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Abstract

Semantic segmentation is a computer vision task that consider the objects of the same

class as one entity. it has a large domain of applications such as autonomous driving,

automatic identification of pathological tissues and more. . . . We will focus on brain

tumor segmentation (BTS) problem which is considered as one of the most difficult

segmentation problems and time consuming tasks in the medical domain, where we see

that an automatic brain tumor segmentation system might be able to deal with some of

these difficulties. In this study, we strive to propose an automatic BTS system based

on Magnetic resonance imaging (MRI). where we rely on convolutional neural networks

(CNN) in building our systems.

We proposed three different approaches for BraTS20 and two approaches for BraTS17.

These models were evaluated using dice score and yielded encouraging results.

Key words: Semantic segmentation, brain tumor segmentation, Magnetic resonance

imaging, convolutional neural networks.



Résumé

La segmentation sémantique est une tâche de vision par ordinateur qui considère les

objets de la même classe comme une seule entité. elle a un large domaine d’applications

telles que la conduite autonome, l’identification automatique des tissus pathologiques et

plus encore . . . Nous nous concentrerons sur le problème de segmentation des tumeurs

cérébrales qui est considéré comme l’un des problèmes de segmentation les plus difficiles

dans le domaine médical. où nous voyons qu’un système de segmentation automatique des

tumeurs cérébrales peut aider à surmonter ces difficultés. Dans cette étude, nous nous

efforçons de proposer un système de segmentation automatique des tumeurs cérébrales

basé sur l’imagerie par résonance magnétique (IRM). où nous comptons sur les

réseaux de neurones convolutifs (CNN) pour construire nos systèmes.

Nous avons proposé trois approches différentes pour BraTS20 et deux approches pour

BraTS17. Ces modèles ont été évalués à l’aide de la fonction de score aux dés.

Mots clés: La segmentation sémantique, segmentation des tumeurs cérébrales, im-

agerie par résonance magnétique, les réseaux de neurones convolutifs.
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General introduction

The brain is one of the most important organs in the human body, it controls every

action we do with high precision. Any malfunction in the brain negatively affects the

body, and sometimes leads to death. This could happen because of many diseases, among

them, there is brain tumor disease.

Although brain tumors are less common than other cancers such as lung cancer or prostate

cancer, they are among the top 10 leading causes of death worldwide and have a long-term

and psychological impact on patients’ lives even when they survive.

Magnetic Resonance Image (MRI) is the most effective and widely used method for

diagnosing brain tumors. it uses magnetic fields and radio waves to generate internal

images with detailed information of the body organs.

Significant advances in medical science have been made in recent years as a result of Arti-

ficial Intelligence and Deep Learning in particular, such as the Medical Image Processing

technique, which allows doctors to diagnose diseases early and easily, whereas previously

it was tedious and time-consuming.

To overcome such limitations, computer-aided technology is critical, because the medi-

cal field requires efficient and dependable techniques to diagnose life-threatening diseases

including brain tumors. So, our goal is to propose an automatic segmentation approach

for brain tumors from MR images using deep learning.

Our dissertation is organized as follows:

Chapter 1: Brain tumors and medical imaging.

In this chapter, we will provide information about the brain tumor disease, its types,
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General introduction

causes, treatment and more. We will also talk about the different used imaging techniques

and their importance when it comes to brain tumors.

Chapter 2: Deep Learning

In this chapter, we will talk about Deep learning and its background, the different types of

learning in DL and we will explain some of the relevant DL architectures like Convolutional

neural network.

Chapter 3: Semantic segmentation of brain tumors using deep learning: Review

In this chapter, we will talk about segmentation and its types, the most common tech-

niques that are used for segmenting brain tumors and the results of some of the recent

related works to brain tumor segmentation task.

Chapter 4: Our approaches

This chapter has two sections, In the first section we will talk about the environment of

development, the used datasets, their description and preprocessing. The second section

will include the different architectures that we chose to work with, and our proposed

models.

Chapter 5: Results and discussion

In the last chapter, we will talk about the implementation phase and discuss the obtained

results of each model.

Finally, we close our work with a general conclusion.
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Chapter 1
Brain tumors and medical imaging

1.1 Introduction:

Cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths

in 2020 [1]. In Algeria, 50,000 new cases and 20,000 deaths have been recorded in 2019.

The head of the oncology department at Mustapha Pacha Hospital estimated that 70,000

new cases per year will be recorded by 2030. [2]

Brain and other nervous system cancers are among the most dreadful and life-threatening

diseases–they are the 10th leading cause of death for men and women. A recent brain

tumor study estimated that 18,600 adults (10,500 men and 8,100 women) will die from

primary cancerous brain and central nervous system tumors this year in the United States

alone. [3]

Medical imaging techniques such as Magnetic resonance imaging (MRI) and computed

tomography (CT) scan are routine clinical practices for brain tumor diagnosis and treat-

ment planning, as they provide doctors with valuable information about brain tissues.

In this chapter, we will define brain tumors, their symptoms and possible causes. We

will also present the brain imaging tests and treatments commonly used by physicians.
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Chapter 1 Brain tumors and medical imaging

1.2 Definition of a brain tumor

A brain tumor is a collection of abnormal cells in the brain [4]. Brain tumors are cat-

egorized as primary or secondary. Primary tumors arise from brain cells, the meninges,

which are the membranes that cover the brain, glands, and nerve cells. Gliomas and

meningiomas are the two most common forms of adult brain tumors [5, 6]. Secondary

brain tumors, also known as metastatic brain tumors, develop when cancer cells from

other organs such as the lungs and kidneys migrate to the brain. Both types of tumors

are life-threatening and can cause permanent disability. [7]

A Brain tumor can be graded into several stages based on the abnormalities found in

its cells and tissues. This grading indicates the likelihood of the tumor growing and

spreading. [8]

Grade I - The tumor cells look more like normal cells under a microscope and grow

and spread more slowly than grade II, III, and IV tumor cells. They rarely spread into

nearby tissues. Grade I brain tumors may be cured if they are completely removed by

surgery.[9]

Grade II - The tumor cells grow and spread more slowly than grade III and IV tumor

cells. They may spread into nearby tissue and may recur. Some tumors may become a

higher-grade tumor.[9]

Grade III - The tumor cells look very different from normal cells under a microscope

and grow more quickly than grade I and II tumor cells. They are likely to spread into

nearby tissue.[9]

Grade IV - The tumor cells do not look like normal cells under a microscope and grow

and spread very quickly. There may be areas of dead cells in the tumor. Grade IV tumors

usually cannot be cured.[9]

Brain tumors can also be classified into:

Low-grade tumors (grades I & II) - are not very aggressive and are usually associ-

ated with long-term survival.
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High-grade tumors (grade III & IV) - grow more quickly, can cause more damage,

and are often more difficult to treat. These are considered malignant or cancerous. One

of the most known grade IV tumors is the glioblastoma multiform (GBM for short).

1.3 Symptoms of brain tumors

The symptoms of a brain tumor vary depending on the tumor’s location and size. Some

tumors infiltrate brain tissue and inflict direct damage, while others put pressure on the

surrounding brain. The most common symptoms are headaches, loss of balance, weakness

or paralysis in one part or one side of the body, personality or behavior changes, vision

changes, hearing loss, difficulty in thinking and speaking, and memory loss. [10]

1.4 Causes of brain tumors

Although the exact causes of brain tumors are still unknown, researchers are studying the

probability that people with certain risk factors are more likely to develop a brain tumor.

Risk factors for brain tumors are discovered by performing analytic epidemiologic studies,

which typically compare either brain tumor risk in participants with or without certain

characteristics or the history of participants with or without brain tumors.[11]

The following are the major brain tumors risk factors:

Genetics - Many researchers have turned their attention to genetic risk factors, in

part due to growing understanding of the molecular pathology of brain tumors, especially

glioma, and in part due to new technologies for examining genotype-disease associations.

While familial glioma aggregation has been demonstrated, distinguishing shared environ-

mental exposures from inherited characteristics may be difficult. [11]

Age - Brain tumors are most common in older adults. However, a brain tumor can

occur at any age.[12]

Radiation exposure - People who have been exposed to ionizing radiation are at a

higher risk of developing a brain tumor. Ionizing radiation includes cancer radiation
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therapy and atomic bomb radiation exposure. Cell Phone radiofrequency radiation has

not been linked to brain tumors. [12]

1.5 Brain tumors diagnosis

1.5.1 physical exam

A thorough medical history is essential for a doctor, as it can help him to determine

the duration and severity of an illness. Most brain tumor patients have symptoms that

were initially misdiagnosed as other illnesses, depression, or stress. Patients frequently

complain of fatigue, lack of concentration, or nausea, for example. Patients and doctors

may dismiss these non-localized symptoms as unimportant. Localizing symptoms, such

as speech disturbance, weakness on one side of the body, or seizures, are more likely to

indicate a neurological problem. Signs of a brain tumor on a physical examination can

include weakness as well as a tremor, coordination problems on both sides of the patient’s

body, or jerking movements of their eyes. [13]

When the physical examination of a patient is positive, doctors perform different medical

imaging techniques to confirm the diagnosis.

1.5.2 Medical imaging techniques

Imaging is crucial in the clinical management of human brain tumors. Standard magnetic

resonance imaging (MRI) and computed tomography (CT) can easily assess diagnostic

anatomical features such as the presence (or absence) of contrast enhancement, hemor-

rhage, calcification, and/or macroscopic necrosis. CT and MRI are also used to evaluate

secondary pathologic conditions such as mass effect, edema, and herniation. Serial imag-

ing with gadolinium-enhanced MRI is routinely used to assess therapy success or failure,

as well as for post-therapy surveillance to detect early tumor recurrence. [14]

Advanced magnetic resonance imaging (MRI) and positron emission tomography (PET)

imaging provide physiologic, metabolic, and functional information about tumor biology

that goes beyond the diagnostic yield of standard MRI and CT imaging. Each advanced

MRI modality, including MR perfusion, MR diffusion, and MR spectroscopy techniques,

and each PET radiotracer, beginning with FDG (fluorodeoxyglucose) and including mul-
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tiple tracers for tumor cellular proliferation, hypoxia, and amino acid transport, reveals

valuable information about various aspects of brain tumor metabolism. [14]

Computed Tomography

Tomography is the photography of an object in sections or slices using any type of wave.

Computed Tomography (CT) is a computer-assisted imaging process that produces cross-

sectional images. Using a software, slices of image sections are superimposed on one

another to create a 3D digital image. CT scans are widely used in the detection of

abnormal tumor growth, tumor stages, and tumor recurrence. [15]

Figure 1.1: CT brain tumor image. [16]

Advantages of Computed Tomography

Noninvasive, quick, and painless.

Good spatial resolution.

Global view of veins.

Distinguished by small differences in physical density.

Avoids invasive insertion of an arterial catheter and guidewire. [17]
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Disadvantages of Computed Tomography

Exposure to ionizing radiation, this increases the possibility of developing cancer

later in life.

No real-time information.

Cannot detect intra-luminal abnormalities.

Cannot be performed without contrast (allergy, toxicity).

