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Abstract 

The human ear is one of the important biometric modalities for identifying 

individuals. It offers a unique benefit over other biometric models, such as the face or 

eye, beyond just; only the ear can be employed in some circumstances. Unlike the 

thumbprint or eye, the ear may be enrolled using a conventional camera; however, this 

has a serious drawback that requires employing ear detection algorithms before ear 

identification. In a few recent years, ear biometrics gained considerable attention and 

was addressed via various studies. Many steps of the ear biometric operation have been 

explored and solved, from ear detection, preparation, extraction of features to 

verification and identification. 

Machine learning techniques have been proved effective in solving different 

computer vision tasks such as image classification, object detection, and image 

segmentation. Recently, Deep Learning is a trend artificial intelligence technique that 

received much attention due to its superiority in solving problems, especially computer-

vision-related tasks. State-of-the-art researches on ear detection, identification, or 

verification used deep learning to complete those tasks and proved that it yielded a 

better performance against classic machine learning techniques. Thus, we employed 

deep learning to tackle all problems we identified during our researches. 

We proposed a solid experimental work by introducing new approaches to 

improve the identification process of the ear. The first issue we addressed was the loss 

of color information from test images, which might have a detrimental impact on the 

model's performance. A novel system based on image-to-image translation has thus 

been suggested that can restore missing data. The second issue we worked on was 

deleting non-ear pixels from photographs and creating a synthetic region of interest of 

the ear. Last, we proposed a new ear identification method that uses active unsupervised 

learning, which means that the classification model can learn new information during 

testing without the need for manual direction, correction, or decision-making. During 

the testing phase, new information can be used to improve the model's performance. 

According to obtained results, our proposed approaches were superior to many existing 

related works. 

Keywords:  

Biometrics, Ear recognition, Image-to-Image translation, Active learning, Region of 

Interest 
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 ملخص

 على فريدة زاʮم توفر الأذن. الأفراد هوية لتحديد المهمة الحيوية المقاييس طرق إحدى البشرية الأذن تعد
 في فقط الأذن استخدامإلا  يمكنقد لا  ذلك؛ من أبعد العين، أو الوجه مثل الأخرى، البيومترية النماذج

 تقليدية؛ يراكام  ʪستخدام الأذن تسجيل يمكن العين، أو لإđاما بصمة عكس علىأيضا، . الظروف بعض
. لأذنا تحديد قبل الأذن عن الكشف خوارزميات استخدام يتطلب خطير عيب له هذا فإن ذلك، ومع
ا للأذن الحيوية القياسات اكتسبت الماضية، القليلة السنوات في ا  اهتمامً ً  خلال من عالجتهام وتمت كبير

ابد للأذن، الحيوية المقاييس عملية خطوات من العديد وحل استكشاف تم. مختلفة دراسات ً  اكتشاف من ء
  .الهوية وتحديد التحقق إلى الميزات واستخراج والتحضير، الأذن،
 واكتشاف الصور تصنيف مثل المختلفة الحاسوبية الرؤية مهام حل في فعاليتها الآلي التعلم تقنيات أثبتت

 حظيت التي يالاصطناع الذكاء أساليب أحد العميق التعلم يعد الأخيرة، الآونة في. الصور وتجزئة الأشياء
ا كبير  ʪهتمام  أحدث استخدمت. الكمبيوتر برؤية المتعلقة المهام وخاصة المشكلات، حل في لتفوقها نظرً
 وأثبتت لمهاما تلك لإكمال العميق التعلم منها التحقق أو عليها التعرف أو الأذن اكتشاف حول الأبحاث

 العميق التعلم استخدمنا وʪلتالي،. الكلاسيكية الآلي التعلم تقنيات مقابل أفضل أداء عن أسفرت أĔا
  .أبحاثنا خلال حددʭها التي المشكلات جميع لمعالجة
ا عملاً  اقترحنا ً  كانت.  لأذنا على التعرف عملية لتحسين جديدة مناهج إدخال خلال من قوʮً  تجريبي

 ضار Ϧثير لها نيكو  قد والتي الاختبار، صور من الألوان معلومات فقدان هي تناولناها التي الأولى المشكلة
 استعادة يمكنه صورة إلى صورة من الترجمة على يعتمد جديد نظام اقتراح تم لذلك. النموذج أداء على

 من الأذن في ودوجالم غير البكسل حذف هي عليها عملنا التي الثانية المشكلة كانت.  المفقودة البياʭت
ا،. للأذن أهمية ذات اصطناعية منطقة وإنشاء الصور ً  تستخدم الأذن لتحديد جديدة طريقة اقترحنا أخير
 أثناء جديدة اتمعلوم يتعلم أن يمكن التصنيف نموذج أن يعني مما للإشراف، الخاضع غير النشط التعلم

 استخدام يمكن ار،الاختب مرحلة أثناء. القرار اتخاذ أو التصحيح أو اليدوي التوجيه إلى الحاجة دون الاختبار
 المقترحة جنامناه كانت  عليها، الحصول تم التي للنتائج وفقًا. النموذج أداء لتحسين جديدة معلومات

  .الصلة ذات الحالية الأعمال من العديد على متفوقة
 كلمات مفتاحیة:

 .لاهتماما منطقة النشط، التعلم صورة، إلى صورة من الترجمة الأذن، على التعرف الحيوية، القياسات
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Resumé 

L'oreille humaine est l'une des modalités biométriques importantes pour 

l'identification des individus. Elle offre un avantage unique par rapport aux autres 

modèles biométriques, tels que le visage ou les yeux, au-delà de seulement ; seule 

l'oreille peut être employée dans certaines circonstances. Contrairement à l'empreinte 

digitale ou à l'œil, l'oreille peut être enregistrée à l'aide d'une caméra conventionnelle ; 

cependant, cela présente un inconvénient sérieux qui nécessite l'utilisation 

d'algorithmes de détection d'oreille avant l'identification d'oreille. Ces dernières années, 

la biométrie de l'oreille a suscité une attention considérable et a fait l'objet de diverses 

études. De nombreuses étapes de l'opération biométrique de l'oreille ont été explorées 

et résolues, depuis la détection de l'oreille, la préparation, l'extraction des 

caractéristiques jusqu'à la vérification et l'identification. 

Les techniques d'apprentissage automatique se sont avérées efficaces pour 

résoudre différentes tâches de vision par ordinateur telles que la classification d'images, 

la détection d'objets et la segmentation d'images. Récemment, le Deep Learning est une 

technique d'intelligence artificielle tendance qui a reçu beaucoup d'attention en raison 

de sa supériorité dans la résolution de problèmes, en particulier les tâches liées à la 

vision par ordinateur. Des recherches de pointe sur la détection, l'identification ou la 

vérification des oreilles ont utilisé l'apprentissage en profondeur pour effectuer ces 

tâches et ont prouvé qu'il offrait de meilleures performances par rapport aux techniques 

classiques d'apprentissage automatique. Ainsi, nous avons utilisé l'apprentissage en 

profondeur pour résoudre tous les problèmes que nous avons identifiés au cours de nos 

recherches. 

Nous avons proposé un solide travail expérimental en introduisant de nouvelles 

approches pour améliorer le processus d'identification de l'oreille. Le premier problème 

que nous avons résolu était la perte d'informations sur les couleurs des images de test, 

ce qui pourrait avoir un impact négatif sur les performances du modèle. Un nouveau 

système basé sur la traduction d'image à image a donc été suggéré qui peut restaurer les 

données manquantes. Le deuxième problème sur lequel nous avons travaillé était de 

supprimer les pixels non auditifs des photographies et de créer une région synthétique 

d'intérêt de l'oreille. Enfin, nous avons proposé une nouvelle méthode d'identification 

de l'oreille qui utilise un apprentissage actif non supervisé, ce qui signifie que le modèle 

de classification peut apprendre de nouvelles informations pendant les tests sans avoir 
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besoin de direction manuelle, de correction ou de prise de décision. Pendant la phase 

de test, de nouvelles informations peuvent être utilisées pour améliorer les 

performances du modèle. Selon les résultats obtenus, nos approches proposées étaient 

supérieures à de nombreux travaux connexes existants. 

Mots clés:  

Biométrie, Reconnaissance de l'oreille, Traduction d'image à image, Apprentissage 

actif, Région d'intérêt 
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1.1 Context 
People are generally mobile and constantly linked, and information technology, 

particularly mobile devices and social networks, has a significant impact on their everyday life. 

Remote access to intelligent devices provides the majority of services in these civilizations. 

Banks, e-commerce, public services, hotel bookings, and social aid are just a few of the many 

services offered by the government, as well as a variety of other fields linked to labor, travel, 

defense, education, business, and interpersonal relationships. Biometric identity and 

recognition are critical in the modern world, utilizing its various modalities. The ear is one 

modality that this research is interested in for various reasons that we will discuss later. 

From ear detection to ear identification and verification, ear recognition has gained 

much attention recently. We advance the wheel of study in this thesis by addressing many 

issues and impediments in ear recognition and presenting novel ways for enhancing the use of 

this technology. 

Ear biometric systems faces many challenges and difficulties, some of them are similar 

to the problems in other modalities. These problems still stands despite the amount of research 

that has been conducted on ear biometrics. For example: illumination, pose, occlusions, image 

resolution…etc. Based on these conditions, we can categorize ear datasets into two categories: 

constrained and unconstrained. We focused on unconstrained ear datasets in our research as 

they make an important challenge to research community. 

1.2 Research Objectives  

The goals behind this research are:  

 To investigate state-of-the-art ear recognition methods and identify their limits and 

weaknesses in order to propose new approaches. 

 To address the problem of grayscale ear images and suggest a solution by introducing 

a new framework for ear images colorization. 

 To propose a new scheme for region-of-interest (RoI) synthesis. The proposed method 

allows eliminating all non-ear pixels, patching ear missing parts, and removing 

occlusions by generating synthesized new RoI image. 

 To introduce a new active learning-based training scheme that allows ear recognition 

models to gain additional knowledge beyond the training phase. 
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1.3 Thesis Overview  
The following is the structure of the dissertation: 

Chapter 2 provides an overview of biometrics, details the biometric-based recognition method 

and examines how the biometric system's performance is determined. 

Chapter 3 exploits the state-of-the-art of ear recognition. It reviews related researches to the 

field and categorizes them into four categories depending on the method used, either holistic, 

geometric, local, or deep learning-based. 

Chapter 4 is dedicated to deep learning and its applications. It gives a detailed introduction to 

machine learning and its branches, such as artificial neural networks and convolutional neural 

networks and their different architectures. 

Chapter 5 tackles the problem of grayscale ear images and how to colorize them in order to 

enhance the model’s performance, especially when it is trained with color images. The 

performance of the proposed framework is then evaluated and compared to state-of-the-art 

methods.  

Chapter 6 introduces a new method to synthesize region-of-interest of the ear using image-to-

image translation to remove irrelevant and non-ear pixels from the image and generate all 

missing parts of the ear due to occlusions. The proposed method is evaluated and compared to 

state-of-the-art methods. 

Chapter 7 presents a new training scheme called unsupervised active learning for ear 

recognition. During the proposed learning process, a model can acquire new knowledge 

continuously during the testing phase and retrain itself in an unsupervised way. 

Finally, we end this thesis with conclusions and some perspectives. 
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2.1 Introduction  
The importance of biometrics has been increased dramatically since its foundation in 

the 1800s. Different modalities have been proposed, such as fingerprint, face, iris, ear, etc. 

Each modality has its pros and cons based on different criteria. This chapter introduces 

biometrics in detail and all its related issues. 

This chapter is organized as follows: In Section 2, biometrics is defined and 

contextualized. Section 3 focuses on the biometric identification and verification challenges, 

as well as the performance evaluation metrics relevant to these concerns. The biometric system 

is discussed in the fourth section. In section 5, we address the most well-known biometric 

applications and the newest trends. Section 6 outlines evaluation protocols followed by 

biometric modalities in the seventh section. In section 8, we discuss how to choose between 

biometric modalities. Section 9 provides the motivations behind this thesis. Finally, the last 

section concludes this chapter. 

2.2 What is biometrics? 
Sir Francis Galton founded the biometric approach as a set of statistical methods to 

study continuing inheritance characteristics and aspects of heredity at the population level. 

Pearson K. and Weldon W.F.R. then developed this approach with enthusiasm and created 

Biometrika in 1901, a leading journal in the field of biometrics [1]. 

Currently, biometrics is the automated process of confirming or identifying a person's 

identity based on specific physiological attributes called biometric authenticators [2], such as 

a fingerprint or face pattern, or specific behavioral characteristics, such as handwriting or 

walking patterns. A physiologically-based biometric system is more accurate than one that 

takes on behavioral characteristics, though the latter may be easier to incorporate in particular 

applications [3]. 

