REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

المعة ألبوبرة كلي محند اولحاج

Faculté des Sciences et des Sciences Appliquées Département de Génie mécanique

<u>Projet de Fin d'Etude Master</u>

Présenté pour obtenir le diplôme de Master

Filière : Génie mécanique

OPTION : Energétique

<u>Thème</u>

ETUDE ET DIMMENSIONNEMENT D'UN CONCENTRATEUR SOLAIRE CYLINDRO-PARABOLIQUE

Par :

MESLEM Ameur et SAIGHI Mohamed Amine

Soutenu le: 04/07/2018

Devant le jury composé de :

Président : M^r : LATTARI Kamel

Rapporteur : Mr : BOURAGBI Lakhdar

Dr : ABBAS Mohamed

Examinateurs :

D^r: Hamimid Saber

M^r: Messai Tarek

Université de Bouira

Université de Bouira

Unité de Développement des Equipements Solaires

Université de Bouira Université de Bouira

Remerciements

La réalisation de ce mémoire a été possible grâce aux efforts de nombreuses personnes à qui nous voudrions témoigner toute notre reconnaissance.

En tout premier lieu, nous remercions le bon Dieu, tout puissant, de nous avoir donné la sagesse, ainsi que le courage pour dépasser toutes les difficultés.

Nous tenons avant tout à exprimer notre reconnaissance à Mr. Bouregbi pour son encadrement dans cette étude et ses importants conseils. Nous le remercions pour son implication, son soutien et ses encouragements tout au long de ce travail.

Nous souhaitons également remercier Dr.Abbas pour nous avoir suivis et conseillés au cours de notre stage pratique à Unité de Développement d'équipement solaire (UDES)

Nous voudrons exprimer notre reconnaissance envers les amis et collègues qui nous ont apporté leur support moral et intellectuel tout au long de nos démarches.

Au nom du dieu le clément et le miséricordieux louange à **ALLAH** le tout puissant. Nous dédierons ce modeste travail en signe de respect, reconnaissance et de remerciement : A nos chers parents, qui nous ont beaucoup soutenus.

A nos familles, qui porte le nom MESLEM et SAIGHI A tout ceux qui ont participé à l'élaboration de ce modeste travail et tous ceux qui nous sont chers.

Remerciements	2
Introduction générale	15
1.1. Introduction	18
1.2. L'énergie solaire	18
1.3.Les systèmes solaires à concentration	19
1.3.1 Le concentrateur parabolique	20
1.3.2 La tour solaire	21
1.3.3 Les miroirs de Fresnel [1]	22
1.3.4 Le concentrateur cylindro-parabolique	23
1.3.4.1 Description du concentrateur	24
1.3.4.2 Les domaines application	25
1.4 Le fluide caloporteur HTF	26
2.1. Introduction	28
2.2. Mouvements de la terre autour du soleil	28
2.3. Déclinaison $\pmb{\delta}$	28
2.4. Hauteur angulaire du soleil h	29
2.5. Azimut du soleil a	29
2.6. Angle horaire $\boldsymbol{\omega}$	29
2.7. Le temps solaire vrai TSV	30
2.8. Temps solaire moyen	30
2.8.1.Temps universel (TU) :	31
2.8.2.Le temps légal (local)[18]	31
2.9.correction du temps Δt	31
2.10.Coordonnées géographiques	32
2.10.1.La latitude du lieu $oldsymbol{arphi}$	32
2.10.2.Longitude λ	32
2.10.3. L'altitude (Z)	32
2.11.Méthodes d'estimation du rayonnement solaire	32
2.12.Le Rayonnement Solaire	33
2.12.1. Eclairement Global	33

sommaire

	2.12.2. Eclairement directe [27]	. 33
	2.12.3.Eclairement diffuse [24]	. 36
2	13.Conclusion :	. 37
3	1.Géométrie du Cocentrateur cylindro-parabolique	. 39
3	2.Concentration de rayonnement à un Cocentrateur cylindro-parabolique	. 39
	3.3.Paramètres pour la description géométrique d'un Cocentrateur cylindro-	
	parabolique	. 40
3	4.Modélisation mathématique du capteur cylindro-parabolique	. 44
3	5. Modélisation mathématique du CCP	. 44
	3.5.1Description de tube absorbeur	.44
	3.5.2 Les différents modes de transfert mise en jeu	.45
	3.5.2.1.Transfert de chaleur par conduction	.45
	3.5.2.2.Transfert de chaleur par convection	.45
	3.5.2.3Transfert de chaleur par rayonnement	.45
	3.5.2.4Facteur de forme [35]	. 46
		.47
	3.6.formulation des équations caractéristiques du problème	. 47
	3.6.1.les hypotheses simplificatrices	. 47
	D'où	. 48
	3.6.2.Bilan énergétique du fluide caloporteur	. 49
	Remarque	. 49
	3.6.3.Bilan énergétique pour l'absorbeur	. 50
	3.6.4.Bilan énergétique pour la vitre	. 50
	3.7.Echanges thermiques entre les différentes composantes du collecteur	. 50
	3.7.1.Echanges thermiques entre l'absorbeur et le fluide	. 50
	3.7.2.Echanges thermiques entre l'absorbeur et l'enveloppe transparente	. 51
	3.7.3 Echanges thermiques entre l'enveloppe transparente et l'environnement	. 52
	3.7.3.1.Détermination du flux échangé par convection	. 52
	3.7.3.1.1vent calme	. 52
	3.7.3.2. avec un vent de surface	.53
	3 7 3 2Détermination du flux échangé par rayonnement [40]	54
	3.8 Energie solaire globale absorbée	54
	3.9 calcul des pertes thermique du CCP	55
	3 9 1 Calcul de la nuissance utile	55

sommaire

3 10 Rendement thermique du CCP [41]	56
3 11 Résolution numérique du problème [38]	56
3.11.1.Méthode de résolution [42]	. 56
3.11.1.1 Equation caractéristique pour le fluide :	. 56
3.11.1.2. Equation caractéristique de l'absorbeur	. 57
3.11.1.3.Equation caractéristique de la vitre	57
3.11.1.4.svstème sous la forme matricielle [43]	. 57
3.12.flux solaire autour du tube absorbeur par (SolTrace)	. 58
3.12.1.Description de SolTrace	. 59
Tableau.3.2 : Coefficient d'extinction de certain matériaux transparents [49]	61
3.13.Conclusion :	. 63
4.1.Introduction	. 65
4.2.Données astronomiques du lieu	. 65
4.2.1.La position du soleil	. 65
4.2.1.1.Déclinaison δ	65
4.2.1.2.Hauteur angulaire du soleil	. 66
4.2.1.3.Azimut du soleil	66
4.2.1.4.Angle horaireω	67
4.2.1.5.Le temps solaire vrai TSV	. 67
4.2.1.6.Temps solaire moven	. 68
4.2.1.7.Angle d'incidence	. 68
4.2.1.8.Rayonnement (Eclairement Global)	69
4.2.1.9.Eclairement directe	. 69
4.2.1.10.Eclairement diffuse	. 70
4.3 Dimensionnement de CCP(concentrateur cylindro-parabolique)	. 70
4.3.1 Résultats de soltrace obtenus à 13 :00 le 27/06/2018	. 73
Conclusion générale	83

Figure 1. 1 UIISATION DIRECTE DE L'ENERGIE SOLAIRE	19
Figure 1. 2 Schéma d'un concentrateur solaire parabolique (Soteris, 2004)	21
Figure 1. 3 Schéma d'une centrale à tour (Soteris, 2004)	22
Figure 1. 4 Schéma d'un concentrateur solaire de Fresnel (Soteris, 2004)	23
Figure 1. 5 Schéma simplifié de la centrale INDITEP (Guillaume, 2011)	24
Figure 1. 6 Schéma d'un concentrateur cylindro-parabolique (Soteris, 2004)	25
Figure 2. 1 la position de sole [13]	28
Figure 2. 2 L'angle horaire et la déclinaison [18]	30

Figure 3. 1 Chemin des rayons parallèles à un miroir parabolique [33]	. 39
Figure 3. 2 Paramètres géométriques Cocentrateur cylindro-parabolique [33]	.40
Figure 3. 3 Longueur focale comme paramètre de forme [33]	.41
Figure 3. 4 Relation entre l'angle de la jante et la valeur a / f [33]	.42
Figure 3. 5 Coupe transversale d'un concentrateur cylindro-parabolique [34]	.43
Figure 3. 6 schématisation des différents transferts thermiques dans le collecteur [35]
	.45
Figure 3. 7 Le spectre de l'onde électromagnétique	.46
Figure 3. 8 Facteur de forme d'une surface par rapport à une autre	. 47
Figure 3. 9 schéma du bilan énergétique d'un élément x du collecteur CP (coupe	
axiale et radiale) [7]	.48
Figure 3. 10 informations sur la forme du soleil	.60
Figure 3. 11 propriétés optiques pour la miroir	61
Figure 3. 12 propriétés optiques pour la vitre (ver) et l'absorbeur (cuivr)	62
Figure 3. 13 description géométrie du la miroir	62
Figure 3. 14 description géométrie du l'absorbeur	.63
Figure 3. 15 description géométrie du la vitre (verre)	.63
Figure 3. 16 l'angle d'indclinaison en fonction du nombre de jour	65
Figure 3. 17 hauteur angulaire du soleil h en fonction du temps solair vrai	.66
Figure 3. 18 azimut angulaire du soleil en fonction du angle horaire	66
Figure 3. 19 angle horaire w en fonction du temps solair vrai	. 67
Figure 3. 20 la durée du temps solair vrai de chaque jour ou occure de l'année	.67
Figure 3. 21 temps solaire vrai en fonction du temps local	. 67
Figure 3. 22 temps solaire moyen en fonction du temps local	. 68
Figure 3. 23 angle incidence en fonction de temps local	.68
Figure 3. 24 rayonnement solaire globale en fonction TSV	. 69
Figure 3. 25 rayonnement solaire direct pour un plan quelconque et horizontal	.69
Figure 3. 26 rayonnement solaire diffuse	.70
Figure 3. 27 vue du face de miroir (mm)	.71
Figure 3. 28 vue de miroir (mm)	.72
Figure 3. 29 assemblage des tube absorbeur ,miroir et vitre	.72
Figure 3. 30 vue du face de trajectoire des rayons sur (l'absorbeur ,vitre) (m)	.73

Figure 3. 31 trajectoire des rayons sur(l'absorbeur ;vitre) Figure 3. 32 trajectoire des rayons sur[l'absorbeur (a droit) et la vitre (a gauche)]	73
sans erreurs optique	74
Figure 3. 33 trajectoire des rayons sur[l'absorbeur (a droit) et la vitre (a gauche)] avec erreurs optique	.74
Figure 3. 34 interactions physiques avec les rayons sans erreurs optique[vitre(1);absorbeur(2)]	.74
Figure 3. 35interactions physiques avec les rayons avec erreurs optique [vitre(1) ;absorbeur(2)]	.75
Figure 3. 36 interactions physiques avec les rayons sans erreurs optique(1) ;avec(2)
Figure 3. 37 flux autour de l'absorbeur [mW/m2]	76
Figure 3. 38 flux autour de la vitre [mW/m2]	76
Figure 3. 39 flux intérieur de l'absorbeur [mW/m2]	.77
Figure 3. 40 flux intérieur de la vitre [mW/m2]	77
Figure 3. 41 Rendement optique en fonction de l'angle l'incidence	78
Figure 3. 42 Rendement optique en fonction de l'angle incidence	78
Figure 3. 43 Flux[W/m2] absorbé par concentrateur en fonction de TL	79
Figure 3. 44 la puissance absorbé par concentrateur en fonction de rayonnement	
global	79
Figure 3. 45 les puissances [absorbé;perdu;util] en fonction temps local cas vent calme	80
Figure 3. 46 coefficient globale des pertes thermiques en fonction du temps solaire vrai cas vent calme	e 80
Figure 3. 47 les puissances [absorbé ; perdu; util] en fonction temps local cas ven v=5[m/s]	t . 80
Figure 3. 48 coefficient globale des pertes thermiques en fonction du temps solaire vrai cas vent v=5[m/s]	; . 80
Figure 3. 49 rendement thermique de CCP en fonction du temps local vent v=5[m/	s] . 80
Figure 3. 50 rendement thermique de CCP en fonction du temps local cas vent cal	me .80
Figure 3. 51 : température en fonction de la longueur du tube vent v=5[m/s](TL=1 :00)	3 81
Figure 3. 52 température en fonction de temps local cas vent calme (TL=13 :00)	81
Figure 3. 53 température en fonction de la longueur du tube cas vent calme (TL=1:00)	3 . 81
Figure 3. 54 température en fonction de la longueur du tube vent v=5[m/s](TL=13:00)	.81
Figure 3. 55 température ambiant en fonction de temps local	82

Abstract :

L'objectif du travail est basé sur la conception, le dimensionnement et la modélisation mathématique d'un concentrateur solaire de type cylindro-parabolique et ce termine par des résultats donnés par un programme de calcul des différents paramètres pour l'utiliser dans un procédé de distillation des eaux saumâtres comme source d'énergie thermique.

يستند الهدف من هذا العمل على التصميم والأبعاد والنمذجة الرياضية لمكثف الطاقة الشمسية من نوع مكافئ مكافئ ، وينتهي بالنتائج التي يقدمها برنامج حساب مختلف المعلمات لاستخدامها في عملية تقطير المياه المالحة كمصدر للطاقة الحرارية.

The objective of the work is based on the design, the dimensioning and the mathematical modelling of a solar concentrator of parabolic-parabolic type and that ends with results given by a program of calculation of the various parameters to use it in a process of distillation of brackish water as a source of thermal energy.

Symbole	Définition	Unité
δ	Déclinaison	degré
h	Hauteur angulaire du soleil	degré
а	Azimut du soleil	degré
ω	Angle horaire	degré /heure
TSV	Le temps solaire vrai	heure
TSM	Temps solaire moyen	heure
TU	Temps universel	heure
TL	Le temps légale (local)	heure
TLs	temps de lève de soleil	heure
TCs	temps de coucher de soleil	heure
dj	La durée du jour	heure
ω_L	l'angle horaire de lève du soleil	degré /heure
ω _c	l'angle horaire de coucher du soleil	degré /heure
Δt	correction du temps	heure
Nj	nombre de jour	jour
$oldsymbol{arphi}$	latitude du lieu	degré
λ	Longitude	degré
Z	L'altitude	m
lo	la constante solaire	W/m ²
G	Eclairement solaire	W/m2
Ι	Eclairement direct	W/m ²
I _{hs}	le rayonnement solaire direct Pour un plan horizontal,	W/m ²
θ	d'angle d'incidence	degré

ɛ 0	Correction de la distance terre-soleil.	
m_A	masse d'air optique	[-]
Ρ	Pression locale, Pression de vaporisation.	Pa
TL	facteur de trouble de Linke	[-]
A _{he}	L'alternance hiver-été	[-]
δ_{Ra}	l'épaisseur optique	[-]
D	Eclairement diffuse	W/m ²
f	la distance focale	m
φr	angle de jante (rim)	degré
Wa	ouverteur	m
θ _m	l'angle de demi-acceptation	degré
L	la longueur	m
r _r	rayon de la jante	m
φ	chaleur par convection	W
ϕ_r	chaleur par rayonnement	W
q _{ab}	Quantité de chaleur absorbée un niveau de l'absorbeur vienne du se	oleil W
qu	Quantité de chaleur utile cède au fluide caloporteur par l'absorbeur	W
q a,v	Quantité de chaleur échangée par conv entre le tube absorbeur et la	vitre W
q v,amb	Quantité de chaleur échangée par convection entre la vitre et l'air am	biant W
$Q_{f(x)}$	Flux de chaleur du fluide caloporteur a l'abscisse <i>x</i>	W
Q _{f(x+} Δ	$\mathbf{x}_{\mathbf{y}}$ Flux de chaleur du fluide caloporteur a l'abscisse x+ $\Delta \mathbf{x}$	W
D _{ai}	Diamètre intérieur du tube absorbeur	m

D _{ae}	Diamètre extérieur du tube absorbeur	m
D _{vi}	Diamètre intérieur de l'enveloppe transparente	m
D_{ve}	Diamètre extérieur de l'enveloppe transparente	m
T _f	Température du fluide HTF	K
Ta	Température de l'absorbeur	K
T_{v}	Température de la vitre	K
\dot{m}_f	Débit massique du fluide	kg/s
ρ _f	Masse volumique du fluide caloporteur	kg/m²
C _{p,f}	Capacité calorifique du fluide	J/kg.K
q _{a,v} (x)	Quantité de chaleur échangé par convection naturelle entre l'absorbeur	⁻ et le
vitre a	a la distance x de l'entrée	W/m ²
$\mathbf{q}_{v,amb}$	(x) Quantité de chaleur perdue vers l'extérieur par convection entre la v	vitre et
l'air l'a	ambiant	W/m²
q a,v/ray	Flux d'échange thermique par rayonnement entre l'absorbeur et la vitre	W/m ²
N _{uDai}	nombre de Nusselt basé sur D _{ai}	
μ _f	Viscosité cinématique dynamique du fluide	m²/s
K _f	Conductivité thermique du fluide	W/m.K
P _{rf}	Nombre de Prandtl	
R_{eDai}	Nombre de Reynolds	
K _{air.eff}	Conductivité thermique effective de l'air	W/m.K
F _{cyl}	Facteur de la forme concentrique du cylindre	
Lc	la longueur critique	m

ε _a L	'émissivité de l'absorbeur	
ε_v l	émissivité de la vitre	
Nu _{Dve}	Nombre de Nusselt basé sur Dve	
$ar{h}_{ m v,amb}$ (Coefficient d'échange convective entre la vitre et l'air ambiant	W/m².K
T _{amb} 1	empérature ambiante	к
β	Coefficient de la dilatation thermique	K ⁻¹
h _{a,f} (Coefficient d'échange convective entre l'absorbeur et le fluide	W/m².K
k _f	Conductivité thermique du fluide	W/m.K
Ra _{Dve}	Nombre de Rayleigh calculé sur le diamètre extérieur de la vitre	
	Nombre de Prandtl de l'air ambiant	
Kair amb	Conductivité thermique de l'air	W/m.K
$ ho_{selet}$	Coefficient de réflexion de la surface réfléchissante	
UL	Coefficient des pertes thermique	
h _{vent}	Coefficient de convection du vent	W/m².K
Kv	Conductivité du verre	W/m.K
e_v	Epaisseur de l'enveloppe transparente	m
η	Rendement thermique du CCP	
T _{f,e}	Température d'entrée du fluide caloporteur	К
$T_{f,s}$	Température de sortie du fluide caloporteur	К
È	Facteur d'efficacité du miroir	
S ₀	Section d'ouverture du concentrateur	m²
S_{G}	Surface d'image de GAUSS	m ²
S _R	Surface de l'image réelle du soleil dans le plan focal	m²
f	Distance focal	m

- c Taux de concentration
- S_r Surface de l'absorbeur

 ${\rm m}^2$

C_{opt.} Taux de concentration optique

INTRODUCTION GENERALE

Introduction générale

La consommation énergétique a augmenté ces dernières années avec la croissance rapide dans les secteurs résidentiel, commercial et industriel. Pour le moment, la demande énergétique en Algérie est assurée par les grands gisements de pétrole et surtout de gaz [1]. L'Algérie avec sa situation géographique, occupe une position privilégiée dans l'exploitation d'énergie solaire avec une durée d'ensoleillement qui varie de 2650 heures /an dans le nord à 3500 heures/an dans le sud, l'une des plus élevées au monde. [2]

Les énergies renouvelables peuvent être des solutions en raison de leur abondance. Une énergie renouvelable est une source d'énergie considérée comme inépuisable à l'échelle de temps humain.[3, 4,5]

Le solaire photovoltaïque demande l'utilisation exclusive de très grandes surfaces (contrairement à des éoliennes installées sur des surfaces agricoles). Le stockage par batterie étant très limité, cette technologie n'est envisageable qu'à petite échelle sur des surfaces comme les toitures, et des abris de parking qui ne sont pas valorisables autrement. [6]

La filière thermodynamique à concentration semble aujourd'hui être une alternative plausible pour répondre à la problématique mondiale de production d'énergie. Elle n'émet pas de gaz à effet de serre [7].

IL existe quatre principaux types des concentrateurs solaires, les concentrateurs cylindro-paraboliques, les miroirs de Fresnel, les tours solaires et les concentrateurs paraboliques. La technologie des concentrateurs Cylindro-Parabolique (CCP) est actuellement la plus éprouvée des techniques de concentration solaire, ils offrent un bon rendement thermique jusqu'à des températures supérieures au 400°C.

Il existe d'autres applications de la technologie des concentrateurs cylindroparaboliques, tels que le chauffage d'eau, le dessalement d'eau et le froid solaire. Le CCP peut être employé pour dessaler l'eau, en reliant le champ solaire à une usine thermique de dessalement par les différents procédés industriels (simple effet, multiples effets et multiples étages), ou indirectement par la production de l'électricité.

Les études ont montré que les problèmes abordés en concentration solaire comportent de très nombreux paramètres (physiques et géométriques) et que la détermination d'un jeu optimal de paramètres est très complexe. [8]

L'objectif principal de ce travail est basé sur la conception, le dimensionnement et la modélisation mathématique d'un concentrateur solaire de type cylindro-parabolique. Il s'agit ensuite d'effectuer une étude paramétrique en vue de mettre en évidence l'effet de la concentration des rayons solaire sur la température de sortie du fluide caloporteur qui pourra être utilisée pour le dessalement des eaux saumâtres.

INTRODUCTION GENERALE

.

Pour ce faire, le mémoire a été organisé en quatre chapitres dont le premier chapitre traite sur les systèmes solaires à concentration, le deuxième chapitre est consacré à la définition des coordonnées solaires et à l'estimation du rayonnement solaire par le model de Capderou. Le troisième chapitre représente le cœur de ce travail dans lequel nous avons présenté le dimensionnement du concentrateur cylindro-parabolique, et la formulation des équations caractéristiques du problème avec les bilans énergétiques. Dans le dernier chapitre, nous avons représenté les résultats obtenus par les deux programmes MATLAB et SolTrace relatifs aux chapitres 2 et 3. Enfin, nous terminerons ce travail par une conclusion générale.

