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A MILP framework for electricity tariff-choosing decision process in smart 
homes considering ‘Happy Hours’ tariffs 
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Keywords: 
Electricity tariffs 
Happy hours tariffs 
Smart prosumers 
Retail electricity market 

A B S T R A C T   

Nowadays, electricity end users can choose among a huge variety of different electricity plans on a deregulated 
energy market. The wide variety of tariffs besides the advent of novel agents like smart consumers and pro
sumers, are becoming the tariff-choosing process more complex. This paper proposes a MILP optimization 
framework which aims at facilitating this task. More precisely, the main endings of the developed framework are: 
(i) determine the most suitable tariff for smart consumers and prosumers based on historical consumption data, 
(ii) determine the optimal hours to be hired for a so-called ‘Happy hours’ tariff plan. In addition, other useful 
results can be directly obtained from the developed tool. The developed approach carries out a MILP optimi
zation framework for optimal scheduling a series of flexible appliances through various characteristic days ob
tained from clustering historical collected data. This process is repeatedly executed for the different tariff options 
and, finally, the most attractive one is selected. A case study on the Spanish retail market for a benchmark 
prosumer environment is used for showing the capabilities of the developed framework.   

1. Introduction 

Deregulation of retail electricity markets has enabled free competi
tion among retail companies. Under the umbrella of this paradigm, 
many companies have emerged in order to increase the competency of 
electricity markets. Thus, retailer companies compete each other in an 
open market environment to get customers [1]. In this context, many 
companies are developing multiple original electricity tariffs and eco
nomic plans in order to become themselves more attractive for con
sumers. Consequently, electricity users can choose among a wide offer of 
electricity plans with much different particularities provided by a 
plethora of retailer companies. To cite just some examples, in Spain an 
end user from the community of Andalucía can choose among the plans 
offered by more than 50 companies [2]. Other remarkable example is 
the “Power-to-Choose” platform [3] promoted by the Public Utility of 
Commission of Texas (US). In this web site, more than 1000 electricity 
plans of different electricity retailers are available for review and 
selection. 

Typically, electricity retailers charge the energy consumption by 
fixed or variable tariffs [4], which can be incentive or penalized by a 
series of terms which depend on the peak power or the total energy 

consumed through a month [5]. Fig. 1 pictorially represents the basic 
principles of the most typical tariffs, which are explained in the 
following points:  

• Fixed tariffs: in this case, electricity consumption is charged by a price 
which is kept constant over the whole day. Similarly, the pre-paid 
tariffs charge a prefixed price regardless the energy consumed by 
the user. An evolution of this kind of tariffs is currently offered in 
some countries. It consists on posing a fixed tariff in which some 
hours of the day (known as ‘happy hours’) are not charged at all (see 
Fig. 1 and [6]).  

• Time-variable tariffs: the electricity price is different each hour of the 
day. Typically, two time slots are distinguished during a day (peak 
and off-peak hours). The most typical examples are the time-of-use 
and real time pricing tariffs. In the former, the electricity retailer 
set a different price for the peak and off-peak hours while in the 
former, the pricing varies during a day according to market signals.  

• Others: other kind of charges find to incentivize or penalize some 
behaviors. Examples are the stepwise tariffs described in [7] and [8], 
whereby the electricity bill is charged proportionally to the observed 
peak power or total energy consumed through a month. 
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Nowadays, electricity retailers and distribution companies are more 
concerned to encourage demand response from the users [9]. This end 
can be achieved through home energy management control schemes 
over the home appliances in order to reduce the electricity bill. This fact 
enables the active participation of end users in the electricity market as 
another agent which is customary called smart consumer/prosumer 
[10]. While a smart consumer is conceived as a pure load, a smart 
prosumer has the capability of producing a surplus energy by means of 
own resources (PV or batteries), which can be sold to the grid in order to 
obtain a revenue [11]. With the former pure-passive home paradigm, 
load curve of dwellings could be easily guessing since the peak and 
valley loads typically occurred at same hours, and there was not possi
bility to sell back energy to the grid. However, the current prosumer 
environment makes this behaviour hardly predictable due to higher 

versatility and stochastic features of renewable-based generators. This 
evidence along the growing diversity and complexity observed in cur
rent electricity rates, are provoking that the tariff-choosing decision 
process is no longer a trivial task [12]. 

