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 A sensorless speed, average temperature and resistance estimation technique based on Neural 

Network (NN) for brushed DC machines is proposed in this paper. The literature on parameters  
and state spaces estimations of the Brushed DC machines, shows a variety of approaches. 

However, these observers are sensitive to a noise, on the model accuracy also are difficult to 

stabilize and to converge. Furthermore, the majority of earlier works, estimate either the speed 

or the temperature or the winding resistance. According to the literatures, the Resilient 

backpropagation (RBP) as is the known as the faster BP algorithm, Cascade-Forward Neural 
Network (CFNN), is known as the among accelerated learning backpropagation algorithms, 

that's why where it is found in several researches, also in several applications in these few 

years. The main objective of this paper is to introduce an intelligent sensor based on resilient 

BP to estimate simultaneously the speed, armature temperature and resistance of brushed DC 

machines only from the measured current and voltage. A comparison between the obtained 
results and the results of traditional estimator has been made to prove the ability of the 

proposed method. This method can be embedded in thermal monitoring systems, in high 

performance motor drives. 
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1. INTRODUCTION 

 

In the last few years there has been a growing interest in  

thermal aspects of electrical machines and their effects, the 

electrical and mechanical time constants varied for each 

temperature variation, also the electrical resistance and its 

back EMF depend on temperature [1]; during operation, the 

characteristics, performance of electric motors were not the 

same as those the design’s [2], as a result, the temperature 

quantification is very important to the best control and the 

reliability of electrical machines. 

The normal effect of thermal aging is to make the insulation 

system vulnerable to other factors and effects that currently 

produce failures [3, 4]. Once the insulation loses its physical 

performance, it can no longer withstand the various dielectric, 

mechanical and environmental effects, because of these 

catastrophic effects many researchers interested in the 

insulation systems monitoring methods of electrical machines 

[5]. Among the causes of thermal faults are: overloads [6], 

cyclic mode [7], over voltage and unbalances voltage [8], 

distortion voltage [4], thermal insulation aging [3], obstructed 

or impaired cooling [9], poor design and manufacture [3], skin 

effect [10], the interested reader is referred to [3-10] for more 

detailed about the cause of stator and rotor failures. 

For several years, great effort has been devoted to the 

temperature and speed measurement of electrical machines, in 

literature, we find several methods about temperature [11-13] 

and speed measurements [14] of electrical apparatus. The 

direct measurement of temperature in electric DC machines is 

an old theme treated at their time with less pressure [13, 15, 

16], on the other hand, (indirect) some author obtained the 

average winding temperature from the resistance measurement 

[13], a  more modern method can be found in [12, 17, 18], but 

measurement of the temperature poses two major problems: 

the measurement point i.e the optimum sensor placement and 

the obtaining of the thermal information from the rotor [18], 

in the same manner for the speed measurement, some 

difficulties are presented her [19]. 

Moreover, obtaining information from sensors installed on 

the armature adds techno-economics difficulties on the 

measurement chain; these technical and economic 

disadvantages of physical sensors as well known to 

researchers, pushes them for sensorless solutions [17, 20, 21]. 

To solve the problem of sensorless speed estimation, many 

researchers have proposed various methods [22, 23], a  

position-sensorless control of brushless DC motor for electric 

vehicles application is presented in [24], a  low-cost low-

resolution sensorless for brushed DC motor is proposed and 

experimentally validated in [25], a  sensorless estimation based 

on support vector machines is proposed by [26]. however, [27] 

suggest a speed estimation based quantized sensors of PMDC 

motors. An excellent review about position-sensorless 

operation of brushless permanent-magnet machines is 

presented in [22]. 

One of the first examples of temperature estimation is 

presented in [28], when the authors apply a Luenberger 

observer both for DC rolling mill motor and a squirrel cage 

induction motor, another solution is described in [29] where 
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the authors use a steady-state EKF associated with its transient 

version, nevertheless , for the resistance estimation some 

author combine between EKF with the smooth variable 

structure filter [30]. 

Some research on bi-estimation has been done [31, 32], in 

our point view the most interesting approach to this issue has 

been proposed by Acarnley et al. in [32], where they propose, 

applies and experimentally validated the transient EKF to 

estimate the speed and armature temperature in a brushed DC 

motor. However, we can summarize the EKF limitations for 

three points, if the system is incorrectly modelled the filter 

could quickly diverge, the EKF assumes that the noises are 

Gaussian [33-35] may not be the reality [36] and eventually, if 

the initial state estimate values are incorrect also the filter may 

diverge [37]. Furthermore, using an EKF, which is difficult to 

stabilize with the sensible choices of covariance matrices [34-

36]. 