GENERALITES SUR LES SYSTEMES SOLAIRES A CONCENTRATION

1.1. Introduction

Le soleil est une étoile de forme pseudo-sphérique dont le diamètre atteint 1391000 km. Il est situé à une distance moyenne de 149 598 000 km [1] de la terre, elle émet un rayonnement électromagnétique compris dans une bande de longueur d'onde variant de 0.22 à 10 μ m. La terre décrit autour du soleil une trajectoire légèrement elliptique dont le soleil occupe un foyer. Selon sa position par rapport au soleil on a les différentes saisons. La distance terre-soleil varie donc peu au cours de l'année plus au moins 1.65%. Elle est la plus faible vers le début de Janvier et la moyenne de 1.37kW/m2 (+/- 3% selon que la terre s'éloigne ou se rapproche du soleil dans sa plus longue le début Juillet. L'atmosphère terrestre reçoit le rayonnement à une puissance rotation autour de celui-ci), il absorbe une partie de cette énergie et l'énergie solaire qui arrive à la surface terrestre dépasse rarement 1.2kW/m². Le rayonnement solaire global qui atteint la surface de la terre comprend un rayonnement direct, provenant en ligne droite du soleil et un rayonnement diffus, résultant de la diffusion de la lumière dans l'atmosphère essentiellement par la couverture nuageuse.

1.2. L'énergie solaire

L'énergie solaire, à l'origine de la vie sur terre, elle est exploitée depuis la nuit des temps par l'homme. Il existe pourtant de nombreuses technologies résumées dans le schéma de la Figure 1.1 permettant de produire de la chaleur pour différentes applications (chauffage, distillation, climatisation et l'électricité) ou de l'électricité en utilisant directement l'énergie solaire photovoltaïque. La première distinction à faire entre ces différentes technologies est celle entre le solaire thermique et le solaire photovoltaïque. Un système solaire composé de cellules photovoltaïques convertit directement une partie du rayonnement solaire en électricité par effet photovoltaïque et le système thermique va utiliser l'énergie solaire pour produire de la chaleur en chauffant un fluide à plus ou moins haute température. Si la température du fluide est assez élevée, on peut alors actionner un cycle thermodynamique pour produire de l'électricité et de la chaleur.

La deuxième distinction est celle entre les capteurs plans et les capteurs à concentration. Le rayonnement solaire dans un capteur plan est intercepté et absorbé par la même surface et son rendement décroit quasiment linéairement lorsque la température de fonctionnement croit. Par contre l'utilisation des réflecteurs pour concentrer les rayons du soleil dans un capteur à concentration permet de diminuer grandement la taille de l'absorbeur, ce qui réduit les pertes de chaleur et permettre d'augmenter l'efficacité du système à hautes températures. De plus les réflecteurs dans ces concentrateurs sont sensiblement moins coûteux par unité de surface par rapport aux capteurs plans. Leur inconvénient majeure réside dans le fait qu'ils n'utilisent que le rayonnement solaire direct, c'est pour cela que l'orientation des concentrateurs est relative a la direction de la propagation du rayonnement direct, ceci exige une poursuite continue du soleil. [1]

Figure 1. 1 UIISATION DIRECTE DE L'ENERGIE SOLAIRE

1.3.Les systèmes solaires à concentration

Les concentrateurs solaires focalisent les rayons du soleil dans un point comme la tour solaire et le concentrateur parabolique, ou dans une ligne comme le concentrateur cylindroparabolique et les miroirs de Fresnel. Les concentrateurs en lignes possèdent généralement un facteur de concentration inférieur à ceux des concentrateurs ponctuels, ce facteur caractérise la géométrie générale d'un concentrateur. Il représente le rapport entre la surface de captation et la surface d'absorption. Les systèmes utilisant les concentrateurs solaires sont capables de générer des températures au voisinage de 1000°C, ces systèmes ont été initialement développés pour la production d'électricité. Les caractéristiques techniques principales de ces centrales solaires à concentration(CCP) sont présentées dans le tableau ci-dessous. [1]

Type de champ solaire	Facteur de concentration	Capacité d'unité (MW)	Prix du champ solaire (€/m²)	Température d'opération (°C)
Miroirs de Fresnel	25-100	10-200	150-200	270-550
Cylindro-parabolique	70-80	10-200	200-250	390-550
Parabolique	1000 -3000	0.01-0.04	> 350	800-900
Tour solaire	300-1000	10-150	250-300	550-1000

Les centrales solaires à concentration souffrent cependant de deux contraintes majeures. La première tient à la disponibilité de la ressource. En effet, la concentration ne peut se faire que pour le rayonnement solaire direct à la différence du photovoltaïque. Le deuxième inconvénient est comme pour la plupart des énergies renouvelables, d'ordre économique. Le coût d'investissement est supérieur aux centrales conventionnelles. D'autres problèmes doivent également être examinés. Une ressource en eau est nécessaire pour le lavage des concentrateurs et la connexion au réseau de distribution électrique doit également être étudiée avec attention tout comme le coût du terrain.[1]

1.3.1 Le concentrateur parabolique

Le concentrateur parabolique représenté schématiquement sur la figure 1.2, est composé d'une surface réflective qui concentre le rayonnement solaire incident à son foyer. La contrainte majeure est la nécessité de mobiliser la parabole selon deux axes de rotation pour assurer la poursuite du soleil. Ceci entraîne une limitation de la dimension unitaire de ce concentrateur. Trois types des surfaces réfléchissantes ont été utilisées, la première possibilité consiste en un dépôt d'argent ou d'aluminium à l'arrière d'une plaque de verre, la deuxième est basée sur le même principe mais on remplace la plaque de verre par un film plastique et la troisième possibilité consiste en des feuilles d'aluminium polies. Ces feuilles sont peu chères mais ont une faible réflectivité et une faible longévité. [1]

Figure 1. 2 Schéma d'un concentrateur solaire parabolique (Soteris, 2004)

Dans les systèmes de production d'électricité, un moteur thermique de type Stirling, est Installé au foyer du concentrateur afin de produire de l'électricité. En 1818 Robert Stirling (1790-1878) a imaginé un moteur utilisant un gaz (air, hélium, hydrogène) contenu dans une enceinte fermée, chauffée par une source de chaleur extérieure. Le moteur présente un "point chaud" et un «point froid" la source chaude est assurée par le foyer du concentrateur parabolique et la source froide est assurée par l'air ambiant brassé par un ventilateur à l'arrière du moteur. Le gaz circule entre ces deux points et subit ainsi alternativement une compression et une dilatation, cette pulsation du gaz est utilisée pour entraîner un piston qui permet de récupérer l'énergie mécanique. Les principaux avantages de ces systèmes est la modularité, ils peuvent en effet être installés dans des endroits isolés non raccordés au réseau électrique. Ils possèdent donc également un important potentiel de développement, particulièrement dans des régions peu peuplée de certains pays du sud. Mais les systèmes Parabole/Stirling souffrent principalement d'un cout d'investissement important supérieur à 350 €/m². De plus, le manque de retour d'expérience de ces systèmes en centrales pré-commerciales rend difficile l'évaluation des couts associes a la maintenance. [1]

1.3.2 La tour solaire

Pour échapper aux limitations des tailles rencontrées avec le concentrateur parabolique, Une tour en béton ou en poutres métalliques entourer par un champ de nombreux miroirs appelés" héliostats" (en grec: qui fixe le soleil) est développé (figure 1.3). Les héliostats actuels ont une surface située entre 50 m2 et 120 m2 et chaque héliostat poursuit le soleil individuellement sur deux axes pour concentrer le rayonnement solaire direct vers un receveur au sommet de la tour solaire, ce qui permet d'atteindre des températures importantes, mais l'ombre portée de la tour sur le champ d'héliostats influe directement sur l'efficacité du système. A ce jour, la seule application de la tour solaire est la production d'energie électrique dans un système dénommé centrale à tour. Les trois fluides caloporteurs les plus utilisés dans ces centrales sont la vapeur d'eau, l'air et les sels fondus. La production de la vapeur d'eau par

centrale a tour a fait l'objet de plusieurs projets de recherche, cette technologie a été abandonnée à cause des problèmes critiques dus à la surchauffe de la vapeur. La vapeur d'eau a ensuite été remplacée par des sels fondus, qui ont l'avantage d'être également un moyen de stockage de l'énergie calorifique. Un nouveau concept de récepteur à air a alors été mis au point, l'air atmosphérique aspire au travers d'un récepteur volumétrique, ce récepteur utilise un maillage de fils métalliques directement exposé à la radiation solaire incidente. Seulement quelques projets de recherche ont été réalisés et ont surtout porte sur l'amélioration du rendement des récepteurs volumétriques. [1]

Figure 1. 3 Schéma d'une centrale à tour (Soteris, 2004)

1.3.3 Les miroirs de Fresnel [1]

Ce système est composé par des miroirs plans, ou faiblement paraboliques, disposées en lames parallèles qui s'inclinent sur un axe de façon a réfléchir les rayons du soleil vers le foyer. Les miroirs restent près du sol, cette position lui permettre d'éviter le vent. Un deuxième étage de réflecteurs redirige le rayonnement vers un récepteur tubulaire fixé audessus des miroirs dans le centre du champ solaire (figure 1.4). Malgré la chute des performances optiques de cette technologie (2/3 de celle d'un CCP), une baisse des coûts de maintenance et d'investissement de 50% dans une centrale solaire basée sur cette technologie par rapport aux autres technologies (concentrateur parabolique et tour solaire). Cette technologie a été récemment mis au point par plusieurs sociétés les premiers prototypes réalisé jusqu'à maintenant sont prometteurs, mais ils souffrent encore d'un manque de maturité

Figure 1. 4 Schéma d'un concentrateur solaire de Fresnel (Soteris, 2004)

1.3.4 Le concentrateur cylindro-parabolique

La technologie des concentrateurs solaires cylindro-paraboliques est actuellement la plus répandue, l'application la plus importante de cette technologie est la production de l'électricité. En 1984, la première centrale solaire commerciale, SEGS I était installée en Californie par la société Luz International Limited . La centrale thermique solaire à CCP est constituée de trois éléments principaux :

- le champ solaire, qui utilise une série de longs concentrateurs cylindro-paraboliques.
- le système de transfert de la chaleur.
- le système de génération électrique (Turbine + Générateur).

Les huiles synthétiques sont les fluides caloporteurs les plus couramment employés dans les centrales à capteurs cylindro-paraboliques. Des réservoirs de chaleur (réservoirs de sels fondus) peuvent être utilises pour stocker la chaleur durant la journée afin d'actionner la turbine pendant la nuit. La possibilité d'hybridation de ces installations avec des systèmes conventionnels de production de chaleur permet de garantir la stabilité de la production d'électricité. Il est possible aussi d'effectuer la vaporisation d'eau directement dans le collecteur solaire (Direct Steam Generation-DSG-) (Martinez et Almanza, 2007 ; Valenzuela et al. 2, cette technologie permet de diminuer le coût de l'installation de 15% (Fernandez-Garcia et al., 2010). La faisabilité d'un tel système a été démontrée sur un prototype de la plate forme solaire d'Almeria (PSA), au sud de l'Espagne (Garcia-Rodriguez et Gmez-Camacho, 2001), ces tests ont encouragé les industriels espagnols à développer un projet d'une première centrale prée commerciale DSG, INDITEP, d'une puissance de 4.7 MW (figure 1.5). [1]

Figure 1. 5 Schéma simplifié de la centrale INDITEP (Guillaume, 2011)

1.3.4.1 Description du concentrateur

Le concentrateur cylindro-parabolique se distingue par sa simplicité, il se présente comme un module ayant un réflecteur de forme parabolique disposé cylindriquement. Cette géométrie lui permet de focaliser l'energie solaire incidente selon une génératrice linéaire où est placé un tube absorbeur dans lequel circule un fluide caloporteur. Le CCP est généralement dote d'une poursuite solaire pour adapter l'inclinaison du concentrateur de manière à ce que la radiation solaire incidente soit toujours perpendiculaire au plan d'ouverture du concentrateur.[1]

Le concentrateur cylindro-parabolique est caractérisé par trois facteurs principaux. Le facteur de concentration, le facteur d'interception et le facteur de l'angle d'incidence modifie:

Le facteur de concentration (C0) : qui représente le rapport entre la surface de captation ou la surface d'ouverture du concentrateur (A0) à la surface latérale de l'absorbeur (Aab).Il définit la géométrie générale d'un CCP

Figure 1. 6 Schéma d'un concentrateur cylindro-parabolique (Soteris, 2004)

- Le facteur d'interception (γ) : qui représente le rapport entre l'énergie interceptée par l'absorbeur et celle réfléchie par les surfaces réfléchissantes. Les principaux facteurs qui affectent sur le facteur d'interception sont :
- L'erreur de suivi solaire.
- La précision géométrique du réflecteur.
- La réflectivité propre du réflecteur.
- La poussière sur l'absorbeur et le réflecteur.
 - Le facteur de l'angle incidence modifié (K) : qui décrit comment l'efficacité optique du concentrateur change pendant que l'angle d'incident change. La valeur de ce facteur est toujours inferieure à l'unité et diminue avec l'augmentation de l'angle d'incidence.

1.3.4.2 Les domaines application

• Les applications sont multiples, parmi lesquelles nous pouvons citer :

1.3.4.2.1 Applications à moyennes températures

• Le chauffage, le froid et conditionnement de l'air

Le système solaire permet d'utiliser la chaleur produite pour les besoins d'eau chaude sanitaire, le chauffage d'habitats [9].

• Le dessalement des eaux [10]

Le dessalement de l'eau de mer est désormais un principe envisageable, voire nécessaire pour obtenir de l'eau potable. Le solaire thermique paraît être le mieux adapter à le réaliser.

• Le séchage des fruits et produits agroalimentaires

Les fruits et les produits agroalimentaires peuvent être séchés grâce à l'énergie solaire. Ils sont disposés dans une enceinte à l'intérieur de laquelle un courant d'air circule au dessus des fruits. [11]

1.3.4.2.2 Applications à hautes températures

• L'électricité

Les centrales conventionnelles de turbine à vapeur pour la production d'électricité présentent un danger environnemental, puisqu'elles dégagent du CO2 et contribuent ainsi au réchauffement climatique. Nous pouvons alors envisager de remplacer la chaudière à gaz qui entraine la turbine par des collecteurs solaires, cylindro paraboliques, qui engendrent des fluides caloporteurs à haute températures et par la suite produisent de la vapeur d'eau. [9]

• Advantages

Source d'énergie inépuisable et gratuite. Pas d'émission polluante. Peu fonctionner sans intermittence.

• Inconvenient

Nécessite une poursuite sensible et couteuse pour une zone climatique peut ensoleiller. Surface au sol importante.

1.4 Le fluide caloporteur HTF

Le type de fluide de transfert de chaleur dans le domaine solaire et ses caractéristiques thermiques sont primordiales pour le bon fonctionnement du système solaire. En raison de la stabilité thermique du Therminol VP- 1 est seulement tenu à des températures de 400°C, la température de la vapeur d'eau maximale dans le cycle [12].

coordonnées solaires

2.1. Introduction

La position du Soleil est définie par l'ascension droite et la déclinaison de son centre, comme pour toute étoile (voir chapitre Mécanique Céleste, Temps et Calendriers). Cependant, le Soleil nous offre des détails beaucoup plus précis qu'aucune autre étoile : des détails de l'ordre de 70 km sont maintenant accessibles depuis des télescopes terrestres. Il est donc nécessaire de définir des systèmes de coordonnées qui permettent de repérer sans équivoque ces structures.

Figure 2. 1 la position de sole [13]

2.2. Mouvements de la terre autour du soleil

La trajectoire de la terre autour du Soleil est une ellipse dont le soleil est l'un des foyers. Le plan de cette ellipse est appelé l'écliptique, l'excentricité de cette ellipse est faible ce qui fait que la distance Terre-Soleil ne varie que de $\pm 1.7\%$ par rapport à la distance moyenne. La terre tourne également sur elle-même autour d'un axe appelé l'axe des pôles. Le plan perpendiculaire à l'axe des pôles et passant par le centre de la terre est appelé l'équateur. L'axe des pôles n'est pas perpendiculaire à l'écliptique, l'équateur et l'écliptique font entre eux un angle appelé inclinaison et qui vaut 23°27'. [14]

2.3. Déclinaison δ

Le plan de l'orbite terrestre autour du soleil s'appelle plan de l'écliptique. La Terre

tourne elle-même autour de l'axe polaire, qui est incliné à $23,5^{\circ}$ par rapport à la perpendiculaire avec le plan de l'écliptique tout au long de l'année. La rotation de la terre autour de son axe provoque les variations diurnes du rayonnement. La position de l'axe par rapport au soleil est la cause des variations saisonnières du rayonnement solaire. L'angle entre la ligne qui relie les centres du soleil et de la Terre d'une part et le plan équatorial d'autre part change constamment. Cet angle est appelé déclinaison solaire. Pour le solstice d'hiver (22 décembre), il est de +23,5° alors que pour le solstice d'été (22 juin), la déclinaison est de -23,5°. [15]

$$\delta = 23.45 \sin[0.986 \times (284 + Nj)] \tag{2.1}$$

2.4. Hauteur angulaire du soleil h

C'est l'angle qui est formé par le plan horizontal du lieu d'observation avec la direction du soleil. Cette hauteur durant le jour peut varier de 0° (soleil à l'horizon) à 90° (soleil au zénith). La hauteur angulaire du soleil h est alors donnée par :

$$\sin h = \cos \varphi \cos \delta \cos \omega + \sin \varphi \sin \delta \tag{2.2}$$

 φ : latitude de lieu ω : angle horaire

2.5. Azimut du soleil a

C'est l'angle compris entre le méridien du lieu et le plan vertical passant par le soleil. La connaissance de l'azimut est essentielle pour déterminer l'angle d'incidence des rayons sur une surface non horizontale, l'azimut ne correspond nul à la direction sud dans l'hémisphère nord et la direction nord dans l'hémisphère sud. L'orientation Est correspond à l'azimut a = -90°, et l'orientation Ouest à $a = +90^{\circ}$. [15]

Leméridien :Cercle fictif passant par les deux pôles de la Terre dont le plan estperpendiculaire à celui de l'équateur.

L'azimut est défini par les relations suivantes :

$$\sin a = \frac{\cos \delta \sin \omega}{\cos h}$$
(2.3)
Ou:

$$\cos a = \frac{\sin \varphi \sin h - \sin \delta}{\cos \varphi \cos h} \tag{2.4}$$

Ou bien :

$$\cos a = \frac{\sin \varphi \cos \delta \cos \omega - \cos \varphi \sin \delta}{\cos h} \tag{2.5}$$

2.6. Angle horaire ω

L'angle horaire ω du soleil est calculé par la rotation journalière de la terre autour de son axe. C'est la mesure de l'arc de trajectoire solaire compris entre le soleil et le plan méridien du lieu exprimé en ° d'angle. [16]

Cet angle augmente de quinze degrés (15°) par heure. La valeur zéro degré (0°) est atteinte au passage du soleil à la verticale (zénith) du plan méridien (midi solaire vrai = 12 h TSV). [17]

Figure 2. 2 L'angle horaire et la déclinaison [18]

La notion du temps solaire vrai TSV a une liaison avec l'angle solide ω par la relation directe donnée par :

$$\omega = 15^{\circ}(TSV - 12) \tag{2.6}$$

Où ω est mesuré en degrés et TSV en heures.

2.7. Le temps solaire vrai TSV

Est une mesure du temps basée sur la définition de midi solaire : c'est l'instant où le soleil atteint son point de culmination, en un endroit donné de la Terre il est défini par les différentes coordonnées angulaires du soleil. Il est lié au temps solaire moyen TSM par l'équation du temps avec un maximum de 16 minutes. [19]

$$TSV = TSM + \Delta t \tag{2.7}$$

2.8. Temps solaire moyen

La différence entre temps solaire moyen et temps universel est appelée correction de longitude. La correction de longitude est donnée par la formule :

$$TSM = TU + \frac{\lambda}{15} \tag{2.8}$$

2.8.1.Temps universel (TU) :

Le temps universel (TU) est défini par l'heure de passage du soleil au méridien Origine.

$$TU = TL - \Delta H \tag{2.9}$$

Avec :

 ΔH : Le décalage horaire entre le méridien de Greenwich et l'état considéré.

TL : Le temps légal (TL) est le temps officiel d'un état

2.8.2.Le temps légal (local)[18]

Quand le soleil se lève le temps légal(TLL) égal au temps de lève de soleil(TLs)

 $Donc: TL_L=TLs$

On peut déduire l'angle horaire de lève du soleil ω_L à partir de la hauteur angulaire du soleil en posant sinh = 0 :

$$\cos\omega_L = -\tan\varphi\tan\delta \tag{2.10}$$

$$\omega_L = \arccos(-\tan\varphi\tan\delta) \tag{2.11}$$

La durée du jour est obtenue à l'aide de la formule suivante :

$$dj = \omega_c - \omega_L \tag{2.12}$$

$$dj = \frac{2}{15} \operatorname{arc} \cos(-\tan\varphi \tan\delta) \tag{2.13}$$

En déduire TL_s:

$$TL_s = 12 - \left(\frac{\omega_L}{15}\right) \tag{2.14}$$

2.9. correction du temps Δt

Cet écart Δt entre temps solaire moyen (TSM) et temps solaire vrai (TSV) est désigné sous le terme d'équation du temps. En plus, le mouvement de la terre consommant de l'énergie au perte de son énergie cinétique, celle-ci diminue, et des mesures précises ont constaté qu'entre 1900 et 1974, la terre a accumulé 44 secondes de retard dans sa rotation annuelle, ce qui signifie que la durée du jour moyen augmente de 1.6 s par an. Nous reprenons l'expression proposée par Duffie et Beckman:[20]

$$\Delta t = 229.2 \times (0.000075 + 0.001868 \times \cos(B) - 0.032077 \times \sin(B) - 0.014615 \times \cos(2B) - 0.0408 \times \sin(2B))$$
(2.15)

Avec

$$B = (Nj - 1)\frac{360}{365}$$
(2.16)

2.10.1.La latitude du lieu φ

L'angle de latitude est l'angle entre une ligne tracée d'un point sur la surface de la terre avec le centre de cette dernière, et le cercle équatorial de la terre. L'intersection du cercle équatorial avec la surface de la terre forme l'équateur, est indiquée en tant qu latitude de 0° , le pole nord par latitude +90° et le pole sud par la latitude -90°.

