumed to be steady, laminar and unidirectional, therefore the radial and axial 

components of the velocity and the derivatives of the velocity with respect to θ and z are zero. Under 

these assumptions and in cylindrical coordinates, the non-dimensional equations governing the flow 

together with the boundary conditions in the azimuthal direction can be written as follows (where the stars 

are dropped for convenience): 

 

 

2

2 2

2

2

v 1 v Ha 1
v 0

r rr r1

  
    
   

                                                                                                                      (1) 
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r EcPr
r r r r r

     
     

     

                                                                                                                             (2) 

 

r : v(r) 1, 1                                                                                                                                                (3) 

 

r 1: v(r) 0, 0                                                                                                                                              (4) 

 

Where:   

 
2

1 1* * 1 2
0

2 1 1 2 1 2

rr T Tr v
r ,v , , ,Ha B d ,Pr ,Ec

r r r T T a Cp T

  
       

   
:  

 

are the dimensionless variables and parameters.

 The velocity profile in the annular space is  obtained by solving the Eq. (1) as follows: 

 

     1 1 2 1v r C I Mr C K Mr 0  
                                                                                                                                                                                                     

 (5) 

 

Where 
Ha

M
1




 

Where C1 and C2 are the constants of integration, which are determined from the boundary conditions on 

the velocity. 
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I1 is the modified Bessel function of the first kind of order 1, and K1 is the modified Bessel function 

of the second kind of order 1.  

To obtain the temperature field from Eq. (2), we performed calculations by using the expansions with 

three terms of the modified Bessel functions  1I Mr  and  1K Mr  used by Omid M. et al (2012), for small 

values of Ha. 

It can be used as following: 

 

   
3 5

1

Mr Mr1
I (Mr) Mr

2 16 384
                                                                                                                           (6) 

3

1

1 1 Mr 1 1 Mr 1 5
K (Mr) ln( ) ( 2 1) (Mr) ln( ) ( 2 ) (Mr)

Mr 2 2 4 16 2 32 2

   
            

   

                                                                               (7) 

 

Where 

 γ is Euler's constant defined by: 
x

1 1 1 1
lim 1 ..... ln(m) 0,5772156649...

2 3 4 m

 
         

 
 

By substituting the values of  1I Mr  and  1K Mr
 from the above expansions in the velocity equation, Eq. 

(5), and using the new velocity distribution in Eq. (2) to find the temperature field. 

The temperature gradient is given then by the following equation:   

 



 

67-4 

       

         

22
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C Br 2 M r 2 384 2
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       
           

         
             
     

                                        (8) 

 

Where the constants C5 to C9 are given in terms of C1 and C2 as follows: 

 

2 2

5 1 1 2 2

11 1 1
C C C C C

2304 192 192
     

2 2 2 2

6 2 1 2 2 1 2 1 2

11 7 1 1 125 1
C C C C C C C C C

2304 2304 384 384 55296 192
          

2 2

7 2 2 1 2

1 7 1
C C C C C

4 16 4
   

 
2 2

8 2 2 1 2

1 1 1
C C C C C

32 32 48
   

 
2

9 1 2 1 2 1

7 1 1
C C C C C C

24576 3072 3072
     

 
The solution to the temperature profile is given by: 

 

         
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8
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 
 
 
 
  

   
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                        (9) 

 
 

Where:  the Constants C10, C11 and C12 are given as follows: 

2

10 5 6 2

1 1 1
C C C C

36 6 41472
  

 
11 9 1 2

1 1
C C C C

8 196608
 

 
2

12 8 2

1 1
C C C

4 512
   

 

4. Numerical Study 
In this numerical study, we consider a two-dimensional and axisymmetric unsteady flow. We opted 

for the numerical formulation speed - pressure due to its rapidity of prediction, its lower cost, and its 

ability to simulate real conditions. The finite difference scheme adopted for the resolution is very similar 

to that used by R.Peyret (1976), A.Ghezal et al (1992) and (2011),  this is a semi implicit scheme of 

Crank-Nicholson type. We used the Marker And Cell (MAC) for the spatial discretization. The iterative 

procedure is assumed converged when the following test is verified  

 

u v w Cmax( L , L , L , L , L D )    

 

where Lu, Lv, Lw, Lθ, LC and D represents operators differences relating to system equations corresponding 

to the problem variables u, v, w, θ, C and Π respectively, ε is of the order of 10
-5

 depending on the 

considered case. We then proceeded to a study of the mesh sensitivity of the field of study. This study led 

us to retain a mesh of 336 nodes along the direction r and 48 nodes in the z direction.  
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4. 1. Mathematical Equations  

Based on these dimensionless variables, the time dependent governing equations for conservation 

of mass, momentum, energy and species are written as follows (where the stars are dropped for 

convenience):  

 

u u w
0

r r z

 
  

 
                                                                                                                                         (10)    

                                                                                                            

 

2 2 2 2

2 2 2

u u v u 1 u 1 u u u Ha u
u w

t r r z r Ta r r 1 Tar z r

        
          

       
                                              (11) 

 

 

2 2 2

2 2 2

v v vu v 1 v 1 v v v Ha v
u w  

t r r z Ta r r 1 Tar z r

       
        

      
                                                 (12) 

2 2

2 2

w w w 1 w 1 w w
u w

t r z z Ta r rr z

        
              

                                                                               (13) 

 

 
 2 2

2 2

1 Ec1 1
u w  

t r z PrTa r r Tar z

           
      

     
                                                             (14) 

 
2 2

2 2

C C C 1 C 1 C C
u w  

t r z ScTa r rr z

       
     

     
                                                                                     (15) 

 

Where: 

Ha Bd



 is the Hartmann number, 

1 1r d
Ta




 is the Taylor number, 

1 2d R R    
is the width of the annular space. 