In this context, home users may still choose their energy tariffs on the 
basis of their experience, personal recommendations or even heuristi
cally. However, monetary expenditures may notably vary by choosing 
one or another tariff. Hence, tariff-choosing decision task should not be 
only entrusted to human decisions. In this regard, support decision tools 
capable of determining the optimal energy plan for a smart user are 
reaching a high level of importance within the retail electricity market. 
Despite its apparent importance, this kind of tools are not widely 
developed and most of them are simply comparator datasets [13]. On 
the other hand, many works are rather focused on the optimal tariff 
design instead (e.g. see [14]). These facts make evident the necessity of 
further developing tariff-choosing tools, adapted to the modern elec
tricity retail market paradigm. Indeed, to the best of our knowledge, the 
reference [12] supposes the unique exception to this trend. In this work, 
the authors developed a personalized recommender tool based on in
formation filtering systems. The developed approach collects a series of 
temporally electricity consumptions through advanced metering infra
structure. On the basis of the collected information, this system infers 
the preference of individual users on each tariff plan. As final stage, a 
collaborative filtering algorithm is carried out, which is able to recom
mend the most suitable tariff plans to an arbitrary target user. 

This work aims at contributing to the narrow pool of decision support 
tools for tariff-choosing of smart users. More precisely, this paper de
velops a MILP framework which, based on historical consumption pro
files and shiftable capabilities of home appliances, determines the most 

Nomenclature 

Acronyms 
MILP Mixed-Integer linear programming 
PV Photovoltaic 
WM Washing machine 
DW Dishwasher 
SD Spin dryer 
EV Electric vehicle 

Indices and sets 
t Subscript for time slots 
s Subscript for representative days 
i Superscript for controllable appliances 
T Set of time slots over a time horizon 
H Set of o’clock hour slots over a time horizon 
S Set of representative days 
Ωs Cluster of the representative days 

Parameters 
Δτ Time step (h) 
ωs Weight of the representative days 
M Large possitive number 
pG Maximum power that can flow from/to the utility grid 

(kW) 
PPV Rated power of the PV array (kW) 
I Solar irradiation (kW/m2) 
θ Ambient temperature (◦C) 
ηPV Efficiency of the PV array (pu) 
p̂PV Forecasted PV power (kW) 
ξ Nominal capacity of the battery storage system (kWh) 
λ Energy-to-power ratio (h) 
DOD Depth of discharge (pu) 

ηB Efficiency of the batteries (pu) 
D Home demand due to non-controllable appliances (kW) 
Pi Rated power of the controllable appliance i (kW) 
LBi Lower band of allowable operation time slot of the 

controllable appliancei 
UBi Upper band of allowable operation time slot of the 

controllable appliancei 
δi Operation time slots of the controllable appliancei 
π∊ Cost of energy (€/kWh) 
μ Factor that determines the selling energy price (pu) 
ϑ Total number of happy hours 

Decision variables 
pGH Power purchased from the grid (kW) 
pHG Power sold to the grid (kW) 
pPV Power given by the PV array (kW) 
pB,dch Batteries discharging power (kW) 
pB,ch Batteries charging power (kW) 
eB Energy stored in batteries (kWh) 
u Binary decision variable which indicates the commitment 

status of an appliance (1 = ON, 0 = OFF) 
u /u Binary decision variable which marks the switch on/off 

transition of a controllable appliance (1 = OFF-ON/ON- 
OFF) 

ν∊ Binary decision variable which is equal to 0 if a happy hour 
is hired at time t, and 1 otherwise 

ν∊, ν ∊ Auxiliary variables for continuity of the happy hours tariff 
y, z Dummy variables 

Functions 
ϕ(⋅) : (⋅)n→N Returns the number of elements of a set/cluster  

Hour

En
er

gy
Pr

ic
e

Happy hours

Off-peak

Peak

Fig. 1. Principles of some typical electricity tariffs. Fixed (blue), time-of-use 
(red) and happy hours (green). 
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suitable tariff plan for a smart user (consumer or prosumer). In addition, 
other useful results can be directly obtained from the developed 
framework. The most salient features of our proposal which suppose its 
main contributions with respect the reference [12] are as follows. 1) It is 
applicable to both smart consumers and prosumers. 2) Some useful re
sults can be obtained as byproduct, among them, the optimal hours to be 
hired for a happy hours tariff plan. These results may be also helpful for 
other kind of decision processes. 3) The novel framework does not 
require information of other residential users. A case study on the 
Spanish retail market for a benchmark prosumer environment is used for 
showing the capabilities of the developed framework. 