One of the first questions to ask while learning more about biometrics is: Which 

modalities are most appropriate for a particular biometric recognition problem? As common 

sense dictates, an excellent biometric feature must exhibit several characteristics. They are 

mainly [4]: 

 Universality: the chosen attribute should be possessed by every individual. 

 Distinctiveness (also known as individuality or uniqueness): any two individuals 

should be sufficiently dissimilar to be distinguished by this feature.       
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 Permanence (sometimes called stability or immutability): the feature should maintain 

a sufficient level of consistency throughout time (concerning the matching criterion). 

 Collectability: the feature should be observable and quantifiable. 

However, in a real-world Biometric System (BS), several additional considerations need 

to be made [4], including the following points: 

 Performance: the accuracy of identification and the time required for successful 

recognition must be acceptable. 

 Acceptance: individuals should be willing to accept the BS and should not perceive it as 

invasive, hazardous, or causing discomfort. 

 Circumvention: the prospect of attacking and duping the BS should be highly remote. 

Given the abundance of BS, there is no such thing as a flawless one. Depending on the 

parameters listed above, every biometric modality has its pros and cons, and each has a place 

in one or more applications [5]. Based on the performance and effectiveness of available 

biometric systems, the final identification system will show a reasonable certainty 

where someone is previously enrolled in the user's database or not [6]. 

2.3 Identification vs. Verification  
Biometric recognition is divided into two distinct approaches for matching freshly 

collected biometric features: Identification and Verification [7]. When we do not wish to 

distinguish between them, we shall use the term "Recognition." Nevertheless, other authors 

consider recognition and identification as equivalent terms. 

1. The process of establishing a person's identity is referred to as identification. It entails 

taking the measured characteristic and searching for a match in a collection of 

individuals with that trait. In a more broad response, the system will list the database's 

most similar individuals. If the database is extensive, this method may need significant 

computing power and time. Identification is used extensively in law enforcement, 

forensic science, and information gathering for intelligence. The identification rate is 

used to evaluate the system's performance. 

2. Verification (alternatively known as authentication) is the process of determining 

whether a person is whom he claims to be. The algorithm evaluates the claim and either 

approves it or rejects it. As a result, the algorithm can produce a confidence level for 

the claim’s validity concerning the previously established verification threshold. In 
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general, the method entails comparing the measured feature to previously recorded data 

for that individual. As a one-to-one comparison is all that is required, this approach uses 

far less processing power and time than the prior one (whereas identification requires 

one to N comparisons). Passwords, secret keys, magnetic chips, and PINs are the most 

often used authentication methods. Verification is commonly used to control locations 

(i.e., physical) or data (i.e., logical) accesses [8]. 

2.4 Biometric system 
The underlying biometric recognition mechanism is comparable independent of the 

biometric challenge and the final chosen modality. Thus, they all share the same general 

configuration regardless of the system, as illustrated in Figure 2.1. 

 

Figure 2.1 Biometric recognition scheme.  

The four major steps indicated in the above framework are summarized as follows: 

1- Data Collection: A physical or behavioral samples are collected using specialized data 

collection technology; this is a particularly delicate stage, as most biometric recognition 

methods are highly dependent on the properties of the gathered data. Thus, if possible, 

the submitted signal's quality will be verified. A new acquisition will be made if the 

value is less than a previously determined threshold. Additionally, sufficient samples 

must be collected to ensure the system's robustness. 

2- Feature Extraction: Several digital signal processing techniques extract a set of 

characteristics from the samples and the user template. 

3- Matching: The preceding step's measured parameters are used to create a supplied user 

model. The entire collection of extracted features is kept and used as a model in 

enrollment mode. As with people, the system requires a learning phase before 

recognizing objects. Enrollment is to store a user's characteristics for future usage. After 

the user data is collected during the enrollment phase, a new sample is taken and 

compared against all the database's recorded templates for the identification or against 
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the user's template for verification. Considerable distances have been effectively 

utilized in general ways to accomplish this task. 

4- Decision: The system determines if the new sample's collection of extracted features is 

a match or a miss-match. 

2.5 Biometrics applications 
The primary advantage of biometric technology is its security. While passwords and 

Personal Identification Numbers (PIN) are easily obtained, stealing a biometric identification 

such as a fingerprint or iris scan is incredibly difficult. Because of this mix of security and ease, 

biometric technology usage will continue to grow in the next years, and biometric security 

systems will become more prevalent [9, 10]. 

2.5.1 Law Enforcement 

Biometric technology is frequently employed in law enforcement. For over 30 years, 

Nippon Electric Company (NEC) has worked with law enforcement organizations worldwide, 

including New Zealand, to provide biometric solutions for identifying criminals. 

According to a wired story, government enforcement organizations in the United States 

have facial recognition data on 117 million Americans. The Home Office in the United 

Kingdom announced a £26 million investment in police innovation using biometric 

technologies. They frequently use fingerprints, face, and iris recognition as biometric 

technology. 

2.5.2 Access and Authentication 

Smartphone security is likely one of the most prevalent applications for biometric 

technology in this day and age. In the years following Apple's introduction of Touch ID (i.e., 

fingerprint recognition system), mobile phone security has expanded to include facial 

recognition, iris detection, and voice recognition, among other biometric technologies. 

2.5.3 Banking 

Banking is another industry that incorporates biometrics into a variety of services in 

order to provide unique experiences for clients. In Japan, seven Banks are experimenting with 

facial recognition to enhance Automatic Teller Machines (ATM) services. It will be an 

additional layer of security to verify users. Banks are also employing biometric to strengthen 

consumer and employee identity management to prevent fraud. 
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Customers are also concerned about the hassle of needing to authenticate their identities 

frequently. As a result, an increasing number of clients are looking for banks that use biometric 

authentication, leading banks to explore and apply the technology. 

2.5.4 Home Assistant 

The use of voice recognition as a biometric identification is nothing new for anyone 

familiar with Google Home, Alexa, or Siri. In addition to intelligent lightbulbs, door locks, 

security cameras, and other IoT devices, the Google Assistant that powers Google Home and 

the assistant on Android phones and tablets are compatible with a wide range of other Internet 

of Thing (IoT) devices. Security is a top priority when using your home assistant in conjunction 

with any of these add-ons. You would not want them in the hands of just anyone; this is a must-

have for Google Assistant when it comes to voice recognition. 

2.5.5 Public Transport 

Security and improving the customer experience are just two of the many possible 

applications for biometric technology that may be found in public transit, which is still in its 

infancy in terms of widespread adoption. Dallas Area Rapid Transit (DART), the largest North 

Texas municipal transit agency, was an early adopter of biometric technology. DART trains 

now the use of facial recognition cameras. 

Smart ID cards and intelligent tickets can also be used with biometric technology to 

match a person using facial recognition to transport systems, making travel safer and 

streamlining the ticketing and passenger management processes. 

2.6 Performance Evaluation 
The performance of a biometric system can also be measured based on other criteria 

such as accuracy, efficiency, and the volume of data stored for each person. However, only the 

accuracy will be assessed while considering the operating mode used, namely: identification 

and verification. Each of these modes will require different precision measurements. 

The evaluation rate is one of the most commonly used measures, but it may be 

insufficient. Indeed, in the event of an error, it can be useful to know if the correct choice is in 

the first N. We then plot the cumulative score, which represents the probability that the right 

choice is among the first N [11]. 

Precision is the ratio between the number of models correctly found by the system in 

the database and the total number of models found. The recall is the ratio between the number 
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of models correctly found in the database and the total number of models which should have 

been found. The type of mistake made by this kind of system is to attribute to the individual 

presenting an identity other than his own. The performance of this system is measured using 

the identification rate. This parameter depends on the number of people contained in the 

database. Indeed, the greater the number of tests, the greater the error rate is likely to be [12]. 

The International Organization for Standardization (ISO) defined the standard ISO / 

IEC 19795-1, dividing the error rates into three classes: the fundamental error rates, the error 

rates of authentication systems, and error rates of identification systems. The fundamental error 

rates are the following: 

1. Failure-to-acquire rate (FTA): proportion of verification or identification attempts for 

which the biometric system could not acquire the required biometric information; 

2. Failure-to-enroll rate (FTE): the proportion of individuals for whom the system could 

not generate the biometric model during enrollment. Take, for example, the case of 

fingerprints; some people who do not have fingerprints for genetic reasons, or 

fingerprints almost nonexistent for medical reasons or very damaged by their 

profession; 

3. False-non-match rate (FNMR): proportion of false rejections by the comparison 

between the acquired biometric data and the corresponding model; 

4. False match rate (FMR): the proportion of false acceptance by comparing the acquired 

biometric data and the model corresponding to another individual. 

2.6.1 Identification Evaluation 

The Recognition Rate (RR) can be used to measure the performance of an identification 

system. RR's information is straightforward: Proportion of previously enrolled participants 

whose identities were correctly recognized; this is mathematically expressed in Eq. 1.1. 

ܴܴ =  
ݏ݁݃ܽ݉݅ ݀݁ݖ݅݊݃ܿ݁ݎ ݕ݈ݐܿ݁ݎݎܿ ݂ ݎܾ݁݉ݑܰ

ݏ݁݃ܽ݉݅ ݂ ݎܾ݁݉ݑ݊ ݈ܽݐܶ  
(1.1) 

2.6.2 Verification System Evaluation 

To verify the system, we may utilize the False Acceptance Rate (FAR) and False 

Rejection Rate (FRR) [13]. The True Acceptance Rate (TAR) is also available for positive 

reasoning. However, it is less frequently used than the FAR index. Both mistakes are 

detrimental and must be carefully weighed to ensure that the appropriate mix of security 

measures is obtained. Typically, this required trade-off between them is created by adjusting a 
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threshold. The performance under consideration can be visualized using a Receiver Operator 

Characteristic (ROC) curve. 

2.6.2.1 False Rejection and False Acceptance Error rates 

False rejection rate is the proportion of legitimate requester transactions rejected in 

error. For a single-attempt verification transaction and a fixed threshold at τ (τ depending on 

the comparison algorithm), the false reject rate is calculated as follows: 

(τ)ܴܴܨ = ܣܶܨ + (τ)ܴܯܰܨ ∗ (1 − FTA) (1.2) 

False Acceptance Rate is the proportion of transactions from impostors wrongly 

accepted. For a single-attempt verification transaction and a fixed threshold at τ, the false 

acceptance rate is calculated by: 

(τ)ܴܣܨ = (τ)ܴܯܨ ∗ (1 − FTA) (1.3) 

The two error rates, FAR and FRR, are related and depend on a decision threshold that 

is fixed according to the biometric system’s security level (high or low). Figure 2.2 shows the 

theoretical distribution of the likelihood rates of legitimate users and impostors. As we can see, 

the lower the fixed threshold, the higher the false acceptance rate, which means that the 

biometric system will accept impostors. Conversely, the higher the threshold, the lower the 

false acceptance rate; the biometric system will, in this case, be robust to impostors but will 

reject many more legitimate users. 

 

Figure 2.2 Representation of the likelihood rate of legitimate users as well as impostors on a 
biometric authentication system. 
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2.6.2.2 ROC curve 

This curve is one of the most widely used methods to assess the overall performance of 

a biometric authentication system. The ROC curve represents the relationship between the false 

acceptance rate (FAR) and the false rejection rate (FRR) for different decision threshold values. 

The term DET (Detection Error Tradeoff) is then used; in this case, the term ROC is reserved 

for the representation of the rate of true rejections (1-FRR) at the FAR. Figure 2.3 illustrates 

the representation of a ROC curve. The main advantage of this single curve is that one obtains 

a compact representation of the performance of a biometric system, which allows objectively 

comparing different biometric systems [14]. 

 

Figure 2.3 False Rejection Rate vs. False Acceptance Rate and ROC curve (dotted line).  

Depending on the application for which the biometric verification system is intended, 

the threshold can be adjusted to provide the desired level of security (low, medium, or high). 

2.6.2.3 Equal Error Rate 

The Equal Error Rate (EER) is when the FAR and the FRR are equal. The lower the 

EER threshold, the more precise the system. These characteristics make it easy to compare 

several systems and thus determine which one best meets the needs [15]. Furthermore, the 

weaknesses in tampering are not with physical particularity but rather with how they measure 

it and the margin of error they allow. However, as a single criterion, the EER does not capture 

all of the system's features. 
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2.7 Biometric modalities 
Biometric systems use a range of biometric modalities, such as the fingerprint, the face, 

the ear, the iris, the retina, the palm-print, the vein, the voice, the signature, the gait, and the 

odor, among others. The most widely used biometric modalities are summarized in Figure 2.4. 

 

Figure 2.4 Widely used biometric modalities.  