Cette convention de signe affecte le signe (+) à tous les lieux de l'hémisphère nord et le signe (-) tous les lieux de l'hémisphère sud. La latitude sera désignée ici par lettre (φ), et peut ainsi être composée entre -90° et +90°. Pour la ville de Bou-Ismail la latitude en coordonnées degrés et minutes décimales est environ 36°38.5572' Nord, et en coordonnées degrés décimaux est environ 36.6426200°. [21]

2.10.2.Longitude λ

La longitude d'un lieu correspond à l'angle formé par deux plans méridiens (passant par l'axe des pôles), l'un étant pris comme origine (méridien de Greenwich 0°) et l'autre déterminé par le lieu envisagé.

La longitude d'un lieu peut aussi être comprise entre -180° et $+180^{\circ}$, à tout écart de 1° de longitude correspond à un écart de 4 minutes de temps.

On affecte du signe (+) les méridiens situés à l'est de ce méridien, et du signe (-) les méridiens situés à l'ouest. Pour la ville de Bou-Ismail la longitude en coordonnées degrés et minutes décimales est environ 2°41.4042′ Est, et en coordonnées degrés décimaux est environ 2.6900700°. [21]

2.10.3. L'altitude (Z)

L'altitude d'un point correspond à la distance verticale en mètre entre ce point et une Surface de référence théorique (niveau moyen de la mer). la latitude de la ville de Bou-Ismail est environ 29m. [21]

2.11. Méthodes d'estimation du rayonnement solaire

• Mesures (stations radiométriques) pyranomètres

Le pyranomètre SP Lite utilise le principe de la photodiode en générant un signal de sortie proportionnel à la quantité de radiation solaire reçue (spectre 400 à 1100nm).[22]

• Images sattelitales

L'image météosat, se présente sous forme d'une matrice numérique, à chaque pixel de coordonnées (x, y) est attribuée un compte numérique CN (x, y) codée sur 8 bits. Le satellite Météosat est un satellite géostationnaire qui observe le disque terrestre (Afrique et Europe) dans les trois bandes spectrales, visible, vapeur d'eau et infrarouge. [23]

• Modèles de capedero

• Modèles mathématiques

Calcul du rayonnement solaire global par l'étude et la simulation de quelques modèles de calcul du rayonnement solaire. Il s'agit du modèle de Lacis & Hansen, le modèle de Davies & Hay, le modèle de Bird & Hulstrom et celui de Atwater & Ball, dont des travaux sont présentés dans la littérature

2.12.Le Rayonnement Solaire

La terre étant à une distance de 150.106km du Soleil, elle reçoit une énergie de 1.8x1017W. La valeur du flux de rayonnement solaire E reçu par une surface perpendiculaire aux rayons solaires placée à la limite supérieure de l'atmosphère terrestre (soit à environ 80km d'altitude) varie au cours de l'année avec la distance terre-soleil, sa valeur moyenne I0 est appelée la constante solaire, elle vaut I0= 1367 W/m². En première approximation, on peut calculer la valeur du flux de rayonnement solaire I en fonction du numéro du jour de l'année j par la relation suivante [24] :

$$I = I_0 [1 + 0.033 \cos(0.984j)]$$
(2.17)

Lors de la traversée de l'atmosphère, le rayonnement solaire est réduit, par diffusion moléculaire, par diffusion par les aérosols et par absorption par les molécules de gaz.

Pierre Bessemoulin et Jean Olivieri ont estimé à environ 10 % à midi en été l'atténuation due à la diffusion moléculaire. L'atténuation due aux aérosols est beaucoup plus variable, typiquement entre 5 et 60 %, selon la hauteur du Soleil et la transparence de l'atmosphère. [25]

2.12.1. Eclairement Global

Eclairement énergétique solaire reçu par une surface horizontale à partir d'un angle solide. [26]

G=I+D (2.18)

Où :

I: Eclairement (L'irradiation) directe

D: Eclairement (L'irradiation) diffuse

2.12.2. Eclairement directe [27]

L'atténuation du rayonnement commence à son entrée dans l'atmosphère terrestre, ce dernier est composé d'un mélange d'air sec et propre (gaz), de la vapeur d'eau et des aérosols.

• Pour calculer le rayonnement solaire direct incident sur un plan quelconque au niveau du sol, on utilise l'équation suivante:[28]

$$I = I_n \cos \theta = I_0 \times \varepsilon_0 \times \cos \theta \times \exp\left[-T_L \times \left(0.9 + \frac{9.4}{0.89^2} \times \sin h\right)^{-1}\right]$$
(2.19)

Ou bien on utilise le modèle de Capderou [11] :

$$I = I_0 \times \varepsilon_0 \times \cos\theta \times \exp\left[\frac{-T_L \times m_A}{9.4 + 0.9m_A}\right]$$
(2.20)

Où :

 I_0 : est la valeur du flux de rayonnement solaire reçu par une surface perpendiculaire aux rayons solaires placée à la limite supérieure de l'atmosphère terrestre varie au cours de l'année avec la distance terre-soleil, sa valeur moyenne I_0 est appelée la constante solaire. Dans notre cas $I0=1367 \text{ W/m}^2$.

 ε_0 : la distance terre-soleil varie peu au cours de l'année plus au moins 1.65%. Elle est la plus faible vers le début de janvier et la plus longue le début juillet.

$$\varepsilon_0 = 1 + 0.034 \cos\left(\frac{360}{365,25}(Nj-2)\right)$$
 (2.21)

 $\cos \theta$: Le cosinus d'angle d'incidence est variable en fonction du mode de poursuite solaire, pour une poursuite totale du soleil là on a un réglage continu d'après Capderou [29] Dans le cas d'un suivi solaire suivant l'axe de la terre avec une inclinaison égale à la latitude du lieu (Est-Ouest polaire):

$$\cos\theta = \cos\delta \tag{2.22}$$

Dans le cas d'un suivi solaire suivant l'axe Est-Ouest horizontal, le tube récepteur du concentrateur est parallèle à l'axe Nord-Sud:

$$\cos\theta = \sqrt{(\cos(\delta)\sin(\varphi)\cos(\omega) - \cos(\delta)\cos(\omega))^2}$$
(2.23)

Dans le cas d'un suivi solaire suivant l'axe Nord-Sud horizontal, le tube récepteur du concentrateur est parallèle à l'axe Est-Ouest:

$$\cos\theta = \sqrt{1 - \cos^2(\delta)\sin^2(\omega)} \quad \text{Ou} \ \cos\theta = \sqrt{\sin^2(\delta) + \cos^2(\delta)\cos^2(\omega)} \tag{2.24}$$

Dans le cas d'un plan fixé quelconque le cosinus d'angle d'incidence est défini par Capderou comme suit :

$$\cos\theta = A\sin\omega + B\cos\omega + C \tag{2.25}$$

Avec

$$A = \cos(\delta)\sin(\Omega)\cos(90 - \beta)$$
(2.26)

$$B = \cos \delta \left[\cos(\Omega) \cos(90 - \beta) \sin(\varphi) + \sin(90 - \beta) \cos \varphi \right]$$
(2.27)

$$C = \sin \delta \left[-\cos(\Omega) \cos(90 - \beta) \cos(\varphi) + \sin(90 - \beta) \sin \varphi \right]$$
(2.28)

 m_A : est la masse d'air atmosphérique (masse d'air optique) qui représente la masse d'atmosphère traversée par le rayonnement direct pour atteindre le sol, elle dépend de la pression locale (P) et de l'évolution de la hauteur du soleil (h), la valeur de mA est donnée comme suite[30] :

$$m_A = \frac{P}{101325} [\sin(h_s) + 0.15(h_s + 3.885)^{-1.253}]^{-1}$$
(2.29)

Avec

$$P = 101325 \times \exp(-0.0001184Z) \tag{2.30}$$

$$h_s = \cos\varphi\cos\delta\cos\omega + \sin\varphi\sin\delta \tag{2.31}$$

 T_L : facteur de trouble de Linke (T_L) est décomposé par Capderou en trois facteurs de troubles auxiliaires T_0 , T_1 et T_2 [31]:

$$T_L = T_0 + T_1 + T_2 \tag{2.32}$$

 T_0 : est le trouble dû à l'absorption gazeuse tant par les constituants fixes de l'atmosphère que par l'ozone et surtout par la vapeur d'eau. Une modélisation de ce facteur en fonction des seules paramètres géo-astronomiques a permis à Capderou de proposer l'expression suivante :

$$T_0 = 2.4 - 0.9\sin\varphi + 0.1A_{he}(2 + \sin\varphi) - 0.2Z - (1.22 + 0.14A_{he})(1 - \sin h) \quad (2.33)$$

 T_1 : est le trouble dû à l'absorption par les gaz de l'atmosphère (O_2 , CO_2 et O_3) et à la diffusion moléculaire de Rayleigh donné par l'approche :

$$T_1 = 0.89^Z \tag{2.34}$$

 T_2 : est le trouble dû à la diffusion par les aérosols couplée à une légère absorption, qui dépend à la fois de la nature, des dimensions et de la quantité des aérosols:

$$T_2 = (0.9 + 0.4A_{he}) \times 0.63^Z \tag{2.35}$$

Pour mettre en évidence la variation saisonnière, Capderou a créé la fonction A_{he} (L'alternance hiver-été) avec :

$$A_{he} = \sin\left(\frac{360}{365}(n-121)\right) \tag{2.36}$$

• Pour un plan horizontal, le rayonnement solaire direct incident égal à [11]:

$$I_{hs} = I_0 \varepsilon_0 \sin h_s \exp(-T_L m_A \delta_{Ra}) \tag{2.37}$$

Où

 δ_{Ra} : Est l'épaisseur optique d'une atmosphère (épaisseur optique de Rayleigh δ Ra) est calculé par un polynôme de 4^{ème} ordre pour la masse d'air ^[15], cette formule est Ajustée par Kastenen1996 [32]:

$$\frac{1}{\delta_{Ra}} = 6.6296 + 1.7513m_A - 0.1202m_A^2 + 0.0065m_A^3 - 0.00013m_A^4$$
(2.38)

2.12.3.Eclairement diffuse [24]

Pour calculer le rayonnement diffus, Capderou a utilisé le facteur de trouble diffusif TLf.

• dans le cas d'un plan horizontal le rayonnement diffus égal à [24]:

$$D = I_0 \varepsilon_0 exp(-1 + 1.06 \log(\sin h_s) + a - \sqrt{b^2 + a^2})$$
(2.39)

Où :

a=1.1

$$b = \log(T_{Lf}) - 2.8 + 1.02(1 - \sin(h_s))^2$$
(2.40)

$$T_{Lf} = T_1 + T_2 \tag{2.41}$$

- La composante diffuse reçue sur un plan incliné se décompose en deux composantes, le diffus de ciel et le diffus de sol [24] :
- Le diffus de ciel : Il se compose de trois paries

$$D_{ciel} = \delta_d \cos\theta + \delta_i \frac{1+\sin\beta}{2} + \delta_h \cos\beta$$
(2.42)

1- Composante directe, elle provient du voisinage du soleil dans un cône de demiangle au sommet entre 3° et 15° qui peut être considérée qu'elle provient exactement du soleil
$$\delta_d = I_0 \varepsilon_0 exp\left(-2.84 + \sin h_s + a_d - \sqrt{4b_d^2 + a_d^2}\right) \tag{2.43}$$

Où :

$$a_d = 3.1 - 0.4b_d \tag{2.44}$$

$$b_d = \log T_{Lf} - 2.8 + 0.5 \log(\sin h_s) \tag{2.45}$$

2- Composante isotrope, elle correspond à un ciel de luminance uniforme :

$$\delta_i = D - \delta_d \sin h_s \tag{2.46}$$

3- Composante du cercle de l'horizon provient d'une bande d'horizon d'une hauteur de 6°, elle semble associée à une accumulation d'aérosols dans les basses couches atmosphériques :

$$\delta_h = \frac{-0.02a_h I_h}{\sin h(a_h^2 + a_h b_h + 1.8)} \exp(\sin h_s)$$
(2.47)

Ou

$$a_h = \log T_{Lf} - 3.1 - \log(\sin h_s) \tag{2.48}$$

$$b_h = exp(0.2 + 1.75\log(\sin h_s)) \tag{2.49}$$

• Le diffus du sol

L'albédo du sol caractérise la réflexion de la lumière incidente, pour un plan quelconque :

$$D_{sol} = b(I_{hs} + D)\frac{1 - \sin\beta}{2}$$
(2.50)

2.13.Conclusion :

En effet, la position du soleil varie constamment, à la fois pendant la journée, mais aussi pendant les différentes périodes de l'année. Les ondes électromagnétiques provenant du soleil portent l'énergie, la projection de cette énergie est liée à l'orientation de la surface réceptrice. Pour récupérer le maximum d'énergie en provenance du soleil, il est nécessaire d'orienter au mieux le récepteur par rapport aux rayons lumineux. La connaissance de la position du soleil en fonction du temps est fondamentale.

COCENTRATEUR

CYLINDRO-

PARABOLIQUE

Ce chapitre débute par une brève description du Caractéristiques géométrie réflexion lumineuse de CCP, et avoir aussi un modélisation mathématique sur sa tube absorbeur qui positionnée au la linge focal du CCP, et terminé par un simulation sur programme solTrace pour voir la distribution du flux solaire autour du tube absorbeur.

3.1. Géométrie du Cocentrateur cylindro-parabolique

Le collecteur (Cocentrateur cylindro-parabolique) est une auge dont la section transversale a la forme d'une partie d'une parabole. Plus exactement, c'est une section symétrique d'une parabole autour de son bas. [33]

3.2. Concentration de rayonnement à un Cocentrateur cylindro-parabolique

Les creux paraboliques ont une ligne focale, qui consiste en les points focaux des sections transversales paraboliques. Le rayonnement qui pénètre dans un plan parallèle au plan optique est réfléchi de manière à traverser la ligne focale.[33]

Figure 3. 1 Chemin des rayons parallèles à un miroir parabolique [33]

Une preuve de l'existence d'un point focal est présentée en Figure.3.1. Une représentation analytique appropriée d'une parabole est

$$y = \frac{1}{4f}x^2\tag{3.1}$$

où f est la distance focale, c'est-à-dire la distance entre le sommet de la parabole et le point focal.

3.3.Paramètres pour la description géométrique d'un Cocentrateur cylindroparabolique

Pour décrire géométriquement un creux parabolique, il faut déterminer la parabole, la section de la parabole couverte par les miroirs et la longueur de l'auge. Les quatre paramètres suivants sont couramment utilisés pour caractériser la forme et la taille d'un creux parabolique: longueur de creux, distance focale, largeur d'ouverture, distance entre une jante et l'autre, angle de jante, c.-à-d. ligne entre le point focal et le bord du miroir

Figure 3. 2 Paramètres géométriques Cocentrateur cylindro-parabolique [33]

La longueur du creux est une mesure sans problème et n'a pas besoin d'explication. La distance focale, c'est-à-dire la distance entre le point focal et le sommet d'une parabole, est le paramètre qui détermine complètement la parabole (dans l'expression mathématique mentionnée d'une parabole, $y = \frac{1}{4f}x^2$, la distance focale f est le seul paramètre).

Figure 3. 3 Longueur focale comme paramètre de forme [33]

Figure.3.3. Longueur focale comme paramètre de forme [33]

L'angle de la jante (Rim angle), c'est-à-dire l'angle entre l'axe optique et la ligne entre le point focal et le bord du miroir, présente les caractéristiques intéressantes qui déterminent à lui seul la forme de la section transversale d'un creux parabolique. Cela signifie que les sections transversales des auges paraboliques avec le même angle de jante sont géométriquement similaires. Les sections transversales d'une cuvette parabolique avec un angle de jante donné peuvent être rendues congruentes à la section transversale d'une autre cuvette parabolique avec le même angle de jante d'une autre (agrandissement ou rétrécissement). Si seulement la forme d'une section transversale de collecteur est intéressante, mais pas la taille absolue, alors il suffit d'indiquer l'angle de la jante. Une preuve que les sections transversales des auges paraboliques ayant le même angle de jante sont géométriquement similaires est présentée en Figure.3.3.

Deux des trois paramètres de l'angle de la jante, la largeur de l'ouverture et la distance focale sont suffisants pour déterminer complètement la section transversale d'un creux parabolique,

 φr : peut être exprimé en fonction du rapport entre la largeur de l'ouverture et la distance focale

$$\tan\varphi r = \frac{\frac{a}{f}}{2 - \frac{1}{8}\left(\frac{a}{f}\right)^2}$$
(3.2)

Où, en variante, le rapport de la largeur d'ouverture à la distance focale peut être exprimé en fonction de l'angle de la jante

$$\frac{a}{f} = -\frac{4}{\tan\varphi r} + \sqrt{\frac{16}{\tan^2\varphi r} + 16}$$
(3.3)

Le diagramme suivant représente le rapport a-f en fonction de l'angle de la jante.

Figure 3. 4 Relation entre l'angle de la jante et la valeur a / f [33]

Afin de déterminer les dimensions de la CCP, nous avons considéré les paramètres suivants: Un angle de jante de 45° ($\varphi_r = 45^\circ$), et la largeur d'aluminium S=1m, Basé sur ces deux paramètres, il est possible de déterminer l'ouverture de la parabole, Wa

$$Wa = \frac{2Stan(\varphi r)}{(\sec(\frac{\varphi r}{2})\tan(\frac{\varphi r}{2}) + \ln(\sec(\frac{\varphi r}{2}) + \tan(\frac{\varphi r}{2})))}$$
(3.a.4)

et la distance focal, f

$$f = \frac{Wa}{4\tan(\frac{\varphi r}{2})}$$
(3.b.4)

Le diamètre du tube d'absorbeur "D, (m)" est une fonction du rayon de la jante " r_r , (m)" et de l'angle de demi-acceptation " θ_m , (°)" comme cela est évident sur la figure (3.5). L'équation (3.4) présente la procédure de calcul du diamètre intérieur du tube absorbeur.

Figure 3. 5 Coupe transversale d'un concentrateur cylindro-parabolique [34]

$$D = 2r_r \sin \theta_m \tag{3.4}$$

Le rayon du miroir local "r, (m)" est le rayon du miroir réfléchissant; c'est une fonction de l'angle " φ , (degré)", où cet angle est l'angle entre l'axe normal de l'axe du concentrateur et un faisceau réfléchi sur le tube de l'absorbeur (foyer). L'équation (3.5) montre la relation pour calculer le rayon des miroirs locaux "r" [18, 34].

$$r = \frac{2f}{1 + \cos\varphi} \tag{3.5}$$

Par l'équation (3.5), on a conclu le rayon de la jante et on le calcule comme suit [34]

$$r_r = \frac{2f}{1 + \cos\varphi_r} \tag{3.6}$$

Grâce à la figure (3.5), on a conclu beaucoup de caractéristiques géométriques, et notamment:

$$\begin{cases} \varphi \in [0, \varphi_r] \\ r \in [f, r_r] \end{cases}$$
 (3.7)

Où " ϕ_r " est l'angle Rim, c'est l'angle entre l'axe normal du concentrateur et le rayon de la jante (Rim).La largeur d'ouverture "Wa, (m)" du cylindro- parabolique a été calculée en fonction de L'équation (3.8), elle est fonction de l'angle Rim " ϕ_r " et du rayon de la jante " r_r " [20].

$$W_a = 2r_r \sin \varphi_r \tag{3.8}$$

Compensation de l'équation (3.6) dans l'équation (3.8), où l'équation (3.8) devient

$$W_a = 4f \frac{\sin \varphi_r}{1 + \cos \varphi_r} \tag{3.9}$$

Par conséquent, la relation de largeur d'ouverture du concentrateur cylindro-parabolique est la suivante [19,34]

$$W_a = 4f \times \tan\left(\frac{\varphi_r}{2}\right) \tag{3.10}$$

Il y a un élément très important dans la conception du collecteur cylindro-parabolique; cet élément est la longueur de la courbe "L, (m)" du miroir réfléchissant. Cette dimension "L" peut être déterminée en utilisant l'équation (3.11) [34].

$$L = \frac{lr_p}{2} \left[\sec\left(\frac{\varphi_r}{2}\right) \tan\left(\frac{\varphi_r}{2}\right) + \ln\left[\sec\left(\frac{\varphi_r}{2}\right) + \tan\left(\frac{\varphi_r}{2}\right)\right] \right]$$
(3.11)

Où "lrp, (m)" est le latus rectum de la parabole, leur équation est

$$Ir_p = 4f \times \tan\left(\frac{\pi}{2}\right) \tag{3.12}$$

3.4. Modélisation mathématique du capteur cylindro-parabolique

Plusieurs méthodes sont utilisée pour la modélisation on cite

- la méthode des résistances thermiques et l'analogie électrique

- la méthode de calcul de la température de chaque élément du collecteur par une discrétisation unidimensionnelle.

3.5. Modélisation mathématique du CCP

3.5.1Description de tube absorbeur

Les collecteurs cylindro-paraboliques sont fabriqués par pliage d'une feuille d'un matériau réflectif dans une forme parabolique. Un tuyau de métal noir, recouvert d'un tube de verre pour réduire les pertes de chaleur, est placé le long de la ligne focale du collecteur. Le rayonnement concentré atteindre le tube récepteur chauffe le fluide qui circule à travers elle.