Remainder of this paper is organized as follows. Section 2 describes 
the smart prosumer paradigm, which supposes the basis for the devel
oped tool. Section 3 introduces the mathematical formulation of the 
developed MILP framework for optimal tariff-choosing tasks, consid
ering three benchmark tariffs. Section 4 presents various numerical re
sults on a benchmark prosumer environment in order to show the 
capabilities of the developed framework. Finally, this paper is concluded 
with Section 5. 

2. Overview of smart consumer/prosumer paradigm 

Fig. 2 pictorially shows the main elements and energy and control 
flows on a generic smart consumer/prosumer paradigm. As seen, it is 
considered that the home can purchase energy directly from the grid or 
from own resources (a PV array in this case). This energy can be directly 

consumed by a set of controllable and non-controllable loads or stored in 
batteries. While the operation of non-controllable loads is governed by 
user decisions, the controllable loads can be scheduled during different 
hours of the day in order to reduce the electricity bill. This decision 
framework is carried out on a home energy management scheme which, 
on the basis of price signals of electricity tariffs and forecasted PV 
generation, determines the scheduling program of controllable loads 
along the PV-batteries system. If the described home system has the 
capability of producing a surplus energy from own resources (PV and 
batteries), it can be sold to the utility grid in order to obtain a revenue 
(smart prosumer [15]). 

3. Developed MILP framework for optimal tariff-choosing 

The main contribution of this paper is to develop a MILP framework 
for tariff-choosing decision of smart consumers and prosumers. Fig. 3 is 
the flowchart of the developed support tool. It starts from a set of 
metering data, which should encompass the consumption profiles due to 
non-controllable appliances, ambient temperature and solar irradiation 
through a year. The proposed framework has the advantage that 
necessary data uniquely correspond with the study home, and extra 
information from other users is not required. Then, the available data is 
temporal represented by means of representative days, in order to make 
easier its treatment. The treated data along the necessary information of 
electricity tariffs pool serve as inputs of a developed MILP optimization 
problem, which has to be run for the different tariffs compared. Through 

PV array

Utility grid

Non-controllable
loads

Controllable
loads

Scheduling Control

Batteries

Control signals

Energy flow

Fig. 2. Schematic representation of main elements of consumer/prosumer paradigm.  
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this MILP problem, the yearly energy expenditure (which also serves to 
determine the most suitable tariff plan) along other relevant results are 
obtained. The following sections are devoted on further explaining each 
stage involved within the developed framework. 

3.1. Representative days 

The raw information which serves as starting point of the developed 
framework span a huge amount of data (1095 profiles with up to 1-min 
time resolution). This amount of information might be difficulty trac
table computationally. A popular technique to reduce these computa
tional requirements consists on only taking into account those profiles 
that can be considered sufficiently representative of the remainder data. 
This process is known as temporal representation by representative days 
[16]. To reduce the available data to only those representative days, the 
k-medoids clustering method is often considered a good choice [17]. 
This technique gathers the most similar profile within clusters. Then, 
each cluster is represented by its medoid, which is assumed a good 
representation of all the members of its cluster. In our proposal, the 
different medoids are the representative days which serve as input of the 
MILP optimization problem. The total number of clusters has to be 
determined heuristically, attending to some support indicators like the 
Davies-Bouldin index [18]. 

3.2. MILP optimization problem 

The developed MILP optimization problem corresponds with the 
home energy management of the prosumer paradigm described in Fig. 2. 
Mathematically, this problem is established as follows: 

min
x

∑

s∈S
ωs

∑

t∈T

{
cGH

st − cHG
st

}

s.t.(3) − (18)
(1)  

where x is the vector of decision variables (see Nomenclature) and cGH
st 

and cHG
st are factors that vary depending on the electrical tariff consid

ered (see Section 3.3). The objective function (1) aims at minimizing the 
electricity bill of home users through a year. In this equation, the weight 
of each representative day is simply calculated as the number of ele
ments within each cluster. 