However, to the authors' knowledge, very few publications 

can be found in the literature dealing with the simultaneous 

estimation of speed, armature temperature of brushed DC 

machines [32], especially by intelligent estimators based on 

NN [38], despite the NN has been applied to process control 

[39], diagnostics, identification [40], prediction [41], power 

electronics [42] and robotics [43], social studies [44], building 

[45] and medical [46]. 

In the paper [38], the authors discuss how to avoid the limits 

of the standard NN based on Multilayer Perceptron with 

Levenberg-Marquardt Backpropagation in their application, 

and propose as a solution a CFNN based on Bayesian 

Regulation backpropagation (BRBP). However, an NN based 

on BRBP is very accurate but need an enormous time to 

converge and is known as a slow algorithm to converge [44, 

45], based on the approach presented in [38], the purpose of 

this paper is interest to a CFNN based on fast learning 

algorithm. According to the literatures the Resilient  

backpropagation (RBP) as is the known as the faster BP [46-

50], the main objective of this paper is to introduce an 

intelligent NN-based resilient BP sensor to estimate 

simultaneously the speed, armature temperature and resistance 

only from the measured current and voltage.  

The remainder of the paper is organized as follows sections: 

Section II describes the thermal model of Brushed DC motor; 

Section III discusses on the NN and CFNN based on RBP and 

give some detail about RP properties and its variants. 

Simulation results are presented, commented and compared 

with the earlier results in Section IV; Section V concludes the 

paper. 

 

 

2. THERMAL MODEL OF BRUSHED DC MOTOR 

 

The researchers begin to interest to study of rotating electric 

machinery from the combined viewpoints of thermal and 

electrical processes from the last middle century [51, 52]. The 

model used in this paper is proposed by [32], the electrical 

equation can write as: 

 

0 (1 )a
a

aa cu a e

di
V R i l k

dt
 = + + +  (1) 

 

Where: Va is armature voltage, Ra0 is armature resistance 

at ambient temperature, αcu (αcu = 0.004 /°C) temperature 

coefficient of resistance,  temperature above ambient, ia 

armature current, la is armature inductance, ke is torque 

constant, and  armature speed. The mechanical equation: 
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d

dt
J b T k i


+ + =  (2) 

 

where J (kg × m2) is total inertia, b (N × m × s) is the viscous 

friction constant, and TL (N × m) is the load torque. 

The thermal model is derived by considering the power 

dissipation and heat transfer [32]. The power dissipated by the 

armature current flowing through the armature resistance, 

which varies in proportion to the temperature. The iron loss is 

proportional to speed squared for constant excitation 

multiplied by the iron loss constant kir (kir = 0.0041 

W/(rad/s)2). The power losses Plo include contributions from 

copper losses and iron losses which frequency dependent:  
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lo a cu a irP R i k  = ++  (3) 

 

Heat flow from the DC motor is either directly to the cooling 

air and depends on the thermal transfer coefficients at zero 

speed K (K =4.33 W/°C) and with speed KS (KS = 0 .0028 

s/rad); The thermal power flow from the DC motor surface that 

is proportional to the difference temperature between the 

motor and the ambient air temperature, and the temperature 

variation in the armature which depends on the thermal 

capacity H (H=18 KJ/°C): 
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dt
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By arranging the previous eqs, we can write the equations 

system as: 
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3. ANN ESTIMATOR 

 

In recent years, several authors use a cascade forward 

backpropagation neural network (CFNN) and has become very 

popular [53-75] a CFNN proved their capability in several 

applications and it they become their preferred choice [74]. 

Many authors [70-79], assert that the CFNN are similar to 

FFNN, but include a weight connection from the input to each 

layer and from each layer to the successive layers . As 

example, a  four-layer network has connections from layer 1 to 

layer 2, layer 2 to layer 3, layer 3 to layer 4, layer 1 to layer 3, 

layer 1 to layer 4 and layer 2 to layer 4. In addition, the four-

layer network also has connections from the input to all layers. 