Transformant ainsi le rayonnement solaire en chaleur utile. Il est suffisant d'utiliser un seul suivi de l'axe de la modules de soleil et donc à long collecteurs sont produites. Dans notre étude, un modèle thermique détaillé d'un collecteur est présenté. L'analyse thermique du récepteur du capteur prend en considération tous les modes de transfert de chaleur ; convection dans la conduite de récepteur, dans l'espace annulaire entre le récepteur et le couvercle de verre, et la convection entre le couvercle de verre et l'air ambiant ; et le rayonnement à partir du tube de réception de métal et les surfaces de couverture en verre de la vitre de protection et le ciel respectivement. [35]

Figure 3. 6 schématisation des différents transferts thermiques dans le collecteur [35]

3.5.2 Les différents modes de transfert mise en jeu

On distingue les trois modes de transfert de chaleur tel que la conduction, la convection (naturelle et forcée) et le rayonnement. [35]

3.5.2.1. Transfert de chaleur par conduction

Soit par contact: c'est la conduction thermique; On chauffe l'extrémité d'une tige métallique. La chaleur se propage dans la tige. On dit qu'il y a conduction lorsque la chaleur (transport d'énergie) se propage sans transport de matière. Dans notre étude on ne prend pas en considération de conduction dans les matériaux solide. [35]

3.5.2.2. Transfert de chaleur par convection

C'est le transfert de chaleur entre un solide et un fluide, l'énergie étant transmise par déplacement du fluide. Ce mécanisme de transfert est régi par la loi de Newton[35]

$$\phi = hs(T_p - T_{\infty}) \tag{3.13}$$

3.5.2.3Transfert de chaleur par rayonnement

Le soleil qui se situe à une distance considérable dans le "vide spatial "nous procure une sensation de chaleur. De même, si nous ouvrons la porte d'un four en fonctionnement, nous percevons une sensation de chaleur instantanée que nous ne pouvons attribuer à un transfert convectif du à l'air entre le four et notre peau. Cet échange de chaleur attribué à l'émission,

par la matière du fait de sa température, d'ondes électromagnétiques est appelé rayonnement thermique. [35]

$$\phi_r = \sigma \varepsilon_p S(T_p^4 - T_\infty^4) \tag{3.14}$$

Où

 σ :est la constante de Stefan Boltzmann $\sigma = 5.670. 10^{-8} W/m^2. k^4$

 ε_p : L'émissivité de la paroi

T : température

S : surface

Figure 3. 7 Le spectre de l'onde électromagnétique

3.5.2.4Facteur de forme [35]

mesure la fraction du flux rayonné par une surface isotherme et à émission isotrope (« lambertienne ») reçue par une autre surface dans un milieu non participatif (pas d'émission, d'absorption ou de diffusion en volume). Cette quantité ne dépend que de la géométrie du milieu.

Cas ou l'un des corps enfourne complètement l'autre Ou le facteur de forme égale (1).

$$\boldsymbol{\varepsilon}_{TOT} = \boldsymbol{\varepsilon}_{12} = \frac{1}{\frac{1}{\varepsilon_1} + \frac{S_1}{S_2} \left(\frac{1}{\varepsilon_2} - 1\right)}$$
(3.15)

Figure 3. 8 Facteur de forme d'une surface par rapport à une autre

3.6. formulation des équations caractéristiques du problème

3.6.1.les hypotheses simplificatrices

Pour simplifier le calcul on admis les hypothèses suivantes

- ✓ le fluide caloporteur est incompressible.
- ✓ Le régime est permanent
- ✓ la température ambiante autour du CCP est supposée uniforme.
- la vitre est considérée comme opaque aux radiations infrarouges c.à.d. la réflectivité égale le coefficient d'absorbation.
- ✓ L'écoulement est monodimensionnel.
- ✓ l'échange par conduction dans l'épaisseur de l'absorbeur et la vitre est négligeable.
- le flux de chaleur par rayonnement au niveau de l'absorbeur est uniformément reparti.
- l'écoulement est hydrodynamique pleinement développé, c.à.d. le profil de vitesse est constant suivant (ox)

Figure 3. 9 schéma du bilan énergétique d'un élément x du collecteur CP (coupe axiale et radiale) [7]

D'où

 $\begin{array}{l} q_{ab}: \text{quantité de chaleur absorbée un niveau de l'absorbeur vienne du soleil} \\ q_u: \text{quantité de chaleur utile cède au fluide caloporteur par l'absorbeur.} \\ q_{a, v}: \text{quantité de chaleur échangée par convection entre le tube absorbeur et la vitre.} \\ q_{v, amb:} \text{quantité de chaleur échangée par convection entre la vitre et l'air ambiant.} \end{array}$

 $Q_f(x)$: le flux de chaleur du fluide caloporteur a l'abscisse x. $Q_f(x+x)$: le flux de chaleur du fluide caloporteur a l'abscisse x+x. D_{ai} : diamètre intérieur du tube absorbeur. D_{ae} : diamètre extérieur du tube absorbeur. D_{vi} : diamètre intérieur de l'enveloppe transparente. D_{ve} : diamètre extérieur de l'enveloppe transparente. T_f : température du fluide HT. Ta : température de l'absorbeur.

 T_v : température de la vitre.

3.6.2.Bilan énergétique du fluide caloporteur

L'échange thermique par convection (forcée) entre la surface interne du tube absorbeur et le fluide dans un élément compris entre x et $x+\Delta x$ nous permet d'écrire l'équation suivante :

$$q_f(x + \Delta x) - q_f(x) = q_u(x) \Delta x \tag{3.16}$$

$$q_f(x) = \rho_f \cdot C p_f \cdot \dot{m}_f T_f(x) \tag{3.17}$$

$$q_f(x + \Delta x) = \rho_f \cdot C p_f \cdot \dot{m}_f \cdot T_f(x + \Delta x)$$
(3.18)

 ρ_f : La masse volumique du fluide caloporteur.

 Cp_f : La capacité calorifique du fluide.

 \dot{m}_f : Le débit massique du fluide (m³/s).

Remarque

Toutes les caractéristiques thermo-physiques du fluide sont en fonction de sa température. Remplaçant (3.17) (3.18) dans (3.16) on aboutit à :

$$\rho_f. Cp_f. \dot{m}_f. T_f(x + \Delta x) - \rho_f. Cp_f. \dot{m}_f. T_f(x) = q_u(x). \Delta x$$
(3.19)

$$\frac{\left[\rho_f. Cp_f. \dot{m}_f. T_f(x + \Delta x) - \rho_f. Cp_f. \dot{m}_f. T_f(x)\right]}{\Delta x} = q_u(x)$$

La définition de la différence divisée de premier ordre nous permettons d'écrire

$$\rho_f \cdot Cp_f \cdot \dot{m}_f \cdot \frac{\partial^2 T_f(x)}{\partial x^2} - q_u(x) = 0$$
(3.20)

3.6.3.Bilan énergétique pour l'absorbeur

$$q_u(x) + q_{a;v}(x) = q_{ab}$$
(3.21)

3.6.4.Bilan énergétique pour la vitre

$$q_{a;v}(x) - q_{v;amb}(x) = 0 \tag{3.22}$$

 $q_{a,v}(x)$: est la quantité de chaleur échangé par convection naturelle entre l'absorbeur et le vitre à la distance *x* de l'entrée

 $q_{v,amb}(x)$: est la quantité de chaleur perdue vers l'extérieur par convection entre la vitre et l'air l'ambiant.

3.7. Echanges thermiques entre les différentes composantes du collecteur

3.7.1. Echanges thermiques entre l'absorbeur et le fluide

Comme d'habitude le seul mode de transfert dominant dans un écoulement dans un tube est la fameuse convection, d'où le flux utile quest exprimé par la relation suivante

$$q_u = h_{a,f} \cdot S_{ai} (T_a - T_f)$$
(3.23)

Tel que

$$h_{a,f} = \frac{k_f \cdot N u_{Dai}}{D_{ai}}$$
(3.24)

Nu_{Dai}: nombre de Nusselt basé sur D_{ai}

Calcule Le nombre de Reynolds si l'écoulement est considéré turbulent donc a partir de DITTUS-BOELTER [39] on a

$$Nu_{Dai} = 0.023. Re_{Dai}^{4/5}. Pr_f^n$$
(3.25)

n=0.3 pour le refroidissement (Ta<T*f*) n=0.4 pour le chauffage (Ta>T*f*) Le nombre de Reynolds :

$$Re_{Dai} = \frac{4.\rho_f \dot{m}_f}{\pi D_{ai} \mu_f} \tag{3.26.a}$$

 μ_f : La viscosité dynamique de fluide. Le nombre de Prandel

$$Pr_f = \frac{\mu_f C p_f}{\kappa_f} \tag{3.27.b}$$

 K_f : la conductivité thermique du fluide

Donc en conclus que le calcul de flux utile est passé par l'analyse adimensionnel du problème et quantifié les nombre adimensionnel pour le calcul du coefficient d'échange ha, f. Remarque : l'échange utile est exprimé par unité de longueur d'où

$$S_{ai} = \pi . D_{ai} . L$$

3.7.2. Echanges thermiques entre l'absorbeur et l'enveloppe transparente

L'échange thermique entre l'absorbeur et l'enveloppe transparente $q_{a,v}$ est calculé a partir des échanges convectives et par rayonnement dans l'espace annulaire. Donc on a :

- La convection naturelle de l'absorbeur vers la vitre.

- Le rayonnement de l'absorbeur vers l'enveloppe transparente.

$$q_{a,V} = q_{a,V/conv} + q_{a,V/ray}$$
(3.28)

Le transfert de chaleur par convection dépend de la pression annulaire [36], a basse pression (<0,013 Pa), le transfert de chaleur se fait par conduction moléculaire. Alors que des pressions plus élevées (c'est notre cas) est par convection naturelle. Il existe une différence de température entre la surface l'extérieur du tube absorbeur et la surface d'enveloppe en verre à l'intérieur, d'où la présence du transfert de chaleur par rayonnement.

En supposant que la paroi d'enveloppe en verre est opaque à un rayonnement infrarouge et des surfaces grises, pour lequel : $\alpha = \rho$

$$q_{a,V/conv} = \frac{2\pi K_{aireff}}{\ln \frac{D_{vi}}{D_{ae}}} (T_a - T_V)$$
(3.29)

Tel que :

$$K_{aireff} = K_{air} \cdot 0.386 \left(\frac{Pr_{annu}}{0.861 + Pr_{annu}}\right)^{0.25} \cdot \left(F_{cyl} \cdot Ra_{Dae}\right)[1]$$
(3.30)

 K_{air} : est la conductivité de l'air à l'espace annulaire à la température moyenne entre la surface extérieur de l'absorbeur et la surface intérieur de la vitre calculée a partir de l'expression d'approximation.

F_{cyl}: est le facteur de la forme concentrique du cylindre.

$$F_{cyl} = \frac{4 \cdot \ln\left(\frac{D_{vl}}{D_{ae}}\right)}{L_{C}^{3} \cdot \left[\left(D_{vl}^{-\frac{1}{5}} - D_{ae}^{-\frac{3}{5}}\right)\right]^{5}}$$
(3.31)

Lc est la longueur critique est donnée par la relation

$$L_c = \frac{D_{vi} - D_{ae}}{2} \tag{3.32}$$

L'échange thermique par rayonnement et donnée par

$$q_{a,V/ray} = \frac{\sigma \pi D_{ae}(T_a^4 - T_v^4)}{\frac{1}{\varepsilon_a} + \frac{1 - \varepsilon_v}{\varepsilon_v} \left(\frac{D_{ae}}{D_{vi}}\right)}$$
(3.33)

Avec σ est la constante de Stefan Boltzmann $\sigma = 5.670. 10^{-8} W/m^2. k^4 \varepsilon_a$: L'émissivité de l'absorbeur ε_v : L'émissivité de la vitre, $\varepsilon_v = 0.935$

L'émissivité dépend de plusieurs facteurs : la température, l'état de surface, la direction du rayonnement et sa longueur d'onde. On suppose parfois, par commodité de calcul, qu'elle ne dépend que de la température. C'est l'approximation dite du corps gris :

$$\varepsilon_a = f(T) = 0,000327.T_a - 0,065971$$
 (3.34)

3.7.3 Echanges thermiques entre l'enveloppe transparente et l'environnement

L'échange thermique entre la vitre et le milieu extérieur se fait en deux mode ; la convection et le rayonnement.

D'où on a la relation suivante :

$$q_{V,amb} = q_{V,amb/conv} + q_{V,amb/ray}$$
(3.35)

3.7.3.1.Détermination du flux échangé par convection

$$q_{V,amb/conv} = \bar{h}_{V,amb} S_{Ve} (T_V + T_{amb})$$
(3.36)

Pour le calcul de $q_{v,amb/conv}$ doit passer d'abord par le calcule de $\bar{h}_{V,amb}a$ l'aide du nombre adimensionnel de Nusselt par la corrélation empirique suivante :

3.7.3.1.1vent calme

Pas de vent: Quand il n'y a pas de vent, le transfert de chaleur par convection à partir de l'enveloppe de verre de l'environnement se fait par convection naturelle et la corrélation développée par Churchill et Chu est utilisée pour estimer le nombre de Nusselt.

$$Nu_{Dve} = \left[0.6 + \frac{0.387.Ra_{Dve}^{1/6}}{\left[1 + (0.559.Pr_{v,amb})^{9/16}\right]^{8/27}}\right]^2$$
(3.37)

 Ra_{Dve} : est le nombre de Rayleigh

$$Ra_{Dve} = \frac{g\beta (T_v - T_{amb})D_{ve}^3}{\theta_{airamb}^2} \cdot Pr_{airamb}$$
(3.38)

 β : Le coefficient de la dilatation thermique

$$\beta = \frac{1}{T_{v,amb}} \tag{3.39}$$

$$\bar{h}_{V,amb} = \frac{Nu_{Dve}.K_{airamb}}{D_{ve}}$$
(3.40)

 K_{airamb} : La conductivité thermique de l'air estimé a la température moyenne entre la vitre et l'air ambiant

Tel que

$$\bar{T}_{V,amb} = \frac{T_V + T_{amb}}{2} \tag{3.41}$$

 $\bar{h}_{V,amb}$: le coefficient d'échange convectif entre la vitre et l'air ambiant à $\bar{T}_{V,amb}$

3.7.3.2. avec un vent de surface

Lorsque le vent souffle, le transfert de chaleur par convection à partir de l'enveloppe en verre à l'environnement se produit par convection forcée. Le nombre de Nusselt dans ce cas est estimé à Zhukauskas corrélation pour convection forcée externe avec un flux normal à un cylindre isotherme :

$$Nu_{Dve} = C. Re_{Dve}^{m}. Pr_{amb}^{n}. \left(\frac{Pr_{amb}}{Pr_{ve}}\right)^{1/4}$$

$$0.7 \le Pr_{amb} \le 500$$

$$1 \le Re_{Dve} \le 10^{6}$$
(3.42)

n=0.37 pour $Pr \le 10$

n=0.36 pour Pr≥ 10

Pr_{amb} : Nombre de prandel évalué a la température ambiante.

Prve : Nombre de prandel évalué a la température de la surface extérieure de la vitre.

Re_D	С	m
1-40	0.75	0.4
40-1000	0.51	0.5
1000-200000	0.26	0.6
200000-1000000	0.076	0.7

Tableau.3.1 : valeur numérique des constante C de la relation (3.42)

Remarque : autre corrélation utilisée dans ce type de configuration (écoulement convectif autour d'un cylindre), par exemple Churchill et Bernstein donnent : [14]

$$\overline{\mathrm{Nu}} = 0.3 + \frac{0.62\mathrm{Re}^{1/2}\mathrm{Pr}^{1/3}}{\left[1 + \left(\frac{0.4}{\mathrm{Pr}}\right)^{2/3}\right]^{1/4}} * \left[1 + \frac{\mathrm{Re}}{282000}\right]^{5/8}$$
(3.43)

3.7.3.2Détermination du flux échangé par rayonnement [40]

La vitre rayonne vers le environnement par une quantité q_{v,amb/ray} que l'on exprime par

$$q_{V,amb/ray} = \varepsilon_{v} \cdot \sigma S_{Ve} (T_v^4 - T_{amb}^4)$$
(3.44)

3.8. Energie solaire globale absorbée

L'efficacité optique " η_{opt} " est la quantité de rayonnement absorbée par le tube absorbeur divisé par la quantité de rayonnement normal direct incident sur la zone d'ouverture . L'efficacité optique " η_{opt} " est donnée par[44] [45] :

$$\eta_{opt} = \rho_{select} \times \alpha_{ab} \times \tau_{v} \times \gamma \times K(\theta)$$
(3.45)
K(θ): angle d'incidence modifié donné par [45] :

$$K(\theta) = 1 - \frac{f}{L} \left(1 + \frac{W_a^2}{48f^2} \right) \tan(\theta)$$
(3.46)

L'énergie solaire absorbée est simplement donnée par la relation suivante :

$$q_{ab} = \rho_{select} \alpha_{ab} \tau_{\nu} S_e G \tag{3.47}$$

Ou bien en fonction de rendement optique :

$$q_{ab} = \eta_{opt} \times S_e \times G \tag{3.48}$$

 ρ_{select} : Coefficient de réflexion de la surface sélective.

 α_{ab} : Coefficient d'absorption de l'absorbeur.

 τ_v : Coefficient de transmission de la vitre.

 S_e : Surface efficace du capteur.

 γ : facteur d'interception est la fraction du rayonnement réfléchie par le miroir réfléchissant et le rayonnement intercepté par le tube absorbeur donnée par[45]:

$$\gamma = -5.01018 \times 10^{-6} \, e^{\left(\frac{\theta - 57.64143}{2.88583}\right)} + 0.95473 \tag{3.49}$$

54

3.9.calcul des pertes thermique du CCP

Dans les travaux publies, on ne traite que très rarement les problèmes qui sont lies aux pertes thermiques. Une publication récente de Mellick , concerne une formule semi empirique utilisée pour évaluer le coefficient globale des pertes thermiques au niveau du tube absorbeur et de l'enveloppe de verre et qui donne des résultats remarquables et satisfaisants avec une erreur de 1% par rapport à la méthode numérique, pour une gamme de température de l'absorbeur de 380 à 580K avec une emittance de l'absorbeur de 0.1 à 0.95.Le coefficient de pertes thermiques est exprimé par : [37]

$$U_{L} = \left[\frac{1}{C\left[\frac{T_{a}-T_{v}}{1+f}\right]^{0.25}} + \frac{D_{ai}}{D_{ae}} \cdot \frac{1}{h_{v}}\right]^{-1} + \left[\frac{\sigma \cdot (T_{a}^{2} + T_{amb}^{2})(T_{a} + T_{amb})}{\left[\epsilon_{a} - 0.04(1-\epsilon_{a})\left(\frac{T_{a}}{450}\right)\right]^{-1} + \left(\frac{D_{ai}}{D_{ae}}\right)\left(\frac{1}{\epsilon_{v}} - 1\right) + \frac{f}{\epsilon_{v}}}\right]$$
(3.50)

D'où

- *f est* un facteur qui prend en considération la vitesse du vent à l'extérieur évalué par la relation suivante :

$$f = \frac{D_{ai}}{D_{ai}^{1.4}} (0.61 + 1.3\varepsilon_a) h_{vent}^{-0.9} e^{[0.00325(T_a - 273)]}$$
(3.51)

- C est une constante donnée par : [9]

$$C = \frac{1.45 + 0.96(\varepsilon_a - 0.5)^2}{D_{ai} \left(\frac{1}{D_{ai}^{0.6}} + D_{ae}^{0.6}\right)^{1.25}}$$
(3.52)

- *h_{vent}* est le coefficient de convection du vent estimé par :

$$h_{vent} = 4. V_{vent}^{0.58} D_{ae}^{-0.42}$$
(3.53)

3.9.1Calcul de la puissance utile

Le flux transmis au fluide (puissance gagnée au collecteur) est le suivant: [51]

$$Q_{u} = \eta_{op} | A_{a} - U_{L}(T_{A} - T_{amb})$$

$$Q_{u} = F_{r} \times [\eta_{op} | A_{a} - U_{L}(T_{a} - T_{amb})]$$

$$Q_{u} = F_{r} \times [\eta_{op} | A_{a} - U_{L}A_{r}(T_{fe} - T_{amb})]$$

$$Q_{u} = \frac{(Wa - Da, e)L}{\pi Dae.L} \quad \text{et} \quad A_{r} = A_{a}/\zeta$$

$$F_{r} = \frac{\dot{m}Cp}{Aa UL} \times \left[1 - e^{\left(\frac{Aa UL \dot{F}}{Cpm}\right)}\right]$$

$$(3.55)$$

Avec

$$\hat{F} = \frac{\frac{1}{UL}}{\frac{1}{UL} + \frac{De}{hfi Di} + \left(\frac{De}{2K} \ln\left(\frac{De}{Di}\right)\right)}}$$
(3.56)

loi de pertes thermique général :

$$Q_p = Q_{ab} - q_u \tag{3.57}$$

Ou bien

$$Q_p = U_L (T_a - T_{amb}) \tag{3.58}$$

3.10.Rendement thermique du CCP [41]

Le rendement thermique du CCP est défini par :

$$\eta = \frac{\int_0^t q_u dt}{\int_0^t GS_e dt}$$
(3.59)

Puisque le régime est permanant donc :

$$\int_{0}^{t} q_{u} dt = q_{u} = \dot{m}_{f} C_{p,f} \cdot \left(T_{f,s} - T_{f,e} \right)$$
(3.60)

Cette quantité de chaleur représente l'énergie utile reçue par le fluide caloporteur. D'où

$$\eta = \frac{\dot{m}_{f}C_{p,f}(T_{f,s} - T_{f,e})}{GS_{e}}$$
(3.61)

 $T_{f,e}etT_{f,s}$ Sont respectivement le température d'entrée et de sortie du fluide caloporteur.

3.11 Résolution numérique du problème [38]

Notre but est la détermination des températures de sortie de fluide, de l'absorbeur et de la vitre, Pour cela on a commencé a partir des équations du bilan thermique.

Ces équations utilisées ne sont pas linéaires, pour ce cas on a opté pour la méthode de discrétisation des différences finies pour résoudre les équations (3.20) (3.21) (3.22) ou la température varie avec tout le long du collecteur. Nous aboutissons a un système non linéaire et pour linéaire ce dernier il fallait faire une petite approche concernant les termes de rayonnement de l'absorbeur vers la vitre et la vitre vers le milieu extérieur de tel sort à avoir un système linéaire de trois équations avec trois inconnus (T_a, T_f, T_v) .