ωs = ϕ(Ωs); ∀s ∈ S (2) 

While the constraints (3)–(18) are stated below. 

pGH
st + pPV

st + pB,dch
st = pHG

st + pB,ch
st +Dst +

∑

i∈{WM,DW,SD,EV}

ui
stP

i;∀s ∈ S, ∀t ∈ T

(3)  

0 ≤ pGH
st ≤ uGH

st pG;∀s ∈ S, ∀t ∈ T (4)  

0 ≤ pHG
st ≤ uHG

st pG;∀s ∈ S, ∀t ∈ T (5) 

Fig. 3. Flowchart of the developed tariff-choosing decision framework.  
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uGH
st + uHG

st ≤ 1;∀s ∈ S, ∀t ∈ T (6)  

0 ≤ pB,dch
st ≤ uB,dch

st
ξ
λ
; ∀s ∈ S, ∀t ∈ T (7)  

0 ≤ pB,ch
st ≤ uB,ch

st
ξ
λ
;∀s ∈ S, ∀t ∈ T (8)  

uB,dch
st + uB,ch

st ≤ 1; ∀s ∈ S, ∀t ∈ T (9)  

eB
st = eB

st− 1 +Δτ
(

pB,ch
st− 1ηB −

pB,dch
st− 1

ηB

)

; ∀s ∈ S, ∀t ∈ T\t > 1 (10)  

(1 − DOD)ξ ≤ eB
st ≤ ξ;∀s ∈ S, ∀t ∈ T (11)  

eB
s1 = ξ;∀s ∈ S (12)  

eB
sT = ξ;∀s ∈ S (13)  

0 ≤ pPV
st ≤ p̂PV

st ; ∀s ∈ S, ∀t ∈ T (14)  

∑t=UBi

t=LBi ui
st = δi; ∀s ∈ S, ∀i ∈ {WM,DW, SD,EV} (15)  

ui
st − u i

st = ui
st − ui

st− 1; ∀s ∈ S, ∀t ∈ T\t > 1, ∀i ∈ {WM,DW,SD} (16)  

∑

∀t∈T
ui

st = 1; ∀s ∈ S, ∀i ∈ {WM,DW, SD} (17)  

uGH
st ,uHG

st ,uB,dch
st ,uB,ch

st ,ui
st,u

i
st,u

i
st ∈{0,1};∀s∈S,∀t∈T,∀i∈{WM,DW,SD,EV}

(18) 

The constraint (3) is the home balance, by which the home demand 
has to be fully satisfied any moment. The constraints (4) and (5) impose 
limits over the amount of power that can be purchased and sold from/to 
the utility grid, respectively. The smart home cannot purchase and sell 
energy to the grid at the same time, as forced by the constraint (6). The 
constraints (7) and (8) impose limits on the charging and discharging 
processes of the batteries. Also, these both processes are complementary, 
as modelled by the constraint (9). The constraint (10) models the state of 
charge of the batteries, which is limited by the capacity and depth of 
discharge of these devices, as forced by the constraint (11). It is assumed 
that the batteries are fully charged at the beginning and the end of the 
studied time horizon, as imposed by constraints (12) and (13), respec
tively. The amount of energy that can be generated by the PV array by 
unit of time is upper bounded by the forecasted value p̂PV

st , as modelled 
with (14). The controllable loads have to be operated a predefined 
number of hours within their allowable time windows, as forced by the 
constraint (15). In addition, some controllable loads have to be contin
uously operated and just can be activated once over a time horizon, as 
imposed by the constraints (16) and (17), respectively. It is worth noting 
that (16) and (17) are not imposed on the EV, since it is assumed that this 
appliance has just to be fully charged at the end of its allowable time 
window, and discontinuous scheduling is allowed. Finally, constraint 
(18) imposes integrality on some variables. 

The equation (14) bounds the power that the PV array can give any 
instant as a function of the forecasted PV generation. This forecasted 
value is typically obtained as a function of weather parameters. One of 
the salient features of the developed MILP optimization framework is the 
usage of historical information in order to yield realistic and accurate 
results adapted to each case. Apart from historical consumption of the 
home system under study, other weather parameters can be obtained 
from public database in order to further develop the model. Thus, the 
instantaneous power that a PV array can give any instant can be derived 
from solar irradiance and ambient temperature. To that end, any 
available solar panel model can be considered. In this paper, that 
described in [19] has been used, which yields the maximum PV 

generation as function of ambient temperature and solar irradiation as 
follows. 

p̂PV
st = PPV Ist

{
0.8+ 0.024

(
θst + Ist

[
33.8 − 37.5ηPV] − 25

) }
;∀t ∈ T,∀s ∈ S

(19) 

However, the value yielded by the equation (19) supposes an upper 
bound for the variable pPV

st and, in practice, solar inverters may set it at a 
lower value if required. 

