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Abstract : 
This study is interested in the effect of an axial magnetic field imposed on incompressible flow of electrically 
conductive fluid between two horizontal coaxial cylinders. The imposed magnetic field is assumed uniform 
and constant, we also take into account the effect of heat generation due to viscous dissipation. The inner 
and outer cylinders are maintained at different and uniform temperatures. The movement of the fluid is due 
to the rotation of the cylinders with a constant speed.  An exact solution of the equations governing the flow 
was obtained in the form of Bessel functions. A finite difference implicit scheme was used in the numerical 
solution. The velocity and temperature distributions were obtained with and without the magnetic field. The 
results show that for different values of the Hartmann number, the velocity between the two cylinders 
decreases as the Hartmann number increases. Also, it is found that by increasing the Hartmann number, the 
average Nusselt number decreases. On the other hand, the Hartmann number does not affect the 
temperature. 
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1 Introduction  
The study of flow of electrically conductive fluids, called magnetohydrodynamic (MHD) has attracted much 
attention due to its various applications. In astrophysics and geophysics, it is applied to the study of stellar 
structures, terrestrial cores and solar plasma. In industrial processes, it finds its application in MHD pumps, 
nuclear reactors, the extraction of geothermal energy, metallurgical and crystal growth in the field of 
semiconductors,  the control of the behavior of fluid flow and heat and mass transfer and the stability of 
convective flows. Several studies have been conducted to evaluate the effect of magnetic field on the 
convective flows for different conditions. Tatsuo Sawada et al [1] carried out experimental investigations 
about the natural convection of a magnetic fluid between two concentric cylinders and horizontal isotherms. 
H. Ben Hadid, and D. Henry [2] investigated numerically the effect of a constant magnetic field on a three-
dimensional buoyancy-induced flow in a cylindrical cavity, they put in light the structural changes of the 
flow induced by the magnetic field for each field orientation. Singh, SK Jha, BK and Singh, AK [3] 
presented exact solutions for fully developed natural convection in open-ended vertical concentric annuli 
under a radial magnetic field. El Amin, MF [4] studied the effects of both first- and second-order resistance 
due to the solid matrix on forced convective flow from a horizontal circular cylinder in the presence of a 
magnetic field and viscous dissipation, with a variable surface temperature boundary condition. The study of 
the effects of the azimuthal magnetic field of an electrically conducting fluid in a rotating annulus has also 
been presented by Kurt, E et al [5]. Sankar, M et al [6] studied numerically a natural convection of a low 
Prandtl number electrically conducting fluid under the influence of either axial or radial magnetic field in a 
vertical cylindrical annulus. They showed that the magnetic field can be suppress the flow and heat transfer. 
W. Wrobel et al [7] presented an experimental and numerical analysis of a thermo-magnetic convective flow 
of paramagnetic fluid in an annular enclosure with a round rod core and a cylindrical outer wall under 
gravitational and magnetic environments. OD Makinde and OO Onyejekwe [8] investigated a steady flow 
and heat transfer of an electrically conducting fluid with variable viscosity and electrical conductivity 
between two parallel plates in the presence of a transverse magnetic field. SC Kakarantzas et al [9] studied 
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numerically the combined effect of a horizontal magnetic field and volumetric heating on the natural 
convection flow and heat transfer of a low Prandtl number fluid in a vertical annulus. Omid Mahian et al [10] 
presented an analysis of the first and second laws of thermodynamics to show the effects of MHD flow on 
the distributions of velocity, temperature and entropy generation between two concentric rotating cylinders. 
R.H Mozayyeni and A.B Rahimi [11] investigated numerically the problem of mixed convection of a fluid in 
the fully developed region between two horizontally concentric cylinders with infinite lengths, in the 
presence of a constant magnetic field with a radial MHD force direction, considering the effects of viscous 
heat dissipation in the fluid in both steady and unsteady states.  
Although the exact solutions for the Hartmann flow and the MHD Couette flow have been achieved for more 
than seventy years, the solutions for a heat transfer in flow between concentric rotating cylinders, also known 
as Taylore Couette flows, under external magnetic field have been restricted to high Hartmann numbers.  
The aim of the present study is to examine analytically and numerically the effects of an external axial 
magnetic field applied to the forced convection flow of an electrically conducting fluid between two 
horizontal concentric cylinders, considering the effects of viscous heat dissipation in the fluid.  It should be 
noted that the natural convection is supposed néglieable in this work, which is not always the case of the 
vertical cylinder. The forced flow is induced by the rotating inner cylinder, in slow constant angular velocity 
and the other is fixed. 