3.11.1.Méthode de résolution [42]

3.11.1.1 Equation caractéristique pour le fluide :

$$\rho_{f}C_{p,f}\dot{m}_{f}T_{f,j-1} - \rho_{f}C_{p,f}\dot{m}_{f}T_{f,j} + h_{a,f}P_{ai}T_{a,j}\Delta x - h_{a,f}P_{ai}T_{f,j}\Delta x = 0$$
(3.62)

Avec la condition aux limites : $T_{f,0} = T_e$

3.11.1.2. Equation caractéristique de l'absorbeur

$$G. S_{cap} \tau_{\nu} \alpha_{a} \rho_{sel} = h_{af} S_{ai} \left(T_{a,j} - T_{f,j} \right) + \left[\frac{2\pi K_{eareff}}{\ln\left(\frac{D_{\nu i}}{D_{\nu e}}\right)} \left(T_{a,j} - T_{\nu,j} \right) + \frac{\sigma S_{ai} \left(T_{a,j-1}^{2} + T_{\nu,j-1}^{2} \right) \left(T_{a,j-1} + T_{\nu,j-1} \right) \left(T_{a,j} - T_{\nu,j} \right)}{\frac{1}{\varepsilon_{a}} + \frac{1 - \varepsilon_{\nu}}{\varepsilon_{\nu}} \left(\frac{D_{ae}}{D_{\nu i}} \right)} \right]$$
(3.63)

Avec la conduction aux limites : $T_{a,0} = T_{a,e}$

Remarque : dans l'équation (3.59) on a simplifié le terme $(T_{a,j-1}^4 - T_{v,j-1}^4)$ par $(T_{a,j}^2 + T_{v,j}^2)(T_{a,j} + T_{v,j})(T_{a,j} - T_{v,j})$ et en remplaçant le terme $(T_{a,j}^2 + T_{v,j}^2)(T_{a,j} + T_{v,j})$ par le terme $(T_{a,j-1}^2 + T_{v,j-1}^2)(T_{a,j-1} + T_{v,j-1})$ pour rendre le système linéaire.

3.11.1.3. Equation caractéristique de la vitre

$$\frac{\frac{2\pi K_{ear\,eff}}{\ln\left(\frac{D_{vi}}{D_{ve}}\right)} \left(T_{a,j} - T_{v,j}\right) + \frac{\frac{\sigma S_{ae}(T_{a,j-1}^{2} + T_{v,j-1}^{2})(T_{a,j-1} + T_{v,j-1})(T_{a,j} - T_{v,j})}{\frac{1}{\varepsilon_{a}} + \frac{1 - \varepsilon_{v}}{\varepsilon_{v}} \left(\frac{D_{ae}}{D_{vi}}\right)} - \bar{h}_{vent} S_{ve} \left(T_{v,j} - T_{amb}\right) - \varepsilon_{v} \sigma S_{ve} \left(T_{v,j-1}^{2} + T_{amb}^{2}\right) \times \left(T_{v,j-1} + T_{amb}\right) \left(T_{v,j} - T_{amb}\right) = 0$$
(3.64)

Avec $T_{v,e} = T_{amb}$

La formule générale de la température ambiante Tamb est donnée par

Tamb =
$$(T_{max}+T_{min})/2 + [(T_{max}-T_{min})/2] \times Sin (\pi \times (t-1)/12)$$
 (3.65)

 T_{max} , T_{min} , sont les moyennes journalières mensuelles des températures maximale et minimale d'un site donné. Le temps est compté à partir du lever du soleil.

3.11.1.4.système sous la forme matricielle [43]

Un système de trois équations est résolu par une méthode numérique directe telle que la méthode de Gauss, Sholski, de Gauss-Jordan ou Cramer

$$[A]. [T] = [B] \Leftrightarrow \begin{cases} a_{11}T_{f,j} + a_{12}T_{a,j} + a_{13}T_{v,j} = b_1 \\ a_{21}T_{f,j} + a_{22}T_{a,j} + a_{23}T_{v,j} = b_2 \\ a_{31}T_{f,j} + a_{32}T_{a,j} + a_{33}T_{v,j} = b_3 \end{cases}$$

Ou l'expression du aij sont :

 $a_{11} = -\rho_f C_{p,f} \dot{m}_f - h_{a,f} S_{ai} \Delta x$

 $\begin{aligned} a_{12} &= h_{a,f} S_{ae} \Delta x \\ a_{13} &= 0 \\ a_{21} &= -h_{a,f} S_{ae} \\ a_{22} &= \frac{2\pi K_{air\,eff}}{\ln\left(\frac{D_{vi}}{D_{ve}}\right)} + \sigma S_{ae} \left[\left(T_{a,j-1}^2 + T_{v,j+1}^2\right) \left(T_{a,j-1} + T_{v,j-1}\right) \right] \cdot \varepsilon_{TOT} + h_{a,f} \cdot S_{ai} \\ \varepsilon_{TOT} &= \frac{1}{\varepsilon_{v}} + \frac{1 - \varepsilon_{v}}{\varepsilon_{v}} \left(\frac{D_{ae}}{D_{vi}}\right) \end{aligned}$

$$a_{23} = -\frac{2\pi K_{air\ eff}}{\ln\left(\frac{D_{vi}}{D_{ve}}\right)} - \sigma S_{ae} \left[\left(T_{a,j-1}^2 + T_{v,j+1}^2\right) \left(T_{a,j-1} + T_{v,j-1}\right) \right] \cdot \varepsilon_{TOT}$$

 $a_{31} = 0$

$$a_{32} = \frac{2\pi K_{air\,eff}}{\ln\left(\frac{D_{vi}}{D_{ve}}\right)} + \sigma S_{ae} \left[\left(T_{a,j-1}^2 + T_{v,j+1}^2\right) \left(T_{a,j-1} + T_{v,j-1}\right) \right] \cdot \varepsilon_{TOT}$$

$$a_{33} = -\frac{2\pi K_{air\ eff}}{\ln\left(\frac{D_{vi}}{D_{ve}}\right)} - \sigma S_{ae} \left[\left(T_{a,j-1}^2 + T_{v,j+1}^2\right) \left(T_{a,j-1} + T_{v,j-1}\right) \right] \cdot \varepsilon_{TOT} - \bar{h}_{vent} S_{ve} - \varepsilon_v \sigma S_{ve} \left(T_{v,j-1}^2 + T_{amb}^2\right) \left(T_{v,j-1} + T_{amb}\right)$$

 $b_1 = -\rho_f C_{p,f} \dot{m}_f T_{f,j-1}$

 $b_2 = q_{ab} = \tau_v \alpha_a \rho_{al} S_{ae} G$

$$b_{3} = -\bar{h}_{vent}S_{ae}T_{amb} - \sigma\varepsilon_{v}S_{ve}(T_{v,j-1}^{2} + T_{amb}^{2})(T_{v,j-1} + T_{amb})$$

3.12.flux solaire autour du tube absorbeur par (SolTrace)

la distribution du flux solaire autour du tube absorbeur et l'intensité du flux à la surface du tube absorbeur ont été simulées à l'aide du SolTrace basé sur l'utilisation de la méthode de Monté Carlo [44].constitue peut-être le premier code de cette nouvelle génération, TONATIUH constituera un environnement logiciel sophistiqué pour la conception, l'optimisation et l'analyse des systèmes CSP de toutes filières (CRS-PT-DS). Ce logiciel libre de lancers de rayons écrit en C++ permettra de naviguer en 3D à travers l'installation grâce à

une interface adaptée aux standards graphiques actuels [46].leur but est de modéliser les systèmes optiques complexes pour analyser leurs performances [47].

3.12.1.Description de SolTrace

Le système optique est organisé en étages dans un système de paramètre de forme et coordonnées direction du soleil globale ou bien en fonction de latitude du lieu, nombre de jour, heure .SolTrace calcule la position du soleil en azimut et en élévation et détermine vecteur unitaire correspondant, équation (3.68), sur la base des équations (3.65)-(3.68) données latitude, Jour julien de l'année Nj et heure du jour au temps solaire local [48].

$$\delta = \arcsin(0.3795\cos(0.98563(Nj - 173)))$$
(3.66)

$$\omega = 15^{\circ}(TSV - 12) \tag{3.67}$$

 $h = \operatorname{arc}\sin(\cos\varphi\cos\delta\cos\omega + \sin\varphi\sin\delta)$

$$a = \arccos\left(\frac{\sin\delta\cos\varphi - \cos\delta\sin\varphi\cos\omega}{\cos h}\right)$$
(3.69)

$$x = -\sin a \cos h \tag{3.70}$$

$$y = \sin h \tag{3.71}$$

$$z = \cos a \cos h \tag{3.72}$$

Trois options sont disponibles pour la forme du soleil, définie comme la distribution angulaire de l'intensité normalisée à travers le disque du soleil, comme montredans la Figure 3.10, Dans la case (sun shape parametres). Les deux premières (Gaussian, Pillbox) sont des distributions probabilistes couramment utilisées. Bien que la forme du soleil varie considérablement avec la localisation terrestre, les conditions du ciel et le temps, elle n'est ni véritablement gaussienne ni pillbox dans la nature, bien que l'approximation de la boîte à pilules soit adéquate pour une grande classe de problèmes. Pour les systèmes très précis, l'utilisation d'un soleil gaussien n'est pas recommandée à moins que le système n'inclue des erreurs optiques relativement importantes (basées sur des définitions de géométrie ou de propriétés optiques). Le paramètre définissant une distribution gaussienne pour le disque du soleil est l'écart-type, σ . Le paramètre pour la casemate, étant une distribution plate, est simplement la largeur du demi-angle. La troisième option permet (User defined) à l'utilisateur de définir le profil de forme du soleil comme une série de points de référence d'intensité [48].

(3.68)

Figure 3. 10 informations sur la forme du soleil

Les étages sont des sections de la géométrie du concentrateur qui sont successivement atteints par les rayons sur leur trajectoire du soleil vers le récepteur final. Ils sont de 2 types

- optiques : interactions physiques avec les rayons.
- virtuels : pas d'interactions physiques avec les rayons, utile pour déterminer la position et la direction des rayons en tous points sans affecter physiquement leur trajectoire.

La raison de cette organisation est d'effectuer des lancers efficaces et donc d'économiser du temps de calcul. Un étage est composé d'éléments comprenant chacun une ouverture, une forme, un type d'interaction optique, et éventuellement un jeu de propriétés optiques (erreurs optiques, transmissivité, réflectivité, diffraction) voir figure (3.11- 3.12). Chaque élément est décrit dans le système de coordonnées propre à l'étage. L'atténuation atmosphérique et les erreurs de pointage ne sont pas calculées directement, mais elles peuvent être prises en compte respectivement dans la réflectivité des miroirs et dans leur erreur de réglage (slopeerror). Le facteur de réflectivité du tube absorbeur est opaque, par conséquent le facteur de transmissivité est nul, et le coefficient de transmission due à l'absorption du milieu est donnée par l'expression suivante [49]:

$$\tau_a = e^{-k_e \times e} \tag{3.73}$$

Avec : k_e : est le coefficient d'extinction, e : étant la longueur parcourue par le rayonnement dans le milieu.

Matériau	Coefficient d'extinction
Verre solaire	4
Verre de la fenêtre typique	30
Verre de la protection du soleil absorbant	130-270

 Tableau.3.2 : Coefficient d'extinction de certain matériaux transparents [49]

Optical property set name: miroir Editing: From	t side 💌 Import Export
Optical Properties]
Reflectivity 0,9600 ÷ Γρ(θ) Refraction Indices	
Transmissivity 0,0400 ÷ Real 1,10000 ÷ Imag 1,2000 ÷	
Slope error 0,9500 - mrad Optical surface # 1 -	
Specularity error 0,2000 mrad Aperture stop or grating type 3	
Error type Gaussian Diffraction order 4	
Grating Specing Coefficients	
1st 1,1000 <u>+</u> 3rd 1,3000 <u>+</u>	
2nd 1,2000 <u>+</u> 4th 1,4000 <u>+</u>	

Figure 3. 11 propriétés optiques pour la miroir

Optical property set name: vitre	Editing: Front side Import Export
Optical Properties	
Reflectivity 0,5552 🔅 🗖 ρ(θ) Refraction Indices	
Transmissivity 0,4449 • Real 1,10000 • Imag 1,20	000 ÷
Slope error 0,9500 mrad Optical surface # 1	
Specularity error 0,2000 mrad Aperture stop or grating type 3	
Error type Gaussian Diffraction order 4	
Grating Specing Coefficients	
1st 1,1000 3rd 1,30	000
2nd 1,2000 ÷ 4th 1,40	000 +
Optical property set name: absorbur	Editing: Front side 💌 Import Export
Optical Properties	
Reflectivity 1,0000 $\stackrel{\frown}{\bullet}$ $\rho(\theta)$ Refraction Indices	
Transmissivity 0,0000 • Real 1,10000 • Imag 1,20	000 ÷
Slope error 0,0001 mrad Optical surface # 1	
Specularity error 0,2000 + mrad Aperture stop or grating type 3	
Error type Gaussian Diffraction order 4	
-Grating Specing Coefficients	
1st 1,1000 <u>+</u> 3rd 1,30	000 🛨
2nd 1,2000 ÷ 4th 1,40	000 ÷

Figure 3. 12 propriétés optiques pour la vitre (ver) et l'absorbeur (cuivr)

De plus la description très détaillée de la géométrie des surfaces (voir les figures (3.13)-(3.14)-(3.15) induit une interface encombrante. En effet pour chaque système étudié il faut construire dans un tableur toute la géométrie du champ d'héliostats comprenant

- la définition du centre, de l'ouverture, de la direction normale et de la courbure de chaque facette de chaque héliostat dans un repère qui lui est propre.

- la définition du positionnement du repère de chaque héliostat par rapport à un repère global, ce qui implique le calcul de la direction de pointage de l'héliostat en fonction de la position du soleil dans le ciel.

Stage Properties	Global Coordinates		Element	Editing		
Name: miroir Virtual stage Virtual stage Nultiple hits per ray Trace through	X Origin 0,000000 Aim point 0,000000 Z rotation 0,000000 Clipboard actions: Copy	Y 10,00000 ** 10,00000 ** 10,0000 ** 10	Z 0,000000 1,000000 Z Rotation Delet Delet	t Z Rotation d Aperture e Surface e all Optics		
En. X-Coord. Y-Coord. Z-Co	ord. X-AimPt. Y-AimPt.	Z-AimPt. Z-Ro	t. Aperture	Surface	Interaction	Optics
1 🔽 0 0 0	0 0	1 0	I0.47176,0.47176,2,0,0,0,0	p-0.85149,0,0,0,0,0,0,0,0	Reflection	miroir

Figure 3. 13 description géométrie du la miroir

Stage Properties	Global Coordinates		Element	Editing		
Name: tube absorbur	X Origin 0,000000	Y Z	,000000 ÷	t Z Rotation		
Virtual stage	Aim point 0,000000	0,000000 ÷ 1	,000000 ÷ Apper	nd Aperture		
✓ Multiple hits per ray	Z rotation 0,000000	deg	Z Rotation Delet	e Surface		
✓ Trace through	Clipboard actions: Copy	Paste	Delet	e all Optics		
En. X-Coord. Y-Coord. Z-Coo	ord. X-AimPt. Y-AimPt.	Z-AimPt. Z-Rot.	Aperture	Surface	Interaction	Optics
1 🗹 0 0 0.5872	0 0	0 0	1-0,0,2,0,0,0,0,0	t-333.333,0,0,0,0,0,0,0,0	Reflection	absorbur

Figure 3. 14 description géométrie du l'absorbeur

Stage Properties		Global Coordin	nates				Eleme	nt Editing		
Name: vitre		X Origin 0,	,000000	Y ÷ 0,0000	000 ÷	Z 0,000000	Ins	z Rotation		
☐ Virtual stage		Aim point 0	,000000	+ 0,000	000 ÷	1,000000 ÷	App	end Aperture		
Multiple hits per ray		Z rotation 0	,000000			Z Rotation	De	ete Surface		
Trace through Clipboard actions: Copy Paste					Del	ete all Optics				
X-Coord. Y-Coord. Z	Z-Coord.	X-AimPt.	Y-AimPt.	Z-AimPt.	Z-Rot.	Aperture		Surface	Interaction	Optics
1 0 0 0.	.5902	0	0	0	0	I-0,0,2,0,0,0,0,0		t-166.667,0,0,0,0,0,0,0	Reflection	vitre

Figure 3. 15 description géométrie du la vitre (verre)

3.13.Conclusion :

La Concentration intensive de la lumière du soleil sur l'absorbeur est directement liée à la forme de concentrateur pour avoir un flux de chaleur importante absorbe par fluide caloporteur qui est réchauffé par ce dernier

DISCUSSION DES

RESULTATS

4.1.Introduction

Dans ce travail nous allons dimensionner les performances thermiques d'un concentrateur cylindro-parabolique. La température de sortie du fluide caloporteur, l'énergie gagnée par ce dernier et le rendement thermique instantané du système seront étudiés avec débit de fluide caloporteur $\dot{m}_f = 10^{-6} \left[\frac{m^3}{s}\right]$.

En outre l'effet de plusieurs facteurs (emplacement du solaire, débit, taille de l'absorbeur, saison, vitesse de vent) sur les performances du concentrateur seront examinés.

La résolution du système d'équations par la méthode de Cramer , a permis d'obtenir un ensemble de résultats numériques mené à Bou Ismaïl le 27/06/2018

4.2. Données astronomiques du lieu

Notre objectif du dessalement de l'eau saline pour cela on a choisie la commune de Bou Ismaïl est situé au nord-est de la wilaya de Tipaza. Bou Ismaïl est une ville située au bord de la <u>mer Méditerranée</u>, à environ 20 km à l'est de <u>Tipaza</u> et à environ 40 km au sud-ouest d'Alger. Leur donnée astronomique sont présentée dans le tableau suivant :

Latitude <i>φ</i>	Longitude λ	L'altitude Z
Latitude <i>φ</i>	Longitude λ	L'altitude

36.6426200°

2.6900700°

29m

Tableau .4.1 Coordonnées géographiques

4.2.1.La position du soleil

4.2.1.1.Déclinaison δ

Figure 3. 16 l'angle d'indclinaison en fonction du nombre de jour

4.2.1.2. Hauteur angulaire du soleil

Figure 3. 17 hauteur angulaire du soleil h en fonction du temps solair vrai

4.2.1.3. Azimut du soleil

Figure 3. 18 azimut angulaire du soleil en fonction du angle horaire

4.2.1.4.Angle horaire

Figure 3. 20 la durée du temps solair vrai de chaque jour ou occure de l'année

4.2.1.6.Temps solaire moyen

Figure 3. 22 temps solaire moyen en fonction du temps local

4.2.1.7.Angle d'incidence

Figure 3. 23 angle incidence en fonction de temps local

4.2.1.8.Rayonnement (Eclairement Global)

4.2.1.9.Eclairement directe

Figure 3. 25 rayonnement solaire direct pour un plan quelconque et horizontal

4.2.1.10.Eclairement diffuse

Figure 3. 26 rayonnement solaire diffuse

les figures (3.24-3.25-3.26) représentent les courbes l'évolution temporelle des rayonnements direct et diffus et globale pour plan quelconque et horizontal calculées par les formules de Capderou .

4.3 Dimensionnement de CCP(concentrateur cylindro-parabolique)

La largeur de la plaque miroir (Al) : S=1m

Avec φ_r	45°
W _a	0.9729 m
D _{ai}	0.0060 m
F	0.5872 m
L	2 m
D _{ae}	0.0080 m
D_{vi}	0.0120 m
D _{ve}	0.0180 m

Tableau.4.2. Résultats de dimensionnement de CCP

Figure 3. 27 vue du face de miroir (mm)

Figure 3. 28 vue de miroir (mm)

Figure 3. 29 assemblage des tube absorbeur ,miroir et vitre

4.3.1 Résultats de soltrace obtenus à 13 :00 le 27/06/2018

(2)

Figure 3. 31 trajectoire des rayons sur(l'absorbeur ;vitre)

Les figures (3.29-3.30-3.31) représentent la réflexion des rayons du soleil sur l'ensemble absorbeur et vitre sans erreurs optique côté gauche (1), et avec les erreurs optique droit.

Figure 3. 32 trajectoire des rayons sur[l'absorbeur (a droit) et la vitre (a gauche)] sans erreurs optique

Figure 3. 33 trajectoire des rayons sur[l'absorbeur (a droit) et la vitre (a gauche)] avec erreurs optique

Les figures (3.32-3.33) représentent la trajectoire des rayons sur l'ensemble absorbeur et vitre sans erreurs optique Figure.3.31, et avec les erreurs Figure.3.31, respectivement Figure.3.31et Figure.3.31. Comme on remarquons également que certains rayons en rouges ne touchent pas la surface Inférieur de l'absorbeur.

Figure 3. 34 interactions physiques avec les rayons sans erreurs optique[vitre(1) ;absorbeur(2)]

CHAPITRE-4

Figure 3. 35interactions physiques avec les rayons avec erreurs optique [vitre(1) ;absorbeur(2)]

Figure 3. 36 interactions physiques avec les rayons sans erreurs optique(1) ;avec(2)

Les figures (3.34-3.35-3.36) représentent les interactions physiques avec les rayons sur l'ensemble absorbeur et vitre sans erreurs optique et avec les erreurs optique, Comme nous remarquons également que la vitre permet aux rayons de passer à l'intérieur et ne sortent pas.

Fuissance par rayon: 0.189353 Flux de crête: 124589 Incertitude de flux de pointe: +/- 12,7% Flux minimum: 0 Flux sigma: 37676.6 Avg. flux: 38271

CHAPITRE-4

Avg. incertitude de flux: +/- 0,508014% Uniformité: 0.984469 Puissance des rayons: 1442.49 Centroïde: (2.3265e-06, -0.00232268, 0.00500866) Figure 3. 37 flux autour de l'absorbeur [mW/m2]

Nombre de rayons de soleil: 25826, sur la boîte des dimensions: 2.21139 x 2.21139 Puissance par rayon: 0.189353 Flux de crête: 45212.7 Incertitude de flux de pointe: +/- 14,9071% Flux minimal: 8037.81 Flux sigma: 7837.89 Avg. flux: 23809.5 Avg. incertitude de flux: +/- 0,508014% Uniformité: 0.329192 Puissance des rayons: 1794.88 Centroïde: (-7.08019e-06, -0.00923029, 0.00691594) Figure 3. 38 flux autour de la vitre [mW/m2]

Nombre de rayons de soleil: 25879, sur la boîte des dimensions: 2.21139 x 2.21139 Puissance par rayon: 0.188965

Flux de crête: 216586 Incertitude de flux de pointe: +/- 9,6225% Flux minimum: 0 Flux sigma: 54273.1 Avg. flux: 38183.3 Avg. incertitude de flux: +/- 0.464805% Uniformité: 1.42138 Puissance des rayons: 1439.16 Centroïde: (-2.6745e-06, -0.00934983, 0.000475998) Figure 3. 39 flux intérieur de l'absorbeur [mW/m2]

Nombre de rayons de soleil: 25852, sur la boîte des dimensions: 2.21139 x 2.21139 Puissance par rayon: 0.189163 Flux de crête: 157601 Incertitude de flux de pointe: +/- 7,98087% Flux minimum: 0 Flux sigma: 42535.6 Avg. flux: 23878.6 Avg. flux: 23878.6 Avg. incertitude de flux: +/- 0,507955% Uniformité: 1.78133 Puissance des rayons: 1799.88 Centroïde: (-2.40548e-05, -0.00108909, 0.00050178) Figure 3. 40 flux intérieur de la vitre [mW/m2]

Rendement optique en fonction de l'angle d'incidence

Les figures (3.41-3.42) montrent que le Rendement optique augmente jusqu'au sommet et diminue en parallèle avec l'angle incidence ,à l'inversion et vice versa par rapport au temps local sont augmentés jusqu'à la demi-journée (TSV=12 :00 ;TL=13 :00) ,et commencent à diminuer.

les figures (3.39-3.40-3.42-3.43) représentant l'évolution temporelle et au cour de la dimension de tube absorbeur et la vitre l'intensité de Flux augmente jusqu'au sommet et diminue en parallèle avec angle incidence ,à l'inversion et vice versa par rapport au temps local sont augmentés jusqu'à la demi-journée (TL=13 :00) ,et commencent à diminuer., et la valeur de Flux a 13:00 égale=180W/m².