Less contrast resolution where soft tissue contrast is low. [17]

Magnetic Resonance Imaging

MRI is a powerful soft tissue diagnostic technique. A strong and uniform magnetic field,

as well as radiofrequency waves, are required for an MRI system. The scanner delivers

a suitable resonant radiofrequency to the patient. The waves travel through the tissues

or any region of the body that contains hydrogen atoms, i.e., water molecules. The atom

is excited and then returns to equilibrium using the energy from the oscillating magnetic

field, which is captured by the scanner and digitally processed. As a result, MRI is best

suited for visualizing soft tissues, tendons, and ligaments. [15]

MRI can also be used to detect certain brain lesions. Contrast agents, such as gadolin-

ium, are used to distinguish minute differences/changes in body structures. The main

advantage of using MRI is that it allows changing the contrast of the image. A small

change in the radio wave frequency and magnetic field can change the contrast of the

image, highlighting different types of tissues. Another advantage of MRI is that it can

create images in any plane (axial/horizontal), which CT cannot do. [15]

Figure 1.2: Example of a brain tumor in MRI image segmented by different experts.[18]

Advantages of Magnetic Resonance Imaging

Noninvasive and painless.
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Without ionizing radiation.

High spatial resolution.

Operator independent.

Easy to blind and ability to measure flow and velocity with advanced technique.

Can be performed without contrast (pregnancy allergy).

Good soft-tissue contrast. [17]

Disadvantages of Magnetic Resonance Imaging

Relatively low sensitivity.

Long scan and post-processing time.

Mass quantity of the probe may be needed.

No real-time information.

Cannot detect intra-luminal abnormalities.

Can make some people feel claustrophobic.

Sedation may be required for young children who can’t remain still.

Relatively expensive. [17]

Positron Emission Tomography (PET)

PET scans are not typically used for diagnosis, but they can assist doctors in estimating

the grade of a tumor. It may also be used to distinguish between recurrent tumor cells,

cells killed by radiation, and scar tissue in some cases. The PET machine resembles a CT

scanner. The added diagnostic value of PET imaging over standard MRI and CT remains

unknown. PET imaging has the potential to depict metabolic information about brain

tumor biology that anatomic techniques (MRI, CT) alone do not provide, but the incre-

mental diagnostic yield from PET imaging of pathophysiologic processes such as glucose

metabolism, cellular proliferation, hypoxia, and amino acid transport in brain tumors has

not been established.[14]

The complementary value of metabolic information from PET with anatomic and physio-

logic information from MRI will hopefully become more clearly defined with MRI and PET

co-registration and simultaneous image acquisition using hybrid PET-MRI devices.[14]
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1.5.3 Histopathological Image Analysis

Unlike the previous medical imaging techniques, histopathology is an invasive test that

studies the disease signs using microscopic examination of a brain biopsy. Biopsy is a

surgical procedure in which the surgeon removes a small amount of tissue and sends it

to the laboratory for analysis [13]. The collected samples are put under a microscope

to visualize their different components; the sections are dyed with one or more stains.

The aim of staining is to reveal cellular components; counter-stains are used to provide

contrast.[19]

1.6 Treatment of brain tumors

Treatment decisions are individualized by an experienced multidisciplinary team consist-

ing of medical oncology, radiation oncology, and neurosurgery. Treatment decisions are

based on tumor type and location, malignancy potential, and the patient’s age and physi-

cal condition.[20] Treatment may require only surveillance but commonly includes surgery,

radiotherapy, chemotherapy, or a combination, and enrollment in clinical trials should be

offered as an option for some high-grade tumors.[20]

1.6.1 Surgery

The standard treatment for primary brain tumors is the maximal safe surgical removal of

the tumor followed by radiotherapy and chemotherapy. Although the extent of resection is

a prognostic variable, the extent of safe tumor resection is dependent on tumor location,

patient performance status, and, most importantly, patient age. Benefits of maximal

resection include relief of mass effect, decreased tumor burden, improved diagnosis, and

a trend toward prolonged survival.[20]

1.6.2 Radiotherapy

Radiotherapy can be used as primary treatment or adjunctively following surgical resec-

tion. Standard fractionated external beam radiotherapy is the most common approach,

although other options include brachytherapy, fractionated stereotactic radiotherapy, and

stereotactic radiosurgery. Hypofractionation of radiotherapy may be considered for older
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or immunocompromised patients. Radiotherapy can improve progression-free survival and

overall survival in patients with high-risk low-grade gliomas, defined as patients younger

than 40 years with subtotal resection or biopsy, or patients older than 40 years with any

degree of resection.[20]

1.6.3 Radiosurgery

Multiple radiation beams are focused on a very small area. Each radiation beam isn’t

particularly powerful, but the point where all the beams come together –the tumor–

receives a massive dose of radiation. Radiosurgery is typically performed as a single

treatment.[12]

1.6.4 Chemotherapy

Chemotherapy given in combination with radiation has been shown to improve survival

in selected cases. For example, carmustine wafers (Gliadel), or temozolomide (Temodar)

in younger patients, placed during surgery have improved survival in patients with high-

grade gliomas. [20]

1.6.5 Targeted drug therapy

Targeted drug therapies target specific abnormalities in cancer cells. One type of targeted

therapy prevents the formation of new blood vessels, thereby cutting off the tumor’s blood

supply. Another type inhibits an enzyme that aids in the growth of cancer cells. [12]

1.7 Conclusion

Medical imaging techniques have made a significant difference in patient care. With

increased precision in disease detection and surgical procedures, they quickly became

a standard pre-treatment a pre-surgery procedure. Before planning a chemotherapy, a

radiotherapy or a surgery, the physician needs to delineate the exact boundaries of the

tumor and its sub-regions. In practice, this is a is very difficult task because: tumor

tissues exhibit significant shape and appearance variations, the segmentation process is

expensive and sensitive to inter and intra-expert variation (fig.I.2), and the quality of
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the produced medical images may vary between hospitals. Therefore, the automatic

segmentation of pathological tissues has gained significant interest in the medical imaging

research community. In the next chapter, we will present and dive into the details of deep

learning–a ubiquitous method in the realm of automatic medical image analysis.
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Chapter 2
Deep learning

2.1 Introduction:

Nowadays, Deep learning (DL) approaches have become the new state of art in medical

image segmentation due to their effectiveness and good results they deliver in this field.

In this chapter, we will first define deep learning and talk about the different types of

learning in DL. Then, we will talk about the more relevant DL architectures in general

and about Convolutional neural networks (CNN) architecture in detail. Last but not

least, we will briefly explain the backpropagation algorithm and the role of optimization

functions.

2.2 Deep learning

2.2.1 Definition

Deep learning is a subset of machine learning (ML) which itself is a subset of artificial

intelligence (AI), it depends on Artificial neural networks. These networks attempt to

simulate the behavior of the human brain, where they learn from vast amounts of data to

make approximate predictions.

The major difference between DL and ML is that deep learning learns to extract relevant

features from raw data, while machine learning methods rely on hand-crafted features.
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Figure 2.1: The relation between AI, ML and DL.

2.2.2 Background

Looking at the revolution that deep learning is making nowadays, people might think

that DL is a recent discovery. It might be surprising to know that DL history dates back

to the 1940s. It has been under various name changes, including cybernetics (during

1940-1960), connectionism (during 1980-1990) and deep learning (since 2006). Based on

the idea of trying to mimic the behavior of the human brain in a simpler computational

model, its goal is to build models that would learn automatically and provide predictions

using some input data.

It all started in 1943 with the first artificial neuron that attempted to mimic the biolog-

ical one. Whalter Pitts and Warren McCulloch introduced the McCulloch-Pitts Neuron,

which was based on a linear model that would take various inputs [X1 ,X2 . . . Xn], for

each input the model had some weights [W1, W2 . . . Wn] where the output is f(x,w)

= X1W1 + X2W2 + . . . + XnWn.This model could only output True or False based

on the input and weights. It has very limited capability and has no learning mechanism

where the weights are tuned manually.

In 1957, a model called Perceptron, with learning capabilities to do binary classification

was innovated by Frank Rosenblatt, Frank built Perceptron for image recognition. The

problem with Perceptron is that it was merely a linear classifier unable to solve nonlinear

problems which led this model to fall in 1969.[21]
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In 1960, Henry J. Kelley introduced the first-ever backpropagation model [22]. Two

years later, Stuart Dreyfus came with a backpropagation modal that uses simple derivative

chain rule instead of the dynamic programming which was used in Henry’s model. [23]

The year of 1965 was the birth of the multilayer perceptron that uses a polynomial

activation function, introduced by Alexey Grigoryvich and Valentin Grigoryvich.

In 1970, Seppo Linnainmaa implemented backpropagation in computer code, the re-

search in backpropagation has now come very far.

Ten years later, in 1980, Kunihiko Fukushima came up with Neocognitron [24], the

first convolutional neural network architecture which could recognize visual patterns such

as handwritten characters. CNN started using backpropagation in 1988 to recognize

handwritten digits, it was the foundation of modern Computer vision using deep learning.

In 2014 Ian Goodfellow introduced GANs [25], which opened new doors of application

of deep learning in fashion, art, science due to its ability to synthesize real data.

The internet has a principal role in collecting huge data, which has a big impact on

the evolution of deep learning algorithms, an example of that is ImageNet. Also advances

in hardware have driven deep learning to the next level, where GPUs reduced training

time significantly and surpassed the performance of CPUs. Nowadays, the world of deep

learning sees an aggressive progress, where it has started being used in mostly all our

activities, shopping, watching movies etc. . .

2.3 Types of learning

2.3.1 Supervised learning

Supervised learning allows the algorithms to learn from labelled data relying on a ”super-

visor” that provides supervision to the algorithms to predict/classify the desired output

correctly. [26] To illustrate this type, we will use the classification task as an example:
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Figure 2.2: Brain tumor classification.

2.3.2 Unsupervised learning

There is no supervisor (teacher) in unsupervised learning, only the input data is known,

and no known output data (label) is given to the algorithm. [26] which means that the

input data is not explicitly labeled. These algorithms try to use techniques on the input

data to mine for rules, detect patterns, and summarize and group the data points which

help in deriving meaningful insights and describe the data better to the users. [27] To

illustrate this type, we will use this example:

We want to group the patients relying on their points of interest or features, for example,

their age, gender, common chronic disease, Tumor progression rate etc... So we will apply

a clustering algorithm to our data to divide these patients into groups.

Figure 2.3: Clustering. [28]
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2.3.3 Semi-supervised learning

Labelling data is time-consuming and expensive, which requires skilled human experts to

do that. Semi-supervised learning algorithms are combinations of unsupervised learning

and supervised learning, in other words, labelled data and unlabeled data. These algo-

rithms can deal with data that’s partially labelled. [28]

The algorithm will train itself using a limited set of labelled data to get a “partially

trained” algorithm, where this algorithm will label the unlabeled data to use it.

Figure 2.4: Principle of semi-supervised learning [29]

2.3.4 Reinforcement learning

The learning system is called an agent in this context, can observe their dynamic environ-

ment, select and perform a sequence of actions a1, a2, . . ., at overtime, and get rewards

in return or penalties. [30]

The goal of the algorithm is to learn to act in a way that maximizes the rewards and

minimizes the penalties. So, it must then learn by itself to determine the ideal behavior

and what is the best strategy (called a policy) within a specific context. [28]

The common algorithms that rely on these techniques are: Q-learning, Temporal differ-

ence and deep adversarial learning.

