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Abstract—The objective of this paper is to develop an 

Artificial Neural Network (ANN) model to estimate 

simultaneously, parameters and state of a brushed DC machine.  

The proposed ANN estimator is novel in the sense that his 

estimates simultaneously temperature, speed and rotor resistance 

based only on the measurement of the voltage and current inputs. 

Many types of ANN estimators have been designed by a lot of 

researchers during the last two decades. Each type is designed 

for a specific application. The thermal behavior of the motor is 

very slow, which leads to large amounts of data sets. The 

standard ANN use often Multi-Layer Perceptron (MLP) with 

Levenberg-Marquardt Backpropagation (LMBP), among the 

limits of LMBP in the case of large number of data, so the use of 

MLP based on LMBP is no longer valid in our case. As solution, 

we propose the use of Cascade-Forward Neural Network (CFNN) 

based Bayesian Regulation backpropagation (BRBP). To test our 

estimator robustness a random white-Gaussian noise has been 

added to the sets. The proposed estimator is in our viewpoint 

accurate and robust. 
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I. INTRODUCTION 

We said that when we can measure a physical quantity, we 
know something about it, but when we cannot quantify it, our 
knowledge about it is very poor and insufficient, so without 
quantifying science does not advance. 

The DC motor speed controllers frequently use feedback 
from a speed measuring device, such as a tachometer or an 
optical encoder [1,2], but this later, adds an additional cost and 
congestion throughout the installation [2,3], the problems 
related to the speed measurement are detailed in the [3]. 

The simplest estimation method is based on the steady-state 
voltage equation, where the speed is written as a function of 
armature voltage and current; the peaks due to converter 
especially in the transient state affect this speed and the link 
resistance-temperature is ignored on the other hand, it is the 
two major inconvenient of this method [1]. 

R. Welch Jr. et all [4] discuss the temperature effects on 
electrical and mechanical time constants, he prove that these 
time constants are not constant value, in addition the motor’s 

electrical resistance and its back EMF are depend on 
temperature. 

In [5-8] we find several methods about DC machine 
temperature measurement, but the problems of temperature 
measurement are more complicated and difficult to solve than 
the speed measurement problems, since, the rotor is in rotation. 
The temperature variation is strongly nonlinear depend on the 
load, the supply quality, the cooling conditions, the design and 
the environment conditions. Actually, the problems of armature 
temperature measurement are not totally resolved. 

In literature [9-10], a finite element method (FEM) was 
usually used to obtain generally a 3D thermal distribution in all 
electrical machine point. The major advantage of this method 
is that is suitable to help a designer to optimize the cost, weight 
and cooling mode in the goal to increase the efficiency and 
motor’s lifetime [10], generally, the FEM is hard to implement 
in real time both for the control or monitoring, on the other 
hand, this approach has an enormous resolution time. 

According the literature [11-15], we can distinguish two 
types of electrical machines thermal modeling approaches: 

The first one is thermal model-based approaches, this 
approach based to divide the machine into homogeneous 
components unscrewed in order to ensure each part has 
uniform thermal characteristics such as thermal capacitors, 
thermal resistances and heat transfer coefficients [11, 15]. The 
identification of the model is performed either by the finite 
element technique or by a high range of temperature 
measurement. These models are generally very detailed so, too 
complex for real time application [16], however, many 
researchers simplify this model for the real time applications 
[15, 17]. This approach is robust, unfortunately this model is 
not generalized and a few measurements are needed for each 
motor [11, 16]. 

The second one is the parameter-based approaches, this 
approach based to get the temperature from the online 
resistance estimation [12-14] or identified [18-19]. Therefore, 
the estimate temperature takes under consideration the thermal 
environmental conditions. This method can respond to changes 
in the cooling conditions, and is accurate, but it is generally too 
sensitive [20]. 
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P.P. Acarnley et all [1] proposes an Extended Kalman 
Filter (EKF) is implemented to estimate both the speed and 
armature temperature, but the EKF has problems with the 
matrices initialization step for each machine, therefore, the risk 
of divergence is not very far and not forgotten its dependence 
of the mathematical model. 

R. Pantonial et all [21] propose the using of EKF in two 
steps, the first one is in the steady-state used to estimate the 
electromechanical behavior, and the second one is a transient 
version used to estimate the thermal behavior. However, in this 
case, the system is decoupled and the temperature effect on the 
resistance is not into account for the steady-state model. 

A new nonlinear estimation strategy is proposed in the 
recent paper in this field based on combining elements of the 
EKF with the smooth variable structure filter (SVSF) to 
estimate the stator winding resistance [22], in this research we 
find only a resistance estimation approach, also the link 
temperature-resistance is ignored, then this is the simplest 
estimator version. 