As FFNN and CFNN can potentially learn any input-output 

relationship, but the CFNNs with more layers might learn 

complex relationships more quickly [74-76, 80], which makes 

it the right choice for intended for accelerated learning in NNs 

[75]. The results obtained by Filik et al. in [80] suggest that 



 

which cascade forward back propagation method can be more 

effective than feed-forward back propagation method in some 

cases. And on the other hand, the FFNN cannot solve some 

problems [77]. the reader is referred to [74-77, 79, 80] for more 

detailed. 

 

 
 

Figure 1. Comparison between model and NN's outputs 

 

In this application, the CFNN inputs are the voltage and 

current and the outputs are the speed and the armature 

temperature and resistance, to test the robustness and to make 

the CFNN’s inputs similar to the output of the sensor for the 

real-time applications, a  random white Gaussian noise has 

been added to the inputs patterns. 

 

3.1 Back-propagation training algorithms 

 

The backpropagation algorithm is used to form the neural 

network such that on all training patterns, the sum squared 

error ‘E’ between the actual network outputs, ‘y’ and the 

corresponding desired outputs, yd, is minimized to a supposed 

value: 

 
2

( )
d

E y y= −  (6) 

 

To get the optimal network architecture, for each layer the 

transfer function types must be determined by trial and error 

method. On the input and hidden layer, a  hyperbolic tangent 

sigmoid transfer function has been used, defined as:  
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( ) 1

1 j
j net

f net
e
−

= −
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 (7) 

 

where net is the weighted sum of the input unit, and f(net) 

is the output units. For the output layer has 3 units with a pure 

linear transfer function. 

 

( )
j j

f net net=  (8) 

 

3.2 Principe and rule 

 

Resilient backpropagation often abridged by Rprop [49, 49, 

81-84] or RBP [46, 48, 58, 78, 85] was created by 

M.Riedmiller et al in 1992 [81], is a  learning heuristic [49] and 

is a batch update algorithm [86] for supervised learning [84, 

87] and Rprop is a first-order optimization algorithm [88]. 

Rprop performs a local adaptation of the weight-updates 

based on the sign of the partial derivative ∂E/∂wij to eliminate 

the harmful influence of the size of the partial derivative on 

the weight step. It is based on the so-called Manhattan 

Learning rule [81, 83], for more details the reader is referred 

to [48, 49, 81-84, 89]. 

In each iteration, the new weights are given by: 

 
( 1) ( ) ( )t t t

ij ij ijw w w+ = +  (9) 

 

The size of the weight change is exclusively determined by a 

weight-specific, so-called ‘update-value’ performed as 

follows: 
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The second step of Rprop learning is to determine the new 

update-values, the step size update rules are: 
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With 0 < 𝜂− < 1 < 𝜂 + , For each weight, if there was a sign  

change of the partial derivative of the total error function for 

two successive iteration, the update value for that weight is 

multiplied by a factor η−, where η− < 1, the preferred value of 

the decrease factor which gives us the best results is −=0.5 

[84, 87], but if two successive iteration produced the same 

sign, the update value is multiplied by a factor of η+, where η+ 

> 1, the preferred value of the increase factor which gives us 

the best results is η+ =1.2 [84, 87], the maximum weight step 

is fixed to max=50, and the minimum step-size is min=10-6 

[84, 87], for more detailed the interested reader is referred to 

[49, 81-84, 87, 89]. 

 

3.3 Rprop Variants 

 

Two variants have been firstly created, with weight-

backtracking [83, 84] named Rprop+ [82] and without weight-

backtracking [87] named Rprop− [82]. A performance 

comparative studies between these algorithms and many other 

of feedforward supervised learning techniques for many 

benchmark problems has been presented in [84, 87]. 

Igel et al create two new versions is based to adding a stored 

the previous error E(t−1) as a new variable to Rprop+, this 

version named iRprop+ [82] , the second one is that the 

derivative (∂E(t)/∂wij) is set to zero [82], iRPROP− is described 

[49, 82], so, the only difference between Rprop− and iRprop− 

is that the derivative (∂E(t)/∂wij) is set to zero [82], and as 

comparison between iRprop− and iRprop+, iRprop− is the 

same as iRprop+, but without weight-backtracking [49]. The 
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reader is referred to [49,81-87] too well understood these 

variants, where a performances comparison of all Rprop 

variants and several learning algorithms has been ca rried out 

with four neural network benchmark problems. 