The figure below will illustrate this learning type:
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Figure 2.5: Reinforcement learning [28]

2.4 Deep Learning Architectures

Here are some examples of DL architectures:

2.4.1 Multi-layer perceptron (MLP)

MLP is a collection of connected computational units or nodes called neurons arranged

in multiple computational layers (one input layer, one or more hidden layers and one

output layer). Each neuron linearly combines its inputs and then passes it through an

activation function, which can be a linear or nonlinear filter. Linear combination of

inputs is performed by summing up the products of weights and inputs. ANN generates

the target through feed-forward data flow and then updates the weights of each neuron by

backpropagation of errors (it will be discussed later) during the training iterations. [31]
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The figure below shows an MLP with one input layer, two hidden layers and an output

layer. Each layer contains an infinite number of neurons.

Figure 2.6: Multi-layer perceptron [32]

2.4.2 Recurrent Neural Network (RNN)

RNNs are suitable for datasets that contain sequential data as well as for Natural lan-

guages processing tasks, such as language modelling, text generation, or auto-completion

of sentences. Recurrent Neural Network remembers the past and its decisions are influ-

enced by what it has learnt from the past. [33]

Feedforward networks such as CNN remember things too, but they remember things they

learnt during training and use this knowledge to generate outputs. While RNN remem-

bers things learnt from prior input(s) and uses it while training. [34]

RNNs use other data points in a sequence to make better predictions. They do this by

taking in input and reusing the activations of previous nodes or later nodes in the sequence

to influence the output. [35]
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Figure 2.7: The enrolling of RNN in time [36]

2.4.3 Generative Adversarial Network (GAN)

GANs are algorithmic architectures that use two neural networks, One neural network

called the generator, generates new data instances (samples) while the second neural

network is the discriminator which evaluates them for authenticity with the original data,

and predicts a label or category to which that input data belongs. [25]

They are used widely in image generation, semantic image editing, style transfer and

classification.

The figure below (Fig.II.9) will illustrate this algorithm:

Figure 2.8: Standard GAN architecture [37]

2.4.4 Convolutional Neural Network (CNN)

CNNs are regularized versions of multilayer perceptrons commonly used in computer

vision and image recognition. This type of algorithm employs a mathematical operation

called convolution (we will discuss it later), and that is where the name CNN came from.
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The CNN algorithm takes an input image which is usually represented by a matrix;

applying pooling and convolution operations will extract the features of the image that

allow the computer to identify and differentiate an object from another [21]. Fig.II.10

depicts a CNN architecture that is used to classify brain MRI images. Each layer of a

CNN converts the input volume to an output volume of neuron activation, eventually

leading to the final fully connected layers, which result in a mapping of the input data to

a 1D feature vector.[38]

Figure 2.9: Building blocks of a typical CNN [39]

The followings are the different components of CNN:

Kernels (filters)

An image kernel is a small matrix f x f that can be used to apply effects similar to

those found in Photoshop or other image editing software, such as blurring, sharpening,

outlining, and embossing. Kernels are used in CNN for ’feature extraction’, which is a

technique for determining the most important features in an image.
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Figure 2.10: Kernel examples. [40]

Convolution layer

The role of a convolution layer is to detect local features such as edges, lines, blobs of

color, and other visual elements at different positions in the input feature maps by apply-

ing convolution operations on learnable kernels. [41] The more kernels that we give to a

convolutional layer, the more features it can detect. [21]

Convolution function is the process of flipping both the rows and columns of the kernel

and multiplying locally similar entries and summing. As illustrated in the figure be-

low(fig.II.12).

It can be applied by starting the kernel at the far-left top border, which will multiply the

elements of this region by the filter weights and summing them. Next, this filter will move

to the right advancing by the number of cells specified in the stride which is the size of

the steps that the filter moves each time. This process will output the feature map. [21]
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Figure 2.11: Convolution operation using 3x3 filter and stride = 1.

The input and output of a convolutional layer are both 3D boxes. For the input to

a convolutional layer, the width and height of the box are equal to the width and height

of the input image. The depth of the box is equal to the color depth of the image. For

an RGB image, the depth is 3 as you can see in the figure below (2.12). As we said,

Figure 2.12: RGB color, Depth = 3 with Stride = 1, filter = 3x3.

the output that is fed forward to the next convolution layer will also be a 3D box, so its

height and width are both equal to the kernel size but the depth is equal to the number

of filters.[21]

Applying convolution operations results in losing pixels from our image, So the size of the

feature map is always smaller than the input. The solution for keeping the spatial size

constant after performing convolution is the padding technique. By adding extra pixels

with zero values around the boundary of our input image the size of our output image

will be increased, see the figure below (2.13).
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Figure 2.13: The effect of padding.

Pooling layer

The main idea of pooling is down-sampling (reducing the resolution) for the goal of

reducing the complexity for further layers. Two of the most common types of pooling

methods are Max-pooling and Average pooling. Max-pooling divides the image into sub-

region rectangles, and it only returns the maximum value of the inside of that sub-region.

As shown in the figure below (2.14). On the other hand, Average pooling takes the average

value. It should be considered that down-sampling does not preserve the position of the

information.[42]

Figure 2.14: Max-pooling with 2x2 filter and stride 2.

Activation layer

The activation layer applies an activation function. An activation function of a node

defines the output of that node given an input or set of inputs. Tanh, ReLU, Leaky,

ReLU and Softmax are some of the most common activations for neural networks. In this

section, we will briefly introduce them.
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Tanh - The hyperbolic tangent function must output values in the range between -1

and 1. [21]

σ(x) = tanh (x) (2.1)

Figure 2.15: The tanh activation function. [21]

ReLU - It is short for the rectified linear unit. It was first introduced in the early 2000s

and was later reintroduced in 2010 to great success (Hahnloser et al., 2000; Nair and

Hinton, 2010). The rectifier is of the following form:

αReLu(t) = max (0, t) (2.2)

This is not a smooth function. The analytical form of an actual implementation of

the rectifier is

α′
ReLu(t) = ln (1 + et) (2.3)

which is a smooth approximation to the rectifier and is often called softplus. The

following figure shows the plots of these functions:
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Figure 2.16: The ReLU activation function and its analytical approximation. [43]

Leaky ReLU - Leaky ReLU is an addendum to ReLU. It is of the form:

αReLu(t) =

{t, if t>0

σt, otherwise

(2.4)

where the parameter σ is a small constant. This allows the neuron to be very mildly

active and produces a small gradient regardless of whether the neuron was meant to be

active or not. The parametric leaky ReLU is an extension of this, where σ is considered

another parameter of the neuron and is learned alongside the backpropagation of the

weights themselves. If σ < 0, we obtain an interesting activation function shown in the

figure below (2.17). In this case, the neuron sends out a negative signal. Even when the

neuron is not contributing to the class predictions, it causes the gradients to move much

faster.
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Figure 2.17: Leaky ReLU. [44]

Softmax - The softmax function is usually found in the output layer of a neural network

which is used on the classification task. The neuron that has the highest probability claims

the input as a member of its class. [21]

σi =
ezi∑

j∈group e
z
j

(2.5)

i represents the index of the output neuron (o) being calculated, j represents the indexes

of all neurons in the group/level. The variable z designates the array of output neurons.

[21]

Batch Normalization layer

Batch normalization is one of the most powerful and most common techniques of initial-

ization. It is common practice to normalize images before feeding them forward through

a network. In a deep network, the input distribution of each layer varies from batch to

batch and sample to sample. This is due to the fact that the parameters of the previous

layers change with each update. This makes training extremely difficult, especially with

saturating activation functions. [43]

Even within the same class, samples differ in their statistical properties across batches of

data. This is known as covariate shift. To address the issue of covariate shift, we should

normalize the activations coming from each layer. The right variance to normalize with

and the mean from which to mean-subtract the data are frequently unknown and can be

estimated from the dataset itself. Batch normalization is one such method. If z were the
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activations of one layer, we compute

ζbn =
(ζ − µz)× αz

σz
(2.6)

where µz and σz are the activation batch’s mean and variance, respectively. α is

now one of the network’s learnable parameters, and it can be thought of as learning the

stretch of the normalization used. α is also learned along with the weights during the

same optimization. α can be learned for multiple layers using backpropagation. [43]

Batch normalization is a powerful tool that allows the network to learn much faster,

even when the activation functions are non-saturating. Batch normalization is especially

popular in visual computing contexts where image data is used.[43]

Transposed convolution layer

Convolution and pooling layers often reduce the dimensions of our input image. Trans-

posed convolutions are usually used in segmentation architectures to generate an output

image that has a spatial dimension greater than that of the input, this layer is defined by

some learnable parameters, such as padding and stride.

An output image ‘B’ from a convolutional layer is smaller than its input image ‘A’, adding

stride and padding to the image ‘B’ will enlarge the image dimensions, so by applying the

convolution on the image ‘B’, we will be able to generate an output image ‘C’ where its

spatial dimensions are equal to that input image ‘A’. [45]

Figure 2.18: Transposed convolution with these parameters: padding=1x1 strides = 2x2

kernel 3x3 [46]

Upsampling layer

Upsampling layers are usually used in segmentation architectures, the commonly used

techniques in the upsampling part that we will introduce in this section are the nearest
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neighbor, Bi-linear interpolation, Bed of nails.

Nearest neighbor Briefly, it is the act of copying an input element and putting

it to its nearest output elements. As illustrated in the figure below (see figure

2.19 ).

Figure 2.19: Nearest neighbor example.

Bi-linear interpolation it is done by taking an input element and predicting the

nearest values for this element. As illustrated in the figure below (see figure 2.20).

Figure 2.20: Bi-linear interpolation example.

Bed of nails Simply, it is the act of duplicating the value of the input pixel

at the corresponding position within the output image and filling the remaining

positions by zeros. As illustrated in the figure below (see figure 2.21).
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Figure 2.21: Bed of nails example.

2.5 Training

Together, the backpropagation algorithm and optimization algorithms can be used to

train neural networks. Optimization requires gradients to be calculated for each variable

in the model so that new values for the variables can be calculated. These gradients are

calculated by the backpropagation.

2.5.1 Backpropagation

Backpropagation is a common technique used for training feedforward neural networks,

where this technique relies on fine-tuning the weights of a neural network based on the

error rate obtained in the previous epochs (iterations). Backpropagation is an effective

way to calculate the gradients.

2.5.2 Optimization

The goal of optimization algorithms is to minimize the loss value calculated by the loss

function. This function is the objective function of an optimization algorithm, where

the optimization attempts to reduce the training error. Here is a list of some of the

optimization algorithms:

Adam optimizer - an algorithm for first-order gradient-based optimization of

stochastic objective functions, based on adaptive estimates of lower-order mo-

ments. [47]
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Adagrad optimizer - a subgradient method that dynamically incorporates knowl-

edge of the geometry of the data observed in earlier iterations to perform more

informative gradient-based learning. [48]

Stochastic gradient descent (SGD) - an iterative method for optimizing an

objective function with suitable smoothness properties. It reduces the computa-

tional burden to achieve faster iterations in trade for a lower convergence rate.

Momentum - was invented for reducing high variance in stochastic gradient de-

scent and softens the convergence. It accelerates the convergence towards the

relevant direction and reduces the fluctuation to the irrelevant direction.