Les figures (3.41-3.42-3.43) représentent l'évolution de la puissance absorbé par concentrateur augmente jusqu'au sommet et diminue en parallèle avec angle incidence et le

CHAPITRE-4

rendement optique, à l'inversion et vice versa par rapport au temps local sont augmentés jusqu'à la demi-journée (TSV=12 :00 ;TL=13 :00) ,et commencent à diminuer.

Figure 3. 46 coefficient globale des pertes thermiques en fonction du temps solaire vrai cas vent calme

Figure 3. 48 coefficient globale des pertes thermiques en fonction du temps solaire vrai cas vent v=5[m/s]

Figure 3. 50 rendement thermique de CCP en fonction du temps local cas vent calme

Figure 3. 45 les puissances [absorbé;perdu;util] en fonction temps local cas vent calme

Figure 3. 47 les puissances [absorbé ; perdu; util] en fonction temps local cas vent v=5[m/s]

Figure 3. 49 rendement thermique de CCP en fonction du temps local vent v=5[m/s]

CHAPITRE-4

tube cas vent calme (TL=13 :00)

Les figures (3.44 à 3.52) représentent l'évolution temporelle de la température et les puissances (absorbée ;perdue ;utile) , coefficient globale des pertes thermiques ,et le rendement thermique dans les deux cas vent calme et vent de surface on remarque que le coefficient globale des pertes et la puissance absorbée et perdue et les températures de sorties au cas de vent de surface est souvent plus grand que cas calme par contre la puissance utile et rendement thermique et cela remonte à coefficient de convection au tour de la surface extérieure de la vitre et conductivité de l'air à l'espace annulaire ,conductivité de l'air ambiant qui sont à voir avec la température ambiante est élevée dans cette journée varie entre [27°C-39°C] figure 3.55

Figure 3. 55 température ambiant en fonction de temps local

Conclusion générale

L'objectif principal de ce mémoire est le dimensionnement d'un capteur cylindroparabolique en considérant l'intensité du rayonnement solaire simulé par le modèle de Capderou et en tenant compte des différents paramètres thermo-physiques du fluide caloporteur tels que le régime d'écoulement et la vitesse du vent relevée dans les conditions climatiques de la ville de Bou-ismail à Tipaza.

Ainsi en premier lieu, nous avons modélisé le rayonnement solaire et la température ambiante par le modèle de Capderou et par une formule semi-empirique respectivement. Ce modèle thermique détaillé, qui peut être utilisé pour l'analyse d'un collecteur cylindroparabolique est présenté, et prend en compte tous les modes de transfert de chaleur; convection dans la conduit de l'absorbeur, dans l'espace annulaire entre l'absorbeur et le couvercle de verre d'une part, et de la couverture de verre et l'air ambiant d'une autre part. et le rayonnement de la conduite du récepteur de métal sur le couvercle en verre et de la couverture du verre vers le ciel.

En deuxième lieu, nous avons effectué une simulation à l'aide du programme SolTrace basé sur la méthode de Monté Carlo ayant pour but de modéliser les systèmes optiques complexes pour l'analyse de leurs performances thermo-physique. Cela, nous a permis d'obtenir des résultats visuelles (les interactions physiques ainsi que la direction et l'intensité des rayons) et numériques (Puissance par rayon et Flux de crête ; Puissance des rayons ; Centroïde etc..) avec un graphe 3D de la distribution du flux de chaleur et l'intensité du flux en 2D.

Parmi les résultats les plus importants, on cite:

- La diminution du débit volumique entraine une augmentation de la température du fluide caloporteur;
- L'augmentation du rayonnement solaire engendre une augmentation des températures de tous les éléments du collecteur ;
- L'augmentation de la vitesse du vent génère une augmenter de la température de tous les éléments du collecteur ;
- La température du fluide est proportionnelle à la longueur du tube ;
- La concentration des rayons solaire a un effet très intéressant sur le rendement thermique du capteur ;
- L'intensité de flux et la température de fluide caloporteur augmentent jusqu'à la demijournée (TL=13 :00) où ils commencent à diminuer ;
- L'influence positive des propriétés physiques des fluides sur l'efficacité thermique et sur la température des fluides de travail a été mise en évidence ;
- ➤ La température souhaitée peut être obtenue à partir de sept heures du matin jusqu'au coucher du soleil.

[1] **MARIF Yacine** ; Caractérisation d'un concentrateur cylindro-parabolique de dimensions réelles au sud de l'Algérie: Région d'Ouargla (2015).

[2] A. PAGES, L'utilisation des énergies renouvelables pour l'électrification rurale décentralisée des pays en développement, Octobre (2000).

[3] Andraka, Charles E., et al. "Solar Heat Pipe Testing of the Stirling Thermal Motors 4-120 Stirling Engine."IEEE.DE-AC04-94AL85000 (1996).

[4] Kalogirou SA. Solar thermal collectors and applications.Prog Energy Combust Sci 2004; 30(3): 231-95.

[5] Schawarzböl P, Buck R, Sugarmen C, Ring A, Jesus Marcos Crespo M, Altwegg P, et al.

[6] Ravi Kumar K, Reddy KS. Thermal analysis of solar parabolic trough with porous disc receiver. Applied Energy 2009; 86(9) : 1804-12

[7] Mancini T, Heller P, Butler B, Osborn B, SchielW, Goldberg V, et al. Dish-stirling systems: an overview of development and status.J Solar Energy Eng 2003; 125(2): 135-51.

[8] Ouarzazate 25-27 mai 2016

[9] **A, Khedim.** L'énergie solaire et son utilisation sous forme thermique et Photovoltaïque,Centre de Publication Universitaire, (2003).

[10] **J, Bernard.** Energie solaire, calculs et optimisation. Ellipse Edition Marketing. Paris. (2004).

[11] **L, Lacas.** Le guide des énergies douces. le soleil, la maison solaire, le vent, la biomasse, la géothermie, l'énergie hydraulique, Dargaud Editeur. (1980).

[12]Trabelsi.A, Masmoudi.M, 2011. An investigation of atmospheric turbidity over Kerkennah Island in Tunisia. Atmospheric Research 101, 22–30.

[13] M. Khaled, conception est réalisation d'un concentrateur sphérique, université de constantine, 2008.

[14] Alain Ricaud, 2011. Gisement solaire et transferts énergétiques, Université de CERGY-PONTOISE,

[15] J.E. Braun et JC. Mitchell, solar geometry for fixed and tracking surface, edition: solar energy laboratory, 1983

[16] H.I. Villafa 'n-Vidalesa, et al. "Monte Carlo radiative transfer simulation of a cavity solar reactor for the reduction of cerium oxide". international journal of hydrogen energy 34 : 115-124 (2009).

[17]Lebedieva AN. Climatic Atlas of Africa, Part I Gidrometeoizdat, Leningrad, 1978.

[18]Y.Jannot, cours de transfert thermique, thermique solaire, édition : Mac Graw Hill, octobre 2003

[19]J .A.duffie and JW. Becam, solar engineering, edition: thérmal process 2 .INC, 1991

[20] Liu BT, Jordon RC. Solar Energy 1960;4:1

[21] http://dateandtime.info/fr/citycoordinates.php?id=2502939

[22] http://www.precis-mecanique.com 21/06/2018 21.10

[23] (N. Bachari...), Estimation et Cartographie des Différentes Composantes du Rayonnement Solaire au Sol à Partir des Images Météosat (2015)

[24] J.A.duffie and JW. Becam, solar engineering, edition : thermal process 2 .INC ,1991

[25]https://theta.obs-besancon.fr/lunap/valise/levers-couchers-soleil.html

[26]J .Bernard, énergie solaire calculs et optimisations, édition : ellipses, 2004

[27]Yaiche.M.R, Bouhanik.A, Bekkouche.S.M.A, Malek.A, Benouaz. T, 2014. Revised solar maps of Algeria based on sunshine duration. Energy Conversion and Management 82, 114–123.

[28]M.R Yaïche1 et S.M.A Bekkouche2,'Estimation du rayonnement solaire global

[29] Capdrou. M, 1987. Atlas Solaire de l'Algérie, Modèles Théoriques et Expérimentaux,

[30] M.GEYER .and WB. Stine, power from the sun, edition: JT. Lyle center, 2001

[31] J.E. Braun et JC. Mitchell, solar geometry for fixed and tracking surface, edition: solare nergy laboratory, 1983

[32] F Kasten, 'The Linke Turbidity Factor based on Improved Values of the Integral Rayleigh Optical Thickness', Solar Energy, Vol. 56, N°3, pp. 239 – 244, 1996.

[33]<u>http://sup.upstlse.fr/uved/Ozone/BasesScientifiques/projet/site/html/CirculationGenerale_1.html</u>

[34] P. Bessemoulin et J. Oliviéri, 'Le Rayonnement Solaire et sa Composante Ultraviolette', Physique Atmosphérique, La Météorologie, 8ème Série, N°31, Septembre 2000.

[35] Alain Ricaud, 2011.Gisement solaire et transferts énergétiques, Université de CERGY-PONTOISE, en Algérie pour différents types de ciel', Revue des Energies Renouvelables Vol.
13 N°4 (2010) 683 – 695 Volume1, Tome 2 ; Office des Publications Universitaires, Algérie.

[36]Louche. A, Peri. G, Iqbal. M, 1986. An analysis of Linke turbidity factor, Solar Energy 37 (6), 393-396.

[37]M. Capderou, 'Atlas Solaire de l'Algérie', Tome 1, Vol. 1 et 2: Modèles Théoriques et Expérimentaux, Office des Publications Universitaires, Algérie, 1987.

[38] Ahmed Khedim, l'énergie solaire et utilisation sous sa forme thermique et Photovoltaïque, éditions : centre de publication universitaire ,2003

[39] C.P .de brichaumbot et C .vauge, le gisement solaire, édition : ed.tek et doc paris, 1982

[40] M.capderou, atlas solaire de l'Algérie, tome 1, vol 1 et 2 modèle théorique et Expérimentaux, édition : office des publications universitaire, Algérie ,1987

[41]Alain Ricaud, 2011.Gisement solaire et transferts énergétiques, Université de CERGY-PONTOISE,

[42] Y. Jannot, cours de transfert thermique, thermique solaire, édition : Mac Graw Hill, October 2003

[43] Ravi Kumar K, Reddy KS. Thermal analysis of solar parabolic trough with porous disc receiver. Applied Energy 2009; 86(9) : 1804-12.

[44] Kalogirou S. Solar energy collectors, in solar energy engineering: processes and systems,

[45] : M. Ghodbane, B. Boumeddane , ENGINEERING DESIGN AND OPTICAL INVESTIGATION OF A CONCENTRATING COLLECTOR: CASE STUDY OF A PARABOLIC TROUGH CONCENTRATOR , J Fundam ApplSci. 2018, 10(2), 148-171

[46] Duffie J A, Beckman W A. Optical performance of concentrating collectors," in Solar Engineering of Thermal Processes, John Wiley & Sons (fourth Eds.), 2013, 334-368.

[47] Pierre GARCIA, Outils d'évaluation technico-économique et d'aide à la conception des centrales solaires thermodynamiques du future, l'Université de Perpignan octobre 2007

[48] Tim Wendelin et Aron Dobos ,SolTrace: A Ray-Tracing Code for Complex Solar Optical Systems, National Renewable Energy Laboratory /TP-5500-59163, October 2013,page 4

[49] <u>ZedayriaMerouane</u>, <u>A Moummi</u>, Effet des paramétres géométriques thermophysiques et optiques sur les performances des capteurs solaires plans à air,<u>Université Mohamed Kheider</u>, 2010, page 34-35

1. Les nombres adimensionnels utilisés dans notre travail :

a. Nombre de Nusselt :

La combinaison du coefficient d'échange de chaleur par convection, de la longueur caractéristique et de la conductivité thermique du fluide est appelée nombre de Nusselt.

C'est le rapport du gradient de température dans le fluide en contact immédiat avec la surface au gradient de température de référence. Il caractérise l'intensité de l'échange de chaleur sur la limite fluide-surface.

$$Nu_L = \frac{h_f L}{k_f}$$

 h_f : Coefficient de convection thermique.

L : Longueur caractéristique.

 k_f : la conductivité thermique du fluide.

b. Nombre de Prandlt :

Ce nombre représente le rapport de la viscosité cinématique à la diffusivité thermique; il caractérise les propriétés physiques du fluide.

$$P_r = \frac{\mu C_{pf}}{k_f} = \frac{\nu}{a}$$

 C_{pf} : Chaleur spécifique à pression constante.

 k_f : Conductivité thermique de fluide.

a: Diffusivité thermique.

c. Nombre de Grashoff :

Annexe 1 : Les nombres adimensionnels utilisés dans notre travail

Ce nombre caractérise la transmission de la chaleur en convection naturelle, il exprime le rapport entre les forces de viscosité et les forces ascensionnelles créées dans le fluide par les différences de température qui y règnent.

$$G_r = \frac{\beta \rho^2 g L^3 \Delta T}{\mu^2}$$

 β : Le coefficient de dilatation thermique rapporté à la température moyenne du fluide ($\beta = 1/T$ pour un fluide parfait).

g : L'accélération de la pesanteur.

L: Une dimension caractéristique.

d. Nombre de Reynolds :

Ce nombre est une mesure de la grandeur relative des forces d'inertie par rapport aux forces de viscosité dans l'écoulement.

$$Re_L = \frac{\rho UL}{\mu} = \frac{UL}{\nu}$$

U: Vitesse caractéristique du fluide.

L: Dimension linéaire caractéristique du corps.

 μ : Viscosité dynamique.

 ν : Viscosité cinématique.

 ρ : la masse volumique.

e. Nombre de Rayleigh

Il exprime la relation entre les nombres de Grashoff et de Prandlt. Ce nombre peut fournir un critère de passage de la convection naturelle laminaire à la convection naturelle turbulente.

$$R_a = Gr \times Pr$$

2. Caractéristique thermo physique du fluide utilisée :

A. Air:

D'après les tables publiées par Frank M. White, *Heat and Mass transfer*, Addison-Wesley, 1988.

avec :

- *T*, température en <u>kelvins</u>
- ρ , masse volumique
- μ, <u>viscosité dynamique</u>
- v, viscosité cinématique
- *C_p*, <u>chaleur massique à pression constante</u>
- λ , <u>conductivité thermique</u>
- *a*, <u>diffusivité thermique</u>
- Pr, <u>nombre de Prandtl</u>
- a. La relation entre la température et la conductivité thermique de l'air, valable pour une température comprise entre 100 K et 1 600 K est la suivante :

 $\lambda = 1.5207 \times 10^{-11} \times T^3 - 4.857 \times 10^{-8} \times T^2 + 1.0184 \times 10^{-4} \times T - 3.9333 \times 10^{-4}$

b. La relation entre la viscosité dynamique de l'air et la température est :

 $\mu = 8.8848 \times 10^{-15} \times T^3 - 3.2398 \times 10^{-11} \times T^2 + 6.2657 \times 10^{-8} \times T + 2.3543 \times 10^{-6}$

où :

- T : température en K
- *μ*: viscosité dynamique en kg/m.s
- c. La relation entre la viscosité cinématique de l'air et la température est :

$$\nu = -1.363528 \times 10^{-14} \times T^3 + 1.0081778 \times 10^{-10} \times T^2 + 3.452139 \times 10^{-8} \times T \\ - 3.400747 \times 10^{-6}$$

où :

- T: température en K
- *v*: viscosité cinématique en m²/s

d. la relation entre chaleur spécifique de l'air et la température est la suivante :

$$C_P = 1.9327 \times 10^{-10} \times T^4 - 7.9999 \times 10^{-7} \times T^3 + 1.1407 \times 10^{-3} \times T^2 - 4.4890 \times 10^{-1} \times T + 1.0575 \times 10^3$$

où :

- T : température en K
- C_P : chaleur spécifique en J/kg·K
- e. <u>masse volumique</u> :

$$\rho = \frac{\mu}{\nu}$$

Annexe 2 : Caractéristique thermo physique du fluide utilisée

Air à pression atmosphérique										
Т	ρ	μ	v	Cp	λ	а	Pr			
К	kg∙m ⁻³	kg·m ^{−1} ·s ^{−1}	m ² ·s ⁻¹	J·kg ⁻¹ ·K ⁻¹	W·m ⁻¹ ·K ⁻¹	m ² ·s ⁻¹	_			
250	1,413	1,60×10 ⁻⁵	0,949×10 ⁻⁵	1 005	0,0223	1.32×10 ⁻⁵	0,722			
300	1,177	1,85×10 ⁻⁵	1,57×10 ⁻⁵	1 006	0,0262	2,22×10 ⁻⁵	0,708			
350	0,998	2,08×10 ⁻⁵	2,08×10 ⁻⁵	1 009	0,0300	2,98×10 ⁻⁵	0,697			
400	0,883	2,29×10 ⁻⁵	2,59×10 ⁻⁵	1 014	0,0337	3,76×10 ⁻⁵	0,689			
450	0,783	2,48×10 ⁻⁵	2,89×10 ⁻⁵	1 021	0,0371	4,22×10 ⁻⁵	0,683			
500	0,705	2,67×10 ⁻⁵	3,69×10 ⁻⁵	1 030	0,0404	5,57×10 ⁻⁵	0,680			
550	0,642	2,85×10 ⁻⁵	4,43×10 ⁻⁵	1 039	0,0436	6,53×10 ⁻⁵	0,680			
600	0,588	3,02×10 ⁻⁵	5,13×10 ⁻⁵	1 055	0,0466	7,51×10 ⁻⁵	0,680			
650	0,543	3,18×10 ⁻⁵	5,85×10 ⁻⁵	1 063	0,0495	8,58×10 ⁻⁵	0,682			
700	0,503	3,33×10 ⁻⁵	6,63×10 ⁻⁵	1 075	0,0523	9,67×10 ⁻⁵	0,684			
750	0,471	3,48×10 ⁻⁵	7,39×10 ⁻⁵	1 086	0,0551	10,8×10 ⁻⁵	0,686			
800	0,441	3,63×10 ⁻⁵	8,23×10 ⁻⁵	1 098	0,0578	12,0×10 ⁻⁵	0,689			
850	0,415	3,77×10 ⁻⁵	9,07×10 ⁻⁵	1 110	0,0603	13,1×10 ⁻⁵	0,692			
900	0,392	3,90×10 ⁻⁵	9,93×10 ⁻⁵	1 121	0,0628	14,3×10 ⁻⁵	0,696			
950	0,372	4,02×10 ⁻⁵	10,8×10 ⁻⁵	1 132	0,0653	15,5×10 ⁻⁵	0,699			
1 000	0,352	4,15×10 ⁻⁵	11,8×10 ⁻⁵	1 142	0,0675	16,8×10 ⁻⁵	0,702			
1 100	0,320	4,40×10 ⁻⁵	13,7×10 ⁻⁵	1 161	0,0723	19,5×10 ⁻⁵	0,706			
1 200	0,295	4,63×10 ⁻⁵	15,7×10 ⁻⁵	1 179	0,0763	22,0×10 ⁻⁵	0,714			
1 300	0,271	4,85×10 ⁻⁵	17,9×10 ⁻⁵	1 197	0,0803	24,8×10 ⁻⁵	0,722			

B. Caractéristique thermo physique du fluide caloporteur HTF (heat transfer fluids)

Temp (K)	(kg/	(KJ/Kg.K)	(W/m.K)	(/s)
533	857	2.21	0.1038	0.272
544	847	2.24	0.1018	0.256
555	835	2.27	0.0998	0.242
566	824	2.30	0.0977	0.229
577	812	2.33	0.0956	0.217
589	800	2.36	0.9340	0.206
600	788	2.39	0.0912	1.958
611	775	2.42	0.0890	1.866
622	762	2.45	0.0867	1.781
633	749	4.48	0.0844	1.703
644	734	2.52	0.0820	1.630
655	720	2.56	0.0796	1.562
666	704	2.60	0.0771	1.500
672	696	2.62	0.0759	1.470