2 Formulation of the problem 
Consider a laminar flow of a viscous incompressible electrically conductive fluid between two coaxial 
cylinders. The inner cylinder of radius r1 is rotated at a constant speed Ω1 and the outer cylinder of radius r2 
is fixed. The inner and outer walls are maintained at a constant and different temperatures T1 and T2 
respectively, while the top and bottom walls are insulated. 
The two cylinders are electrically isolated. The flow is subjected to a magnetic field B of constant magnitude, 
uniform and axially oriented. We assume that the magnetic Reynolds number Rm is much smaller than unity. 
One can then consider the flow equations within the low-Rm approximation in which the coupling between 
the velocity and the magnetic field is weak. If furthermore the magnetic field is uniform and externally 
applied, its time variations can be neglected and the set of flow equations further simplified to involve only 
the Navier-Stokes equations and the conservation of the electric current including Ohm’s law. [12].  Also we 
assume that no polarization voltage is applied (the electric field is zero). Further, in this study the viscous 
dissipation term in the energy equation is considered. 

3 Analytical study 
The flow is assumed to be steady, laminar and unidirectional, therefore the radial and axial components of 
the velocity and the derivatives of the velocity with respect to θ and z are zero. Under these assumptions and 
in cylindrical coordinates, the non-dimensional equations governing the flow together with the boundary 
conditions in the azimuthal direction can be written as follows (where the stars are dropped for convenience): 

                                                   
 

2

2 2

2

2

1 1
0

1

v v Ha
v

r rr r

  
       

                                                (1) 

                                                 

2
1

Pr
v v

r Ec
r r r r r

               
                                                      (2) 

                                                              r   :  ( ) 1v r    ,  1                                                   (3) 

                                                                  1r   : ( ) 0v r   , 0                                                    (4) 
Where:   

*

2

r
r

r
 ,

*

1 1

v
v

r



, 1

2

r

r
  ,  

0Ha B d



 , 2

1 2

T T

T T
 



,  Pr

a


 , 

 2

1 1rEc
Cp T





: are the 

dimensionless variables and parameters. 
We begin by solving the momentum equation by integrating Eq. 1 and then advance a solution for the energy 
equation.  
The solution of the momentum equation is: 
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Where: I1 is the modified Bessel function of the first kind of order 1, and K1 is the modified Bessel function 
of the second kind of order 1. 
The velocity profile in the annular space is therefore: 
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To obtain the temperature field from Eq. (2), we performed calculations by using the 1, 2 terms and 3 terms 
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we find an insignificant difference, so to simplify the calculations we have chosen in this work the 
expansions of 1 term, it can be used as following: 
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By replacing the values of I1 and K1 from the above expansions in the velocity distribution equation, Eq. 
(5),then we introduce the new velocity distribution in equation (2) to find the temperature field. 
The solution to the temperature profile is given by: 
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Where C3 and C4 are the constants of integration. The expressions for C3 and C4 not presented here to 
conserve the space. 

4 Numerical study 
 In this numerical study, we consider a two-dimensional and axisymmetric unsteady flow. We opted for the 
numerical formulation speed - pressure due to its rapidity of prediction, its lower cost, and its ability to 
simulate real conditions. The finite difference scheme adopted for the resolution is very similar to that used 
by R.Peyret [13], A.Ghezal et al [14] and[15],  this is a semi implicit scheme of Crank-Nicholson type. We 
used the Marker And Cell (MAC) for the spatial discretization. The iterative procedure is assumed 
converged when the following test is verified max ( , , , )u v wL L L L D  , where Lu, Lv, Lw, Lθ  and D 

represents operators differences relating to system equations corresponding to the problem variables u, v, w,θ 
and Π respectively, ε is of the order of 10-3 depending on the considered case. We then proceeded to a study 
of the mesh sensitivity of the field of study. This study led us to retain a mesh of 336 nodes along the 
direction r and 48 nodes in the z direction.  

4.1 Mathematical equations  
Based on these dimensionless variables, the conservation equations of mass, momentum and energy are 
written as follows (where the stars are dropped for convenience):  
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 is the viscous dissipation function. 