2.6 Conclusion

In this chapter, we talked about the fundamentals of deep learning. We went from the

generalities of learning types in deep learning, to the details of CNN architecture. Even

though it has been existing for more than 70 years, deep learning is still in its nascent

stage and is still developing with time. Nowadays DL and its techniques and architectures

have become an indispensable tool for solving complex problems.

In the next chapter, we will talk about the semantic image segmentation task using deep

learning for brain tumors.
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Chapter 3
Semantic segmentation of brain tumors using

deep learning: Review

3.1 Introduction

Brain tumor segmentation using MRI images is crucial in computer-aided diagnosis.

It helps doctors to confirm the size of tumors and evaluate the effects before and after

treatment. However, as much as it greatly reduces the workload of doctors, it is a very

challenging task.

With the rapid development of DL in computer vision, the semantic segmentation

methods for brain tumor MRI images started to see the light and have achieved good

results. Moreover, they are in constant improvement.

In this chapter, we will present a review of semantic segmentation methods for brain

tumors.

3.2 Image segmentation

Image segmentation is a computer vision task, which refers to the partitioning of an image

into several disjoint regions based on features such as grayscale, color, spatial texture and

geometric shapes. These features show similarity in the same area, and also show obvious

differences between different regions.[49]
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In the task of image segmentation, we can find two different board types, semantic seg-

mentation and instance segmentation.

3.2.1 The difference between semantic segmentation and in-

stance segmentation

The semantic image segmentation task consists of classifying each pixel of an image into

an instance, where each instance corresponds to a class. This process is similar to the

instance segmentation task. If two objects belong to the same category, they will be

labeled to the same class; otherwise, for the instance segmentation task, they will be

labeled as different classes.

The figure below (3.1) illustrates the difference.

Figure 3.1: The difference between Semantic segmentation and instance segmentation

3.2.2 Medical image segmentation

Medical image segmentation is of great significance in providing non-invasive information

about the structure of the human body. This information helps radiologists to visualize
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and study the anatomy of the structures, simulate biological processes, localize patholo-

gies, track the progress of diseases, and evaluate radiation treatment or surgery. [50]

Brain tumor segmentation consists of separating the different tumor tissues (advancing or

active tumor, edema, and necrotic tumor core) from normal brain tissues. Some tumors,

like glioblastomas, are hard to distinguish from normal tissues, because they infiltrate

surrounding tissues causing unclear boundaries. As a solution, more than one image

modalities with varying contrasts are often employed.

Segmentation of medical images is regarded as a semantic segmentation task. The figure

below (3.2) shows brain tumor semantic segmentation.

Figure 3.2: Brain tumor semantic segmentation example.[51]

3.2.3 Types of image segmentation

Brain tumor segmentation can be broadly categorized as manual segmentation, semi-

automatic segmentation, and fully automatic segmentation, depending on the level of

human participation.

Manual segmentation

Through manual segmentation, a human operator uses specialized tools to carefully delin-

eate tumor regions. The accuracy of segmentation results largely depends on the training

and experience of the human operator as well as knowledge of brain anatomy. In addition

to being tedious and time-consuming, manual segmentation is widely used in approaches

based on supervised and semi-supervised learning as a gold standard for semi-automatic

and fully automatic segmentation. [52]
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Semi-automated segmentation

Semi-automated segmentation combines both computer and human expertise. The ini-

tialization of the segmentation process requires user interaction providing feedback and an

evaluation of segmentation results [53]. Although semi-automatic segmentation methods

are less time consuming than manual segmentation, their results are still dependent on

the human operator. [52]

Fully automatic segmentation

In fully automatic brain tumor segmentation, no human interaction is required. Combin-

ing artificial intelligence and prior knowledge to solve segmentation problems [53]. Fully

automatic segmentation methods are further divided into discriminative and generative

methods. Discriminative methods often rely on supervised learning where relationships

between the input image and manually annotated data are learnt from a huge dataset.

In this group, classical machine learning algorithms, which rely on handcrafted features,

have been widely used in the past few years and have achieved great success. However,

these methods may not be able to take full advantage of the training data due to the

complexity of medical images [54]. More recently, deep learning methods have gained

popularity due to their unprecedented performance in computer vision tasks and their

ability to learn features directly from data. On the other hand, generative methods use

prior knowledge about the appearance and distribution of different tissue types. [52]

3.3 Dataset and evaluation metrics

3.3.1 BraTS dataset

BraTS dataset focuses on the evaluation of state-of-the-art methods for the segmentation

of brain tumors in multimodal magnetic resonance imaging (MRI) scans. BraTS utilizes

multi-institutional pre-operative MRI scans, which mainly focuses on the segmentation

of internal heterogeneity (appearance, shape, and histology) brain tumors (i.e. gliomas).

[55]

This dataset is a brain tumor segmentation competition dataset that is used in the MIC-

CAI challenge [55]. This challenge has been held every year since 2012, with the goal of
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evaluating the best brain tumor segmentation methods and compare them. The Brats

dataset has five labels: healthy brain tissue, necrotic area, edema area, tumor enhance-

ment and non-enhancement area. New training sets are added every year. [49]

3.3.2 Evaluation Metrics

The following metrics are the most commonly used for evaluation.

Dice score (F-measure)

It’s the comparison of the ground truth GT (mask created by specialists) and the output

image OI (mask created by the model), which can be defined as twice the overlap area of

predicted and ground-truth maps, divided by the total number of pixels in both images.

[56]
2 ∗ (GT ∩OI)

(GT ∪OI)
(3.1)

Hausdorff

It describes a measure of the degree of similarity between two sets of points, that is, the

distance between the two boundaries of ground truth and the segmentation result input

to the network. Sensitive to the divided boundary. [49]

d(Seg,GT ) =

{(
max
i∈Seg

min
j∈GT

d(i, j)

)
,

(
max
j∈GT

min
i∈Seg

d(i, j)

)}
. (3.2)

where i and j are points belonging to different sets. d represents the distance between i

and j.

Specificity

Measures the probability that the model classifies a patient as being normal given that

they are normal. [56]
TN

FP + TN
(3.3)

TN: True negative, FP: False positive.
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Sensitivity

This indicates the probability that the model classifies a patient as having the disease

given that they have the disease. [56]

TP

TP + FN
(3.4)

TP: True positive, FN: False negative.

3.4 Review of semantic segmentation methods for

brain tumors

After the success of the classification models in the medical field and brain tumor classi-

fication task, such as Inception [57], VGG [58] and AlexNET [59], The researchers have

passed to the idea of segmentation medical images in order to help in reducing the time

spent in the manual segmentation and help doctors to confirm the size of tumors, quanti-

tatively evaluate the effect before and after treatment and greatly reducing the workload

of doctors [49]

In this section we are going to present some of the used architectures for brain tumor

segmentation:

3.4.1 Sliding Windows

It is the process of sliding a rectangular region of fixed size across an image. For each

region captured by this sliding window, the algorithm will try to determine if the window

has an object or region of interest or not. The disadvantages of this technique are that

it is very computationally expensive and it does not share features between overlapping

patches (local regions).

Yanyun Lian and Zhijian Song [60] proposed an Automated brain tumor segmentation

in magnetic resonance imaging based on sliding-window technique and symmetry analysis

which was evaluated on 3D FSPGR (fast spoiled gradient echo) brain MR images of 10

patients and the average ratio of correct location was 93.4% for 575 slices containing

tumor, the average Dice similarity coefficient was 0.77 for one scan, and the average time

spent on one scan was 40 seconds.
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Figure 3.3: Semantic segmentation using a sliding window.

3.4.2 CNNs

The Encoder-Decoder architecture is mainly composed of two parts, in which the en-

coder captures deep semantic information through several down-sampling processes, which

means it extracts image features from the input image and compacts the features by en-

coding to produce the low-resolution feature map; the decoder part gradually restores

the space and detail information from the low-resolution feature maps fed by the encoder

through several up-sampling operations.

The U-Net is a popular model in the architecture of encoder/decoder, this semantic

segmentation model was proposed by Ronneberger et al in 2015 [61] to handle the lack of

training images in biomedical images.

The architecture contains a downsampling path (encoder) and upsampling path (de-

coder). The encoder is just a traditional stack of convolutional and max-pooling layers

which consist in extracting features. The decoder uses transposed convolutions to in-

crease or recover the input image size and enable precise localization for the regions of

our image.it does not contain any Dense layer because of which it can accept images of

any size.
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Figure 3.4: U-NET basic architecture.

Borne et al. [62] selected 62 healthy brain images from different heterogeneous databases

as the training set and segmented them using 3D U-Net. The result was 85% correct. The

use of three-dimensional information in segmentation makes full use of the advantages of

spatial information.

3D CNN makes the U-Net structure have richer spatial information, in other words,

it can extract more powerful features volume representation on the three axes of X, Y,

and Z, the network realizes 3D image segmentation by inputting a continuous 2D slice

sequence of 3D images.

Guotai Wang, Wenqi Li, Sébastien Ourselin, and Tom Vercauteren proposed an Auto-

matic Brain Tumor Segmentation using Cascaded Anisotropic Convolutional Neural Net-

works, The cascaded CNNs separate the complex problem of multiple class segmentation

into three simpler binary segmentation problems and take advantage of the hierarchical

structure of tumor subregions to reduce false positives. Three networks are proposed to

hierarchically segment whole tumor (WNet), tumor core (TNet) and enhancing tumor

core (ENet) sequentially.

The figure below (3.5) illustrates this strategy.
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Figure 3.5: The proposed triple cascaded framework for brain tumor segmentation [63]

Casamitjana et al. [64] proposed the cascaded V-Net segmentation of brain tumor,

dividing the brain tumor segmentation problem into two simpler tasks, the segmentation

of the entire tumor and the division of different tumor regions.

Figure 3.6: Cascaded V-Net segmentation of brain tumor. [64]
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The Dice score metric for the whole tumor (WT) region was 0.869 for the training

and 0.877 for the validation, but low values for enhancing tumor (ET) with 0.671 for the

training and 0.714 for the validation and for tumor core (TC) regions was 0.685 for the

training and 0.637 for the validation on the Brats2017 dataset.

Fully convolutional network

A fully convolutional network (FCN) was the first article that applied deep learning

to image segmentation and achieved outstanding results, but still not fine enough. Many

models of image segmentation have been borrowed from FCN. We will go through some

of these models that helped in the progress of this task and had a great performance.

Myronenko et al. [65] proposed a deep learning network 3D MRI brain tumor segmenta-

tion that won the first place in the 2018 challenge, this network was based on asymmetric

FCN and combined with residual learning. Solving complex problems requires deep neu-

ral networks to learn more complex features, which increase performance and accuracy.

but there is a maximum threshold for depth with traditional CNN, in other words, going

deeper in the network can result in increasing both training and test error.

ResNet [66] solves this problem by using shortcuts, which is composed of many residual

blocks. Each module consists of many consecutive layers and a shortcut. This shortcut

connects the input and output of the module together, adding them before ReLU (rectified

linear unit) activation. The resulting output is then sent to the ReLU activation function

to generate the output of this block.

The figure below (3.7) illustrates a residual learning block.