2.7.1 Fingerprint 

The fingerprint has been the most widely used biometric feature in the world since 

1888, when F. Galton discovered the permanence and inalterability of the papillary pattern 

from birth to death. It has been used for a century for criminal identification. It corresponds to 

the bulk of the current market, and its use will undoubtedly develop. It has a sufficient 

reliability rate to allow the identification of individuals in large databases. It has been used for 

a long time in the police context; it is not always very well accepted by users but presents a 

good compromise between the constraints of use and the desired reliability [16]. 

The ridge flow pattern of the fingerprint contains local discontinuities known as 

terminations and minutiae. The first is described as the point at which a ridge suddenly 

terminates, while the second is when a ridge splits or deviates into sub ridges; these types of 

location and orientation are the characteristics that differentiate fingerprints. 

Fingerprints are the most common biometric modalities used by police departments 

for investigating crimes due to their well-known distinctiveness and consistent properties, and 

their unique ability to leave a copy of it on previously touched surfaces. AFIS (i.e., Automated 

Fingerprint Recognition System) is the name of these highly mature identifying systems. The 

AFIS utilized by the Police is depicted in Figure 2.5. 
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 Figure 2.5 AFIS: Police processing of fingerprints in minutes.  

2.7.2 Face 

Face recognition is among the most promising biometric technologies because it is the 

most intuitive way for humans to identify each other [17]. In our environment, faces are the 

most common visual patterns. Thus, it is common for individuals to identify others by their 

faces. It would not be easy to do so through their card due to the many extant languages, each 

with its own set of characters. This fact is shown in Figure 2.6. 

 

Figure 2.6 A personal card of an Algerian citizen. Non-Arabic-speaking people can identify 
the person through the photograph only.  

The face is the second most often used biometric modality after fingerprints. One of its 

benefits is widespread social acceptability among users. Although this technology is most 

suited to cooperative user applications, interaction with humans is not always necessary 

throughout the acquisition process.  

This last point is especially advantageous for addressing surveillance applications in 

high-security locations. The significant degree of diversity in faces (expressions, age, lighting 
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circumstances, rotation, changes in appearance, etc.) makes identification difficult. According 

to comparative research [18, 19], face recognition is not as accurate as fingerprint or iris. 

2.7.3 Iris 

Several companies develop and sell systems that rely on the human iris to recognize 

people. The iris is a thin circular diaphragm, which sits between the cornea and the human eye 

lens. The iris is perforated near its center by a circular opening called a pupil [20]. The iris 

image is captured by a device that contains an infrared camera when the person stands a short 

distance from the device. Iris recognition is widely used in identification and verification 

applications because it is highly distinctive, unique, its shape is stable, and it is protected and 

very robust. However, acquisition equipment is expensive. Figure 2.7 displays a sample of the 

iris [21]. 

 

Figure 2.7 Iris pattern.  

Iris recognition systems give an aliveness detecting method using the difference in the 

iris size between two image sequences, similar to how a photography camera's flash works 

while operating in the dark. 

Nonetheless, this is not the only type of light applied directly to the eye. Additionally, 

a near-infrared (NIR) beam is necessary to highlight and more accurately replicate the texture 

of the eyeballs. If the naked eye does not detect the light beam and does not respond properly 

with pupil contraction, ocular damage is a risk [22]. As a result of this and other factors, the 

populace is uneasy with such arrangements. 

As an alternative, retinal scanners that use an infrared light beam to illuminate the retina 

and scan the pattern of the vascular system are currently being used in contemporary biometric 

security [23]. Thus, it refers to an invasive procedure and needs a high user involvement. 

Additionally, this collection procedure may have side impacts on the patients owing to the brief 

exposure to a low-powered infrared laser beam, which has become the primary impediment for 

these devices. Due to the high cost of advanced acquisition equipment, only a few firms are 

developing this technology; the most notable is EyeDentify, the global patent for retinal 
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scanners [24]. Due to the excellent performance of both ocular technologies, military and 

security applications (research laboratories, nuclear power facilities, and intelligence 

organizations, for example) prefer them. 

2.7.4 Ear 

Researchers determined that each individual's ears are unique and distinctive as their 

fingerprints; no two ears, even on the same person, are identical [25]. Beyond the age of ten 

years, the ear morphology varies little, and medical research has shown that substantial changes 

in the ear occur only before the age of eight years and after the age of seventy years. It develops 

symmetrically and tends to bulge downward with age, but this is a quantifiable impact. 

According to studies, the ear changes only 1.22 millimeters each year [26]. Additionally, unlike 

the face, the color distribution of the ear is nearly consistent. The ear is almost precisely in the 

center of the profile face. From a distance, ear data may be collected without the person being 

aware. Ear biometrics is an excellent example of passive biometrics since it requires little 

assistance from the user and satisfies the requirement of the authentication system's 

confidentiality in the environment. Ear pictures can be collected concurrently with facial 

images to enhance recognition accuracy [27]. Figure 2.8 illustrates the anatomy of the human 

ear. 

 
Figure 2.8 Anatomy of the ear (Ear image taken from the AMI dataset1. 

                                                             
1 https://ctim.ulpgc.es/research_works/ami_ear_database/ 

https://ctim.ulpgc.es/research_works/ami_ear_database/
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2.7.5 Gait 

Gait recognition is a behavioral biometric modality that uses a person's unique walking 

pattern to identify them. Compared to other first-generation biometric modalities such as 

fingerprint, gait recognition is less intrusive since it does not need subject interaction [28]. 

Gait identification is predicated on the premise that each individual has a unique and 

peculiar manner of walking that is discernible from a biomechanical standpoint. While human 

movement is composed of coordinated movements of hundreds of muscles and joints, gait 

varies in time and amplitude between individuals [29]. The complicated biological process of 

the musculoskeletal system is illustrated in Figure 2.9, which may be split into many sub-events 

of human gait. The examples depicted in this image are utilized to extract patterns used as an 

individual's identifying system. 

 

Figure 2.9 The gait cycle divided into two movement phases and five standing phases. 

As a result, slight differences in gait style may be utilized to identify individuals using 

biometrics uniquely. Gait recognition associates spatial-temporal characteristics such as step 

length, step breadth, walking speed, and cycle time with kinematic variables such as hip and 

knee rotation, mean hip, knee, ankle joint angles, thigh, trunk, and foot angles. The connection 

between step length and an individual's height is examined [30]. 

2.7.6 Hand geometry 

Hand geometry is commonly used for physical access control, and timekeeping, 

especially in some jurisdictions [31]. This form of biometry consists of analyzing 90 

characteristics of the hand, including the length and width of the fingers, the palm, the shape 

of the joints, or the drawing of the lines of the hand. For the capture phase, the person places 

their hand on a turntable. Then, the positions of the thumb, index, and middle fingers are 
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materialized [32]. An analysis from two different angles is performed to obtain a three-

dimensional rendering. Unlike fingerprints, which often still block psychological barriers, the 

analysis of the hand’s shape is much better accepted. Figure 2.10 is an example of a completely 

functional two-dimensional hand geometry reader device. 

 

Figure 2.10 Hand geometry reader.  

There are verification techniques that need only a few fingers to be measured rather 

than the whole hand. Although these devices are smaller than hand geometry, they are still 

significantly more extensive. 

2.7.7 Online signature 

Signature authentication systems usually include a pen and a digital tablet [33]. The 

verification is accomplished by analyzing several variables, including the speed with which the 

signature is made, the accelerations, and the pressure exerted. The difficulty with capturing a 

signature is that a person never signs the same way twice, even within seconds of each other. 

Indeed, depending on emotions or fatigue, a signature can change significantly. Hence, the 

development of very complex algorithms can consider these possible evolutions [34]. Figure 

2.11 depicts a tablet in its entirety.  
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A significant advantage of this technique is that the user may modify this characteristic 

when needed; this is a unique feature not available with the other biometric authenticators [35]. 

 

Figure 2.11 Online signature device. 

2.8 Biometric modalities… how to choose? 
Human characteristics can be used for biometrics in terms of the following 

parameters: 

1. Universality: each person should have the characteristic. 

2. Uniqueness: can the biometric separate one individual from another. 

3. Permanence: measures how well a biometric resists aging.  

4. Collectability: whether a biometric can be measured quantitatively. 

5. Performance: accuracy, speed, and robustness of technology used. 

6. Acceptability: degree of approval of a technology. 

7. Circumvention: ease of use of a substitute. 

Table 2.1 shows the most popular biometric modalities' property levels (high, medium, 

low). It is essential to consider these properties before deciding which modality to use in 

specific scenarios. 
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Table 2.1 Properties of biometric modalities [36]. 
(H: High, M: Medium, L: Low) 

Modality Univer-
sality 

Unique-
ness 

Perman-
ence 

Collect-
ability 

Perform-
ance 

Accept-
ability 

Circum-
vention 

Face H L M H L H L 
Fingerprint M H H M H M H 
Hand 
geometry M M M H M M M 

Keystrokes L L L M L M M 
Hand veins M M M M M M H 
Iris H H H M H L H 
Retinal scan H H M L H L H 
Signature L L L H L H L 
Voice M L L M L H L 
Facial 
thermograph H H L H M H H 

Odor H H H L L M L 
DNA H H H L H L L 
Gait M L L H L H M 
Ear M M H M M H M 

 

2.9 Why we must have ear biometric? 
The human ear is a relatively new modality in biometrics; indeed, there is no 

commercial software that utilizes this modality at the moment. It is considered one of the most 

constant anatomical characteristics in humans. According to embryological research, 

significant changes in the ear shape occur before the age of eight and beyond the age of seventy 

years [37, 38, 39]. Compared to other modalities, most notably the face, a person's ear does not 

alter significantly over time, but the face does. The features of the face can be altered via the 

use of cosmetics, hairstyles, and haircuts. Additionally, human faces vary in response to 

emotions and expressions such as grief, pleasure, fear, or surprise. 

On the other hand, the ear's features are primarily fixed and unaffected by emotions. 

Unlike facial identification systems, glasses, beards, or mustaches cannot be used to conceal 

ear pictures during the collection process. However, partial occlusion can be achieved by the 

presence of hair or curls. It is critical to highlight that the public has a high level of acceptance 

for ear modality in access control and security applications such as visa and passport programs. 

Additionally, there is no requirement to contact the sensor, eliminating the hygiene issue; 

picture capture may be accomplished quietly from a distance and does not require user-sensor 

interaction. 
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Additionally, ear pictures are more secure than face photographs, as visually associating 

an ear image with a particular individual is difficult (most users cannot identify their ear 

images). Thus, databases holding ear photos should not be safer than databases including face 

images, as the danger of assault is more significant in the latter scenario. Ear pictures can be 

collected concurrently with facial photos, increasing recognition accuracy. 

Traditionally, ear recognition was performed using classic Machine Learning (ML) 

algorithms. Although high results were obtained for some constrained databases, those 

algorithms gave minimal effects on unconstrained databases. Hence comes the need for more 

advanced ML algorithms such as Deep Learning. Deep learning has been used widely for 

different image classification tasks, including biometric recognition and identification. Thus, 

we proposed several promising biometric approaches based on deep learning. 

2.10 Conclusion  
Biometrics technology attempts to replicate the pattern recognition process of the 

human brain to identify individuals. It is a secure and dependable authentication system than 

the traditional secret-based and token-based authentication schemes. Biometrics technologies 

automate the recognition of persons based on their physiological and behavioral modalities. 

These qualities must meet specific criteria, including universality and performance. 

The recognition process is divided into two stages: Enrolment and Matching. The first 

phase seeks to teach the system about the person's identification. It begins by extracting some 

features from the captured data to create a referential database. The template is a representative 

framework that effectively summarizes the unique biometric features of each individual. The 

second phase, matching, retrieves the previously saved template to compare it to the newly 

retrieved characteristics.  

We presented the existing methods allowing us to evaluate biometric systems. Due to 

the vast range between classes and the slight variation within classes in some biometric 

samples, the system's judgment may be incorrect. Traditionally, the performance of a biometric 

system has been quantified using two error rates: FRR and FAR. The first triggers when a 

system rejects a real identity, whereas the second occurs when an impostor identity is 

erroneously accepted. Equal ERR is a trade-off between these two errors. 

It is widely thought that no biometric modality can be perfect; nevertheless, combining 

numerous biometric traits into a hybrid recognition system can significantly improve the 

recognition process and therefore enhance performance. 
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Recent years have seen a surge in interest and concentration on ear biometrics due to 

several studies. Numerous phases of the ear biometric process have been addressed and studied, 

ranging from ear detection to verification and identification. The ear, unlike the face, is 

unaffected by age or expression. Furthermore, ear image capture does not require expensive 

cameras or scanners, as fingerprint or iris image acquisition does. As a result, we picked the 

ear as a biometric modality. In the next chapter, we will study in detail the fundamentals of the 

ear as a biometric modality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3: Ear Biometrics 
 

40 
 

 

CHAPTER 3: Ear 
Biometrics 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3: Ear Biometrics 
 

41 
 

3.1 Introduction 
Ear biometrics recently gained an essential quantity of attention due to its importance 

and advantages over other modalities. In this chapter, we present ear biometrics in detail. Most 

biometric recognition systems that use two-dimensional ear images begin with feature 

extraction and then compare the derived vector to the enrolled models; this categorizes ear 

recognition approaches into four distinct categories: holistic, geometric, local, and deep neural 

networks (DNNs). This chapter discusses the most recent approaches to ear recognition and 

categorizes them according to the method utilized. 

