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Abstract: In this paper, a sensorless speed and armature resistance and temperature estimator for brushed (B) DC
machines is proposed, based on a cascade-forward neural network and quasi-Newton BFGS backpropagation. Since we
wish to avoid the use of a thermal sensor, a thermal model is needed to estimate the temperature of the BDC machine.
Previous studies propose either nonintelligent estimators that depend on the model, such as the extended Kalman filter
and Luenberger’s observer, or estimators that do not estimate the speed, temperature, and resistance simultaneously.
The proposed method has been verified both by simulation and by comparison with the simulation results available in
the literature.
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1. Introduction
In the last few years there has been growing interest in thermal aspects of electrical machines and their effects
on electrical and mechanical parameters and time constants such as electrical resistance or back EMF [1], since,
due to their influence, the motor’s characteristics and hence its performance during operation are not the same
as those considered during design [2]. Real-time knowledge of temperature in the various motor parts is also
very useful in order to predict incipient failures and to adopt corrective actions, thus obtaining not only better
control but also higher reliability of the electrical machine.

The early prediction of thermal aging, which makes insulations vulnerable, as well as of other thermal
factors directly influencing motor health and life can avoid dangerous failures [3–5]. The main causes of thermal
faults are overloads [6], cyclic mode [7], overvoltage and/or voltage unbalances [8], distortions [4], thermal
insulation aging [3], obstructed or impaired cooling [9], poor design and manufacture [3], and skin effect [10].

For several years, great efforts have been devoted to the temperature and speed measurement of electrical
machines, and several methods for temperature [11–13] and speed measurements [14] have already been proposed
in the literature. While the direct measurement of temperature in electric DC machines is a long-established
approach [13–15], some authors obtained the average winding temperature from the resistance measurement
[13]. A more modern method can be found in [12,16], but the temperature measurement gave rise to two major
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problems: optimum sensor placement and the difficulty of achieving rotor thermal measurements. Likewise,
speed measurement can also be difficult [17]. Moreover, information from sensors installed on rotating parts leads
to techno-economic difficulties in the measurement chain. Sensorless solutions have therefore been considered
by many studies [16,18–20].

One of the first examples of temperature estimation was presented in [21], where a Luenberger observer
was applied both to a DC rolling mill motor and a squirrel cage induction motor. Another solution was described
in [22], where the authors used a steady-state extended Kalman filter (EKF) associated with its transient version.
To estimate the resistance some authors combine the EKF with a smooth variable structure filter [23]. Some
research on bi-estimation has been done [24], which describes and implements an algorithm for combined flux-
linkage and position estimation for PM motors based on the machine’s characteristic curves. A very interesting
approach was proposed in [25], applying and experimentally validating a transient EKF to estimate the speed
and armature temperature in a BDC motor. However, the EKF has some limitations, in particular: (i) if the
system is incorrectly modeled, the filter may quickly diverge; (ii) the EKF assumes Gaussian noise [26–28]; (iii)
if the initial state estimate values are incorrect, the filter may also diverge; (iv) the EKF can be difficult to
stabilize due to the sensitivity of the covariance matrices [27,29].

To the authors’ knowledge, very few publications deal with the simultaneous estimation of speed and
armature temperature of DC machines [25], especially when performed by intelligent techniques [29]. Artificial
neural networks (ANNs) have demonstrated their ability in a wide variety of applications such as process control
[30], identification [31], diagnostics [32], pattern recognition [33], robot vision [34], flight scheduling [35], finance
and economics [36], and medical diagnosis [37].

In this paper, while referring to our previous study [29], in which an estimator based on a multilayer
perceptron with Levenberg–Marquardt BP was developed in order to avoid the limitations of the standard
ANN, a solution based on a cascade-forward neural network (CFNN) and Bayesian regulation BP (BRBP)
is proposed. A highly accurate BRBP-based ANN was proposed in [38,39] but it requires an extremely long
convergence time and is in fact known to be among the slowest algorithms to converge. Based on the approach
already presented in [29], the purpose of this paper is to propose a novel approach using a learning algorithm
that is a compromise between speed and accuracy. The BFGS can respond to these two constraints [39].

The remainder of the paper is organized as follows: Section 2 describes the thermal model of the BDC
motor, Section 3 discusses the ANN and CFNN based on quasi-Newton BFGS BP, and Section 4 presents the
simulation results and analysis. Finally, some conclusions are discussed in Section 5.

2. Thermal model of BDC machines
Research interest in studying rotating electric machinery from the combined viewpoints of thermal and electrical
processes dates back to the 1950s [40,41]. The model used in this paper was proposed by Acarnley and Al-Tayie
in [25]. This is a simplified model and is obtained by considering the power dissipation and heat transfer in the
BDC machine [25]. The power is dissipated by the armature current flowing through the armature resistance,
which varies in proportion to the temperature. The electrical equation of a BDC motor can be written as:

Va = Ra0 (1 + αcuθ) ia + La
dia
dt

+ keω (1)

where Va (V) is the armature voltage, Ra0 (Ω) is the armature resistance at ambient temperature, αcu (αcu

0.004 1/◦C) is the temperature coefficient of resistance, θ(◦C) the temperature above ambient, ia (A) is the
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armature current, La (H) is the armature inductance, ke (V/rad/s) is the torque constant, and ω (rad/s) is
the armature speed.