Figure 3.7: Residual learning: a building block.[66]
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Kamnitsas et al. [67] combined three different network architectures, namely 3D FCN

[68], 3D U-Net [61], and DeepMedic [69] and trained them with different loss functions

and different normalization strategies.

Wang et al. [63] employed a FCN architecture enhanced by dilated convolutions [70]

and residual connections [66].

Nie et al. [71] implemented network optimization by integrating contextual semantic

information and fusing features of different scales, and segmented multimodal brain MRI

images using 3D FCN.

Wang et al. [72] proposed a Conditional Random Fields (CRF) based edge-sensing

FCN, which achieved more accurate edge segmentation by adding edge information into

the loss function. The accuracy of the model was up to 87.31%, far higher than that of

FCN-8S and other basic semantic segmentation networks.

Jiang et al. [73] proposed a two-stage cascaded U-Net to segment the brain tumor

sub-regions from coarse to fine, where the second-stage model has more channel numbers

and uses two decoders so as to boost performance.

Isensee et al. [74] used their recently proposed nnU-NET (no new net) framework

for the configuration of segmentation methods. the downsampling is done with strided

convolutions, upsampling is implemented as convolution transposed. they replaced the

softmax non-linearity with a sigmoid, also replaced the crossentropy loss term with a

binary cross-entropy that optimizes each of the tumor class independently. the proposed

network uses stochastic gradient descent with an initial learning rate of 0.01 and a Nesterov

momentum of 0.99.

R-CNN

R-CNN or Regions with CNN Features is an object detection model that uses high-

capacity CNNs to bottom-up region proposals in order to localize and segment objects. It

uses selective search to identify several bounding-box object region candidates (“regions

of interest”) and then extracts features from each region independently for classification.
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In other words, R-CNN consists of applying different rectangular shapes to an image, and

trying to determine the regions of interest within these rectangular shapes.

The problem with this approach is that the objects of interest might have a different

spatial location inside the image, which will lead us to use more regions that could end

with expensive computations and time-consuming. This approach has developed in the

last few years and went to fast R-CNN, Faster R-CNN and YOLO (You only look once).

Figure 3.8: Semantic segmentation of brain tumor using R-CNN.[75]

3.4.3 Generative Adversarial Networks

here are a lot of segmentation models using GAN. For instance :

Xue et al. [76] proposed the SegAN model for medical image segmentation, which

covers the disadvantage of the U-Net model, which is the problem of unbalanced pixel

categories in the image. Based on this problem, the authors designed a new segmentation

network based on the ideas of GAN, and proposed a multiscale L1 loss to optimize the

segmentation network.

Moeskops et al. [77] used adversarial training to improve the segmentation performance

of brain MRI in fully convolutional and a network structure with dilated convolutions.

Rezaei et al. [78] used conditional-GAN to train a semantic segmentation convolutional

neural network, which has a superior ability for brain tumor segmentation.

41



Chapter 3 Semantic segmentation of brain tumors using deep learning: Review

Focusing on the segmentation task of MRI brain tumors, Giacomello et al. [79] proposed

SegAN-CAT, a deep learning architecture based on a generative adversarial network. They

apply a trained model to different modalities through transfer learning.

SegAN-CAT is different from SegAN in that the loss function is extended, a dice loss

term is added. The input of the discriminator network is composed of MRI image stitching

and segmentation. By training several brain tumor segmentation models on the BRATS

2015 and BRATS 2019 datasets for testing, SegAN-CAT has better performance than

SegAN. The results of these networks are illustrated in the table below (see table 3.1):

BraTS 2015 BraTS 2019

Dice Score Precision Sensitivity Dice Score Precision Sensitivity
Model

SegAN 0.705 0.759 0.694 0.766 0.745 0.834

SegAN with

dice loss
0.825 0.901 0.785 0.814 0.850 0.810

SegAN-CAT 0.859 0.882 0.852 0.825 0.842 0.835

Table 3.1: Comparaison of SegAN, SegAN with dice loss and SegAN-CAT [79]

3.5 Results of recent models for brain tumor segmen-

tation task

The following tables (3.2 and 3.3) shows the results of the winners for BraTS datasets

from 2017 to 2020.
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3.6 Challenges and discussion

Semantic segmentation of brain tumor MRI images has made great progress, but these

recent works still cannot satisfy the needs of practical applications [49]. So, in this section,

we will introduce the common challenging problems for this task.

There is a difference between MRI images of brain tumors from hospital to hospital,

because of the different hardware resources that are used in this task, also the tumors

can vary from a patient to another. This will affect the performance of the models during

segmentation. and the noises are also a problem that needs to be handled in the data

preprocessing step.

Data preprocessing is a very important step in preparing raw input data to be more

amenable to neural networks. because of the artifacts and noises that MRI images contain,

the model will not perform well. So, these artifacts need to be corrected before the images

are fed into the network for better performance.

The training of deep learning algorithms requires a large amount of data set support,

but unfortunately, in the medical field, the existing medical image data sets are small in

scale because medical data is protected by data-protection laws that restrict the usage and

sharing of this kind of data to other parties [52], which leads to the problem of overfitting

in the training process of deep learning models. We can prevent overfitting by simplifying

our model complexity by removing some layers or reducing the number of neurons. Also,

we can apply the technique of data augmentation, which will produce more images to

train our model. Also, by applying the Dropout technique [91], which randomly drops

neurons from the neural network during training in each iteration. Another technique to

address this limitation is Transfer learning [92], The idea behind it is that you can use a

pretrained model that has been trained on large datasets as good start point which has

already learned some useful features like lines, edges, curves . . . etc and partially retrain

the model on a smaller dataset.

The performance of the segmentation task is affected by the class imbalance problem,

where there is an unequal distribution of voxel classes in the training dataset. For example,
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in brain tumor segmentation, the quantity of healthy voxels is bigger than unhealthy

voxels. Which leads the model to be more biased towards the majority class.

Many works use loss-based methods to solve the problem of class imbalance. Lin et al.

[93] proposed a loss function to solve the problem by dynamically scaling the loss based on

the model’s confidence in the classification of samples. When the accuracy of the model

classification category increases, the scaling factor decreases. Therefore, the model pays

more attention to misclassified samples.[52]

In conclusion, to improve the accuracy and robustness of our segmentation model we

have to deal with the class imbalance problem, selection of pre-processing techniques and

employing advanced training schemes.

3.7 Conclusion

In this chapter, we reviewed some deep learning-based approaches for semantic segmen-

tation of brain tumors.

The performance of brain tumor segmentation algorithms has continued to increase

over the past few years due to the availability of more training data, the use of more so-

phisticated CNN architectures and training schemes and the recently proposed techniques

that can solve some of the challenges mentioned above.

In the next chapter, we will present our contribution for semantic segmentation of brain

tumors from MR images.
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4.1 Introduction

This chapter is divided into two parts, in the first part we will talk about everything

that was used in the process of development like programming languages, development

environment ,the different used libraries and the preprocessing of the data. In the second

part, we will explain the approaches that we proposed.

4.2 Development Environment and used materials

In order to create and train our models we used the following configuration:

4.2.1 Programming language

Python

is an interpreted, object-oriented, high-level programming language with dy-

namic semantics. Its high-level built in data structures, combined with dy-

namic typing and dynamic binding, make it very attractive for Rapid Application Devel-

opment, as well as for use as a scripting or glue language to connect existing components

together. Python’s simple, easy to learn syntax emphasizes readability and therefore re-

duces the cost of program maintenance. Python supports modules and packages, which

encourages program modularity and code reuse. The Python interpreter and the exten-

sive standard library are available in source or binary form without charge for all major
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platforms, and can be freely distributed.1

4.2.2 Environment

Training a deep CNN requires powerful computing resources, thus for con-

venience we have used Google colaboratory. Colaboratory, or “Colab” for

short, is a product from Google Research. It allows anybody to write and execute arbi-

trary python code through the browser, and is especially well suited to machine learning,

data analysis and education. More technically, Colab is a hosted Jupyter notebook service

(an open-source web application that allows creating and sharing documents that contain

live code, equations, visualizations and narrative text) that requires no setup to use, while

providing free access to computing resources including GPUs. Colab provides 12GB of

RAM and Tesla K80 NVIDIA GPU.2

4.2.3 Frameworks and libraries

TensorFlow

TensorFlow is an end-to-end platform that was originally developed by the

Google Brain team, written with a Python API over a C/C++ engine for

numerical computation using data flow graphs. Multiple APIs have been provided. The

complete programming control is provided with the lowest level APIs, called TensorFlow

Core. Machine learning researchers and others who need fine levels of control over their

models are recommended to use the TensorFlow Core. The higher-level APIs are built on

top of TensorFlow Core and they are easier to learn and use, compared to the TensorFlow

Core. TensorFlow supports multiple backends, CPU or GPU on desktop, server or mobile

platforms. It has well-supported bindings to Python and C++. TensorFlow also has tools

to support reinforcement learning. For more details, we suggest the readers to visit the

TensorFlow website.3

1https://www.python.org/
2https://colab.research.google.com/
3https://www.tensorflow.org/
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Keras

Keras is a Python-based open-source library of neural network components.

Keras can run on top of TensorFlow, Theano, PlaidML, and other frame-

works. Although the library was designed to be modular and user-friendly, it began as

part of a research project for the Open-ended Neuro-Electronic Intelligent Operating Sys-

tem, or ONEIROS. Francois Chollet, a Google engineer who also wrote XCeption [94], a

deep neural network model, is the primary author of Keras. After Keras was released, it

was not integrated into Google’s TensorFlow core library until 2017.4

Numpy

NumPy (Numerical Python) is a free and open source Python library that is

used in nearly every branch of science and engineering. It is the universal

standard in Python for working with numerical data, and it is at the heart of the scientific

Python and PyData ecosystems.5

Pandas

Pandas is a fast, powerful, flexible and easy to use open source data analysis

and manipulation tool,built on top of the Python programming language.6

Nibabel

Nibabel is a library that is used to provide read/write access to some common

neuroimaging file formats including GIFTI, NIfTI1, NIfTI2, CIFTI-2. The

various image format classes give full or selective access to header (meta) information and

access to the image data is made available via NumPy arrays.7

H5py

The h5py package is a Pythonic interface to the HDF5 binary data format. It

allows storing huge amounts of numerical data, and easily manipulating that

4https://keras.io/
5https://numpy.org/
6https://pandas.pydata.org/
7https://github.com/nipy/nibabel
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data from NumPy. It uses straightforward NumPy and Python metaphors, like dictionary

and NumPy array syntax.8

Segmentation models

It is a Python library with Neural Networks for Image Segmentation based on

Keras and TensorFlow. It provides multiple models like Unet, with lots of

backbones (ResNet, VGG ...) trained on huge data like ImageNet dataset.[95]

Matplotlib

Matplotlib is a comprehensive library for creating static, animated, and inter-

active visualizations in Python.9

4.3 Dataset description

In subsection (3.1) of the previous chapter, we defined the BraTS dataset. This part is

dedicated to give more details about two versions of this dataset: BraTS2020(The most

recent available version) and (BraTS2017).

BraTS2020 contains 369 3D scans for training and 125 for validation. Each training

sample is composed of 5 files each with the following shape: height=240, width= 240 and

155 slices.

The first four files are the different multimodal scans (Four channels of information- 4

different volumes of the same region) that come as follows:

T1 T1-weighted, native image, sagittal or axial 2D acquisitions, with 1–6 mm slice

thickness.