 

 

 
 

Figure 2. Procedures and steps of ANN based on a Resilient backpropagation learning algorithm 

 

 

 

4. SIMULATION RESULTS 

 

The procedure how the simulation data were used to train 

the NN is the cross-validation error checked for multiple sets 

of training data, this data is the result of the equation (4) with  

the use of the parameters of BDC motor shown in table 1. 

 The estimated speed, armature temperature and resistance 

are shown in Figs. 3-6 for a continuous running duty or 

abbreviated by duty type S1. where duty type S1 characterized 

by an operation at a  constant load maintained for sufficient 

time to allow the machine to reach thermal equilibrium [90]. 

 

Table 1. Parameters of BDC motor used in the simulation. 

 

Rated voltage Va = 240 V 

Power P =3 kW 

Rated torque  TL = 11 N.m 

Armature resistance  Ra = 3.5 Ω 

Armature inductance  la = 34 mH 

No 

Initialisation ( − = 0.5 ,  η+= 1,2, 

max=50 ,  min=10-6,…) 

𝜕𝐸

𝜕𝜔𝑖𝑗
=

𝜕𝐸

𝜕𝑠𝑖
.

𝜕𝑠𝑖

𝜕𝑛𝑒𝑡𝑖

𝜕𝑛𝑒𝑡𝑖

𝜕𝜔𝑖𝑗
  

𝑖𝑓   
𝜕𝐸ሺ𝑡 −1ሻ

𝜕 𝜔𝑖𝑗
.

𝜕𝐸 ሺ𝑡ሻ

𝜕𝜔𝑖𝑗
> 0 

𝛥ⅈ𝑗

ሺ𝑡ሻ
= 𝑚𝑖𝑛ሺ𝜂+ .𝛥ⅈ𝑗

ሺ𝑡−1ሻ
, 𝛥𝑚𝑎𝑥

⬚ ሻ 

𝛥𝑤ⅈ𝑗

ሺ𝑡ሻ
= −𝒔𝒊𝒈𝒏

𝜕𝐸 ሺ𝑡ሻ

𝜕 𝜔𝑖𝑗
 *𝛥ⅈ𝑗

ሺ𝑡ሻ
 

𝑤ⅈ𝑗

ሺ𝑡+1ሻ
= 𝑤ⅈ𝑗

ሺ𝑡ሻ
+ 𝛥𝑤ⅈ𝑗

ሺ𝑡ሻ
 

else 𝑖𝑓    
𝜕𝐸ሺ𝑡 −1ሻ

𝜕 𝜔𝑖𝑗
 .

𝜕𝐸ሺ𝑡ሻ

𝜕𝜔𝑖𝑗
 < 0 

𝛥 ⅈ𝑗

ሺ𝑡ሻ
= 𝑚𝑎𝑥ሺ𝜂− .𝛥ⅈ𝑗

ሺ𝑡−1ሻ
,𝛥𝑚ⅈ𝑛

⬚ ሻ 

𝑤ⅈ𝑗

ሺ𝑡+1ሻ
= 𝑤ⅈ𝑗

ሺ𝑡ሻ
− 𝛥𝑤ⅈ𝑗

ሺ𝑡−1ሻ
 

𝜕𝐸
ሺ𝑡ሻ

𝜕 𝜔ⅈ𝑗

= 0 

else 𝑖𝑓    
𝜕𝐸ሺ𝑡 −1ሻ

𝜕 𝜔𝑖𝑗
 .

𝜕𝐸ሺ𝑡ሻ

𝜕𝜔𝑖𝑗
= 0 

𝛥𝑤ⅈ𝑗

ሺ𝑡ሻ
= −𝒔𝒊𝒈𝒏

𝜕𝐸 ሺ𝑡ሻ

𝜕 𝜔𝑖𝑗
 *𝛥ⅈ𝑗

ሺ𝑡ሻ
 

𝑤ⅈ𝑗

ሺ𝑡+1ሻ
= 𝑤ⅈ𝑗

ሺ𝑡ሻ
+ 𝛥𝑤ⅈ𝑗

ሺ𝑡ሻ
 Répéter les étapes pour chaque 

itération jusqu’à la convergence 

ou un critère d’arrêt est verifié 

(nombre d'itération maximal, 

erreur minimale,  ..). 

End of learning 

Yes 

Compute the error partial derivative 

E with respect to each weight  𝜔ⅈ𝑗   as 

follows: 
𝜕𝐸

𝜕𝜔𝑖𝑗
=

𝜕𝐸

𝜕𝑠𝑖
.