M. Jabri et all use a fuzzy logic technic to estimate the field 
and armature resistance of DC series motor, this is an 
important problem in order to implement a robust closed loop 
control [23], in their newest version [24], present a 
comparative study between a Levenberg-Marquardt (LM) and 
LM with tuning Genetic Algorithms (GA) to adjust relaxation. 
However, in the two versions, only the resistance and the flux 
were estimated and the link temperature-resistance is ignored. 

The most important electrical machine parameter is the 
winding temperature, the winding temperature affects both the 
machine's lifetime and accuracy of control, when the winding 
temperature is equal or superior to the supported winding 
insulation temperature, this critical temperature affect directly 
on the machine lifetime; thus, good knowledge of the thermal 
state of the machine is very important. 

In this context, obtaining the temperature by brittle, 
expensive sensors and adds a congestion to the overall 
installation, without forgetting the problematic of the sensor 
placement, therefore, the sensor is not the right solution [16]. 
In addition, using a Kalman filter, which is difficult to stabilize 
and the problematic of covariance matrices choices, remains 
the two major inconveniences, we propose an intelligent 
universal estimator based on ANN. 

The ANN widely used in different engineering domain, 
such as renewable energy [25], chemical [26], pharmaceutical 
[27 ] and mechanics[28], as well the ANN used in several 
engineering applications such as control [29], optimization 
[30], modeling [31] and condition monitoring [32]. In addition, 
the ANN can used alone [33] or mixed with other technic such 
as GA [34], Particle Swarm Optimization (PSO) [35] and 
Fuzzy Logic [36]. 

One of the most commonly phrased questions in neural 
computation techniques refers to the size of the network that 
provides the best results. Although various ‘‘hints and tips’’ 
like suggestions have been pointed out so far, there is still no 
clear answer to reply to this question [37,38]. This paper 
describes and applies an intelligent technique for combined 

speed, temperature and resistance estimation in a DC machine 
system. 

The use of the proposed method for simultaneous 
estimation combines many advantages. We don't need to use 
the speed and temperature sensors, the armature temperature 
estimation may be used for thermal condition monitoring, and 
the estimate of speed can be used on speed drive process. The 
resistance estimation may be used in adaptive calculations in 
the goal to escape the maladjustment phenomenon of the 
control by parameter variations such as the PID gain 
correction. The proposed estimator is suitable both in the drive 
and in the thermal monitoring. 

In section 2, a thermal model of DC motor is presented. In 
section 3, the DC motor model has been resolved and some 
simulation results have been presented. In section 4, the ANN 
topology and design steps have been introduced. In section 5, 
the simulation studies of ANN estimator is carried out to verify 
and validate the convergence, effectiveness and estimation 
quality. 

II. THERMAL MODEL OF DC MOTOR 

The model used in this paper is illustrated in [1]. 

A. Electrical equation 

0
(1 )

a

a
a a a e

di
V R i l k

dt

    
                 

Where Va is armature voltage, Ra0 is armature resistance at 

ambient temperature, α temperature coefficient of resistance,  
temperature above ambient, ia armature current, la is armature 

inductance, ke is torque constant, and  armature speed. 

B. Mechanical equation 

e a l

d

dt

T k i b J T


                         

Where b is viscous friction constant, J is total inertia and Tl 
is load torque. 

C. Thermal equations 

The thermal model is derived by considering the power 
dissipation and heat transfer [25]. The power dissipated by the 
armature current flowing through the armature resistance, 
which varies in proportion to the temperature can be 
represented by: 

2

0
(1 )

j a a
P R i                              

The iron loss is proportional to speed squared for constant 
excitation, this loss variation with speed in the armature body 
can represent by: 

The iron loss is proportional to speed squared for constant 

excitation multiplied by the iron loss constant 
ir

k , this loss 

variation with speed in the armature body can represent by: 

2

ir ir
P k                                
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The power losses include contributions from copper losses 
and iron losses which frequency dependent: 

2 2

0
(1 )

a a irl
P R i k                        

A simple representation of the assumed DC machine heat 
flow is given in Fig. 1. Heat flow from the DC motor is either 
directly to the cooling air with heat transfer coefficient k. 

 

Fig. 1. Structure of thermal model of DC motor 

The thermal power flow from the DC motor surface that is 
proportional to the difference temperature between the motor 
and the ambient air temperature, and the temperature variation 
in the armature which depends on the thermal capacity H. 

l
P H

d
k

dt


                                       

The effect of the cooling fan is approximated by 
introducing a speed dependence of the thermal transfer 

coefficient
T

k . 

0
(1 )

T
k k k                                       

When Ko: thermal transfer coefficient at zero speed and is 
KT thermal transfer coefficient with speed. 