T1ce T1-weighted, contrast-enhanced (Gadolinium) image, with 3D acquisition

and 1 mm isotropic voxel size for most patients.

T2 T2-weighted image, axial 2D acquisition, with 2–6 mm slice thickness.

Flair T2-weighted FLAIR image, axial, coronal, or sagittal 2D acquisitions, 2–6

mm slice thickness.

8https://www.h5py.org/
9https://matplotlib.org/
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The fifth file is simply the mask (ground truth). The Ground truth images have been

segmented manually, by one to four raters, following the same annotation protocol, and

their annotations were approved by experienced neuro-radiologists, Where the sub-regions

of tumor considered for evaluation are:

• 0 for ‘Not tumor’.

• 1 for ‘Necrotic or non-enhancing tumor’.

• 2 for ‘edema’.

• 3 for ’missing’ (no pixels in all the volumes contain label 3).

• 4 for ‘enhancing tumor’.

The image below 4.1 shows an example of the different types and the corresponding mask:

Figure 4.1: demonstration of the BraTS20 dataset.

The validation samples don’t contain mask files, so we are not going to use them.

MRI images often come in the DICOM 10 format which is the output format for most

commercial MRI scanners.

Our dataset is stored in the NifTI-1 format, for that we will be using the NiBabel library

to interact with the files. This data has been mostly pre-processed for the competition

participants, so we are not going to need to perform skull striping or image registration.

BraTS2017 is not very different from BraTS2020, the key differences are:

Number of samples: BraTS2017 has 484 samples for training and 266 for validation.

The multimodel scans come in a single file, a 4D array of MR image in the shape of (240,

240, 155, 4).

10https://en.wikipedia.org/w/index.php?title=DICOM
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• ”0”: ”FLAIR”,

• ”1”: ”T1w”,

• ”2”: ”t1gd”,

• ”3”: ”T2w”

The labeling order in the ground truth file is also different and has no missing indexes

• ”0”: ”background”,

• ”1”: ”edema”,

• ”2”: ”non-enhancing tumor”,

• ”3”: ”enhancing tumour”

Figure 4.2: BraTS2017 example.
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4.4 Data preprocessing

While our dataset is provided to us post-registration and has been mostly pre-processed

for the competition participants, we still have to do some minor pre-processing before

feeding the data to our model because of the recources limitations.

4.4.1 Preparing the data for 2D UNET

After combining the four types of images (t1, t2, t1ce and flair) into a single multi-

channel volume, reassigning pixels of value 4 to value 3 in masks(as 3 is missing from

original labels) and converting the mask into One Hot format by using to categorical

function from Keras utils, we were unable to load our data because 12 GB of RAM could

not handle it so we had to resize the data. The first 21 and the last 34 slices of each image

we ignored because most of them were black and did not contain any useful information.

We fed our model slices of shape [160, 160, 4] but the RAM problem still remained. To

tackle this problem we used a data generator, which basically load the data in batches

instead of loading it all at once. (see figure 4.3 )
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Figure 4.3: Data generator for 2D UNET part1.
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Figure 4.4: Data generator for 2D UNET part2.

Note: We used the same process for The 2D UNET with transfer learning approach

except for the number of channels, we had to use only 3 of them because the backbones

that we chose were trained on imagenet with 3 channels, And in order to start the training

with their weights the number of channels had to be 3.

4.4.2 Preparing the data for 3D UNET

As similar to 2D approach, the four types of scans (t1, t1ce, t2 and flair) were combined

into one single array and the mask labels were reassigned and then converted into One
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Hot format.

Figure 4.5: Load images.

Using this data as it is with our environment was impossible, because a network that

can process the entire volume at once will simply not fit inside our current environment’s

memory/GPU. which pushed us to generate patches of our data which can be thought of

as sub-volumes of the whole MR images. We used the same size for X and Y dimensions

(160), and for Z we tried many sizes until we got the minimum which was 16, So the final

size shape was [160, 160, 16, 4]. We randomly generated 30 patches from each image.

Furthermore, given that a large portion of the MRI volumes are just brain tissue or black

background without any tumors, we wanted to make sure that we pick patches that at

least include some amount of tumor data. Therefore, we picked patches that have at least

5% tumor.

Lastly, given that the values in MR images cover a very wide range, we standardized the

values to have a mean of zero and standard deviation of 1, which is a common technique

in deep image processing since standardization makes it much easier for the network to

learn.

One slight change for the masks was that we removed the background class (0). So

the corresponding masks were of shape [3, 160, 160, 16] The used function for generating

the sub-volumes is in the following figure (see figure 4.6)
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Figure 4.6: Patches generator.

The figure 4.7 represents an example of Patches:

Figure 4.7: Patches Sample.
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Finally, We saved the patches data in HDF5 files in Google Drive so it can be loaded

during training by our custom data generator (see figure 4.8 ).

Figure 4.8: Datagenerator for 3D UNET.
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4.5 Proposed approaches

In our work we used different approaches: basic 2D and 3D models and other models with

transfer learning.

Our systems will go through different steps, from training and validation to tests and

evaluating. but before that, our system will pass through an essential step which is Data

preprocessing of our dataset. The following image illustrates the global architecture of

our systems (see figure 4.9).

Figure 4.9: System global architecture.

4.5.1 2D approaches

2D Unet

For the 2D approach we used a UNET model developed by Olaf Ronneberger et al [61].

The original network was built for 512x512x3 microscopy images, here it is modified to

take in images of shape of 160x160x4. We also chose to start with 32 filters instead of 64.

This model will be used as a baseline network (for comparison).

The network architecture is illustrated in (figure 4.10). It consists of a contracting path

(left side) and an expansive path (right side). The contracting path follows the typical

architecture of a convolutional network. It consists of the repeated application of two 3x3

convolutions (unpadded convolutions), each followed by a rectified linear unit (ReLU) and
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Figure 4.10: 2D UNET architecture.

a 2x2 max pooling operation with stride 2 for downsampling. At each downsampling step

we double the number of feature channels. Every step in the expansive path consists of

an upsampling of the feature map followed by a 2x2 convolution (“up-convolution”) that

halves the number of feature channels, a concatenation with the correspondingly feature

map from the contracting path, and two 3x3 convolutions, each followed by a ReLU. At

the final layer a 1x1 convolution is used to map each 32 component feature vector to the

desired number of classes. In total, the network has 23 convolutional layers.

2D Unet with different backbones

Transfer learning is the reuse of a model’s knowledge that has been trained on a big

dataset as the starting point for solving new tasks.

Advantages of Transfer learning

Transfer learning is a technique that addresses some of the challenges mentioned in the

previous chapter. Using a small datasets and not having enough labeled data is one of

the most common challenges that could be solved using transfer learning.

Using a pre-trained model that has already trained on large datasets such as ImageNet

instead of using a CNN model from scratch will give us several benefits, but the main
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Figure 4.11: Traditional DL vs Transfer learning. [96]

ones are saving training time and getting better performances.

Applying Transfer learning

In a pre-trained model, the first layers learn very useful and a lot of low-level features

such as edges, lines, curves . . . which we will benefit from in our training.

We will discuss two commonly used methods in applying transfer learning, pre-training

and fine-tuning. The pre-training method is the process of freezing all the earlier layers

to not retrain their weights and taking off some of the last layers to replace them with

one or several new output layers. The weights of these new output layers are initialized

randomly and retrained with the dataset that concerns the new task. It is recommended

when we have a smaller dataset for the new task. For example, the BraTS dataset that

we will use in our implementation.

The Fine-tuning method is the process of using The weights of the pre-trained model

as the starting point and retrain all of them, and it could be the same process for the

new output layers in the pre-training method. It is recommended when we have a large

dataset for the new task.
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Figure 4.12: How to apply transfer learning. [96]

We are going to replace the encoder of the Unet model with three different networks

that were trained on Imagenet. ImageNet is a dataset of over 15 million labeled high-

resolution images belonging to roughly 22,000 categories. The images were collected from

the web and labeled by human labelers using Amazon’s Mechanical Turk crowd-sourcing

tool. it contains 1.2 million training images, 50,000 validation images, and 150,000 testing

images. [97]

It is very common to use transfer learning in medical images classification(diagnosis)

to reduce the effects of overfitting (caused by the small size of medical datasets), which

inspired us to explore the possibility of applying this method to the segmentation of

medical images, in order to see if it is possible to use the extracted features from a

dataset of natural images (Ex. ImageNet) to segment brain tumors.

In this approach, We are going to try three different models 2DUnet VGG16 (VGG16

as backbone), 2DUnet Resnet50 (Resnet50 as backbone), 2DUnet InceptionV3 (Inception

V3 as backbone)

Here are more details about each backbone:
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VGG16

The VGG16 is a Convolutional Neural Network model that was proposed by K. Simonyan

and A. Zisserman from the University of Oxford in the paper “Very Deep Convolutional

Networks for Large-Scale Image Recognition” in the year 2014. [58] It was one of the fa-

mous models that won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

Competition that year.

Figure 4.13: VGG-16 illustrated.

The input to the conv1 layer is of fixed size 224 x 224 RGB image. The image is

passed through a stack of convolutional (conv.) layers, where the Convolution filters used

are only 3x3 and the convolution stride is fixed to 1 pixel.

Spatial pooling is carried out by five max-pooling layers, which follow some of the conv.

layers (not all the conv. layers are followed by max-pooling) . The padding is 1 pixel for

3 x 3 conv. layers.. Max-pooling is performed over a 2 x 2 pixel window with stride 2.

A stack of convolutional layers (which has a different depth in different architectures) is

followed by three Fully-Connected (FC) layers: the first two have 4096 channels each, the

third performs 1000 way ILSVRC (ImageNet Large Scale Visual Recognition Challenge)

classification and thus contains 1000 channels (one for each class). The final layer is the

soft-max layer. The configuration of the fully connected layers is the same in all networks.

[58]

The architecture of the 2D UNET after using VGG-16 as a backbone will be as follows:

ResNet50

ResNet 50 is a Convolutional Neural Network that was introduced by Microsoft in 2015

[98]. As illustrated in (fig) ResNet50 is composed of an initial 7x7 convolution and a 3x3
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Figure 4.14: 2D UNET with VGG-16 as a backbone.

max-pooling followed by 4 stages. Each stage has a certain number of residual units, stage

1 and stage 4 have 3 units while stage 2 and stage 3 have 4 units and 6 units respectively.

Each unit has 3 layers, the first and the third layers are 1x1 convolutions while the second

layer is 3x3, each convolution is followed by BN a ReLu activation. The kernel size used

to perform the convolutions in each unit are (64,64,256) in stage 1 (128,128,512) in stage

2, (256,256,1024) in stage 3 and (512,512,2048) in stage 4. From one stage to another,

the kernel size is doubled and the shape of the image is halved. The 4 stages are followed

by an average pooling then a fully connected layer.

Figure 4.15: ResNet-50 model architecture. [99]

InceptionV3

Inceptionv3 was introduced in 2015 by Google [100] It was a scale up for the 2014 version

of inception [57] This network suggested some solutions to improve accuracy and speed

without using many layers in depth. As shown in (fig), the inception v3 model is composed

by 3 main modules.