The rate of heat transfer in non – dimensional for the inner and outer cylinder is given by: 

( )i
r

Nu z
r 





 


 ,   

1

( )e
r

Nu z
r





 


         With  1                           (14) 

The average Nusselt number on the inner and outer cylinder is given by:  
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4.1.1 Initial and boundary conditions 
At the time t=0: u(r, z, 0) v(r, z, 0) w(r, z,0) (r, z, 0) (r, z, 0) 0                                                (16) 

The boundary conditions are as follows: 
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5 Results and discussion 
In order to understand the physical situation of the problem and the effects of the hartmann and Eckert 
numbers entering the problem, we have computed the numerical and analytical values of the velocity, 
temperature, and the Nusselt number. The results are presented in (figures 1, 2) and table 1. 
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FIG. 1 – velocity profile as a function of Hartmann number, for η = 0.5, Ta=20,t=120. 

The velocity is evaluated analytically and numerically for different values of Hartmann number in (figure 1).  
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The distribution of the velocity and the temperature for numerical results reaching a steady-state at 
t=120.There is not much difference in velocity and temperature at t = 60 compared to t = 120. 
Comparing the numerical results with those obtained analytically, we find that the analytical and numerical 
results are in good agreement. We can notice that the velocity profile without magnetic field is quasi-
linear, and an increase in Hartman number, which causes a reduction of the velocity in the annular space 
because the Coriolis force is counter-productive and the Lorentz electromagnetic force acts as a flow damper 
In (Figure 2), we present the behaviour of the temperature radial profile, for various values of Hartmann 
number, it can be seen that the effect of magnetic field on the radial profile of temperature is insignificant. It 
is valid in the case of low and high values of Hartmann. 
In (Table 1), the distribution of average Nusselt number on the outer and inner surfaces is presented for 
different Hartman numbers. It is observed that the effect of increasing Hartmann number is to decrease the 
magnitude of average Nusselt number on both surfaces of the cylinder. So, an considerably increasing in 
Hartmann number, which leads to a reduction of the centrifugal force, which results in a progressive 
decrease in the Nusslet number. 
From this table, it can be noticed that the average Nusselt number on the outer cylinder is lower than on the 
inner cylinder, because the velocity and temperature gradient are higher for the cold inner cylinder than for 
the outer cylinder. Also the results show the effects of viscous dissipation terms on the rate of heat transfer, 
the average Nusselt number increases with an increase in the Eckert number on the outer cylinder, but it 
decreases on the inner cylinder. In fact, as the Eckert number is large the heat generated in the annulus 
increases due to viscous dissipation, and thus the temperature of the fluid increases. This causes a decrease in 
the temperature gradient close to the inner cylinder, and an increase in the gradient in the vicinity of the outer 
cylinder. 
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FIG. 2 – Temperature profile as a function of Hartmann number, for η = 0.5, Ta=20, Pr = 0.02, Ec=0.0001, 

t=120.. 

 
Ha iNu  eNu  

Ec=0.0001 Ec=0.5 Ec=5 Ec=0.0001 Ec=0.5 Ec=5 
0 1,44284 1,42495 1,28173 0,72132 0,72612 0,76932 

1 1,44276 1,4241 1,27291 0,72129 0,72555 0,7639 

2 1,44272 1,42182 1,24949 0,72124 0,72354 0,75468 

4 1,44254 1,41591 1,18979 0,72119 0,72354 0,74476 

6 1,442 1,4108 1,13853 0,72117 0,72315 0,74093 

8 1,44137 1,40683 1,09871 0,72117 0,72292 0,73873 

10 1,44118 1,40378 1,06821 0,72117 0,72277 0,73721 

20 1,44112 1,39695 0,99983 0,72116 0,72239 0,73342 

50 1,44109 1,39776 1,00795 0,72116 0,7221 0,73052 
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Table.1 – Effect of Hartman number on average Nusselt number for different Eckert numbers on inner and 
outer cylinders, for η = 0.5, Ta=20,Pr = 0.02, t=120 (numerical results). 

6 Conclusion 
In conclusion therefore, the forced convection flow of an electrically conducting fluid between two 
horizontal concentric cylinders in the presence of an axial magnetic field and a viscous dissipation was 
studied. The exact solution is more general with variable boundary conditions. Therefore, we can easily 
obtain another exact solution with different conditions. Our results show that the application of a magnetic 
field may have interesting effects in the fluid motion and heat transfer because it causes a damping of 
movement in the system. 
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