This chapter is organized as follows: section 2 introduces ear biometrics, followed by 

ear recognition system presentation in section 3. In section 4, we introduce and categorize ear 

recognition methods. Section 5 introduces holistic methods, and section 6 introduces geometric 

approaches. In section 7, we review local methods. In section 8, we review state-of-the-art 

deep-learning-based methods. Finally, we conclude this chapter in section 9. 

3.2 Ear biometrics, why? 
 Why must we use ear biometrics? This question must be answered before proceeding 

to the rest of the chapter. Many problems in other modalities, such as face recognition, remain 

largely unsolved. Some of these problems are: 

 A wide variety of imaging problems. 

 The face is the most changing part of the body. 

 Facial expression, cosmetics, plastic surgery. 

 Some modalities require expensive equipment, such as the fingerprint. 

 The emission of infrared rays or other kinds of rays can disturb people. 

Unlike the face, fingerprint, or iris scanning, the ear biometric system feels a lot more 

natural. No need to make any physical movements such as moving finger or face. As a result, 

it is easier to implement continuous authentication. Even if the subject is moving and working, 

the system works everywhere. 

The properties of the ear, on the other hand, are numerous, as indicated in Figure 2.8, 

and are fixed and unaffected by emotions. Unlike facial recognition systems, glasses, beards, 

and mustaches cannot be used to hide ear images during the acquisition phase. Hair or curls 

can, however, partially obstruct vision. It is essential to highlight that the public supports ear 

modality in access control and government security applications like visas and passports. 
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Furthermore, because there is no need to touch the sensor, the hygiene issue is avoided; image 

acquisition can be done discreetly from a distance and does not require user-sensor cooperation. 

Furthermore, because it is challenging to visually correlate an ear image with a specific 

individual, ear photos are more secure than facial photographs; most users cannot identify their 

ear images. As a result, databases with facial photographs should be safer than databases with 

ear images; in the first situation, the risk of attack is higher. 

3.3 Ear Recognition System 
 We can divide the ear recognition process into four sub-processes, as shown in Figure 

3.1. The first step is ear detection which involves finding the ear in images, i.e., localizing the 

ear box as tight as possible in mixed images that can contain one or several ears. The next step 

is pre-processing or normalization, an intermediate phase that can enhance and speed up the 

classification process later by removing unnecessary information from ear images and 

correcting other conditions, such as illumination and occlusions. The feature extraction phase 

can be accomplished using either handcrafted or deep features. It is the most crucial phase that 

can directly affect the system’s final performance. Last, a standard classification or 

identification phase using any distance is sufficient to identify or verify the subject’s identity. 

 

Figure 3.1 Typical ear recognition system. 

3.4 Ear recognition methods 
 Ear recognition techniques can be broadly divided into four categories based on features 

extraction methodology:  

- Local methods that operate using handcrafted local features; 

- Geometric methods that focus on the shape of the ear; 

- Holistic methods that utilize global information from ear images;  

- Deep-learning-based methods that use convolutional neural networks. 
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Figure 3.2 illustrates the different approaches of ear recognition. 

 

Figure 3.2 Ear recognition methods. 

 

3.4.1 Holistic methods 
Holistic techniques presuppose that any collection of ear pictures contains redundancy 

that may be removed by tensor decomposition. This approach generates basis vectors 

resembling the original set of images. Each ear picture can be rebuilt in the sub-space using the 

set of basis vectors. Hurley et al. [40] proposed the force field transform that treats the ear 

image as a collection of Gaussian attractors acting as the source of a force field. This 

transformation takes advantage of the directional qualities to determine a small set of potential 

energies, which is the foundation for ear description. 

Gutierrez et al. [41] enhanced ear identification performance using a modular neural 

network. A 2D wavelet analysis based on global thresholding was used for image compression. 

The proposed system consists of nine modules; each module has been trained on a subset of 

the training data to identify a particular part (i.e., Helix, Concha, or Lobule). 

Chang et al. [42] applied Principal Component Analysis (PCA) to facial and ear 

biometrics and found that combining the two modalities resulted in a higher recognition rate. 

Zhang et al. [43] developed an ear identification system using Independent Component 

Analysis (ICA) in conjunction with a neural network classifier. They proved that using ICA 

instead of PCA resulted in a considerable improvement. 

Xie and Mu [44] introduced a technique for multi-pose ear identification called 

Improved Locally Linear Embedding (IDLLE). Hanmandlu and Mamta [45] recently proposed 
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an extension to PCA called local principal independent components (LPIC) that outperformed 

standard PCA. 

In summary, holistic approaches to biometric recognition system building are 

widespread. They are, nevertheless, subject to background changes and misalignment. As a 

result, even a minor misalignment of the ears might result in significant categorization errors. 

3.4.2 Geometric methods 
Geometric techniques attempt to harness the wealth of information included in 

geometrical ear features such as edge information and ear form when characterizing ear images. 

Moreno et al. [46] trained multiple neural networks on various geometrical features and then 

combined the results from each scenario. 

Mu et al. [47] offered another geometrical approach in which the feature vector was 

formed by combining the shape of the outer ear with the inner ear's shape. Choras and Choras 

[48] presented a work in which they constructed a geometric feature vector using a combination 

of ear contours and another parametric technique. Rahman et al. [49] developed a geometric 

feature vector that takes shape, centroid, mean, and Euclidean distance between pixels into 

account. 

Omara et al. [50] recently developed a geometric feature vector built on the minimal 

ear altitude line that considers the external helix's edge. They used three measure-based criteria 

in their paper to further improve ear representation.  

Geometric approaches appear straightforward to implement and have a low algorithmic 

complexity level. However, their primary shortcoming is their reliance on the ear’s contours, 

which can be altered by noise or lightning. 

3.4.3 Local methods 
Local approaches for ear recognition are based on extracting features from several 

picture regions, most notably local orientation data. Benzaoui et al. [51] applied and contrasted 

three different local texture descriptors: Local Binary Pattern (LBP), Local Phase Quantization 

(LPQ), and binarized statistical image features (BISF). They proved that the BSIF descriptor 

with the k-NN classifier performed optimally for restricted ear recognition. Benzaoui et al. [49] 

enhanced their prior work by incorporating embryological and anatomical information about 

the ear to identify the independent components and their placements at which significant inter-

individual variation can be detected. The authors demonstrated that the proposed idea increased 
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the BSIF-k-NN descriptor's efficiency. In another publication, Benzaoui and Boukrouche [52] 

provided a straightforward and successful method for combining and using color information 

with local texture descriptors. The authors concluded that the RGB-BSIF descriptor performed 

more quickly and accurately. 

The applicability of a tunable filter bank for feature extraction in ear identification 

systems was investigated in [53]. The wavelet obtained from a tunable filter based on second-

order is applied to each block of the ear image for feature extraction in their suggested 

approach. The six energy features that resulted from each block of four and six regions 

produced a final feature vector of 24 and 30 features, respectively. After that, the verification 

module decides by calculating the distance between Probe ear Feature Vector (FVp) and 

Gallery ear Feature Vector (FVg) within a predetermined threshold using L1, L2, Cosine, or 

Canberra distances. 

Guo and Xu [54] presented the Local Similarity Binary Pattern (LSBP) feature 

extraction approach, which considers similarity and connection features. They combined LSBP 

and LBP to improve recognition performance. Kumar and Chan [55] efficiently verified the 

ear's identity by utilizing the sparse representation of surrounding grey-level directions. Al 

Rahhal et al. [56] recently offered a strategy in which the LPQ descriptor was used for the 

separated blocs depicting horizontal stripes. The collected characteristics from each stripe were 

then combined to form a final vector descriptor. 

Lakshmanan employed a multi-level fusion of the ear score in [57], taking only the 

center component into account. He retrieved features from the outer and inner ear in two steps 

and fused the resulting scores before matching. A recognition rate of 99.2% was attained when 

the public dataset from the University of Science and Technology Beijing (USTB2) [58] was 

used. In [59], the authors used a new ear image contrast enhancement approach based on the 

grey-level mapping technique to solve the acquisition problems of 2D ear images; they used 

an Artificial Bee Colony (ABC) algorithm as an optimizer. The proposed technique allowed 

obtaining better-contrasted 2D ear images to be used either in verification or recognition tasks. 

In another comparative study, Hassaballah et al. [60] conducted a series of experiments on five 

publically available ear datasets using LBP variants to prove the high discriminative power of 

LBP-like features.  

Local techniques performed well under confined conditions with some ear databases 

but significantly worse with unconstrained conditions. 
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3.4.4 DNN-based methods 
Deep artificial Neural Networks (DNN), also termed deep learning approaches, have 

increased interest in computer vision. These methods employ successive convolutional hidden 

layers of information processing grouped hierarchically for pattern representation, learning, or 

classification. The literature contains numerous models and architectures for DNNs; the most 

famous are AlexNet [61], VGGNet [62], Inception [63], and SqueezeNet [64]. These models 

have demonstrated high performance in various biometric applications, notably facial 

recognition [65]. Nevertheless, a substantial body of literature on ear biometrics uses deep 

learning. We can include Tian and Mu's [66] paper among these works; they suggested a three-

layer convolutional network for restricted ear recognition. Numerous studies have 

demonstrated the utility of ensembles of models. Alshazly et al. [67] developed a model 

ensemble composed of various VGG architectural configurations. Multiple VGG settings are 

used to extract image features, averaged before being input to a fully connected layer to make 

a prediction. Experiments on the AMI dataset revealed excellent results, with a 97.50% 

recognition rate employing a fine-tuned VGG-13-16-19 ensemble. Kacar and Kirci [68] 

presented the ScoreNet, a novel CNN architecture for unconstrained ear identification, in their 

landmark paper. They advocated for the establishment of a modality pool in order to boost 

diversity. They systematically picked the modalities and compared the fusion process to the 

primary outcome to determine the optimal modality pattern. On the other hand, the 

recommended training procedure is time-consuming and resource-intensive. Omara et al. [69] 

retrieved and merged features from different layers of a pre-trained VGG-M utilizing 

Discriminant Correlation Analysis (DCA). They then used pairwise Support Vector Machine 

(SVM) to match the resulting feature vector; they regarded the identification problem as a 

binary classification problem between pair samples. Hansley et al. [70] suggested a two-stage 

architecture for fusing handcrafted and learned features, beginning with landmark 

identification using a CNN-based model, followed by feature extraction, both learned and 

handcrafted, and lastly, score normalization and fusion. Priyadharshini et al. [71] proposed a 

six-layer deep convolutional neural network architecture for ear identification. Khaldi and 

Benzaoui [72] tackled the problem of ear grayscale image recognition by employing a 

Generative Adversarial Network (GAN) to generate color images to enhance the identification 

process. In another study [73], the authors used generative adversarial networks to synthesize 

a region-of-interest of the ear free of all non-ear pixels, such as occlusions and hair. The 

proposed technique also allowed generating missing parts of the ear. In another recent study 
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by Khaldi et al. [39], the authors presented deep unsupervised active learning to enhance the 

model’s performance during the test phase. Using such a technique, a classification model can 

acquire new knowledge incremental and unsupervised. 

Numerous recent studies have begun to investigate the idea of data augmentation to 

circumvent the issue of limited training data. It is a well-known difficulty when it comes to 

training CNNs. Emersic et al. [75] conducted a study in which they attempted to address the 

latter issue by supplementing the training dataset. They used rotation, scaling, and 

transformation to generate similar images for each training image. Dodge et al. [75] evaluated 

and compared the performance of all available deep neural network models, demonstrating that 

data augmentation can dramatically increase recognition performance. Additionally, they 

proposed a framework for deep learning to mitigate the effect of over-fitting; this framework 

obtained superior performance. Transfer learning is another strategy used to address the later 

issue. This strategy works by transferring knowledge from one domain to another related 

domain using a new training dataset to fine-tune the deep model and its hyper-parameters [88]. 

Alshazly et al. [76] recently researched transfer learning utilizing pre-trained deep models, 

specifically AlexNet, VGGNet, Inception, ResNet [77], and ResNeXt [78]. Additionally, they 

used ResNeXt101 model ensembles to obtain their best findings. Zhang et al. [79] explored 

few-shot learning-based methods towards model training with limited training images. 