• Module A aims for reducing the number of parameters by using smaller convolution

layers.
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• Module B aims for reducing the complexity of the network by dividing each convo-

lution layer of k x k size to 2 layers of 1 x k dimensions each.

• Module C expands the filters to evade information loss.

Figure 4.16: InceptionV3 model architecture. [101]

4.5.2 3D approach

We want to try a 3D approach to see the advantages of 3D filters, Also to quantify the

impact of information loss when switching from a 3D image to a 2D image. to implement

this approach we got inspiration from [102]

The network architecture is illustrated in (figure 4.17). Like the 2D u-net, it consists

of a contracting path and an expansive path. In the contracting path, each layer contains

two 3 × 3 × 3 convolutions each followed by a rectified linear unit (ReLu), and then a 2 ×

2 × 2 max pooling with strides of two in each dimension. In the expansive path, each layer

consists of an upconvolution of 2 × 2 × 2 by strides of two in each dimension, followed by

two 3 × 3 × 3 convolutions each followed by a ReLu. Shortcut connections from layers

of equal resolution in the contracting path provide the essential high-resolution features

to the synthesis path. In the last layer a 1 × 1 × 1 convolution reduces the number of

output channels to the number of labels which is 4 in our case.
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Figure 4.17: 3D UNET architecture.

4.6 Training

4.6.1 2D approaches

For all 2D approaches we used the followings:

• Aside from the architecture, one of the most important elements of any deep learning

method is the choice of our loss function. As our task is a multiclass segmentation,

a natural choice is the categorical crossentropy loss function. It calculates the loss

of an example by computing the following sum:

Loss = −
outputsize∑

i=1

yi ∗ log y′i (4.1)

where y′ is the i-th scalar value in the model output, yi is the corresponding target

value, and outputsize is the number of scalar values in the model output.

This loss is a very good measure of how distinguishable two discrete probability

distributions are from each other. In this context, yi is the probability that event i

occurs and the sum of all yi is 1, meaning that exactly one event may occur.

The minus sign ensures that the loss gets smaller when the distributions get closer

to each other.

• For the optimizer, we used Adam optimizer(introduced in chapter 2 subsection 5.2)
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• For metrics, we used Dice Similarity Coefficient (introduced as Dice Score in chapter

3 subsection 3.2)

Figure 4.18: Multiclass Dice Similarity Coefficient implementation.

4.6.2 3D UNET

For the 3D unet, we used the same optimizer and the evaluation metric as the 2D UNET

approaches, but for the loss function, due to heavy class imbalance we tried something

different and went with Soft Dice loss. The formula is:

Loss (p, q) = 1−
2×

∑
i,j pijqij + ε(∑

i,j p
2
ij

)
+
(∑

i,j q
2
ij

)
+ ε

(4.2)

• p is our predictions

• q is the ground truth

• In practice each qi will either be 0 or 1.

• ε is a small number that is added to avoid division by zero

The soft Dice loss ranges between:

• 0: perfectly matching the ground truth distribution q

• 1: complete mismatch with the ground truth.
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Figure 4.19: Multiclass Soft Dice Loss implementation.

4.7 Conclusion

In this chapter, we talked about the development environment, the different used libraries

and the dataset part, Also we explained our proposed approaches and what we will use

as loss function and optimizer.

In the next chapter, we will go through the implementation and the results of the proposed

approaches.
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Chapter 5
Results and discussion

5.1 Introduction

this chapter is dedicated to the implementation of the different approaches introduced

earlier, a discussion of the obtained results for both datasets and the obstacles that we

faced.

In this chapter, we will show the implementation of the approaches, from data prepro-

cessing to the obtained results of each approach for both datasets and then discuss them.

We will seal this chapter by talking about the obstacles that we faced.

5.2 Brats2020 training and results

The data distribution was 295 images for training, 55 for validation and 19 for testing for

all models that were trained using Brats2020

5.2.1 2D Unet

Training phase

The model was trained with 29500 slices for training and 5500 slices for validation for 100

epochs. the results are shown in the graphs below.
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Figure 5.1: Brats20 2D Unet training and validation graphs of loss and dice score func-

tions.

Figure 5.2: Brats20 2D Unet training and validation graphs of dice score for edema and

enhancing classes.
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Figure 5.3: Brats20 2D Unet training and validation graph for dice score for necrotic

class.

Test phase

The model was tested on 19 images (1900 slices). The results are shown in the tables

below ( see tables 5.1 and 5.2 )

Test Loss Test dice coef Test dice coef ncr Test dice coef ed Test dice coef en

0.0174 0.6631 0.5397 0.7407 0.8118

Table 5.1: Test results for 2D UNET with BraTS2020. ncr: necrotic, ed: edema and en:

enhancing.

Test precision Test sensitivity Test specificity Test accuracy

0.7961 0.6633 0.9983 0.9949

Table 5.2: Test results for precision, sensitivity, specificity and accuracy.

Prediction phase

Although the values of metrics seemed improving but we did not get what we expected

in the predictions. Here are some examples. (see figure 5.4 )
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Figure 5.4: Predicted image with 2D UNET model

5.2.2 2D UNET models with transfer learning

These models were trained with 29500 slices for training and 5500 slices for validation for

100 epochs. the results are shown in the graphs below. . the results are shown below.

2D Unet VGG16

Training phase

Figure 5.5: 2DUnet VGG16 training and validation graphs of loss and dice score functions.
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Figure 5.6: 2DUnet VGG16 training and validation graphs of dice score for edema and

enhancing classes.

Figure 5.7: 2DUnet VGG16 training and validation graph of dice score for necrotic class.

Test phase

The results of the test are shown in the tables below

Test Loss Test dice coef Test dice coef ncr Test dice coef ed Test dice coef en

0.0504 0.5964 0.5190 0.4709 0.6983

Table 5.3: Test results for 2DUnet VGG16. ncr: necrotic, ed: edema and en: enhancing.
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Test precision Test sensitivity Test specificity Test accuracy

0.6914 0.4988 0.9968 0.9864

Table 5.4: Test results for precision, sensitivity, specificity and accuracy.

Prediction phase

Here are some predictions:

Figure 5.8: Predicted images with 2DUnet VGG16 model
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2D Unet Rsnet50

Training phase

The results of training are shown in the graphs below.

Figure 5.9: 2DUnet Resnet50 training and validation graphs of loss and dice score func-

tions.

Figure 5.10: 2DUnet Resnet50 training and validation graphs of dice score for edema and

enhancing classes.
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Figure 5.11: 2D Unet Resnet50 training and validation graph of dice score for necrotic

class.

Test phase

The results of the test are shown in the tables below.

Test Loss Test dice coef Test dice coef ncr Test dice coef ed Test dice coef en

0.1553 0.4917 0.3427 0.2936 0.5440

Table 5.5: Test results for 2DUnet Resnet50 . ncr: necrotic, ed: edema and en: enhancing.

Test precision Test sensitivity Test specificity Test accuracy

0.6002 0.3736 0.9920 0.9694

Table 5.6: Test results for precision, sensitivity, specificity and accuracy.
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Prediction phase

Here are some predictions:

Figure 5.12: Predicted images with 2DUnet resnet50 model.

77



Chapter 5 Results and discussion

2D Unet InceptionV3

Training phase

These graphs represent the values of both training and validation for 100 epochs.

Figure 5.13: 2DUnet InceptionV3 Training and validation graphs of loss and dice score

functions.

Figure 5.14: 2DUnet InceptionV3 Training and validation graph of dice score for edema

and enhancing classes.
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Figure 5.15: 2DUnet InceptionV3 Training and validation of dice score graph for necrotic

class.

Test phase

The results of the test are shown in the tables below.

Test Loss Test dice coef Test dice coef ncr Test dice coef ed Test dice coef en

0.1376 0.5101 0.4291 0.2950 0.5197

Table 5.7: Test results for 2DUnet InceptionV3 model. ncr: necrotic, ed: edema and en:

enhancing.

Test precision Test sensitivity Test specificity Test accuracy

0.5482 0.3940 0.9911 0.9670

Table 5.8: Test results for precision, sensitivity, specificity and accuracy.
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Prediction phase

Here are some predictions from the test set:

Figure 5.16: Predicted images with 2DUnet InceptionV3 model.
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5.2.3 3D UNET

This part was the most difficult part of the work due to resource limitations and Colab’s

new policies (discussed later in Obstacles section).

Training phase

Using 8850 patches(295 images) for training and 1650 patches(55 images) for validation,

the model was trained for 36 epochs(140 hours approximately) the results of training are

shown in the graphs below.

Figure 5.17: 3D Unet training and validation graphs of loss and dice score functions.

Figure 5.18: 3D Unet training and validation graphs of dice score for edema and enhancing

classes .
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Figure 5.19: 3D Unet training and validation graphs of dice score for necrotic class.

Test phase

The model was tested on 570 patches (19 images). The results are shown in the table

below ( see tables 5.1 and 5.2 )

Test Loss Test dice coef Test dice coef ncr Test dice coef ed Test dice coef en

0.1938 0.7626 0.7360 0.7335 0.7679

Table 5.9: Test results for 3D UNET on brats2020. ncr: necrotic, ed: edema and en:

enhancing.

Test precision Test sensitivity Test specificity Test accuracy

0.7809 0.7822 0.9983 0.6505

Table 5.10: Test results for precision, sensitivity, specificity and accuracy.
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Prediction phase

Here are some predictions from the test set:

Figure 5.20: Prediction for 3D UNET model BraTS20
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5.3 Brats2017 training and results

5.3.1 2D Unet

Training phase

This model was trained with 387 images for training and 73 images for validation (100

slices were took from each image) for 104 epochs, the results are shown in the graphs

below.

Figure 5.21: Brats17 2D Unet training and validation graphs of loss and dice score func-

tions.

Figure 5.22: Brats17 2D Unet training and validation graphs of dice score for edema and

enhancing classes.
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Figure 5.23: Brats17 2D Unet training and validation graphs of dice score for necrotic

class.

Test phase

The model was tested on 24 MRI images (100 slices were took from each image). The

results are shown in the table below ( see tables 5.11 and 5.12 )

Test Loss Test dice coef Test dice coef ncr Test dice coef ed Test dice coef en

0.0581 0.6987 0.5653 0.7563 0.7228

Table 5.11: Test results for 2D UNET with BraTS2017. ncr: necrotic, ed: edema and en:

enhancing.

Test precision Test sensitivity Test specificity Test accuracy

0.7752 0.5756 0.9962 0.9837

Table 5.12: Test results for precision, sensitivity, specificity and accuracy.

Prediction phase

Here are some predictions for different slices for an image from the test set (see figure

5.24)
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Figure 5.24: Predictions for 2D UNET model brats17

86



Chapter 5 Results and discussion

5.3.2 3D Unet

Training phase

For the 3d approach using BraTS 17 the model was traind with 387 images for training

and 73 images for validation, from each image 20 sub-volumes were generated ,which gave

7740 sub-volumes for training and 1460 sub-volumes for validation. 24 images were left

for testing. The model was trained in total for 13 epochs (40 hours approximately )The

results are shown below.

Figure 5.25: Brats17 3D Unet training and validation graphs of loss and dice score func-

tions.
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Figure 5.26: Brats17 3D Unet training and validation values of dice score for each class

in the 13th epoch.