3.3. Objective function for different tariffs 

The objective function (1) is determined by the cost of purchasing 
energy minus the revenues obtained by selling energy to the utility grid. 
The way in which these two concepts are charged varies with the tariff 
considered. In this paper, the three most conventional tariffs (which are 
outlined in Fig. 1), have been considered and explained in the following 
sections. 

3.3.1. Fixed tariff 
By this tariff, the concepts involved in the objective function are 

charged by a fixed rate. Thus, they can be calculated as follows. 

cGH
st = π∊ΔτpGH

st ; ∀s ∈ S, ∀t ∈ T (20)  

cHG
st = μπ∊ΔτpHG

st ; ∀s ∈ S, ∀t ∈ T (21) 

In this paper, the selling price is taken as a percentage of the pur
chasing price (μ), which is customary ≤ 1 [20]. 

3.3.2. Time-variable tariffs 
The users subjected to this tariff are charged in a similar way to a 

fixed tariff but, in this case, the energy price varies each hour of the day. 
Thus, the objective function is in this case given by. 

cGH
st = π∊

t ΔτpGH
st ; ∀s ∈ S, ∀t ∈ T (22)  

cHG
st = μπ∊

t ΔτpHG
st ; ∀s ∈ S, ∀t ∈ T (23) 

The equations (22) and (23) can be straightforward applied to the 
two most conventional variable tariffs namely time-of-use and real time 
pricing [3]. 

3.3.3. Happy hours tariff 
In this case, energy consumption is charged by a fixed tariff, how

ever, during a number of hours through a day (ϑ) energy consumption is 
not charged at all. These hours are colloquially called ‘happy hours’ and 
they can be often selected by the users. This fact adds a new variable to 
the problem since the objective function may notably vary depending on 
which time slots are selected as happy hours. Indeed, the objective 
function is in this case given by. 

cGH
st = π∊Δτyst;∀s ∈ S, ∀t ∈ T (24)  

cHG
st = μπ∊Δτzst;∀s ∈ S, ∀t ∈ T (25)  

where the dummy variables are defined as follows. 

yst = ν∊
t pGH

st ;∀s ∈ S, ∀t ∈ T (26)  

zst = ν∊
t pHG

st ;∀s ∈ S, ∀t ∈ T (27) 

The developed framework should also provide the most suitable time 
slots to be hired as ‘happy hours’. Hence, ν∊

t is considered a decision 
variable of the problem in this case. This provokes that (26) and (27) 
becomes bilinear terms, which can be converted to linear ones by 
imposing the constraints (28)–(31) [21]. 

pGH
st − M

(
1 − ν∊

t

)
≤ yst ≤ pGH

st +M
(
1 − ν∊

t

)
; ∀s ∈ S, ∀t ∈ T (28) 
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pHG
st − M

(
1 − ν∊

t

)
≤ zst ≤ pHG

st +M
(
1 − ν∊

t

)
;∀s ∈ S, ∀t ∈ T (29)  

− Mν∊
t ≤ yst ≤ Mν∊

t (30)  

− Mν∊
t ≤ zst ≤ Mν∊

t (31) 

Besides of (26)–(31), the developed MILP optimization problem is 
subjected to other additional constraints in the case of happy hours 
tariffs. Firstly, the total number of happy hours that can be hired is 
limited, as imposed the constraint (32). 
∑

∀t∈T
ν∊

t =
(

ϕ(T) −
ϑ

Δτ

)
(32) 

Frequently, the happy hours have to be consecutive, as forced by the 
constraint (33). 

ν ∊
t − ν∊

t = ν∊
t − ν∊

t− 1;∀t ∈ T\t > 1 (33) 

The zero-cost period has to begin at o’clock hours (i.e. 0:00 h, 1:00 h, 
…). However, the time step taken in simulations may be set shorter than 
an hour. This provokes that not all time slots are allowed to be set as 
starting point for happy hours. This restriction is satisfied by the pair of 
constraints (34) and (35). 
∑

∀t∈H
ν∊

t = 1 (34)  

∑

∀t∕∈H

ν∊
t = 0 (35) 

Finally, it is required to impose integrality on some variables, as 
follows. 