The Unconstrained Ear Recognition Challenge (UERC) [80] kicked off a series of 

challenges focused on ear recognition utilizing massive unconstrained datasets. The organizers' 

objective is to evaluate competitors' technique performance and their capacity to adapt to 

uncontrolled conditions such as generalization to unseen data, sensitivity to rotations, 

occlusions, and low resolution. Five teams of researchers competed by evaluating and 

analyzing six ear identification systems using large-scale ear datasets. The competition's next 

edition was held in 2019 [82]; researchers from 12 institutions submitted a total of 13 distinct 

techniques, utilizing local descriptor-based methods and CNN-based models, as well as hybrid 

models. These events made significant contributions to the advancement of biometric 

recognition, and each edition of the challenge has seen new advances.  

Table 3.1 summarizes the studies mentioned in this chapter, categorizing them 

according to their categories, the datasets used, and the experimental protocols. 
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 Table 3.1 Comprehensive summary of state-of-the-art methods. 

Approach Papers Feature extraction 
method 

Employed datasets Evaluation Protocol 
Name #Sub. #Img. 

Holistic 

Hurley et al. [40] (2000) Force Field Transform Private NA NA NA (Not Available) 
Chang et al. [42] (2003) PCA Private NA NA NA 

Zhang and Mu [83] (2008) Geometric Features + ICA 

USTB-1 60 180 2 img/sub Training & 1 remaining 
Test 

USTB-2 77 308 3 img/sub Training & 1 remaining 
Test 

Private 17 102 5 img/sub Training & 1 remaining 
Test 

Gutierrez et al. [41] (2010) Wavelet Transform USTB-2 77 308 3 img/sub Training & remaining 1 
img/sub Test 

Tariq et al. [84] (2011) 
Haar Wavelets + Fast 
Normalized Cross 
Correlation 

USTB-1 60 180 120 Train & 65 Test 

USTB-2 77 308 3 img/sub Training & 1 remaining 
Test 

IITD-1 125 493 250 Train & 243 Test (Randomly) 

Geometric 

Moreno et al. [46] (1999) 
Geometric Features 
(Morphological 
Description) 

Private 28 186 3 Train, 1 Validation, & 2 Test 

Burge and Burger [85] (2000)  Adjacency Graphs of 
Voronoi Diagrams Private NA NA NA 

Mu et al. [47] (2004) Geometrical Measures on 
Edge Images USTB-2 77 308 3 img/sub Training & 1 remaining 

Test 
Choras and Choras [48] 
(2010) 

Geometrical Approaches 
on Longest Ear Contours Private NA NA NA 

Rahman et al. [49] (2014) Geometric Features Private NA NA NA 
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Lakshmanan [86] (2013) Multi-Level Fusion USTB-2 77 308 3 img/sub Training & 1 remaining 
Test 

Omara et al. [50] (2016) Geometric measurements 
USTB-1  60 180 60 Train & 120 Test (Randomly, 10 

times) 

IITD-1 125 375 125 Train & 250 Test (Randomly, 10 
times) 

Local 

Guo and Xu [54] (2008) LBP + Cellular NN USTB-2 77 308 3 img/sub Training & 1 remaining 
Test 

Benzaoui et al. [51] (2014) BSIF 

IITD-1 125 493 #exp1: 250 Train & 243 Test  
#exp2: 125 Train & 368 Test 

IITD-2 221 793 #exp1: 442 Train & 351 Test 
#exp2: 221 Train & 572 Test 

USTB-1 60 185 #exp1: 120 Train & 65 Test 
#exp2: 60 Train & 125 Test 

Ghoualmi et al. [59] (2016) SIFT 
IITD-1  125 421 

3 img/sub Training & remaining Test USTB-1 180 60 
USTB-2 77 308 

Chowdhury et al. [53] (2018) Tunable Filter Bank 

AMI 100 700 60% Train & 40% Test (Randomly) 

IITD-1 125 493 2 img/sub Train & remaining Test 
(Randomly) 

UERC-17 3540 11804 2304 Train & 9500 Test 

Al Rahhal et al. [56] (2018)  
LPQ 

IITD-1  125 465 1 img/sub Train & remaining Test (3 
permutations) IITD-2 221 793 

Hassaballah et al. [60] (2019) Completed LBP 

IITD-1  125 493 2 img/sub Train & remaining Test 
(Randomly) 

IITD-2 221 793 2 img/sub Train & remaining Test 
(Randomly) 

AMI 100 700 60% Train & 40% Test (Randomly) 
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WPUT 474 3348 5-fold cross-validation 
AWE 100 1000 60% Train & 40% Test (Randomly) 
IITD-2 221 793  

Deep Neural 
Networks 

Emeršič et al. [74] (2017) SqueezeNet AWE + CVLE 
+ 500 images 166 2304 60% Train & 40% Test (Randomly)  

Hansley et al. [70] (2018) CNN + HOG UERC-17 3540 11804 2304 Train & 9500 Test 

Omara et al. [69] (2018) Pairwise SVM 

USTB-1 60 180 #exp1: 1 img/sub Train & remaining 
Test (3 permutations)  
#exp2: 2 img/sub Train & remaining 
Test (Randomly) 
#exp3: 3 img/sub Training & 
remaining Test 

USTB-2 77 308 
IITD-1 125 493 

IITD-2 221 793 

Zhang et al. [43] (2018) VGG-face AWE 100 1000 60% Train & 40% Test 

Alshazly et al. [77] (2019) VGG AMI 100 700 60% Train & 40% Test (Randomly) WPUT 474 3348 

Zhang et al. [80] (2019) MAML + CNN AMI 100 700 60% Train & 40% Test (Randomly) 
UERC-17 3540 11804 2304 Train & 9500 Test 

Alshazly et al. [67] (2019) AlexNet (Fine Tuning) AMI 100 700 60% Train & 40% Test (Randomly) CVLE 16 804 
Alshazly et al. [77] (2020) ResNeXt101 EarVN1.0 164 28412 60% Train & 40% Test (Randomly) 

Priyadharshini et al. [71] 
(2020) CNN IITD-2 221 793 490 img Train & 303 Test 

(Randomly – 10 times) 
AMI 100 700 600 img Train & 100 Test 

Khaldi et al. [72] (2020) GAN + CNN AMI 100 700 60% Train & 40% Test 
 GAN + CNN AWE 100 1000 60% Train & 40% Test 
Khaldi et al. [73] (2020) GAN + CNN AWE 100 1000 60% Train & 40% Test 

Khaldi et al. [27] (2021) Active Learning 
AMI 100 700 60% Train & 40% Test 
AWE 100 1000 60% Train & 40% Test 
C-USTB2 77 308 60% Train & 40% Test 
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While advances in ear recognition have been promising, there are many unresolved 

issues and open challenges such as the variations in pose, occlusion, resolution, and ear 

synthesis. We continued our research to address some of these challenges by offering different 

schemes and methods to improve the overall ear recognition process. 

3.5 Conclusion 
In this chapter, we presented the ear anatomy, ear recognition system, and its 

components. We also reviewed the most important state-of-the-art ear recognition approaches 

based on the method used, either: holistic, geometric, local, or DNN-based. We reviewed how 

each approach can have its pros and cons, but in global point-of-view, deep learning-based 

methods outperformed other methods, especially in unconstrained scenarios. With the 

emergence of several unconstrained ear databases (also known as ear in the wild), traditional 

machine learning algorithms suffered from poor performance. Many of these challenges have 

been overcome by using deep learning-based approaches.  

For this reason, we decided to dive into research using deep learning. Detailed 

discussion and comparison of our proposed approaches against state-of-the-art methods are 

provided in the following chapters. 
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4.1 Introduction 

In Artificial Intelligence (AI), or more specifically Machine Learning (ML), a training 

model known as "deep learning" is more closely to how the human brain makes decisions. We 

use the term "brain" to suggest that the algorithms are more complex. Instead of relying on a 

single layer for processing, numerous complex layers are employed. The layers of a neural 

network can communicate with one another. Automated learning is a step closer to 

unsupervised learning. 

Before big data and cloud computing, the amount of data and processing power required 

were not widely accessible. Even if a large volume is required, this does not indicate that the 

data must be structured. Both organized and unlabeled data can be processed by deep learning. 

It also generates more complicated statistical models due to this approach of learning. Data 

adds complexity to the model, but accuracy improves with it as well. 

The rest of the chapter is organized as follows: Sections 4.2 and 4.3 represent a 

background of deep learning and artificial neural networks. Section 4.4 discusses the 

approaches of deep learning. Section 4.5 outlines convolutional neural networks architectures. 

Section 4.6 presents some applications of deep learning. Next, we review the standing 

challenges in deep learning. Last, in section 4.8, we conclude this chapter. 

4.2 Machine learning vs. deep learning 
ML is a suite of techniques and tools that enables machines to recognize patterns within 

data and reason about a specific task using this underlying structure [87]. Machines attempt to 

comprehend these fundamental patterns in a variety of ways. However, what is the relationship 

between ML and Deep Learning (DL)? 

There is a widespread misperception that deep learning is a competitor to machine 

learning. Figure 4.1 illustrates the relationship between DL and ML; to put things in context, 

DL is a subdomain of machine learning. With enhanced computer power and massive data sets 

at their disposal, deep learning algorithms may self-learn hidden patterns within data to make 

predictions. In summary, consider DL to be a subset of machine learning trained on a vast 

quantity of data and utilizes many processing units to make predictions [88]. 
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Figure 4.1 The relationship between AI, ML, and DL.  

4.3 Artificial Neural Networks 
4.3.1 Towards Neural Networks 

The perceptron is the essential part of an Artificial Neural Network (ANN); a 

Perceptron is a learning approach for supervised binary classifiers. Binary classifiers use a 

series of vectors to determine if an input belongs to a particular class. A single-layer neural 

network is what a perceptron is, in a nutshell. Weights and bias are included for each of the 

input value, in addition to a net sum and activation function [89]. The first step is to multiply 

all the input values by their respective weights. Then, the weighted sum is calculated by 

multiplying each of the multiple values. Weighted sums are added together and used to a 

perceptron's activation function to produce its output. Using the activation function, we can 

ensure that the output is mapped to values like 0 and 1 (or -1 and 1). The strength of a node can 

be gauged by looking at the weight of an input. Activation function curves can be shifted up or 

down by varying the bias value of an input in a similar way [90]. The perceptron's workflow is 

depicted in Figure 4.2. 
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Figure 4.2 Workflow of the perceptron.  

ANNs are a logical progression from perceptrons. An example of a feed-forward neural 

network is a multi-layered perceptron. Input, output, and perceptron neurons (as well as 

synaptic weights) would all be part of it. Figure 4.3 depicts the ANN's design. 

 

Figure 4.3 The architecture of ANN.  

4.3.2 Activation functions 

The activation function is critical for an artificial neural network to learn. It converts an 

input signal to an output signal like any other function. This output signal is the input to the 

next layer [91]. The activation function determines whether or not to stimulate a neuron by 

computing the weighted sum and then adding bias. The goal is to introduce non-linearity into 
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a neuron's output. The output signal is just a linear function if no activation function is used. 

While linear functions are simple to implement, they are insufficient in some cases. Non-linear 

functions have more than one degree and exhibit curvature. Now, we require a neural network 

capable of learning and representing practically any complex function [92]. The most used 

activation functions are: 

1) Threshold Activation Function: It is called a binary step function based on a 

threshold. If the input value is greater than a predefined threshold, the neuron is 

triggered and sends one as a value to the following layer, as shown in Figure 4.4. 

 
Figure 4.4 A Binary step function.  

The limitation of this method is that it can only create binary classifications (1 or 0). 

However, if we wish to connect numerous neurons to add other classes, in this situation, 

if all neurons will output 1, the class cannot be determined [93]. 

2) Sigmoid Activation Function: A sigmoid function is a mathematical function with a 

characteristic S-shaped curve or sigmoid curve that spans the range of 0 to 1, as seen in 

Figure 4.5. It is utilized in models where the outcome is required to estimate a 

probability [93]. 

 
Figure 4.5 Sigmoid curve 
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The Sigmoid function is differentiable, which implies that it may be used to 

determine the slope of a curve between any two points. The disadvantage of this 

activation function is that it might lead the network to become stuck during training if 

significant negative inputs are provided constantly. 

3) Hyperbolic Tangent Function (tanh): It is similar to the sigmoid but performs better 

(Figure 4.6). Nature is nonlinear, which is why we can stack layers. The range of the 

function is between [-1,1]. 

 
Figure 4.6 The tanh function.  

The primary advantage of this function is that it maps substantial negative inputs 

to negative outputs while mapping zero-valued inputs to near-zero outputs. As a result, 

the likelihood of becoming stuck during training is reduced. 