• La masse volumique

 $\rho_f = 10^3 \times (-0.0012 \times T + 1.4785)$

• La capacité calorifique :

$$C_{Pf} = 0.0029 \times T + 0.6548$$

• la conductivité thermique

$$K_f = -0.0002 \times T + 0.2116$$

• la viscosité cinématique

 $v_f = 0.00001 \times T^2 - 0.0005 \times T + 0.1902$

Annexe 3 : Organigramme de programme

4. programme en matlab pour CCP :

a. programme générale :

```
% v : vitesse de vent [m/s]
% pasx : le pas ou cour de la longueur de tube
% mf : débit de fluide caloporteur en [m.^3/s]
% S : largeur de la plaque de réflexion
% L : la longueur de concentrateur
% Wa : ouverture de concentrateur
% F : distance focal
% la hauteur de concentrateur
% tita2:1'angle de demi acceptation
% rim : angle rim (angle jante) ;
% phi: l'angle entre l'axe normal de l'axe du concentrateur et un faisceau
réfléchi sur le tube de l'absorbeur (foyer)
% Irp : est le latus rectum de la parabole
% Dai :diamètre intérieur de tube absorbeur
% Dae :diamètre extérieur de tube absorbeur
% Sai ; surface intérieur de tube absorbeur
% Sae : surface extérieur de tube absorbeur
% FC : facteur de concentration
% Coefficient de réflexion de la surface sélective.
% GAMAab : Coefficient d'absorption de l'absorbeur
% TAUv : Coefficient de transmission de la vitre
% Se : Se: surface efficace du capteur
% segma: est la constante de Stefan Boltzmann =5.670*10e-8
% Ore=1: Côté est ;Ore=2:Côté Ouest Position par rapport a la ligne
Greenwich
% Lati= laltitude du lieu
% Long=longitude du lieu
% Alti:Lati=altitude du lieu
% Nm :nombre du mois
% Njm :nombre du jour par mois
% Nj : nombre du jour dans l'année
% decl : la Déclinaison ?
% DeltaT : la correction de temps
% angHS=1'angle horaire au lever du soleil
% TLs=le temps de lever du soleil
% TCs= le temps de couche du soleil
% DeltLC=la durée du jour
% Tlo=le temps locale
% TU=le temps universel
% TSM=le temps solaire moyenne
% TSV=le temps solaire vrai
% angH : l'angle horaire
% h : la hauteur du soleil
% az : l'azimut
% Ta : la température ambiante
% gama : l'angle d'inclinaison
% alpha=0 Orientation vers le sud
% alpha=180° Orientation vers le nord
% alpha=-90 Orientation vers l'est
% alpha=90 Orientation vers l'ouest
\% x2 : conversion d'angle de degré ^\circ ver radian
% angri : l'angle d'incidence
% G : flux de rayonnement solaire foi la distance terre-soleil
% MAhe : L'alternance hiver-été Pour mettre en évidence la variation
saisonnière
\% TO : est le trouble dû à l'absorption gazeuse tant par les constituants
fixes de l'atmosphère que par l'ozone et surtout par la vapeur d'eau.
% T1 : est le trouble dû à l'absorption par les gaz de l'atmosphère
```

% T2 : est le trouble dû à la diffusion par les aérosols couplée à une légère absorption % TL : facteur de trouble de Linke % MA : est la masse d'air atmosphérique (masse d'air optique) % R : l'épaisseur optique d'une atmosphère (épaisseur optique de Rayleigh) % RsdB : rayonnement direct pour un plan quelconque méthode utilise par (capderou 1987) % Rsd : rayonnement solaire direct pour un plan horizontal % Rsdf: le rayonnement diffuse cas d'un plan horizontal % RsdfB :le rayonnement diffuse reçue sur un plan incliné % Ray1 : rayonnement global pour un plant incliné [incliné +quelconque] % Ray2 : rayonnement global pour un plant [horizontal + quelconque] % Ray3 : rayonnement global pour un plant horizontal [horizontal + horizontal] % qab: la puissance absorbée pour un plant horizontal [horizontal + horizontal] % qab1 :la puissance absorbée pour un plant [horizontal + quelconque] % gab2 :la puissance absorbée pour un plant [horizontal + quelconque] % gabL : Energie solaire globale absorbée % lamda : facteur d'interception % k : angle d'incidence % RondOpt : Rendement optique % UL : coefficient de pertes thermiques % qu : puissance utile % RondTher ; rendement thermique % qp : puissance perdu % ea: L'émissivité de l'absorbeur % ev : L'émissivité de la vitre % VISCIairamb :La viscosité cinématique de l'air ambiant % MVair : la masse volumique de l'air ambiant % VIDSYair: viscosité dynamique de l'air ambiant % Cpairamb : capacité calorifique de l'air ambiant J/kg.K % Kairamb: conductivité de l'air ambiant W/K.m % Prairamb :Nombre de prandel évalué a la température aire ambiant % B1 : le coefficient du dilatation thermique de température air ambiant % RAdve :est le nombre de Rayleigh diamètre de vitre extérieur % Tmoyvamb : température moyen entre l'absorbeur et la vitre % VISCIvamb : La viscosité cinématique de l'air ambiant vitre % MVvamb : la masse volumique de l'air ambiant vitre % VISDYvamb : viscosité dynamique de l'air ambiant vitre % Cpvamb : capacité calorifique de l'air ambiant vitre % Kvamb : conductivité de l'air ambiant vitre % Prvamb : Nombre de prandel évalué a la température aire ambiant vitre % NuDve :nombre de Nusselt diamètre vitre extérieur % Tmoy : température moyen entre partie l'absorbeur et la vitre % VISCIair :La viscosité cinématique de l'air entre partie l'absorbeur et la vitre MVair : la masse volumique de l'air entre partie l'absorbeur et la 8 vitre % VISDYair :viscosité dynamique de l'air entre partie l'absorbeur et la vitre % Cpair : capacité calorifique de l'air entre partie l'absorbeur et la vitre % Kairannu : conductivité de l'air entre partie l'absorbeur et la vitre % Prannu : Nombre de prandel évalué a la température aire entre partie labsorbure et la vitre % B : le coefficient du dilatation thermique de température l'air entre partie l'absorbeur et la vitre % Lc : la longueur critique % Fcyl : facteur de la forme concentrique du cylindre % RAdae : nombre de Rayleigh diamètre de absorbeur extérieur

```
% Kaireff: conductivité de l'air à l'espace annulaire à la température
moyenne entre la surface extérieur de l'absorbeur et la surface intérieur
de la vitre
% MVf:la masse volumique de fluide
% Cpf: capacité calorifique de fluide J/kg.K
% Kf : la conductivité thermique de fluide caloporteur
% VISCIf : La viscosité cinématique de fluid caloporteur
% VISDYf : viscosité dynamique de fluide
% ReDai : Le nombre de Reynolds diamètre absorbeur intérieur
% NuDai : nombre de Nusselt diamètre absorbeur intérieur
% haf : coefficient de convection de fluide caloporteur
% Tf : température de fluide
% Tv : température de la vitre
% Tab: température de l'absorbeur
% K : conductivité de l'absorbeur
% f: facteur qui prend en considération la vitesse du vent à l'extérieur
% UL: coefficient de pertes thermiques
% qu : la puissance utile
% RondTher : rondement thermique
% qp : la puissance utile perdu
clear all; % Effacer les variables de l'espace de travail
Vvent=0;
       % Vitesse du vent [m/s] .....
v=Vvent;
pasx=0.001;
mf=0.000001;
disp('debit volumique m.^{3/s='})
disp(mf)
S=1;rim=pi/4 ;L=2;% S : la largeur de la plaque
2
           dimensionnement de concentrateur cylindro paraboliquepar
2
                             méthode simple
Wa=2*S*tan(rim/2)/(sec(rim/2)*tan(rim/2)+log(sec(rim/2)+tan(rim/2)));
F= Wa/(4*tan(rim/2));
H = (Wa^2) / (16*F);
%¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤Calcule le diamètre intérieur de tube absorbeur
phi=pi/4;
tita2=pi/674.16;
r=(2*F)/(1+\cos(phi));
Irp=(4*F)*(tan(pi/2));
Dai=2*r*sin(tita2);
Dai=Dai-0.0004; % pour avoir le diamùetre qui existe au marché
Dae=Dai+0.002;
Sai=pi*Dai*pasx;
Sae=pi*Dae*pasx;
FC=(Wa-Dae)/(pi*Dae);
Dvi=0.012;
Dve=0.018;
Svi=pi*Dvi*pasx;
Sve=pi*Dve*pasx;
ev=0.935:
```

```
Cselec=0.93;GAMAab=0.94;TAUv=0.945;Se=Wa*pasx;
segma=(5.670)*10^(-8);
ore=1;Lati=36.64262;Long=2.69007; Alti=29; %bouismail ;
g=9.81;Nm=6;Njm=27;
8
                       calcule
8
                    Eclairement Global
8
if Nm==1
Nj = (30 * (Nm-1) + Njm);
end
if Nm==2
Nj = (30 * (Nm-1) + Njm) + 1;
end
if Nm==3
Nj=(30*(Nm-1)+Njm)+1;
end
if Nm==4
Nj = (30 * (Nm-1) + Njm);
end
if Nm==5
Nj = (30 * (Nm-1) + Njm);
end
if Nm==6
Nj = (30 * (Nm-1) + Njm) - 1;
end
if Nm==7
Nj = (30 * (Nm-1) + Njm) + 1;
end
if Nm==8
Nj = (30 * (Nm-1) + Njm) + 2;
end
if Nm==9
Nj = (30 * (Nm-1) + Njm) + 3;
end
if Nm==10
Nj = (30 * (Nm-1) + Njm) + 3;
end
if Nm==11
Nj = (30 * (Nm-1) + Njm) + 4;
end
if Nm==12
Nj = (30 * (Nm-1) + Njm) + 4;
end
2
               position du soleil
decl=(23.45*sind(0.98630*(Nj+284)));
S******************
                       *****
```

```
%******** calcul de la correction de temps DeltaT********
x=(2*pi/365)*(Nj-1);
DeltaT=(0.000075+0.00018*cos(x)-0.032077*sin(x)-0.014615*cos(2*x)-
0.04089*sin(2*x))*229.18; %DeltaT: correction du temps
DeltaT=DeltaT/60;
%******* calcul de la durée du jour DeltLC*******************
x2=pi/180;
angHS=acos(-tan(decl*x2)*tan(Lati*x2));angHS=angHS/x2;
TLs=12-angHS/15;TCs=12+angHS/15;
DeltLC=(2*angHS)/15;
N=floor(TLs)
M=floor(TCs)
for Tlo=7:M
 TLO(Tlo)=Tlo;
 TU(Tlo) = Tlo - 1;
    if ore==1,TSM(Tlo)=TU(Tlo)+(Long/15);
      else TSM(Tlo)=TU(Tlo)-(Long/15);
    end
TSV(Tlo)=TSM(Tlo)+DeltaT;
angH(Tlo) = 15*(TSV(Tlo) - 12);
                     Angle horaire ? ¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤
%¤¤¤¤¤¤¤¤¤ fin calcule
h(Tlo) = (cos(Lati*x2)*cos(angH(Tlo)*x2)*cos(decl*x2)+sin(Lati*x2)*sin(decl*x
2));
x1=sqrt(abs(1-h(Tlo)^2));h(Tlo)=atan(h(Tlo)/x1);h(Tlo)=h(Tlo)/x2;
%¤¤¤¤¤¤¤¤alcule l'azimut pour les données de program soltrace¤¤¤¤¤¤¤¤¤
az(Tlo) = acosd(((cosd(decl)*sind(Lati)*cosd(angH(Tlo)))) -
(sind(decl)*cosd(Lati)))/(cosd(h(Tlo))));
% calcul les donnie de soltrace
xxx3(Tlo) = -sind(az(Tlo)) * cosd(h(Tlo));
yyy3(Tlo)=sind(h(Tlo));
ZZZ3 (Tlo) = cosd(az(Tlo)) * cosd(h(Tlo));
% les données pour soltrace en fonction de leur loi spécifie
decl2=asind(0.3795*cosd(0.98563*(Nj-173)));
h2(Tlo)=asind(cos(Lati*x2)*cos(angH(Tlo)*x2)*cos(decl2*x2)+sin(Lati*x2)*sin
(dec12*x2));
az2(Tlo) = acosd(((sind(decl2)*cosd(Lati))-
(cosd(decl2)*sind(Lati)*cosd(angH(Tlo)))/(cosd(h2(Tlo))));
xxx2(Tlo) = -sind(az2(Tlo)) * cosd(h2(Tlo));
yyy2 (Tlo) = sind (h2 (Tlo));
ZZZ2 (Tlo) = cosd(az2(Tlo)) * cosd(h2(Tlo));
[Ta(Tlo)] = ambiant (Nm, TSV(Tlo)); % Nm= nombre du mois
Ta(Tlo)=Ta(Tlo)+273.15;
S*****************
                 %¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤aCalcul de l'angle d'incidence %¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤
gama=0;alpha=0;
 x2=pi/180;gamaa=90-gama;
```

```
A=cos(decl*x2)*sin(alpha*x2)*cos(gamaa*x2);
B=\cos(decl*x2);
B=B* (cos (alpha*x2) *cos (gamaa*x2) *sin (Lati*x2) +sin (gamaa*x2) *cos (Lati*x2));
C=sin(decl*x2);
C=C*(-cos(alpha*x2)*cos(gamaa*x2)*cos(Lati*x2)+sin(gamaa*x2)*sin(Lati*x2));
angri(Tlo) = A*sin(angH(Tlo)*x2) + B*cos(angH(Tlo)*x2) + C;
angri(Tlo) = acos(abs(angri(Tlo)));
angri(Tlo) = angri(Tlo) / x2;
Alti=Alti*0.001;
%¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤alcul de rayonnement direct ¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤
G=1367*(1+0.034*cos(0.0172*(Nj-2)));
MAhe=sin((360/350)*x2*(Nj-121));
T0(Tlo)=2.4-0.9*sin(Lati*x2)+0.1*MAhe*(2+sin(Lati*x2))-(0.2*Alti)-
(1.22+0.14*MAhe) * (1-sin(h(Tlo)*x2));
T1=(0.89)^(Alti);
T2=(0.63)^{(Alti)}; T2=T2*(0.9+0.4*MAhe);
TL(Tlo) = TO(Tlo) + T1 + T2;
MA(Tlo) = (sin(h(Tlo) * x2) + 0.0678) .^{(-1.253)};
MA(Tlo) = MA(Tlo) *9.4E-4+sin(h(Tlo) *x2);
MA(Tlo) = 1/MA(Tlo);
R(Tlo)=6.6296+1.7513*MA(Tlo)-0.1202*MA(Tlo).^2+0.0065*MA(Tlo).^3-
0.00013*MA(Tlo).^4;
R(Tlo) = 1/R(Tlo);
%rayonnement direct pour un plan quelconque méthode utilise par (capderou
1987)
RsdB(Tlo)=G*cos(angri(Tlo)*x2)*exp(-TL(Tlo)*MA(Tlo)/(9.4+0.9*MA(Tlo)));
%***** rayonnement solaire direct pour un plan horizontal**********
hs(Tlo)=cosd(Lati)*cosd(decl)*cosd(angH(Tlo))+sind(Lati)*sind(decl)
Rsd(Tlo) = G*sind(hs(Tlo))*exp(-TL(Tlo)*MA(Tlo)*R(Tlo));
%*******1e rayonnement diffus cas d'un plan horizontal*************
a=1.1;
bbb(Tlo)=log10(T1+T2)-2.8+1.02*(1-sin(h(Tlo)*x2)).^2;
Rsdf(Tlo) = G^{exp}(-1+1.06^{log10}(sin(h(Tlo)^{x2}))) + a -
sqrt((a.^2)+(bbb(Tlo).^2));
2**************
                   %*****rayonnement diffuse reçue sur un plan incliné se décompose en deux
b(Tlo)=log(T1+T2)-2.28-0.5*log(abs(sin(h(Tlo)*x2)));a(Tlo)=3.1-0.4*b(Tlo);
Rsdf1=G*exp(-2.48+sin(h(Tlo)*x2)+a-sqrt(4*b(Tlo).^2+a.^2));
Rsdf1(Tlo) =Rsdf1(Tlo) *cos(angri(Tlo) *x2);
b1(Tlo)=log(T1+T2)-2.28+1.02*(1-sin(h(Tlo)*x2)).^2;a1=1.1;
```

```
sqrt(b1(Tlo).^2+a1.^2));
Rsdh(Tlo) = G*sin(h(Tlo)*x2)*exp(-TL(Tlo)*MA(Tlo)*R(Tlo));
Gh(Tlo) =Rsdh(Tlo) +Rsdfh(Tlo);
Rsdf2(Tlo)=(0.37*Gh(Tlo))/2;Rsdf2(Tlo)=Rsdf2(Tlo)*(1-cos(gama*x2));%Diffus
du sol
Rsdf3(Tlo)=Rsdfh(Tlo)-Rsdf1(Tlo)*sin(h(Tlo)*x2);
Rsdf3(Tlo) = (Rsdf3(Tlo)/2) * (1+cos(gama*x2));
a2(Tlo)=log(T1+T2)-3.1-log(abs(sin(h(Tlo)*x2)));
bk(Tlo) = exp(0.2+1.75*log(abs(sin(h(Tlo)*x2))));
Rsdf4(Tlo) = (-0.02*a2(Tlo)) / (a2(Tlo).^{2}+a2(Tlo)*bk(Tlo)+1.8);
Rsdf4(Tlo)=Rsdf4(Tlo)*G*exp(-TL(Tlo)*MA(Tlo)*R(Tlo))*exp(sin(h(Tlo)*x2));
RsdfB(Tlo)=Rsdf1(Tlo)+Rsdf2(Tlo)+Rsdf3(Tlo)+Rsdf4(Tlo); % method utilise
par (capderou 1987) diffuse reçue sur un plan incliné
Ray1(Tlo)=RsdfB(Tlo)+RsdB(Tlo) % rayonnement global pour un plant incliné
[inclinié + quelconque]
Ray2(Tlo)=Rsdf(Tlo)+RsdB(Tlo) % rayonnement global pour un plant
[horizontal + quelconque]
Ray3(Tlo)=Rsdf(Tlo)+Rsd(Tlo) % rayonnement global pour un plant horizontal
[horizontal + horizontal]
%¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤alcul la puissance absorbée ¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤
lamda(Tlo) = (-5.01018*10.^(-6))*exp((angri(Tlo)-
57.64143)/(2.88583))+0.95473;
k(Tlo)=1-(F/L)*(1-(Wa.^2)/(48*(F.^2)))*tand(angri(Tlo));% angle incidence
modifier
RondOpt(Tlo)=Cselec*GAMAab*TAUv*lamda(Tlo)*k(Tlo);%Rendement optique
qab(Tlo)=RondOpt(Tlo)*Se*Ray3(Tlo);
qab1(Tlo)=RondOpt(Tlo)*Se*Ray1(Tlo);
qab2(Tlo)=RondOpt(Tlo)*Se*Ray2(Tlo);
qabL(Tlo)=Wa*L*RondOpt(Tlo)*Ray3(Tlo) ;
MM=L/pasx
for j=2:MM
  for x=abs(0)
  Tf(1) = 298;
  Tab(1)=298;
  Tv(1) = 298;
  end
ea(j-1)=0.000327*Tab(j-1)-0.065971;
                ******
      *****
2***
partie entre la vitre et l'air ambiant
```

```
calcule hvent cas ou le vent est calme ou vent de surface
%*** calcule les caractéristique thermo physique de l'air ambiant*****
                         pour calcule RAdve
8
if Ta(Tlo)<=250;
   VISCIairamb(Tlo)=0.949*10.^-5;
   MVair(Tlo)=1.413;%
   VISDYairamb(Tlo)=8.8848*(10.^-15)*(Ta(Tlo).^3)-3.2398*(10.^-
11) * (Ta (Tlo) . ^2) +6.2657* (10. ^-8) *Ta (Tlo) +2.3543* (10. ^-6);
Cpairamb(Tlo) = (1.9327) * (10.^-10) * (Ta(Tlo).^4) -7.9999*(10.^-
7) * (Ta(Tlo).^3) +1.1407* (10.^-3) * (Ta(Tlo).^2) -4.4890* (10.^-
1) *Ta(Tlo) +1.0575*(10.^3);
Kairamb(Tlo) = (1.5207) * (10.^-11) * (Ta(Tlo).^3) - 4.857* (10.^-
8) * (Ta(Tlo).^2) +1.0184* (10.^-4) *Ta(Tlo)-3.9333* (10.^-4);
Prairamb(Tlo)=VISDYairamb(Tlo)*Cpairamb(Tlo)/Kairamb(Tlo);
end
if 250<Ta(Tlo);
  VISCIairamb(Tlo)=(-1.363528)*(10.^-14)*(Ta(Tlo).^3)+1.0081778*(10.^-
10) * (Ta(Tlo).^2) +3.452139*(10.^-8) *Ta(Tlo)-3.400747*(10.^-6);
   VISDYairamb(Tlo)=8.8848*(10.^-15)*(Ta(Tlo).^3)-3.2398*(10.^-
11) * (Ta(Tlo).^2) +6.2657* (10.^-8) *Ta(Tlo) +2.3543* (10.^-6);
  MVair(Tlo) = VISDYairamb(Tlo) / VISCIairamb(Tlo) ;
Cpairamb(Tlo) = (1.9327) * (10.^-10) * (Ta(Tlo).^4) -7.9999* (10.^-
7) * (Ta(Tlo).^3) +1.1407* (10.^-3) * (Ta(Tlo).^2) -4.4890* (10.^-
1) *Ta(Tlo) +1.0575*(10.^3);
Kairamb(Tlo) = (1.5207) * (10.^-11) * (Ta(Tlo).^3) - 4.857* (10.^-
8) * (Ta(Tlo).^2) +1.0184*(10.^-4) *Ta(Tlo)-3.9333*(10.^-4);
Prairamb(Tlo)=VISDYairamb(Tlo)*Cpairamb(Tlo)/Kairamb(Tlo);
end
%***fin de calcule les caractéristique thermo physique de l'air ambiant***
B1(Tlo)=(1)/(Ta(Tlo));
RAdve(Tlo,j-1) = (g*B1(Tlo) * (Tv(j-1) -
Ta(Tlo))*Dve.^3)/((VISCIairamb(Tlo).^2)*Prairamb(Tlo));
8
                         pour calcule NuDve
%*********calcule les caractéristique thermo physique de l'air a
Tmoyvamb(Tlo, j-1) = (Tv(j-1) + Ta(Tlo))/2;
if Tmoyvamb(Tlo,j-1)<=250;</pre>
   VISCIvamb(Tlo,j-1)=0.949*10.^-5;
   MVvamb(Tlo, j-1)=1.413;
   VISDYvamb(Tlo, j-1)=8.8848*(10.^-15)*(Tmoyvamb(Tlo, j-1).^3)-
3.2398*(10.^-11)*(Tmoyvamb(Tlo,j-1).^2)+6.2657*(10.^-8)*Tmoyvamb(Tlo,j-
1) + 2.3543 * (10.^{-6});
Cpvamb(Tlo, j-1) = (1.9327) * (10.^-10) * (Tmoyvamb(Tlo, j-1).^4) - 7.9999* (10.^-
7) * (Tmoyvamb(Tlo,j-1).^3) +1.1407*(10.^-3) * (Tmoyvamb(Tlo,j-1).^2) -
4.4890*(10.^-1)*Tmoyvamb(Tlo,j-1)+1.0575*(10.^3);
```

```
Kvamb(Tlo,j-1) = (1.5207) * (10.^-11) * (Tmovvamb(Tlo,j-1).^3) - 4.857* (10.^-
8) * (Tmoyvamb(Tlo, j-1).^2)+1.0184*(10.^-4) * Tmoyvamb(Tlo, j-1)-3.9333*(10.^-
4);
Prvamb(Tlo,j-1)=VISDYvamb(Tlo,j-1)*Cpvamb(Tlo,j-1)/Kvamb(Tlo,j-1);
end
if 250<Tmoyvamb(Tlo,j-1);</pre>
  VISCIvamb(Tlo,j-1) = (-1.363528) * (10.^-14) * (Tmoyvamb(Tlo,j-
1).^3)+1.0081778*(10.^-10)*(Tmoyvamb(Tlo,j-1).^2)+3.452139*(10.^-
8) *Tmoyvamb(Tlo,j-1)-3.400747*(10.^-6);
  VISDYvamb(Tlo,j-1)=8.8848*(10.^-15)*(Tmoyvamb(Tlo,j-1).^3)-3.2398*(10.^-
11) * (Tmoyvamb(Tlo, j-1).^2) + 6.2657*(10.^-8) * Tmoyvamb(Tlo, j-1) + 2.3543*(10.^-
6);
  MVvamb(Tlo,j-1)=VISDYvamb(Tlo,j-1)/VISCIvamb(Tlo,j-1) ;
  Cpvamb(Tlo,j-1) = (1.9327) * (10.^-10) * (Tmoyvamb(Tlo,j-1).^4) -7.9999* (10.^-
7) * (Tmoyvamb(Tlo, j-1).^3) +1.1407*(10.^-3) * (Tmoyvamb(Tlo, j-1).^2) -
4.4890*(10.^-1)*Tmoyvamb(Tlo,j-1)+1.0575*(10.^3);
  Kvamb(Tlo,j-1) = (1.5207) * (10.^-11) * (Tmoyvamb(Tlo,j-1).^3) - 4.857*(10.^-
8) * (Tmoyvamb(Tlo, j-1).^2)+1.0184*(10.^-4) * Tmoyvamb(Tlo, j-1)-3.9333*(10.^-
4);
Prvamb(Tlo,j-1)=VISDYvamb(Tlo,j-1)*Cpvamb(Tlo,j-1)/Kvamb(Tlo,j-1);
end
%**fin de calcule les caractéristique thermo physique de Tvitre+Tamb/2****
NuDve(Tlo, j-1) = ((0.6+((0.387*(RAdve(Tlo, j-
1).^(1/6))))/((1+(0.559*Prvamb(Tlo,j-1)).^(9/16)).^(8/27))).^2;
if v == 0:
hvent(Tlo,j-1) = (NuDve(Tlo,j-1) *Kairamb(Tlo))/Dve;
else 🖇
        hvent cas vent de sur
   hvent(Tlo,j-1)=4*(Vvent.^(0.58))*(Dae.^(-0.42));
end
fin de calcule hvent cas ou le vent est calme ou vent de
                                                    surface
fin de la partie entre la vitre et l'air ambiant
8
90
          partie entre la vitre et l'absorbeur
              partie annulaire but de calcule Kaireff
%******* caractéristique thermo physique de l'air dans la partie annulaire
*****
Tmoy(j-1) = (Tab(j-1) + Tv(j-1))/2;
if Tmoy(j-1)<=273;
   VISCIair(j-1)=0.949*10.^-5;
   MVair(j-1)=1.413;
   VISDYair(j-1)=8.8848*(10.^-15)*(Tmoy(j-1).^3)-3.2398*(10.^-11)*(Tmoy(j-
1).^2)+6.2657*(10.^-8)*Tmoy(j-1)+2.3543*(10.^-6);
```

```
Cpair (j-1) = (1.9327) * (10.^-10) * (Tmov (j-1).^4) -7.9999* (10.^-7) * (Tmov (j-
1).^3)+1.1407*(10.^-3)*(Tmoy(j-1).^2)-4.4890*(10.^-1)*Tmoy(j-
1) + 1.0575 * (10.^{3});
Kairannu(j-1) = (1.5207) * (10.^-11) * (Tmoy(j-1).^3) - 4.857* (10.^-8) * (Tmoy(j-
1).^2)+1.0184*(10.^-4)*Tmoy(j-1)-3.9333*(10.^-4);
Prannu(j-1)=VISDYair(j-1)*Cpair(j-1)/Kairannu(j-1);
end
if 273<Tmoy(j-1)<=373;
  VISCIair(j-1)=(-1.363528)*(10.^-14)*(Tmoy(j-1).^3)+1.0081778*(10.^-
10) * (Tmoy(j-1).^2)+3.452139*(10.^-8)*Tmoy(j-1)-3.400747*(10.^-6);
  VISDYair(j-1)=8.8848*(10.^-15)*(Tmoy(j-1).^3)-3.2398*(10.^-11)*(Tmoy(j-
1).^2)+6.2657*(10.^-8)*Tmoy(j-1)+2.3543*(10.^-6);
  MVair(j-1)=VISDYair(j-1)/VISCIair(j-1) ;
  Cpair (j-1) = (1.9327) * (10.^-10) * (Tmoy (j-1).^4) -7.9999* (10.^-7) * (Tmoy (j-
1).^3)+1.1407*(10.^-3)*(Tmoy(j-1).^2)-4.4890*(10.^-1)*Tmoy(j-
1) + 1.0575 * (10.^{3});
  Kairannu(j-1)=(1.5207)*(10.^-11)*(Tmoy(j-1).^3)-4.857*(10.^-8)*(Tmoy(j-
1).^2)+1.0184*(10.^-4)*Tmoy(j-1)-3.9333*(10.^-4);
  Prannu(j-1)=VISDYair(j-1)*Cpair(j-1)/Kairannu(j-1);
end
if 373<Tmoy(j-1);</pre>
  VISCIair(j-1)=(-1.363528)*(10.^-14)*(Tmoy(j-1).^3)+1.0081778*(10.^-
10) * (Tmoy(j-1).^2)+3.452139*(10.^-8) *Tmoy(j-1)-3.400747*(10.^-6);
  VISDYair(j-1)=8.8848*(10.^-15)*(Tmoy(j-1).^3)-3.2398*(10.^-11)*(Tmoy(j-
1).^2)+6.2657*(10.^-8)*Tmoy(j-1)+2.3543*(10.^-6);
  MVair(j-1)=VISDYair(j-1)/VISCIair(j-1) ;
Cpair (j-1) = (1.9327) * (10.^-10) * (Tmoy (j-1).^4) -7.9999* (10.^-7) * (Tmoy (j-
1).^3)+1.1407*(10.^-3)*(Tmoy(j-1).^2)-4.4890*(10.^-1)*Tmoy(j-
1)+1.0575*(10.^3);
Kairannu(j-1)=(1.5207)*(10.^-11)*(Tmoy(j-1).^3)-4.857*(10.^-8)*(Tmoy(j-
1).^2)+1.0184*(10.^-4)*Tmoy(j-1)-3.9333*(10.^-4);
 Prannu(j-1)=VISDYair(j-1)*Cpair(j-1)/Kairannu(j-1);
end
%*****fin de calcul des caractristique de l'air part annulair*******
B(j-1) = (1) / Tmoy(j-1);
Lc=(Dvi-Dae)/2;
Fcyl=((4)*(log(Dvi/Dae)))/((Lc.^3)*(((Dvi.^-(1/5))-(Dae.^-(3/5))).^5));
RAdae(j-1)=(g*B(j-1)*(Tab(j-1)-Tv(j-1))*Dae.^3)/((VISCIair(j-
1).^2)*Prannu(j-1));
Kaireff(j-1)=Kairannu(j-1)*0.386*((Prannu(j-1)/0.861+Prannu(j-
1)).^0.25)*(Fcyl*RAdae(j-1));
fin partie entre la vitre et l'absorbeur
             fin partie annulaire but de calcule Kaireff
partie tube l'absorbeur
              but de calcule coefficient de convection haf
MVf(j-1)=(10.^3)*((-0.001162912*Tf(j-1))+1.4785);
Cpf(j-1)=((0.002921113*Tf(j-1)+0.6548))*10^3;
Kf(j-1) = -0.000202092*Tf(j-1)+0.2116;
VISCIf(j-1)=((0.00001)*(Tf(j-1).^2)-(0.0005*Tf(j-1))+0.1902);
```

```
VISDYf(j-1) = (MVf(j-1) * VISCIf(j-1));
Prf(j-1) = VISDYf(j-1) * Cpf(j-1) / Kf(j-1);
S**********************
ReDai(j-1) = (4*MVf(j-1)*mf) / (pi*Dai*VISDYf(j-1));
if ReDai(j-1)>10000;
NuDai(j-1)=0.023*(ReDai(j-1).^0.8)*(Prf(j-1).^0.4);
haf(j-1)=(Kf(j-1)*NuDai(j-1))/(Dai);
end
if ReDai(j-1) <= 10000;</pre>
   NuDai(j-1)=4.36 ;% cas ou Flux de chaleur pariétal uniforme
   haf(j-1) = (Kf(j-1) * NuDai(j-1)) / (Dai);
end
fin de partie tube l'absorbeur
8
                      calcule
8
        les constants de système sous la forme matricielle
8
<u>S</u>
%***********************fluid colporteur************
all(j-1)=MVf(j-1)*Cpf(j-1)*mf-haf(j-1)*Sai ;
a12(j-1)=haf(j-1)*Sai;
a13(j-1)=0;
b1(j-1)=-MVf(j-1)*Cpf(j-1)*mf*Tf(j-1);
a21(j-1)=-haf(j-1)*Sai;
Etot(j-1)=1/((1/ea(j-1))+((1-ev)/(ev))*(Dae/Dai)); % ev : L'émissivité de
la vitre
a22(j-1)=((2*pi*Kaireff(j-1))/(log(Dvi/Dve)))+segma*Sae*(((Tab(j-
1).^2)+(Tv(j-1).^2))*(Tab(j-1)+Tv(j-1)))*Etot(j-1)+haf(j-1)*Sai ; %Kaireff
conductivité thermique effectif de l'air W/m.K ;
a23(j-1)=-((2*pi*Kaireff(j-1))/(log(Dvi/Dve)))-segma*Sae*(((Tab(j-
1).^2)+(Tv(j-1).^2))*(Tab(j-1)+Tv(j-1)))*Etot(j-1); % Kaireff:
Conductivité thermique effective de l'air
b2(Tlo) = qab(Tlo);
a31(j-1)=0;
a32(j-1)=((2*pi*Kaireff(j-1))/(log(Dvi/Dve)))+segma*Sae*(((Tab(j-
1).^2)+(Tv(j-1).^2))*(Tab(j-1)+Tv(j-1)))*Etot(j-1);
a33(j-1)=-((2*pi*Kaireff(j-1))/(log(Dvi/Dve)))-segma*Sae*(((Tab(j-
1).^2)+(Tv(j-1).^2))*(Tab(j-1)+Tv(j-1)))*Etot(j-1)-hvent(Tlo,j-1)*Sve-
ev*segma*Sve*((Tv(j-1).^2)+(Ta(Tlo).^2))*(Tv(j-1)+Ta(Tlo));
b3(j-1)=-hvent(Tlo,j-1)*Sve*Ta(Tlo)-(ev*segma*Sve*((Tv(j-
1).^2)+(Ta(Tlo).^2))*(Tv(j-1)+Ta(Tlo)))*Ta(Tlo);
8
                        méthode de cramer
8
    pour calcule les températures [ vitre; absorbeur; fluide]
<u>,</u>
A=[a11(j-1) a12(j-1) a13(j-1);a21(j-1) a22(j-1) a23(j-1);a31(j-1) a32(j-1)
```

```
a33(j-1)];
```

```
X = [b1(j-1); b2(Tlo); b3(j-1)];
Ax=[b1(j-1) a12(j-1) a13(j-1);b2(Tlo) a22(j-1) a23(j-1);b3(j-1) a32(j-1)
a33(j-1)] ;
Ay=[a11(j-1) b1(j-1) a13(j-1);a21(j-1) b2(Tlo) a23(j-1);a31(j-1) b3(j-1)
a33(j-1)];
Az=[a11(j-1) a12(j-1) b1(j-1);a21(j-1) a22(j-1) b2(Tlo);a31(j-1) a32(j-1)
b3(j-1)];
detA = (det(A));
Tf(j) =abs(det(Ax)/detA);
Tab(j) = abs(det(Ay)/detA);
if Tab(j)<298</pre>
   Tab(j) = Tab(j-1)
end
Tv(j) =abs(det(Az)/detA);
if Tv(j)<298
   Tv(j) = Tv(j-1)
end
Calcul coefficient de pertes thermiques
                   puissance utile rendement thermique
K=45 ;
f(Tlo)=(Dai/(Dai.^1.4))*(0.61+1.3*ea(j-1))*(hvent(Tlo,j-1).^(-
0.9))*exp(0.00325*(Tab(j-1)-273));
C(j-1) = (1.45+0.96*(ea(j-1)-
0.5).^2)/(Dai*((1/((Dai.^(0.6)))+(Dae.^(0.6))).^(1.25)));
UL(Tlo) = ((((((1) / (C(j-1) * ((Tab(j-1) - Tv(j-
1))/(1+f(Tlo))).^(0.25))+(Dai/Dae)*(1/hvent(Tlo,j-1)))).^(-
1))+((segma*((Tab(j-1).^2)+(Ta(Tlo).^2))*(Tab(j-1)+Ta(Tlo)))/(((ea(j-1)-
0.04*(1-ea(j-1))*(Tab(j-1)/450)).^(-1))+(Dai/Dae)*((1/ev)-
1)+(f(Tlo)/ev)));
FF(Tlo) = (((1) / (UL(Tlo))) / (((1/UL(Tlo)) + (Dae/(haf(j-
1) *Dai)) + ((Dae/2*K) * (log(Dae/Dai)))));
Fr(Tlo) = ((mf*Cpf(j-1))/(Se*UL(Tlo)))*(1-exp((Se*UL(Tlo)*FF(Tlo))/(mf*Cpf(j-
1))));
Ar=Wa*L/FC;
qu(Tlo) = abs((Fr(Tlo)*(RondOpt(Tlo)*Ray3(Tlo)*(Wa*L)-UL(Tlo)*Ar*(Tf(1)-
Ta(Tlo)))));
RondTher(Tlo) = (qu(Tlo)) / (Ray3(Tlo) *Wa*L);
qp(Tlo) = qabL(Tlo) - qu(Tlo);
end
end
figure(1);
plot(TSV,h)
grid on
title ('Hauteur angulaire du soleil h en fonction du temps solaire vrai')
xlabel('temps solaire vrai')
ylabel('Hauteur angulaire du soleil h [°]')
legend('Hauteur angulaire du soleil h')
```

```
figure(2);
plot(angH,az)
title('Azimut angulaire du soleil en fonction du Angle horaire')
xlabel('Angle horaire')
ylabel('Azimut angulaire du soleil (a) [°]')
legend('Azimut angulaire du soleil (a) [°]')
figure(3);
plot(TSV, angH, 'r')
legend('TSV [H]')
grid on
title(' Angle horaire w en fonction du temps solaire vrai ')
xlabel('temps solaire vrai[houer] ')
ylabel(' Angle horaire [°]')
figure(4);
plot(TSV, 'r')
legend('TSV [H]')
grid on
title('temps solaire vrai en fonction du et temps local')
xlabel('temps local en heure [heure] ')
ylabel('temps solaire vrai en heure [heure]')
figure(5)
plot(TSM, 'black')
legend('temps solaire moyen ')
grid on
title(' temps solaire moyen en fonction du et temps local')
xlabel('temps local en heure [heure] ')
ylabel('temps solaire moyen en heure [heure]')
figure(6)
plot(angri)
grid on
title('angle incidence en fonction de temps local ')
xlabel('le tempt local [H]')
ylabel('angle incidence [°]')
figure(7)
plot(TSV,RsdB,'r')
hold on
plot(TSV,Rsd)
legend('Rayonnement direct plan quelconque', 'Rayonnement direct plan
horizontal')
grid on
title('Rayounnement solaire direct pour un plan [quelconque ; horizontal]')
xlabel('TSV [H]')
ylabel('Renouncement solaire direct[W/m.^2]')
figure(8)
plot(TSV,Rsdf)
hold on
plot(TSV,RsdfB,'r')
legend ('Rayonnement solaire diffuse plan horizontal', 'Rayonnement solaire
diffuse plan incliné')
grid on
title('Rayonnement solaire pour un plan fixé quelconque [horizontal;
incliné]')
```

```
xlabel('TSV [H]')
ylabel('Rayonnement solaire diffuse[W/m.^2]')
figure(9)
plot(TSV,Ray1,'r')
hold on
plot(TSV,Ray2, 'magenta')
hold on
plot(TSV,Ray3)
legend('Rayonnement global [incliné +quelconque] ', 'Rayonnement global
[horizontal +quelconque] ', 'Rayonnement global plan [horizontal +
horizontal]')
grid on
title('Rayonnement solaire global pour un plan fixé')
xlabel('TSV [H]')
ylabel('Rayonnement solaire global [W/m.^2]')
figure(10)
plot(angri,RondOpt)
grid on
                                                          ')
title('Rendement optique en fonction de angle incidence
xlabel('angle incidence [°]')
ylabel('Rendement optique')
figure(11)
plot(RondOpt, 'Magenta')
hold on
plot(TSV,RondOpt,'Black')
legend('temps local', 'temps solaire vrai')
grid on
title('Rendement optique ')
xlabel('temps heure [H]')
ylabel('Rendement optique')
figure(12)
plot(Ray3,qab)
hold on
plot(Ray1, qab1, 'r')
hold on
plot(Ray2, qab2, 'magenta')
legend ('puissance absorbée pour un plan fixé quelconque horizontal',
'puissance absorbée pour un plan fixé quelconque incliné', 'puissance
absorbée [horizontal +quelconque]')
grid on
title('la puissance absorbée pour chaque 1 mm (W) ')
xlabel('Rayonnement global ')
ylabel('La puissance absorbée[W(j/s)]')
figure(13)
plot(Tf, 'Red')
hold on
plot(Tab, 'Magenta')
hold on
plot(Tv, 'Blue')
legend ('Température du fluide', 'Température du absorbeur', 'Température du
vitre')
grid on
title ('Température en fonction de la longueur tube ')
xlabel('Langueur de tube [mm]')
```
```
Annexe 4 : programme en MATLAB
ylabel('température [°K]')
figure(14)
plot(Ray3, qabL)
grid on
title('la puissance absorbé de notre concentrateur en fonction de
rayonnement global ')
xlabel('rayonnement global')
ylabel('la puissance absorbé de concentrateur [W]')
figure(15)
plot(TSV,UL)
grid on
title('coefficient globale des pertes thermiques en fonction du temps local
•)
xlabel('temps local')
ylabel('coefficient globale des pertes thermiques ')
figure(16)
plot(qu, 'm')
hold on
plot(qp)
hold on
plot(qabL, 'r')
legend('puissance utile', 'la puissance perdu', 'puissance absorbé')
grid on
title('les puissances [absorbé; perdu; utile] en fonction temps local ')
xlabel('temps [heure]')
ylabel(' puissance [W]')
figure(17)
plot(RondTher)
grid on
title('rendement thermique de CCP en fonction du temps local ')
xlabel('temps local')
ylabel('rendement thermique
                            ')
```