ν∊
t , ν∊

t , ν ∊
t ∈ {0, 1};∀t ∈ T (36) 

Typically, consumers are encouraged to keep the same two happy 
hours through a year (e.g. see [6]). Also, a real electricity consumer is 
not normally willing to vary the hired happy hours each day or even 
each month, which may provoke demand response fatigue [22]. Due to 
these reasons, we have preferred to keep the developed model as real
istic as possible. Thus, some variables (e.g. ν∊

t ,ν∊
t ,ν ∊

t ) are just defined for 
time slots and they do not vary depending on the representative day. 
Nevertheless, the developed MILP model could be straightforward 
adapted to any other situation. 

4. Case study 

In order to show the capabilities of the developed tool, it has been 
run on a benchmark case study. Specifically, the Spanish retail market 
has been considered. More precisely, the company Endesa has been 
taken as benchmark. Currently, this retailer offers (among others) three 
tariffs that are described in Table 1 [23]. Indeed, the tariff 1 corresponds 
with a fixed tariff, the tariff 2 can be assimilated to a time-of-use tariff 
while the tariff 3 corresponds with a happy hours plan. This case study is 
considered suitable to illustrate the capabilities of the developed tool, 
since this retail offers the three kind of tariffs modelled in the present 
paper. In addition, including more tariffs may be unsuitable as it may 
difficult the analysis of the results obtained as most of the tariffs offered 
through the world only differ in the energy price and its mechanism and 
conditions are similar. The selling price is assumed to be 0.9 times the 

purchasing price (i.e. μ = 0.9) [20]. It is assumed that, during happy 
hours, the selling price is set to zero in order to avoid unrealistic energy 
transactions between the home and the grid during those hours. 

A benchmark smart prosumer system has been considered for sim
ulations. The main characteristics of the system under study are listed in 
Table 2. This home system counts with a series of controllable appli
ances, whose most relevant features are collected in Table 3 [8]. 

The simulations have been run over a 1-day time horizon with a time 
step of 30 min (i.e. Δτ = 1/2). To build the different scenarios consid
ered (representative days), we have taken the data available in various 
database. More precisely, the ambient temperature and solar irradiance 
were taken from [24], and correspond with measurements collected at 
Madrid (Spain) during the year 2016. On the other hand, the home 
demand due to non-controllable loads has been taken from [25]. In this 
case, the demand corresponding to the DW has been neglected as it is 
considered a controllable appliance. 

Once the data corresponding to ambient temperature, solar irradia
tion and non-controllable loads demand have been collected, the 
resulting profiles are reduced by using the k-medoids technique to only 
consider the most representative ones. The total number of clusters has 
been selected on the basis of the Davies Bouldin index and the total sum 
of distances, so a compromise solution between these two indicators is 
taken. Fig. 4 shows the value of the two considered indexes. The 
compromise solution between the Davies Bouldin Index and the total 
sum of distances has to be addressed by direct inspection of the value of 
both indexes. For the case study, one can clearly check that the total sum 
of distances is not further improved beyond 14 clusters. So, let us only 
consider clustering numbers beyond 14. Then, one can check the value 
of the Davies Bouldin index for more than 14 clusters. As observed, the 
lowest Davies Bouldin value is clearly obtained with 15 clusters, which 
has been the value selected for simulations. Fig. 5 plots the profiles 
corresponding to the 15 representative days considered in simulations. 
These profiles serve to calculate the value of p̂PV

st by using (19) and as 
input of the developed MILP optimization problem described in Section 
3, which serves to determine the most suitable tariff for the home system 
under study. 

4.1. Tariff-choosing result 

Table 4 reports the yearly energy expenditure for the three tariffs 
considered besides the total solution time required by an Intel® Core™ 
i5-9400F 2.90 GHz 8.00 GB RAM personal computer under Matlab 
R2019a environment. For further illustrating how the total number of 
clusters (representative days) affects the results provided by the devel
oped tool, the analysis has been extended for 1, 5 and 15 clusters. The 
authors also carry out a simulation without clustering the available data 
(i.e. 365 representative days), however, resulting size of the problem 

Table 2 
Relevant characteristics of the prosumer system under study.  

Parameter Value Parameter Value 

pG  10 kW λ  4 h 

PPV  0.5 kW DOD  0.6 

ηPV  0.17 ηB  0.98 

ξ  5 kWh    

Table 3 
Characteristics of controllable loads.  