4) Rectified Linear Units (ReLu): ReLu is the most often employed activation function 

in Convolutional Neural Networks (CNN) and Artificial Neural Networks (ANN), with 

a range of zero to infinity. It returns a value of x if it is positive and 0 otherwise. It 

appears to have the same linear function difficulty as it does in the positive axis. Relu 

is a non-linear function by definition, and its combination with other functions is also 

non-linear. Indeed, it is an excellent approximator, and any function may be 

approximated with Relu. It is six times more efficient than the hyperbolic tangent 

function. It should be used solely on the neural network's hidden layers. Thus, for the 

output layer, we should use the softmax function for classification problems or a linear 

function for regression problems [94]. 

One issue is that some gradients are fragile and can die during training. It 

generates a weight update, preventing it from activating any subsequent data point [95]. 
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Essentially, ReLu may result in the death of neurons. Leaky ReLu was introduced to 

address the issue of dying neurons. As a result, Leaky ReLu presents a modest slope to 

maintain the updates. Leaky ReLu has a value between - and +. Figure 4.7 shows the 

difference between ReLu and Leaky Relu. 

 
Figure 4.7 ReLu vs. Leaky ReLu. 

5) Softmax activation function: It is a mathematical function that turns a vector of 

integers into a vector of probabilities, with the probability of each value proportional to 

the vector's relative scale as defined in Eq. 4.1. 

(ݖ)ߪ =  
݁௭

∑ ݁௭ೕ
ୀଵ

 
(4.1) 

 

4.3.3 How do Neural networks to learn? 

An analogy may help to understand brain network mechanisms. There are many 

similarities between neural network learning and human learning, such as learning in our daily 

lives and activities. For example, when we do an action and receive feedback from a trainer, 

we improve our performance. A trainer is also needed to explain what the output should have 

been when it comes to neural networks. Based on this discrepancy between actual and 

anticipated values, a cost function error value is calculated and sent back to the system. 

Cost functions are assessed and utilized to change thresholds and weights for the 

following input in the network at each layer. As a team, we are working to reduce the cost 

function. The closer the projected value to the actual value is the lower the cost function. In 

this approach, the network improves at analyzing values, and the error decreases over time. 

The results are fed back into the neural network and reprocessed. We can control the weighted 

synapses that connect input variables to the neuron. 

Relu Leaky Relu 
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Adjusting the weights is necessary if there is a discrepancy between the actual and 

projected values. A new cost function will be generated, ideally smaller than the previous one 

if we adjust them a little and rerun the neural network. To get the cost function down to the 

smallest possible size, we must go through this process repeatedly. The outlined technique, 

known as Back-propagation, is continuously applied across a network to keep the error value 

as low as possible. 

4.3.5 Back-propagation 

Neural network training relies on back-propagation to do its task. It is a technique for 

optimizing neural network weights based on the previous epoch's error rate (i.e., iteration). We 

can obtain lower error rates and increase the model generalization by adjusting the weights 

[96]. 

In neural networks, "backward propagation of mistakes" is known as "back-

propagation." It is a common practice in artificial neural network training. A loss function's 

gradient can be calculated using this method for all network weights. This algorithm uses the 

chain rule to compute a single weight's loss function gradient using back-propagation. 

A feed-forward neural network's weight-space gradient concerning a loss function is 

computed using back-propagation. The chain rule is crucial in back-propagation. Here is a 

partial differentiation of loss (L) in terms of weights/parameters (w). An increase or decrease 

in the weight of an object affects its value. z(∂ݓ∂/ݖ) is an essential factor in activation a(∂a/∂z), 

which is affected by even a slight change in the value. The loss function L(∂L/∂a) is affected 

by a tiny modification in the activation ܽ. Equation 4.2 [97] shows how to express it 

mathematically. 

∂L
∂w =  

∂L
∂a × 

∂a
∂z × 

∂z
∂w 

(4.2) 

where L is the loss function, w is the weights, z is the linear regression, and a is the activation 

function used. 

4.4 Convolutional Neural Networks 
DL algorithms such as Convolutional Neural Networks (CNNs or ConvNets) can 

distinguish between distinct aspects and objects in an image and then use that knowledge to 

create new images based on that information [98]. There is far less pre-processing necessary 

when using a CNN than other classification methods. CNN can learn certain 

filters/characteristics if they are given enough training. 
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A CNN's architecture is similar to the connectivity pattern of neurons in the human 

brain and was inspired by the visual cortex's arrangement. The receptive field is the area of the 

visual field in which individual neurons respond to stimuli. A collection of these fields covers 

the entire visual field. A CNN can capture the spatial and temporal dependencies in an image 

through relevant filtering techniques. The reduced number of parameters and reusability of 

weights allow the architecture to fit the picture collection better. In other words, the network 

may be trained to comprehend the image's complexity better. Figure 4.8 displays a generic 

CNN architecture [99]. 

 

Figure 4.8 A CNN example for handwritten digits classification [100].  

4.4.1 Convolutional Layers 

The convolutional layer is the fundamental block, as it is responsible for most of the 

computations. It comprises three components: input data, a filter, and a feature map. The kernel 

or filter traverses the image's receptive fields, checking for the presence of features; this is 

referred to as convolution [101]. The kernel is a two-dimensional (2-D) weighted array 

representing a portion of the image. While filter sizes vary, they are commonly a 3×3 matrix; 

this also dictates the size of the receptive field. The dot product of the filter and the portion of 

the input array is calculated and loaded into an output array. Following that, the filter shifts by 

one stride, and the procedure is repeated until the kernel has swept across the entire image. A 

feature map, activation map, or convolved feature is the ultimate result of a series of dot 

products from the input and the filter [102]. 
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Figure 4.9 The linear convolution operation.  

As illustrated in Figure 4.9, the convolution procedure does not require that each output 

pixel in the feature map be connected to each pixel value in the input array. For that, 

convolutional layers are frequently referred to as partially-connected layers. The filter weights 

remain constant as it traverses images, a phenomenon is known as parameter sharing. Specific 

parameters, such as the weight values, are adjusted during training using back-propagation and 

gradient descent. However, three hyper-parameters must be set before the neural network 

training begins. Among them are [101]: 

1) The number of filters: It affects the output's depth. n distinct filters, for example, would 

result from n different feature maps. 

2) The stride parameter: specifies the distance or the number of pixels that the filter moves 

across the input array.  

3) Zero-padding is typically used when the filters do not fit the input image; this reduces the 

size of all items outside the input matrix to zero, resulting in a larger or equal-sized output. 

It is classified into three types: 

• Valid padding: Also referred to as no padding. 

• Consistent padding: Ensures that the output layer is identical to the input layer in 

size. 

• Full padding: Enlarges the output by appending zeros to the input's border. 

A CNN adds a Rectified Linear Unit (ReLU) adjustment to the feature map following 

each convolution operation, bringing nonlinearity into the model. 
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As previously stated, other convolution layers may be added after the initial convolution 

layer. When this occurs, the CNN's structure can become hierarchical. For example, suppose 

we attempt to detect whether an image contains a bicycle. Consider the bicycle as a collection 

of components. It comprises a frame, handlebars, wheels, and pedals, among other components. 

Each bicycle component represents a lower-level pattern in the network, while its combination 

represents a higher-level pattern, resulting in a feature hierarchy within the CNN, as illustrated 

in Figure 4.10 [102]. 

 

Figure 4.10 Example of feature hierarchy created by CNN.  

4.4.1 Pooling Layer 

Pooling layers, also called downsampling, is a technique for lowering input 

dimensionality by reducing the number of factors. The pooling operation sweeps an 

unweighted filter across the entire input using an aggregation function to populate the output 

array with the values contained within the receptive field. It can be classified into two broad 

categories [103]: 

• Pooling to a maximum: The filter traverses the input array. It selects the pixel with the 

highest value for the output array. 

• Average pooling: The filter determines the average value contained inside the receptive 

field. 
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While the pooling layer loses much information, it also provides several benefits for 

the CNN. They contribute to the reduction of complexity, the enhancement of efficiency, and 

the avoidance of over-fitting [104]. 

4.4.1 Fully-Connected Layer 

The Full-Connected (FC) layer is what its name implies. Layers that are only partially 

connected have no direct connection between the input image and the output layer. 

Nevertheless, in a completely interconnected layer, every node in the output layer is directly 

linked to a node in the previous layer [105]. 

Classification is done here using the information from the previous layers and their 

various filters. FC layers often employ a softmax activation function to categorize inputs 

adequately, whereas convolutional and pooling layers typically use ReLu functions, resulting 

in a probability ranging from zero to one. 

4.5 CNN architectures 

4.5.1 AlexNet 

The origins of deep CNNs date back to the birth of LeNet (Figure 4.11) [97]. At the 

time, CNN's were limited to jobs involving the recognition of handwritten digits, which could 

not be scaled to all image classes. AlexNet is highly regarded in deep CNN architecture [64] 

since it achieved groundbreaking results in image classification. By expanding the depth of the 

CNN and adopting different parameter optimization procedures, Krizhevesky et al. [61] 

proposed the AlexNet and subsequently increased the CNN's learning capabilities. The 

AlexNet architecture is depicted in Figure 4.12. 

 

Figure 4.11 The architecture of LeNet. 
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Figure 4.12 The architecture of AlexNet.  

Due to hardware limitations, deep CNN's ability to learn was limited. AlexNet was 

trained on two Graphics Processing Units (GPU) (NVIDIA GTX 580) at the same time to 

address these hardware restrictions. Additional feature extraction steps have been added in 

AlexNet so that the CNN can be used for a broader range of image classifications. Even though 

depth promotes generalization for various image resolutions, overfitting was the main negative 

associated with depth. Krizhevesky et al. [106] solved this problem. The approach suggested 

by Krizhevesky et al. randomly passes over numerous transformational units during the training 

phase to ensure that the features learned by the system are extra resilient. The vanishing 

gradient problem can be reduced by using ReLU as a non-saturating activation function to 

speed up convergence [107]. 

Additionally, overlapping subsampling and normalization of local responses were used 

to reduce overfitting and improve generalization. The use of large-size filters (5×5 and 11×11) 

in the first layers of the network was another way to increase the network's performance. In 

recent CNN versions, AlexNet has had a significant impact, and launched a new era of research 

in CNN applications. 

4.5.2 Network-in-network 

The Network-In-Network (NIN) model differs slightly from previous models and 

introduces two novel notions [108]. The first was accomplished by the use of many layers of 

perceptual convolution. These convolutions are carried out with the help of one filter, which 

enables the addition of further nonlinearity to the networks. Additionally, this allows the 

expansion of the network depth, which can then be regularized via dropout. This concept is 

widely used in the bottleneck layer of DL models. Global Average Pooling (GAP) layers are 
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also used instead of FC layers, which are the second innovative notion and significantly reduces 

model parameters. 

Additionally, GAP modifies the network architecture significantly. When GAP is used 

on a prominent feature map, it is possible to generate a final low-dimensional feature vector 

without reducing the dimension of the feature map [109]. The network's architecture is depicted 

in Figure 4.13. 

 

Figure 4.13 The architecture of network-in-network.  

4.5.3 ZefNet 

Before 2013, the CNN learning process was primarily created through trial and error, 

making it impossible to determine the precise goal of the upgrade. This issue limited the 

performance of deep CNN on complex pictures. Zeiler and Fergus responded in 2013 [110] by 

introducing the multilayer De-Convolutional Neural Network (DeconvNet). This technology 

became known as ZefNet and was created to examine the network quantitatively. The goal of 

the network activity visualization was to assess the CNN's performance by analyzing neuron 

activation. However, Erhan et al. used this exact concept to optimize the performance of Deep 

Belief Networks (DBN) by displaying the hidden layer characteristics [111]. Additionally, Le 

et al. evaluated the performance of the deep unsupervised Auto-Encoder (AE) by evaluating 

the image classes formed using the output neurons [112]. DenconvNet performs similarly to a 

forward-pass CNN by reversing the operation order of the convolutional and pooling layers. 

This type of reverse mapping reverses the output of the convolutional layer, resulting in 

visually discernible image forms that correspond to the interpretation of the internal feature 

representation learned. ZefNet's fundamental premise was to evaluate the learning scheme 

throughout the training stage. 

Additionally, it used the results to identify a capability issue associated with the model. 

This concept was proved experimentally on AlexNet using DeconvNet; this revealed that just 

a subset of neurons was active, while the remainder remained dormant in the network's first 

two layers. Additionally, it suggested that the second layer's extracted features had aliasing 
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objects. As a result of these outcomes, Zeiler and Fergus altered the CNN topology. 

Additionally, they optimized the parameters and leveraged CNN learning by reducing the stride 

and filter sizes. As a result of this reconfiguration of the CNN topology, performance was 

improved. This reorganization proposes that visualizing the features may be used to uncover 

design flaws and make relevant parameter changes. The network's architecture is depicted in 

Figure 4.14. 

 

Figure 4.14 The architecture of ZefNet.  