The mechanical equation of a BDC motor can be written as:

J
dω

dt
+ bω + Tl = keia, (2)

where J (kg ×m2) is total inertia, b (N ×m ×s) is the viscous friction constant, and Tl (N ×m) is the load
torque.

The power losses (Pl) include contributions from copper losses and iron losses, which are frequency-
dependent; the copper loss is proportional to current squared multiplied by resistance, which depends on
temperature, while the iron loss is proportional to speed squared for constant excitation multiplied by the iron
loss constant (kir = 0.0041 W/(rad/s)2) [25]:

Pl=Ra0 (1+αcuθ) i
2
a+kirω

2. (3)

Heat flow from the armature surface of the BDC motor is directly to the cooling air and depends on the thermal
transfer coefficients at zero speed (ko = 4.33 Wv◦C) and at speed (kT = 0.0028 rad/s); the thermal power flow
from the armature surface to the BDC motor surface is proportional to the temperature difference between the
motor and the ambient temperature. The rate of temperature variation depends on the thermal capacity (H =

18 KJ/◦C), and it was simplified by Acarnley and Al-Tayie in [25] as follows:

Pl = k0 (1 + kTω) θ +H
dθ

dt
. (4)

By arranging the previous equations, we can write the system of equations as follows.

dia
dt = −Ra0(1+αcuθ)

La
ia − ke

La
ω+ 1

La
v
a

dω
dt = ke

J − b
Jω − K

J Tl
dθ
dt = Ra0(1+αcuθ)

H i2a +
kir

H ω2 − k0(1+kTω)
H θ

(5)

3. ANN estimator
In recent years, CFNNs have become a widely used backpropagation algorithm [42–51] and have proved their
capability in several applications [49–57]. CFNNs are similar to feedforward neural networks (FFNNs), but
include a weight connection from the input to each layer and from each layer to the successive layers [49–
56]. For example, a four-layer network has connections from layer 1 to layer 2, layer 2 to layer 3, layer 3
to layer 4, layer 1 to layer 3, layer 1 to layer 4, and layer 2 to layer 4. In addition, the four-layer network
also has connections between input and all layers. FFNNs and CFNNs can potentially learn any input-output
relationship, but CFNNs with more layers might learn complex relationships more quickly [50–53], making them
the right choice for accelerated learning in ANNs [51]. The results obtained by Filik and Kurban in [52] suggest
that CFNN BP can be more effective than FFNN BP in some cases.

In the present study, after solving Eq. (5), a random white Gaussian noise was added to the inputs and
outputs of the BDC machine model. The outputs of the model were then used as the CFNN target and its
inputs as the CFNN inputs, as shown in Figure 1. This noise makes the training very slow, but the CFNN
is well trained and applicable in real time, and it is also used to track the performance and robustness of the
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CFNN. Half of the simulation data of the BDC machine was used to create the training set and the other half
was shared equally by the test and validation sets. The procedure used to train the NN was the cross-validation
error checked over multiple sets of training data.

Inputs   
(Va, Ia)  

Noise 

Comparison 
and plot the 

results 

BDC  Machine 
(Eq. (5))  

ω, θ, R :target  of CFNN 

CFNN-BFGS  BP 

Figure 1. Estimating system of BDC machine by ANN based on BFGS BP.

The BP algorithm was used to form the neural network such that on all training patterns, the sum
squared error (E) between the actual network outputs (y) and the corresponding desired outputs (yd) was
minimized to a supposed value:

E =
∑

(yd − y)
2
. (6)

To obtain the optimal network architecture, for each layer the transfer function types must be determined by a
trial and error method. On the input (2 units) and three hidden layers (3, 4, and 5 units), a hyperbolic tangent
sigmoid transfer function was used, defined as:

f (netj) =
2

1 + e−2netj
− 1, (7)

where net is the weighted sum of the input unit j , and f (net) is the output units. The output layer has 3 units
with a pure linear transfer function, defined as:

f (netj) = netj . (8)

3.1. Quasi-Newton BFGS BP algorithm
The quasi-Newton BFGS BP training algorithm is a useful method for updating network weights and biases
according to the BFGS formulae [58–61]. The algorithm belongs to the quasi-Newton family and was devised by
Broyden, Fletcher, Goldfarb, and Shanno in 1970 [62–65] to achieve fast optimization [60,61]. It is an iterative
method that approximates Newton’s method without the inverse of Hessian’s matrix [60]. It is a second-order
optimization algorithm [60,61]. In this paper, the weight and bias values were updated according to the BFGS
quasi-Newton method, and the new weight wk+1 was computed as:

wk+1 = ωkH
−1
k Ψk, (9)

where Hk is the Hessian matrix of the performance index at the current values of the weights and biases. When
Hk is large, wk+1 computation is complex and time-consuming [66–68]. BFGS does not calculate the inverse
Hessian but approximates it as follows:

Hk+1 = Hk +
yky

T
k

yTk Sk

HkSkS
T
k Hk

ST
k HkSk

, (10)
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whereΨk = ∇f(wk+1) , Sk = wk+1 − ωk , and yk = ∇f (wk+1)∇f(wk) . The new formula can be approximated
as:

wk+1 = ωk

(
Hk +

yky
T
k

yTk Sk

−
HkSkS

T
k Hk

ST
k HkSk

)
Ψk. (11)

This method has several advantages: it has a better convergence rate than using conjugate gradients [58–61],
it is stable because the BFGS Hessian update is symmetric and positive definite [60], and BFGS computes an

approximation to the inverse Hessian in only O(n2

) operations [60]. However, this method requires a lot of
memory to converge, especially on a large scale [66–69], whereas many researchers are interested in how to
reduce memory needs [67–71].

4. Simulation results
Figures 2–5 show the simulation results of the simultaneous estimation of speed, armature temperature, and
resistance by CFNN based on BFGS BP for continuous running duty or abbreviated by duty type S1. Duty
type S1 is characterized by operation at a constant load maintained for a sufficient time to allow the machine
to reach thermal equilibrium [72]. The ANN outputs are in good agreement with the model outputs as can be
seen below, proving the ability of the proposed approach. The BDC motor parameters used during simulations
are as follows:
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Figure 2. Estimated and simulated speed.

- Rated voltage Va = 240 V
- Rated power P = 3 kW
- Rated torque Tl = 11 Nm
- Armature resistance Ra0 = 3.5 Ω

- Armature inductance La = 34 mH
The estimated speed and the corresponding errors are shown in Figure 2. The results obtained by

Acarnley and Al-Tayie in [25] suggest that the speed estimation error from the EKF is approximately 2%.
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Figure 4. Estimated and simulated armature resistance.

Moreover, it is not suitable for high-performance servo drives [25]. However, in the results obtained here, the
error is less than 0.4 rad/s and represents only 0.18% of the final value, as shown in Figure 5. The estimated
temperature and the corresponding errors are shown in Figure 3, where it reaches 79.5 ◦C, while the model
output is 80 ◦C and the steady state estimated error is less than 0.5 ◦C. This is insignificant and represents only
0.625%, as can be seen from Figures 3 and 5. This can be contrasted with the results in [25], which suggested
that the temperature estimation error was 3 ◦C, i.e. approximately 3.75%, while Nestler and Sattler in [21]
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Figure 5. Speed, temperature, and resistance estimation errors.

found that the estimated winding temperature error was high. Even though Pantonial et al. in [22] reported an
improvement, estimating that the error did not exceed 1 ◦C, the results presented in this paper are the best.
Figure 4 depicts the resistance estimated by CFNN based on BFGS BP and the model response. It can be seen
from this figure that the resistance has the same curvature as the armature temperature, where the steady state
estimated resistance is 4.59 Ω , i.e. less than 6 × 10−3 of the simulated resistance. Practically, this difference
is a negligible quantity and represents only 0.13% of the final value. The results obtained are more precise than
those presented in [23]. Figure 5 shows the estimation errors of speed, temperature, and resistance and their
percentages in relation to their rated values. Figure 5 and the Table show more clearly the good agreement
between the model outputs and the outputs of our intelligent sensor. The simulation results can be summarized
by the Table.

Table. Summary of the estimation errors.

Xmodel −XEstimate (Xmodel −XEstimate)/Xmodel

Speed 0.4 rad/s 0.18%
Temperature 0.5 0C 0.625%
Resistance 0.006 Ω 0.13%

5. Conclusion
A sensorless simultaneous estimator for BDC machines based on a CFNN trained by BFGS BP has been
proposed and verified through simulation and by comparison with earlier studies. The estimator includes
sensorless speed estimation, average armature temperature, and resistance estimations based only on the voltage
and the current measurements. Estimated speed and temperature eliminate the need for speed measurements
and the need for a thermal sensor. In addition, estimated temperature solves the problem of obtaining thermal
information from the rotating armature. Furthermore, the estimated temperature can be used for a new thermal
monitoring method, motor protection, and other duty types since the model includes the load effect in the copper
loss and the frequency effect in the iron loss. The estimated resistance can be used to improve the accuracy of
the control algorithms that are affected by an increase in resistance as a function of temperature. Consequently,
a sensorless simultaneous estimation of speed, temperature, and resistance could be a promising research field
for future research. The good agreement between model and intelligent estimator results demonstrates the
efficiency of the proposed approach.
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