 

Pr
a




  

is the Prandtl number 

Sc
D




 

is the Schmidt number 

2 2 2 2 2 2
u u w u w v v v

2
r r z z r r r z

                 
                    

                  

 is the viscous dissipation function.

  

 

The rate of heat transfer in non – dimensional for the inner and outer cylinder is given by: 

( )i

r

Nu z
r 







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
   ,  

1

( )e

r

Nu z
r







 


 ,  With:  1    

Similarly, we can calculate both local Sherwood number as follows: 

 

( )i

r

C
Sh z
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
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
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
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1

( )e

r

C
Sh z

r





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
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(

a) 

4. 2. Initial and Boundary Conditions 
 At the time t=0:  

 

u(r,z,0) v(r,z,0) w(r,z,0) (r,z,0) (r,z,0) C(r,z,0) 0                                                                  (16) 

 

The boundary conditions are as follows: 

 
 r   z 0 :     u( ,z) v( ,z) w( ,z) 0,  ( ,z)=1,C( ,z)=1            

 
r 1    z 0 :      u(1,z) = v(1,z)= w(1,z) (1,z)=C(1,z)=0   

                                                                            
(17)

  
                                                          

  

C
r 1     z 0 :       u v = w=0 , 0

z z

 
     

    

    
C

z L :       u=v=w 0, 0
z z

 
  

 
  

 

5. Results and Discussion 
In order to understand the physical situation of the problem and the effects of the Hartmann and 

Eckert numbers entering the problem, we have computed the numerical and analytical values of the 

temperature, and the numerical results of the concentration, the Nusselt number and Sherwood number. 

The results are presented in the figs below. 

The distribution of the velocity and the temperature for numerical results reaching a steady-state at 

t=120.There is not much difference in velocity and temperature at t = 60 compared to t = 120. 

 

0,0 0,2 0,4 0,6 0,8 1,0

0,0

0,2

0,4

0,6

0,8

1,0



r

Analytical

 Ha=0

 Ha=0.4

 Ha=0.8

Numerical

 Ha=0

 Ha=0.4

 Ha=0.8

 

 

 
Fig. 1 . Temperature profile as a function of Hartmann number, for η = 0.5, Ta=20, Pr = 0.02, Ec=0.5, t=120. 

 

The temperature is evaluated analytically and numerically for different values of Hartmann number 

in fig 1, comparing the numerical results with those obtained analytically, we find that the analytical and 

numerical results are in good agreement, it can be seen that the effect of magnetic field on the radial 

profile of temperature is insignificant for small values of Hartmann number (Ha1). 
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Fig. 2 . Concentration  profile as a function of Hartmann number, for η = 0.5, Ta=20, Pr = 0.02, Ec=0, t=120, z/d=7. 

 

Fig. 2 displays the effect of Hartmann number on the concentration at the midlength, as shown in this 

figure. It is observed that the concentration decreases with an increase in the values of Hartmann number 

in the annular cavity. 
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Fig. 3. Effect of Hartman number on local Nusslet number distribution on (a) inner and (b) outer cylinders, for η = 

0.5, Pr = 0.02, Ec=0, t=120 (numerical results) 

 

The heat and mass transfer rates across the annular cavity are investigated using the computed local 

Nusselt and Sherwood numbers for different Hartmann number and are displayed in Figs 3 and 4. 

In fig. 3 the local Nusselt number on the inner and outer surfaces are shown for different values of 

Hartmann number. It it can be seen that for significant increase of Hartmann number, the local Nusselt 

number on the inner and outer surfaces decreases, this is due to suppression of convection by the 

magnetic field, which results in a gradual decrease in the Nusselt number. The analysis of the variation of 

local Nusselt number on the inner and outer cylinder shows that it tends to a limit value, located at a value 

as lower than the Hartmann number is large and this is more obvious for high value of Eckert number. 

In fig. 4 it can be noticed that the rate of mass transfer is, higher in the inner cylinder than in the 

outer cylinder. This is reasonable to expect, since the velocity and concentration gradient are higher for 

the inner cylinder than for the outer cylinder. The rate of mass transfer profile in the inner surface is 

increased with increasing the values of the magnetic field parameter, on the other hand the application of 

a transverse magnetic field tends to decrease the mass transfer between the outer surface and the fluid. 
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Fig. 4. Effect of Hartman number on local Sherwood number distribution on (a) inner and (b) outer cylinders, 

for η = 0.5, Sc=10, Ec=0, t=120 (numerical results) 

 

4. Conclusion 
In this study, the MHD forced convection flow and mass transfer of an electrically conducting fluid 

between two horizontal concentric cylinders in the presence of an axial magnetic field and a temperature 

gradient considering the effects of viscous heat dissipation in the fluid has been investigated numerically 

and analytically. The velocity distribution in the annulus is obtained analytically in terms of the modified 

Bessel functions whose argument contains Hartmann number and radial coordinate. To obtain the 

temperature, the expansions of the modified Bessel functions, with three terms are used in the energy 

equation. It is found that the velocity and concentration decreases in the annulus with increase of 

Hartmann number. However an increase in Hartmann number does not affect the temperature.  The 

results show that an increase in Hartmann number reduces the Nusselt number on both surfaces of the 

cylinders. The application of a magnetic field generates some interesting changes in mass transfer, an 

increasing in Hartmann number causes a reduction on the locale Sherwood number. 
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