4.5.4 Visual Geometry Group (VGG) 

Simonyan and Zisserman suggested a straightforward and efficient design principle for 

CNN after it was proven to be helpful in the field of image recognition. Visual geometry group 

was the name of this groundbreaking design. Nineteen additional layers than ZefNet [110] and 

AlexNet [61] were used to simulate the depth of the network representational capacity in-depth 

in this multilayer model [62]. ZefNet, on the other hand, was the frontier network in the large 

scale visual recognition challenge 2013 (2013-ILSVRC) competition, proposing that smaller 

filters could improve the performance of CNN. VGG inserted a layer of 3×3 filters rather than 

5×5 and 11×11 filters in ZefNet. These small-size filters were shown experimentally to have 

the same effect as larger-sized filters when used in parallel. On the other hand, small-size filters 

produced a receptive field comparable to that of the larger-size filters (77 and 55); using small-

size filters allowed for an additional benefit of reducing computing complexity by reducing the 

number of parameters. These results set the stage for a new paradigm in CNN filter research: 

working with small-sized filters. In addition, VGG manages network complexity by inserting 

1×1 convolutions in the center of the convolutional layers of the network. A linear grouping of 

the following feature maps is learned by it. Max pooling [113] is placed after the convolutional 

layer, while the padding is used to keep the spatial resolution in place. For localization and 

image classification, VGG achieved remarkable results. With its increased depth, 

homogeneous topology, and simple design, it gained a reputation in the 2014 The ImageNet 

Large Scale Visual Recognition Challenge (2014-ILSVRC) competition. However, the overuse 
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of 140 million parameters in VGG resulted in an excessively high computational cost. The 

network's structure is depicted in Figure 4.15. 

 

Figure 4.15 The architecture of VGG.  

4.5.5 GoogLeNet 

The winner of the 2014-ILSVRC competition was GoogleNet (also known as 

Inception-V1) [63]. The GoogleNet architecture's primary goal is to achieve high-level 

accuracy while reducing processing costs. In this study, an inception block (module) approach 

that combines multiple-scale convolutional transformations by applying merge, transform, and 

split functions for feature extraction was developed for the CNN context. The inception block 

architecture is shown in Figure 4.16. Channel and spatial information can be captured at various 

spatial resolutions by using filters of various sizes (55, 33, and 11). Rather than using the 

standard convolutional layer of GoogLeNet, tiny blocks of Micro-Neural Networks (MNN) 

were used to replace each layer. The GoogLeNet ideas of merging, transforming, and splitting 

were used in conjunction with a concern associated with various learning types of variants 

present in a comparable class of multiple photos. Aims of GoogLeNet were enhancing CNN 

parameters and increasing learning capabilities. As a bottleneck layer, an 11 convolutional 

filter is inserted ahead of employing large-size kernels to control the computation. In order to 

solve the problem of redundant information, GoogleNet used sparse connections. It saved 

money by ignoring the unnecessary avenues of distribution. As a reminder, only some of the 

input channels are connected to the output channels. The density of connections was reduced 

by using a GAP layer instead of an FC layer as the terminal layer. These parameter tunings 

also reduced the number of parameters from 40 millions to 5 millions. Additionally, RmsProp 

was employed as an optimizer, and batch normalization was performed [114]. To speed up the 

process of convergence, GoogleNet recommended using additional learners. GoogleNet, on the 

other hand, suffers from a topology that is difficult to modify from one module to the next. 

Representation jam, which reduced feature space in the subsequent layer and caused crucial 

information loss, is another drawback of GoogleNet. 
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Figure 4.16 The basic structure of GoogLeNet Block.  

4.5.6 ResNet 

Residual Network (ResNet) was invented by Kaiming He and his colleagues [90]. For 

this project, the goal was to create an ultra-deep network free of the vanishing gradient problem. 

ResNet was divided into several distinct categories depending on the number of layers. 

ResNet50, which has 49 convolutional layers and a single FC layer, was the most frequent 

form. Network variables totaled 25.5 millions. Figure 4.17 depicts the basic ResNet block 

diagram clearly this is a standard feed-forward network with a residual connection included. 

This layer's (l-1)th outputs can be identified as those given by the previous layer (xl-1). F(xl-1) 

results from several operations, such as convolution with variable-size filters, or batch 

normalization, before applying an activation function like ReLU on (xl-1). The residual 

network has a large number of fundamental residual blocks. Operations in the residual block 

are likewise affected by the residual network design. 
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Figure 4.17 The block diagram for ResNet.  

For cross-layer connections, ResNet introduced shortcuts within layers that are 

parameter-free and data-independent, unlike the highway network. Layers describe non-

residual functions in the highway network when a gated shortcut is closed. On the other hand, 

ResNet never closes individuality shortcuts, yet residual information is always transmitted. 

Another advantage of ResNet is that its shortcut connections (residual links) can help prevent 

gradient fading and speed up deep network convergence. In the 2015-ILSVRC competition, 

ResNet has 152 layers of depth, eight times as deep as VGG and twenty times as deep as 

AlexNet. Even with increased depth, it has a smaller computational burden than VGG. 

4.5.7 Inception 

An improvement to Inception-V1/2 called Inception-ResNet and Inception-V3/4 was 

suggested by Szegedy et al. [63, 115]. The idea of Inception-V3 was to reduce the 

computational cost without affecting the generalization of the network. A bottleneck of 

convolution before the large-size filters was also used by Szegedy et al. [116]. Consequently, 

they chose small-size filters (15 and 17) rather than larger filters (77 and 55). Thanks to these 

developments, traditional convolution is now highly comparable to cross-channel correlation. 

Previously, Lin et al. used the NIN architecture's 1×1 filtering capabilities. After that, they 

creatively used the same concept. 3 or 4 isolated spaces are created by applying the 11 

convolutional operations in Inception-V3 to transform input data. A 5×5 or 3×3 convolution 
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can then map these relationships in these smaller regions. The residual connection replaces the 

filter concatenation in Inception-ResNet, which Szegedy et al. use it to combine the inception 

block and residual learning power [117]. As Szegedy et al. demonstrated, Inception-ResNet 

(Inception-4 with residual connections) has the same generalization capacity as Inception-V4 

with an expanded width and depth but no residual connections. Inception network training can 

be considerably accelerated by exploiting residual connections in training. Inception Residual 

unit's fundamental block diagram is shown in Figure 4.18. 

 

Figure 4.18 The basic block diagram for Inception Residual unit.  

4.5.8 DenseNet 

DenseNet, following the same path as ResNet and the Highway network, was proposed 

to address the issue of the vanishing gradient [117, 118, 119]. As numerous layers offer little 

or no information, ResNet has the drawback of visibly conserving information by preserving 

individuality modifications. Because each layer has its own set of weights, ResNet has a high 

number of weights. Cross-layer connectivity was used by DenseNet as a better technique to 

deal with this problem [120]. It used a feed-forward strategy to connect every layer to every 

other layer in the network. Therefore, the feature maps from previous layers were used to 

populate the data in all subsequent ones. Compared to typical CNNs, DenseNets have (ାଵ)
ଶ

 

direct connections between the previous and the current layers. As shown by DenseNet, cross-
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layer depth-wise convolutions have an effect. Because DenseNet concatenates the features of 

the preceding layers, rather than adding them, the network is better able to distinguish between 

newly added information and information that has been kept. DenseNet, on the other hand, is 

more expensive because of its limited layer structure, which makes it more expensive per 

feature map. Loss-function admittance of all layers to gradients increases network-wide data 

flow significantly. A regularizing effect is also included, reducing overfitting on tasks and 

small training batches. DenseNet Network's structure is shown in Figure 4.19. 

 

Figure 4.19 The architecture of DenseNet Network.  

4.5.9 ResNext 

A newer version of the Inception Network [79] is called ResNext. The Aggregated 

Residual Transform Network is another name for it. The network introduced a new concept, 

"cardinality," which uses the split, transform, and merge topology. The extra dimension [121] 

indicates the size of the transformation set. The Inception network, on the other hand, improves 

the traditional CNN's learning capabilities while also better managing network resources. 

Different spatial embeddings (e.g., 5×5, 3×3, and 1×1) are employed in the transformation 

branch. As a result, each layer must be customized individually. On the other hand, ResNet, 

VGG, and Inception provide the basis of ResNext's distinctive features. The split, transform 

and merge blocks used the VGG deep homogeneous topology with GoogleNet's fundamental 

architecture by using 3×3 filters as spatial resolution. ResNext's building blocks are depicted 

in Figure 4.20. Within the divide, transform, and merge blocks, ResNext implemented multi-
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transformations while also describing these transformations in cardinality terms. It has been 

shown that raising the cardinality has a considerable impact on performance. In order to keep 

ResNext's complexity in check, low embedding filters were used before a 3×3 convolution. 

Dropping connections, on the other hand, is employed to improve training. 

 

Figure 4.20 The basic block diagram for the ResNext building blocks.  

4.5.10 WideResNet 

Deep residual networks suffer from a phenomenon known as feature reuse, in which 

some feature blocks or transformations have a negligible impact on learning. WideResNet was 

presented as a solution by Zagoruyko and Komodakis [122]. Deep residual networks' core 

learning abilities are conveyed through residual units that have a supplemental effect on the 

network's depth. Instead of deepening the ResNet, WideResNet widened it to take advantage 

of the leftover block power. A new factor, k, was included to deal with network width, which 

increased the overall width. Layer broadening was a more practical approach to enhancing 

performance than deeper the residual network. While enhancing representational capacity, 

deep residual networks have many downsides, like the exploding and vanishing gradient 

difficulties, feature reuse, and the time-intensive nature of the training. In order to efficiently 

regularize the network, the authors in [78] included a dropout in each residual block to address 

the issue of feature reuse. Dropouts were used similarly by Huang and colleagues to tackle the 

problems of sluggish learning and gradient vanishing. [122] Research in the past has been 

focused on increasing the depth, so even a slight performance improvement required adding 

several new layers. WideResNet has twice as many parameters as ResNet, according to an 

experimental investigation. However, WideResNet offers a better training strategy than deep 

networks [123]. As a reminder, most previous designs, notably VGG and Inception, were far 

broader than ResNet. Once this was established, more extensive residual networks were built. 

Adding a dropout between the convolutional layers (rather than within the residual block) 

improved learning in WideResNet [124]. 
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4.6 Applications of Deep Learning 
Many industries can benefit from deep learning, including healthcare, banking, and 

image identification [125]. Let us have a look at a few applications in this part: 

 Healthcare: Deep learning is well-suited to healthcare applications because of the 

abundance of data and the ease with which it can be used. Image recognition technology 

has surpassed the accuracy of cancer detection from Magnetic Resonance Imaging 

(MRI) and x-ray images. Genomics, clinical testing matching, and drug development 

have also been significant healthcare-based applications. 

 Autonomous vehicles: Autonomous driving is a dangerous endeavor, but it has just 

made a turn toward becoming more commonplace in our daily lives. Training and 

testing deep learning-based models are done in a simulated environment to see how 

well they do in the real world. 

 E-commerce: Product suggestions are one of deep learning's most popular and 

profitable uses. Customers benefit from more personalized and accurate 

recommendations because they can quickly shop for what they are looking for and see 

all of their available possibilities. Additionally, this speeds sales, which helps sellers. 

 Personal assistant: Having a personal assistant is now as simple as purchasing a device 

like Alexa or Google Assistant. Deep learning is used by these intelligent assistants in 

various ways, including tailored speech and accent recognition, personalized 

suggestions, and text production. 

Deep learning has many potential applications, and these are just a few examples. Deep 

learning has also helped forecast the stock market and predict the weather. Figure 4.21 shows 

some examples of DL applications. 
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Figure 4.21 Examples of DL applications.  

4.7 Challenges in Deep Learning 
Today's deep learning techniques are highly data-intensive and many complicated 

issues, such as language translation and lack adequate data sets. Deep learning methods for 

neural machine translation to and from low-resource languages frequently perform poorly. 

However, in recent years, domain adaptation strategies (applying learnings from high-resource 

systems to low-resource settings) have shown promise performance. It can be challenging to 

generate such a large volume of data for tasks such as pose estimation. The synthetic data on 

which the model is finally trained differs significantly from the "in-the-wild" environment in 

which the model must perform [126, 127]. 

Even while deep learning algorithms have been shown to outperform humans in terms 

of accuracy, there is no obvious way to backtrack and explain each prediction made; this makes 

it challenging to employ it in applications such as finance, where it is required to justify each 

loan approval or rejection [128]. 

Another dimension that frequently causes problems is an inherent bias in the data, 

resulting in the model performing poorly on critical subsets of the data. Learning agents that 
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employ a reward-based mechanism occasionally cease to act ethically, as all that is required to 

minimize system error is the maximization of the reward they accrue. 

Due to the large number of parameters involved, which are intricately connected, DL 

models have an extremely high risk of resulting in data overfitting during the training stage. 