By arranging the previous eqs, we can write: 

2 2

0 0
(1 ) (1 )

a a ir T

d
R i k k k H

dt


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The equations system can be written as: 
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(9) 

III. SIMULATION RESULTS 

The resolution of the equations system (9) in 
Matlab/Simulink environment with the use of parameters from 
[1], we get the following results: 

 
Fig. 2. Armature current 

 

Fig. 3. Rotor speed 

 
Fig. 4. Average temperature 

The current curve variation is illustrated by Fig.2, we can 
see that in the transient stat the current reach 60A, but in the 
study state decrease by almost a factor of 10, the final value is 
7.27A. 

Fig.3 shows DC machine speed variation under load. Fig.4 
shows armature average temperature in a brushed DC machine, 
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this temperature reaches 80 
0
C after 140 min, the armature 

resistance increase 31%. 

IV. ANN ESTIMATOR 

In this section, an ANN is used in tree steps in order to 
estimate the speed, temperature and resistance. In this section, 
we discuss the ANN design step, topology choice and the 
learning algorithms finally, we applicate the ANN to our study. 

A. Types of ANN 

Feed-Forward Neural Network (FFNN) is the simplest 
process neural network. Each subsequent layer in FFNN only 
has a weight coming from the previous layer. Due to the 
drawback of this topology structure, FFNN cannot solve some 
complex problems [38]. The convergence process is slow or 
even impossible to realize. To address these problems, a CFNN 
is proposed here. 

 

Fig. 5. The structure of the ANN used 

CFNN are similar to FFNN, but include a connection from 
the input and every previous layer to following layers. As with 
FFNN, a two-or more layer cascade-network can learn any 
finite input-output relationship arbitrarily well given enough 
hidden neurons [38-29]. 

B. Data sets 

We have create a Matlab program that breaks the input 
vector into three parts without losing the information of each 
part, to make the data obtained by simulation similar than the 
sensor data a random white-Gaussian noise signal has been 
added.  

 

 

 

 

 

 
 

Fig. 6. ANN estimator schemes 

This noise make the training very hard and requires a 
significant time, but the ANN is very trained and applicable on 
real time. so we have three sets:  training, test and validation, 
each base part in the input vector of a well-defined percentage, 
50% occupied by training set, 25% by the testing and 25% by 
validation set, this data was extracted from Fig. 6. 

C. Training  

LMBP is the default training function because it is very 
fast, but it requires a lot of memory to run [38-40]. In our case, 
we have a very large input vector so the problem of exceed 
memory is imposed. 

We have created a Matlab program for optimize CFNNE 
performances, such as hidden layer number, number of neurons 
in each hidden layer, epochs number. For the activation 
functions, we try deferent functions, but the hyperbolic tangent 
sigmoid transfer function for the hidden layers and linear 
transfer function for the output are the best. 

Fig. 7 shows ANN estimator used in the present paper. 

 

Fig. 7. ANN estimator used in the present paper 

V. SIMULATION RESULTS 

In this section we following the instructions discussed in 
the past section for obtained an optimized CFNNE, training 
step is the most important step to create any ANN, our 
optimized CFNNE is trained after 2000 epoch at the 
performance 1.6e-4. 

  

Fig. 8. Speed estimation by ANN 

Fig.8 shows DC machine speed estimation and the 
corresponding estimation error at the testing step, in transient 
state we can see on the speed estimation error curve's a peak of 
110 rad/s between the output of the model and the ANN 
output, the duration of this peak is 0.3s. In steady state our 
CFNNE give a good results with estimation error less than 0.04 
rad/s that means less than 0.008%. 
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Fig. 9. Average temperature estimation by ANN 

The temperature estimation is shown in Fig.9; the 
temperature value in the DC machine thermal steady state is 
approximately 80

0
C, the corresponding error is less than 0.6

0
C 

so, less than 0.75%. 

The CFNNE can also estimate the resistance, this 
estimation is shown in Fig. 10 the estimation error is less than 
0.004Ω. 

 

Fig. 10. Armature resistance estimation by ANN 

VI. CONCLUSION 

A thermal model of DC motor is presented and some 
results are discussed. The measurement problems and even the 
use of conventional estimators of speed, temperature and 
resistance were discussed; the simultaneous estimation of DC 
machine state variables and parameters not recognized in the 
literature, our goal is to simulate simultaneously the DC 
machine speed, temperature and resistance. The ANN makes it 
possible to achieve this goal, because it enables to estimate 
simultaneously the speed, temperature and resistance of a DC 
motor from only the knowledge of voltage and current. The 
specialized literature we give several ANN versions, according 
to the studied system characteristics the most suitable approach 
is CFNNE. The creation steps of CFNNE and the different data 
bases is discussed in Section IV, the addition of white Gaussian 
noise to the data set is very important, because if that which 
make the application in real time is possible and our ANN not 

be affected by current and voltage measurements noise. It can 
be seen that the network has worked with an acceptable error. 
The variable stat estimation may be used in condition 
monitoring or in robust control, the simulation results 
demonstrate that the new approach proposed in this paper is 
feasible. 
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