Load (i)  Pi(kW)  δi  LBi  UBi  

WM 3 3 16 23 
DW 2.5 4 15 33 
SD 2.5 2 25 35 
EV 3.5 6 3 14  

Table 1 
Characteristics of the different tariffs considered in simulations.  

Tariff Energy price (π∊/π∊
t )  Happy hours (ϑ)  

1 0.12 €/kWh – 
2 0.08 €/kWh (22:00–12:00 h) 

0.16 €/kWh (13:00–21:00 h) 
– 

3 0.16 €/kWh 2 h/day  
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was unaffordable and the used software yielded an error, remarking the 
importance of reducing the available data. 

For the system under study, the tariff 2 resulted the most attractive 
one attending to the yearly energy expenditure for the users. For the 
tariff 3, 7:00–8:00 h was determined to be the most suitable period to be 

hired as happy hours. The final decision yielded by the developed tool 
was the same regardless the total number of clusters considered, how
ever, the yearly energy expenditure was clearly underestimated if few 
clusters are considered. This is due to some days with low PV production 
are ignored if few representative days are taken into account. These days 
suppose the most unfavourable situation for home energy consumption 
as much energy has to be purchased from the utility grid. 

As expected, solution time grows as the number of clusters is 
increased. However, even with 15 clusters, computational burden can be 
considered acceptable. One should note that the tariff choosing-decision 
process is normally carried out over a planning time horizon (days). In 
this context, solution time is not as important as in operational tools 
[25]. These results also serve to validate the applicability of the devel
oped tool to other retail markets with thousand of tariff options. 
Considering that most of available electricity tariffs only differ on the 
energy price, solution time can be considered as a linear function of the 
total number of tariffs included in the analysis. Keeping this on mind, the 
presumable time consumed by the developed application on a potential 
retail market with over 1,000 different tariffs would be approximately 
10 h, which seems reasonable in this context. It is also worth noting that 
parallel processing strategies can be easily implemented in the devel
oped tool. Thus, the developed MILP optimization framework could be 
simultaneously carried out for the different tariffs considered, reducing 
the solution time notably. 

In order to show the coherency of the results calculated by the 
developed framework, Fig. 6 plots the total home demand (controllable 
and non-controllable loads) along the PV generation for the three tariffs 

Fig. 4. Value of the metrics used for evaluating different clustering numbers.  

Fig. 5. profiles of the 15 representative days considered in simulations.  

Table 4 
Results provided by the developed MILP optimization problem for the three tariffs considered.   

1 cluster 5 clusters 15 clusters 

Tariff Yearly energy 
expenditure [€] 

Most suitable 
happy hours 

Solution 
time [s] 

Yearly energy 
expenditure [€] 

Most suitable 
happy hours 

Solution 
time [s] 

Yearly energy 
expenditure [€] 

Most suitable 
happy hours 

Solution 
time [s] 

1 1,239.4 – 43.55 1,332.5 – 101.24 1,406.3 – 155.28 
2 834.0 – 943.5 – 1,006.8 – 
3 931.2 7:00–8:00 h 1,055.7 7:00–8:00 h 1,131.4 7:00–8:00 h  
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considered at a typical day considering 15 representative days. As seen, 
most load was scheduled during those hours with high PV penetration in 
tariff 1. In the case of tariff 2, most of the load was scheduled at midday, 
when energy price is still low and PV production begin to be high. In the 
case of tariff 3, most of load was consumed during happy hours. 

4.2. Other capabilities 

As commented, the developed framework is capable of offering other 
relevant capabilities and results as byproduct. Let us illustrate how some 
of them can be obtained in this section. Onwards, only results with 15 
clusters will be showed. 

4.2.1. Energy exchanged with the utility grid 
Firstly, the total expected energy purchased and sold from/to the 

grid can be respectively calculated as follows. 

EGH =
∑

s∈S
Δτωs

∑

t∈T

{
pGH

st

}
(37)  

EHG =
∑

s∈S
Δτωs

∑

t∈T

{
pHG

st

}
(38) 

The value (37) and (38) can be used for multiple endings, for 

example, they may be useful to decide if results profitable to oversize the 
PV-batteries system in order to increase the revenues obtained from 
selling energy to the grid, to hire buying-selling contracts with the dis
tribution company or to undertake some important investments like 
bidirectional power meters. Table 5 reports the value of (37) and (38) 
obtained for the tariffs analysed. As observed, the total energy pur
chased is expected to be similar regardless the tariff considered. On the 
other hand, while zero energy is expected to be sold to the grid in the 
case of tariffs 1 and 3, the developed MILP framework determines that a 
certain amount of energy is expected to be delivered to the utility grid if 
the tariff 2 is hired. 