b. programme pour le calcul de la déclinaison et la durée de jour au cours de l'année

```
clc; clear all;
Lati=36.64262;Long=2.69007; Alti=29;
                                              % Cordonnées BOU-ISMAIL
x2=pi/180;
for j=1:365, Nj(j)=j;end
j=1;
while j<=365
decl(j)=23.45*sind((0.98630*(j+284)));
                                                %Déclinaison
angHS(j) = acos(-tan(decl(j) * x2) * tan(Lati * x2)); angHS(j) = angHS(j) / x2;
TLs(j)=12-angHS(j)/15;TCs(j)=12+angHS(j)/15;
DeltLC(j) = (2*angHS(j))/15;
j=j+1;
end
Nm=6;Njm=28
Njj=(30*(Nm-1)+Njm)
figure(1);
plot(Nj,decl,'g')
grid on
title('l'angle d'inclinaison en fonction du nombre de jour')
xlabel('nombre de jour dans l'Année [jour]')
ylabel('l'angle d'inclinaison [°]')
legend('angle déclinaison')
figure(2);
plot(Nj,DeltLC,'r')
grid on
title ('la durée du temps solaire vrai de chaque jour ou courre de l'Année')
xlabel('nombre de jour dans l'Année [jour]')
ylabel('Le temps solaire vrai TSV ')
legend('le temps solaire vrai')
```

c. fontion ambiant :

Calcul la température ambiant au cour de la journée

$T_{amax}(1) = 186D0$	•	Tamin(1) = 5 1D0 : % JANVIER	(01)
Tamax(1) 10:000	'		
Tamax(2) = 20.6D0	;	Tamin(2) = 6.5D0 ; % FEVRIER	(02)
Tamax(3) =25.6D0	;	Tamin(3) =10.2D0 ; % MARS	(03)
Tamax(4) =30.0D0	;	Tamin(4) =13.9D0 ; % AVRIL	(04)
Tamax(5) =34.7D0	;	Tamin(5) =18.4D0 ; % MAY	(05)
Tamax(6) =38.8D0	;	Tamin(6) =22.9D0 ; % JUIN	(06)
Tamax(7) =43.5D0	;	Tamin(7) =30.5D0 ; % JUILLET	(07)
Tamax(8) =42.8D0	;	Tamin(8) =27.4D0 ; % AOUT	(08)
Tamax(9) =37.4D0	;	Tamin(9) =24.7D0 ; % SEPTEMBRE (09)	
Tamax(10)=31.7D0	;	Tamin(10)=17.6D0 ; % OCTOBRE	(10)
Tamax(11)=23.9D0	;	Tamin(11)=10.4D0 ; % NOVEMBRE (11)	
Tamax(12)=19.1D0	;	Tamin(12) = 9.2D0 ; % DECEMBRE (12)	
Tmax=Tamax(Nm)	;	Tmin=Tamin(Nm); % Nm= nombre du mois	

Tamb=((Tmax-Tmin)/2)*cos(pi*(14-TSV)/12)+(Tmax+Tmin)/2;