Test phase

The model was tested on 480 sub-volumes generated from the 24 images left for testing(20

per each). The results are shown in the tables below ( see tables 5.13 and 5.14 )

Loss Dice coefficient Dice for necrotic Dice for edema dice for enhancing

0.1767 0.7632 0.7657 0.7547 0.7575

Table 5.13: Test results for 3D UNET using BraTS2017. ncr: necrotic, ed: edema and

en: enhancing.

Precision Sensitivity Specificity Accuracy

0.7703 0.8131 0.9927 0.8064

Table 5.14: Test results for precision, sensitivity, specificity and accuracy.

Prediction phase

Here are some predictions from the test set
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Figure 5.27: Patch predictions for brats17 3d model.
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5.4 Discussion

5.4.1 Discussion of the obtained results

Brats2020: We were primarily planing to work with brats20 dataset. But as the train-

ing of the basic 2D model reached the 100th epoch and we performed some predictions,

we were surprised by the results, because it is true that the metrics values were not very

high but they were not that low either. We expected that the shape of the predicted

tumor will at least look a little similar to the ones in the ground truth. We concluded

that the data is very small and it is not enough to train the model.

Next, we tried transfer learning, where we used 3 different backbones (VGG16, RESNET50

and INCEPTIONV3). These 3 models were pre-trained on Imagenet dataset, and we

thought that using them as feature extractors in the encoder of the Unet model would

pay off, but we did not get good results. It is probably because we did not train the last

layers for the 3 networks. VGG16 gave better results because it is a simple network, so it

allows extracting simple characteristics, this is not the case for Resnet50 and InceptionV3

(the last layers contain more complex characteristics and optimized for the Imagenet base

which is not a medical base) in the future we will try to retrain the last layers instead of

freezing them.

At this point we supposed that 2D approaches are not effective because we had been

breaking up the 3D MRI volumes into many 2D slices then each one of these slices was

passed into the model which outputs the segmentation for that slice. One by one, each slice

was passed through the segmentation model in this manner to generate a segmentation

for every slice. The 2D slices would then be combined once again to form the 3D output

volume of the segmentation. We figured that the drawback with this 2D approach is that

we might lose important 3D context when using this approach. For instance, if there is

a tumor in one slice, there is likely to be a tumor in the slices right adjacent to it. Since

we had been passing in slices one at a time into the models, the model would not be able

to learn this useful context.

For that we decided to try the 3D approach, which is definitely more efficient but has

the drawback of consuming a lot of computation resources. This model took so much
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time for only training for 36 epochs as it took approximately 140 non-continuous hours

of training. It scored an average of 0.74% for all classes for the dice coefficient on the

test set(see table5.1), which looked very promising. But the predictions were very poor

especially for Necrotic and Enhancing classes (see figure 5.21). At this point we considered

two candidates reasons for this failure, it was either a mistake we had made during the

data preprocessing or the Brats Challenge for 2020 was very difficult as the first place

winner for that year challenge had to train their model for 1000 epochs. [74]

We rechecked the scripts but we could not find what was wrong, we so we thought of

using the same scripts and the same models with another dataset and see if there was any

difference. The choice fell on Brats17 because it was the easiest to get.

Brats2017: We got this dataset from the Medical Segmentation Decathlon (MSD) chal-

lenge.1 Unfortunately we did not have the chance to work on this data as much as we

did with brats2020 for the reasons that we will explain in the next section (Obstacles).

We only tried basic Unet models (2D and 3D), this time the 3D model was trained for

only 13 epochs. But the good news in all of this were the results that we got using this

dataset.

The predictions were acceptable (see figures 5.24 and 5.27) The 2D model scored 0.80%

Dice coefficient on the training set and 0.69% on the test set, while the 3D model scored

0.81% on the training set and 0.76% on the test set.

The results of our models

All the results obtained from the proposed approaches are summarized in the following

table (see Table 5.15 ).

1https://decathlon-10.grand-challenge.org/

91



Chapter 5 Results and discussion

R
an

k
A

rc
h
it

ec
tu

re
D

ic
e

S
co

re
S
en

si
ti

v
it

y
S
p

ec
ifi

ci
ty

L
os

s

N
C

R
E

N
E

D
W

T
W

T
W

T
W

T

B
ra

T
S

20
17

1
3D

U
n
et

0.
76

57
0.

75
75

0.
75

47
0.

76
32

0.
81

31
0.

99
27

0.
17

67

2
2D

U
n
et

0.
56

53
0.

72
28

0.
75

63
0.

69
87

0.
57

56
0.

99
62

0.
05

81

B
ra

T
S

20
20

1
3D

U
n
et

0.
73

60
0.

76
79

0.
73

35
0.

76
26

0.
78

22
0.

99
83

0.
19

38

2
2D

U
n
et

0.
53

97
0.

81
18

0.
74

07
0.

66
31

0.
66

33
0.

99
83

0.
01

74

3
2D

U
n
et

V
G

G
16

0.
51

90
0.

69
83

0.
47

09
0.

59
64

0.
49

88
0.

99
68

0.
05

04

4
2D

U
n
et

In
ce

p
ti

on
V

3
0.

42
91

0.
51

97
0.

29
50

0.
51

01
0.

39
40

0.
99

11
0.

13
76

5
2D

U
n
et

R
es

n
et

50
0.

34
27

0.
54

40
0.

29
36

0.
49

17
0.

37
36

0.
99

20
0.

15
53

T
ab

le
5.

15
:

A
su

m
m

ar
y

of
al

l
m

o
d
el

s
on

B
ra

T
S
17

an
d

B
ra

T
S
20

te
st

re
su

lt
s.

E
N

—
E

n
h
an

ci
n
g

cl
as

s,
N

C
R

-N
ec

ro
ti

c
cl

as
s,

E
D

-E
d
em

a
cl

as
s

an
d

W
T

—
W

h
ol

e
tu

m
or

.

92



Chapter 5 Results and discussion

5.4.2 Comparaison with the winners of BraTS Challenge

The table below shows a comparaison between the winners of both Datasets (BraTS17

and BraTS20) and the model that achieved the best results in our implementation (3D

Unet).

Rank Reference Architecture
Dice Score Sensitivity Specificity

ET WT TC WT WT

BraTS 2017

1 [67] Ensemble 0.738 0.901 0.797 0.895 0.995

2 [80] Cascaded 0.786 0.905 0.838 0.915 0.995

# 3D Unet 3D Unet 0.757 0.763 - 0.813 0.992

BraTS 2020

1 [74] nnU-Net 0.820 0.889 0.850 - -

2 [88] H2NF-Net 0.787 0.912 0.842 - -

# 3D Unet 3D Unet 0.767 0.762 - 0.782 0.998

Table 5.16: Comparaison of our best model with the winners of the challenge.

5.5 Obstacles

Implementing a deep learning model requires strong computing resources, our laptops

didn’t have those requirements nor they were available at our university. We saw that

using cloud services was the best thing we could do. There are plenty of cloud services

out there but just few of them are free and offer descent services, Google Colab was the

appropriate choice because it offers 12 GB of RAM and an Nvidia K80 GPU.

Colab says that one session could last for 12 continuous hours only, well that was a

problem because training our models was going to take way more than that especially 3D

models. The solution for this was simple, we trained our models for the allowed time, and

used callbacks to save their weights at the end of each epoch, and by that they were able

to continue training in the next sessions from where they have stopped .
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Unfortunately, the time limit was lower than that, it was only 8 hours ,but the worst

part was that we got 8 hours only when the used account is new and has not used GPU

before, if the same account was used multiple times the time limit dropped down to 3-4

hours, When training our 3D models the average time per epoch was 4h and this really

was a problem because more than 70% of sessions disconnected before finishing even one

epoch. Most of disconnections were due to time limit and the rest were because of the

instability of internet, we had to use tricks so used more than 30 Gmail accounts. We were

not able to create more accounts because they require to be linked to a phone number

and there is a limit to how many could be linked to the same number.

Not only the time was a problem but resources were too because Colab shares them

between users and we didn’t get the full promised resources. One more problem was that

Colab imposes an inactivity timeout to discourage users from using it for long-running

tasks, sometimes sessions disconnected for no reason. Moreover, there was the Captcha

inactivity test that if you don’t check the box in a certain time the session disconnects

and all the process is lost, and it would appear randomly so we had to keep an active eye

on the browser during the entire training time.

To deal with all the problems mentioned before, google proposed colab pro which is

a paid version with more advantages but unfortunately, there are only nine countries

allowed to pay for it and Algeria wasn’t included.

One more thing that Deep learning requires is data, medical data is known of being

small because of patients’ privacy, we were planning to use data augmentation to solve

this problem, but with all the problems we mentioned above we were barely able to work

the small raw data that we had and for this we were not able to try transfer learning for

3D models. Furthermore the datasets we worked with had a huge class imbalance, which

made the task more difficult.

5.6 Conclusion

In this chapter, we covered the implementation of our approaches and discussed the

obtained results, where we showed that we had some struggles in working with brats20
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dataset, while things went smoother with brats17 and we got encouraging results although

we did not use data augmentation. Because of resources limitations and all the troubles

we faced during the implementation process that we mentioned in the previous section,

we did not have the chance to give the models that worked with brats17 the training time

they needed, and if only we had spent most of our time working on brats17 instead of

brats20 we probably would have gotten better results. It is true that we did not get the

results we were hoping for, but this is our first try in this field and we are looking forward

to improve the performance of our models and make them more accurate in the future.

95



General conclusion

Brain tumor segmentation is a difficult task that entails delimiting cancerous tissues

in medical images of the brain. This procedure is a touchstone of medical image analysis

research and it is unquestionably an important step in computer-aided diagnosis systems.

Manual segmentation requires experience and it is a time-consuming process. Recently,

great process has been made in automatizing this task using deep learning(DL) in order

to mainly use it to support the diagnosis process. In this work, we had the objective

of proposing an automatic brain tumor segmentation approach automatic brain tumor

segmentation system using convolutional neural networks for MRI images. We tried im-

proving the performance of Unet architecture in segmenting brain tumor images by using

transfer learning, which is a common idea in image classification tasks. We used three

different backbones that were trained on a non medical dataset(ImageNet) as feature ex-

tractors in the encoder part, which are VGG16, ResNet50 and InceptionV3. The results

were encouraging looking at the small data that we had and the resources limitations we

faced.

This was our first experience in dealing with real world projects in the field of deep

learning, this allowed us to improve our knowledge and skills in this field. We have more

ideas we plan to try in the future in order to improve the performance of the models

that we worked with, including trying different levels of fine tuning when using transfer

learning, working more on the preprocessing step, trying other backbones and using data

augmentation.
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General Conclusion

We would like to conclude by pointing out one of the main challenges with applying

AI algorithms in hospitals, which is achieving reliable generalization, because in the last

recent years there were many attempts to implement systems that achieved good results

in brain tumor segmentation, but we do not see them in use today at hospitals or clinics

around us. Generalization can be hard due to a variety of reasons, one of them is that

these systems were trained on a data collected from a few countries over a few years, but

MRI technology is not standard across the globe and across time. The latest scanners

have much higher resolution than older scanners. So, before we apply the segmentation

models in hospitals, we have to make sure that the model is able to generalize to the

resolution of the scanner at that hospital.
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