4.2.2. Further monetary expenditures analysis 
Similarly, the total cost of purchasing energy along the expected 

revenues obtained from selling energy to the grid can be estimated by 
using the equations (39) and (40), respectively. 

QGH =
∑

s∈S
ωs

∑

t∈T

{
cGH

st

}
(39)  

QHG =
∑

s∈S
ωs

∑

t∈T

{
cHG

st

}
(40) 

Table 6 reports the value of (39) and (40) for the three tariffs 
considered. As expected, the value of (39) corresponds with the total 

Fig. 6. Total home demand and PV generation resulted for the tariff 1 (upper), tariff 2 (middle) and tariff 3 (bottom) at a typical day.  

Table 5 
Total expected energy transactions between the utility grid and home through a 
year.  

Tariff EGH  EHG  

1 11.7 MWh – 
2 11.9 MWh 0.13 MWh 
3 11.9 MWh –  

Table 6 
Monetary incomes through a year.  

Tariff QGH  QHG  

1 1,406.3 € – 
2 1,025.5 € 18.7 € 
3 1,131.4 € –  
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yearly energy expenditure reported in Table 4 for the tariffs 1 and 3, 
since zero energy is expected to be sold to the grid in these cases. On the 
other hand, according to the results reported in Table 5, only few 
monetary revenues from home-to-grid energy transactions is expected in 
the case of tariff 2. 

4.2.3. Further analysis of the battery system 
Finally, the total charging-discharging cycles in which the batteries 

incur through a year can be estimated as follows. 

χ =
∑

s∈S

ωsΔτ
2ξ

∑

t∈T

{
pB,dch

st + pB,ch
st

}
(41) 

The value of (41) is especially relevant as it has a direct impact on the 
expected lifetime of batteries [26]. Table 7 reports the value of (41) for 
the tariffs analyzed. As observed, the batteries are practically useless for 
tariff 1. On the other hand, the batteries are expected to be quite used 
with a tariff 3. 

This result evidences the importance of deploying a storage system if 
a happy hours plan is hired. To illustrate this last conclusion, let us 
observe the Fig. 7, where the batteries scheduling result at a typical day 
is plotted. As seen, the batteries were very few exploited in the case of 
tariff 1. With tariff 2, the system only takes advantage of storage 

facilities at last hours of the day, when a transition between peak and 
off-peak hours occurs; thus, batteries tend to be discharged during peak 
hours, partially covering the home demand, to later recover its state of 
charge at off-peak hours. In the case of tariff 3, it is clearly observed how 
the happy hours are intensively exploited to fully charge the batteries, 
which were devoted on partially covering the home demand during the 
first hours of the day. 

The total charging-discharging cycles through a year can be also used 
for determining a suitable depth of discharge strategy in order to 
maximize the batteries lifetime as the electricity bill is reduced. As re
ported in [26], the expected lifetime of a battery system directly depends 
on the depth of discharge strategy. 

5. Conclusions 

This work has presented a support tool for tariff-choosing decision in 
deregulated electricity markets. The new proposal is based on an MILP 
optimization problem, which is capable to determine the most suitable 
tariff for a smart consumer/prosumer along the optimal hours to be 
hired on a happy hours plan. In addition, various useful results can be 
directly extracted from the stated problem as byproduct. 

A benchmark studied case in the Spanish retailer market on a pro
sumer environment has served to show the capabilities of the developed 
tool. In this example, fixed, time-variable and happy hours tariff plans 
have been considered. The developed framework determined that the 
considered time-variable tariff was the most attractive plan for the home 
under study. For a happy hours tariff, the period 7:00–8:00 h was 
determined to be the most suitable to be set as happy hours. In addition, 
this example has served to show how other useful results can be directly 
obtained from the proposed scheme. These results may be invaluable for 
related decision-making tasks. 

Future projects will be focused on further developing similar tools 
with more capabilities. 

Fig. 7. Batteries scheduling result for the tariff 1 (upper), tariff 2 (middle) and tariff 3 (bottom) at a typical day.  

Table 7 
Total charging-discharging battery cy
cles through a year.  

Tariff χ  

1 8.9 
2 181.4 
3 228.3  
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