𝜕 𝑠𝑖

𝜕𝑛𝑒𝑡𝑖

𝜕𝑛𝑒𝑡𝑖

𝜕𝜔𝑖𝑗
  

Wher  :  

si is the output. 

Net is the weighted sum of the inputs 

of neuron i. 



 

The estimated speed and the corresponding errors are shown 

in Figure 3, the results obtained by Acarnley et al. in [32] 

suggest that the speed estimation error from EKF is 

approximately 2%. P. P. Acarnley assert that this application 

is limited when a low accurate is needed such as some general-

purpose applications, not suitable for high-performance servo 

drives [32]. However, in our results, the error is less than 0.015 

rad/s and represent only 0.0067% of the final value as it is 

depicting by Figure 6.  

 

 
 

Figure 3. Estimated and simulated speed 

 

Figure 4 presents the estimated armature temperature of a 

DC machine based on NN. As shown in Figure 4, the estimated 

temperature reaches 77 °C, and the model output nearby in the 

vicinity of 80 °C, while the steady state estimated error is less 

than 3 °C as can be seen from Figs. 6. However, Nestler et al. 

in [28] use a Luenberger's observer and it was shown that the 

estimated winding temperature error is important, and the 

results offered by Acarnley et al. in [32] concentrated in the 

same context and suggest that the temperature estimation error 

from EKF is 3 °C is approximately 3.75%. 

 

 
 

Figure 4. Estimated and simulated armature temperature. 

 

Figure 5 depicts the estimate resistance by NN and the 

model response, from this figure, it can be seen that  the 

resistance has the same curvature as the armature temperature, 

wherein the steady state the estimated resistance reached 

almost 4,56 Ω less than 0.04 Ω of simulated resistance, 

practically, this difference is negligible quantity and represents 

only 0.9 % of the final value, this results in this paper are more 

precise than the Zhang et al. results presented in [30], also this 

results are in agreement with the Karanayil et al. results 

presented in [91], where the errors of estimation of the rotor 

and sta tor resistances is 0.3% and 5% respectively. 

 

 
 

Figure 5. Estimated and simulated armature resistance 

 

Figure 6 shows the estimation errors of speed, temperature 

and resistance, and their percentage in relation to their nominal 

value, this figure shows more clearly the perfect agreement 

between the model outputs and the intelligent sensor outputs. 

 

 
 

Figure 6. Speed, temperature and resistance estimation errors. 

 

 

The following Table 2 summarizes the simulation errors in 

the steady state for all the estimated quantities by the ANN of 
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Table 2. Synopsis the estimation errors in steady-state  

 

 

Table. Summary of the  
 

 

5. CONCLUSIONS 
 

A sensorless speed and armature winding quantity estimator 

is proposed for brushed DC machines based on CFNN trained 

by RBP. The proposed estimator includes a sensorless speed 

estimation, average armature temperature and resistance 

estimations based only on the voltage and the current 

measurements. The estimated speed and temperature eliminate 

the need for speed measurements and the need for the thermal 

sensor. In addition, the estimated temperature solves the 

problems of obtaining the thermal information from the 

rotating armature. Furthermore, the estimated resistance can 

be used to improve the accuracy of the control algorithms 

which are affected by an increase in resistance as a function of 

temperature. The good agreement between the model and the 

intelligent estimator demonstrates the efficiency of the 

proposed approach. 
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NOMENCLATURE 

 

b viscous friction constant, N. m. s 

E sum squared error 

H thermal capacity, kJ. K-1 

i  current, 

J total inertia, kg.m2 

K thermal transfer coefficients, W. K-1 

k loss constant, W. rad -2. s2 

KS thermal transfer coefficients with speed,  s. 

rad-1 

ke torque constant, V. rad -1. s1 

l  Inductance, H 

net weighted sum of the input unit 

P power, W 

R  resistance, Ω 

T torque, N. m 

V  voltage, V 

y network outputs 

 

Greek symbols 

 

 

α  temperature coefficient of resistance, K-1 

  temperature above ambient, K 

  armature speed, rad. s-1 

   weight step 

η factor 

 

Subscripts 

 

 

a  armature 

a0 ambient temperature 

cu Copper  

d desired 

ir  iron 

lo  losses 

s speed 

max  maximum 

min minimum 

0 Zero speed 

−  decrease 

+  increase  

l load 

 

 

 

 