Such circumstances impair the model's ability to perform well on the tested data [129]. This 

issue is not restricted to a single field but encompasses a variety of tasks. As a result, while 

proposing DL approaches, this issue should be thoroughly explored and addressed 

appropriately. As recent research demonstrates [129, 130], the implicit bias of the training 

process enables the model to overcome critical overfitting difficulties in DL. 

Nonetheless, it is vital to create ways to deal with the overfitting problem. Examining 

the various deep learning techniques that alleviate the overfitting problem reveals three distinct 

types. The first class affects both the model architecture and parameters of the model and 

contains the most well-known methods, such as weight decay , batch normalization [131], and 

dropout [106]. In DL, the default approach is weight decay [132], which is commonly utilized 

as a universal regularizer in practically all machine learning algorithms. The second class is 

concerned with model inputs, including data corruption and augmentation [124]. One cause of 

overfitting is a shortage of training data, which causes the learned distribution to deviate from 

the accurate distribution. The term "data augmentation" refers to increasing the size of the 

training data. By contrast, marginalized data corruption benefits the remedy unique to data 

augmentation. The final class is concerned with the model's output. A recently proposed 

strategy penalizes overconfident outcomes for model regularization [133]. This technique is 

capable of regularizing RNNs and CNNs. 

4.8 Conclusion  

In this chapter, we discussed deep learning, a popular branch of artificial intelligence 

that is now on the rise. The term "deep learning" refers to a branch of machine learning that is 

entirely based on artificial neural networks. Because neural networks are intended to imitate 

the human brain, deep learning is also considered a type of mimic of the human brain. Deep 

learning eliminates the need to program every aspect of the system explicitly. Deep learning is 

not a new notion in computer science. It has been around for several years at this point, but it 

is all the rage these days since we did not have nearly as much processing power or as much 

data when we first started. Since the processing power has increased tremendously over the 

past 20 years, deep learning and machine learning have emerged as viable options. 
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We exploited the power of different deep learning approaches and architectures to 

achieve outstanding results in all our contributions, as detailed in the following chapters. 
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5.1 Introduction 
We address one specific issue in this chapter: the absence of color in test images. It is 

a challenge of feeding grayscale test images to a color-trained classification model. This issue 

has a detrimental effect on the overall recognition rate. 

Image-to-Image translation [134] contributes significantly toward resolving various 

image processing challenges, including image generation and colorization via Conditional 

Deep Convolutional Generative Adversarial Networks (cDCGAN). The colorization of 

grayscale images is adapted for high-resolution images and optimized in terms of speed and 

stability [135]. 

However, no existing study has examined the feasibility of colorizing grayscale ear 

images to improve recognition rates, indicating a general shortage of research on this subject. 

As such, this chapter attempts to add to the rapidly emerging field of ear biometrics a new 

framework for recognizing grayscale ear images with nearly the same efficiency as color image 

graphs. The proposed system colorizes grayscale test images using cDCGAN before feeding 

them to a classification model. We conducted an additional experiment to demonstrate that 

providing grayscale images for the training process is insufficient to identify predicted 

grayscale test images. 

This chapter is organized as follows: In the 2nd section, we introduce generative 

adversarial networks (GAN). Next, we explain how to perform image colorization using GANs. 

In the fourth section, we review the used ear datasets. In the fifth section, we introduce the 

proposed framework, and in the 6th section, we carry out experimental work. Section 7 

concludes the chapter. 

5.2 Generative Adversarial Networks 
To produce new synthetic data instances, Goodfellow et al. [136] suggested GANs. A 

neural network, referred to as the generating model, is pitted against another adversary 

network, referred to as the discriminative model, to evaluate if a given sample is genuine or 

created by the generative model. Both the generator and discriminator are trained concurrently 

to train the generator to generate samples that the discriminator cannot tell apart from the 

original. In image processing, both the generator and discriminator are CNNs; thus, we arrive 

at cDCGAN [137]. 

The generator learns to transfer a random noise vector z to an output image x. It is 

represented by the mapping function G(z,θg) → x, where G is a CNN in the image processing 
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area, with θg parameters. On the other hand, the discriminator is represented by a second CNN, 

D(x,θd), which determines if x is a G creation or legitimate. G and D engage in a minimax game 

in which G seeks to minimize the probability that D correctly labels x. D, on the other hand, 

seeks to maximize that likelihood; this can be stated mathematically using the formula found 

in Eq. 5.1: 

ݔܽ݉ீ݊݅݉ (ܦ,ܩ)ܸ =  ॱ௫[log(ݔ)ܦ] + ॱ௭[1− log(5.1) [((ݖ)ܩ)ܦ 

where V(G, D) is the value function, ॱ ௫ is the expected value over all authentic images, and ॱ ௭ 

is the expected value over all generated images G(z). 

5.3 Colorization using cDCGAN 
Our objective is to colorize grayscale images, so we cannot feed the generator only 

random noises. These grayscale images are the input to G; in this case, we will employ a 

variation of GAN called conditional GAN [138]. 

By taking an additional set of inputs x alongside a random noise vector z, a conditional 

GAN learns to map an output y. For the colorization problem, the extra information is grayscale 

image graphs without random noise, which may be described mathematically as G(0z│x). 

Likewise, the discriminator must be adjusted to account for the addition of the conditional 

CNN. It receives as dependent input color images from G and the original dataset, as well as 

grayscale images. Then it attempts to determine which one from the colored images is the true 

one. 

Figure 5.1 depicts how the generator and discriminator compete to colorize and 

compare images to their ground truth counterparts; this can be described mathematically as the 

following final cost function: 

ݔܽ݉ீ݊݅݉ (ܦ,ܩ)ܸ =   ॱ௫[log(ݔ|ݕ)ܦ] + ॱ௭ൣ1− logܦ൫ܩ(0௭|ݔ)൯൧ (5.2) 

The main objective is to train the entire model to reduce the average Euclidean Distance 

between the colored image and the ground truth at the pixel level: 

(ߠ,ݔ)ݐݏ݅ܦ =  
1

3݊݉ฮℎ(ݔ, ,(ߠ − ,ݕ ฮଶ
ଶ



ୀଵ



ୀଵ

ଷ

ୀଵ

 
(5.3) 

 

where x is the grayscale image, y is the ground truth, θ is the image colored by the generator, h 

is the function that converts from grayscale to color images, c is the channel index, i and j are 

coordinates of pixels. 
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Figure 5.1 Colorization using conditional GAN. 

The architectures for the generator/discriminator can be derived from a variety of earlier 

publications on deep neural networks. For the image-to-image translation problem, [134] used 

the sequence Conv-BatchNormalization-ReLu for both the generator and discriminator [131]. 

In image-to-image translation problems, the underlying structure of the input and output are 

identical; their edges and forms are identical. It is a pixel-wise regression problem [139]. As a 

result, low-level information must be transferred between symmetric levels via skip 

connections between layer i and layer n-i under the U-Net architecture [140]. 

5.4 Ear datasets 

5.4.1 AMI ear dataset 

Esther González2 generated the AMI ear dataset as part of her doctoral research in 

computer science. It contains uncropped images of the ears taken from 100 people for 700 

images taken in an indoor environment. These images have a resolution of 492×702 pixels and 

were created in jpeg format. As described in Table 5.1, each individual has seven images, six 

of the right ear and one of the left ear. 

 

 

 

                                                             
2http://ctim.ulpgc.es/research_works/ami_ear_dataset 

http://ctim.ulpgc.es/research_works/ami_ear_dataset
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Table 5.1  AMI ear images variations. 

Profile Description 
ZOOM Captured with 200mm focal length 
FRONT 135mm focal length, subject facing forward 
UP 135mm focal length, looking up 
DOWN 135mm focal length, looking down 
LEFT 135mm focal length, looking left 
RIGHT 135mm focal length, looking right 
BACK 135mm focal length, left side ear 

 

(a) 

                    
(b) 

                                                            
Figure 5.2 Sample ear images from (a) AMI dataset and (b) AWE dataset. 

5.4.2 AWE ear dataset 

The Annotated Web Ears (AWE) [74, 75] dataset includes 1000 images (left/right) of 

100 distinct individuals. These images of public persons were gathered from the internet; they 

range in size from 473×1022 to 20×32 and are regarded as one of the most difficult ear datasets 

to deal with in unconstrained conditions. Variations include head rotation, gender, race, 

occlusion, light, and blurring. Figure 5.2 illustrates several images of various individuals from 

the AMI and the AWE datasets. 

5.5 Proposed framework 
In this chapter, we present a new framework that comprises two models: a cDCGAN 

model for image colorization and a classification CNN model. Both models are trained 

sequentially on the same dataset. They both participate during the test phase to complete the 

colorization/classification procedure. The relationship between the two models is illustrated in 

Figure 5.3. 
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We used symmetric model architecture with four encoding and decoding blocks to 

colorize biometric grayscale images. The color space utilized for colorization is CIELab 

(L*a*b*), where L* denotes lightness and b*, a* denotes color information; this eliminates any 

visible rapid changes in color or brightness in the RGB color space. 

 

Figure 5.3 The proposed framework. 

As depicted in Figure 5.4, the encoding process starts with convolutional layers with 

filters of size 4×4, then pooling layers applied in 2×2 patches, batch normalization, and the 

activation function Leaky-ReLu [141]. After upsampling with a 2×2 stride, the decoding 

process composed of a series of transposed convolutional layers is concatenated with mirror 

layers from the encoding side. Following batch normalization with the ReLu activation 

function, the final convolution layer with a 1×1 filter is used as a cross-channel pooling layer. 

The decoding process concludes with a three-channel output layer, L*a*b*. 

The discriminator architecture is built of five convolutional layers is shown in Figure 

5.5. The first four layers employ 4×4 (stride 2) filters, followed by batch normalization and an 

activation filter based on leaky-ReLu. The last layer uses a 4×4 filter striding by one and 

activating it with the sigmoid function to produce a simple scalar generated by averaging the 

previous 16×16 patch. This scalar represents the likelihood that the input image is authentic or 

fraudulent. 
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Figure 5.4 The convolutional U-Net architecture of the Generator. 

 

 
Figure 5.5 The architecture of the Discriminator. 

Numerous pre-trained CNN-based classification models exist in the literature. We 

considered only simple models in our experiments. We did not use model ensembles because 

optimizing the performance of a single deep model results in optimizing the performance of 

deep model compositions. 

We investigated the AlexNet, VGG16, and VGG19 architectures for the classification 

model. On top of the pre-trained convolutional layers, we added a final fully connected layer 

and a softmax output layer. The CNN-based models used in this study were pre-trained using 

the ImageNet dataset [148]. The global architecture of the resulting classification model is 

depicted in Table 5.2. 
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Table 5.2 Classification model’s architecture. 

Layer Neurons number Activation function Drop 

<pre-trained model Convolutional Layers> 

Dense layer 1024 ReLu 50% 

Dense layer 100 Softmax - 

 

5.6 Experimental results 

5.6.1 Datasets 

Preparation of the train/test dataset is the initial stage. We have 700 ear images from 

100 participants in the AMI dataset. As a result, we selected four images for training and three 

for testing for each individual. Additionally, all images have been downsized to fit the 

generative model at 256×256 pixels and the classification model at 224×224 pixels. 

On the other hand, we used the provided AWE train/test split. The training set contains 

600 image graphs (six images per participant), whereas the testing set has 400 images (four 

images per subject). We did not augment the training sets in all upcoming experimental 

scenarios, as opposed to previous works in [74, 137]. 

5.6.2 Performance metrics 

The experiments are conducted according to a predefined experimental protocol. The 

classification model must identify an input ear image by determining which person it belongs 

to. We provided the following performance measurements and curves to assess the 

performance of the suggested approach. 

 Rank-1 and Rank-5 recognition rates. 

 Cumulative match-score curves (CMC). 

 Area under the CMC curve (AUCMC). 

5.6.3 Experimental Scenario #1 

The initial trial will provide insight into the detrimental effects of color loss. As a result, 

we fine-tuned the VGG-based classification models using only grayscale train images and then 

original color images, observing the results of test phases in both cases. We transformed the 

AMI and AWE dataset images to grayscale and then carried out the classification process, 

which included training, testing, and evaluating the model. Table 5.3 summarizes the 

experiment's findings. The recognition rate is significantly reduced for both the AMI and AWE 

datasets. Interestingly, training the model exclusively with grayscale images significantly 

decreased the identification rate, particularly for the AWE dataset. In general, these findings 



CHAPTER 5: A new scheme for gray-level ear images recognition 
 

83 
 

suggest that training the model with a grayscale version of the training dataset may not be 

sufficient for identifying grayscale test images. 

Table 5.3 Classification process results. 

Dataset Rank-1 (%) Rank-5 (%) AUCMC (%) 
  AlexNet VGG16 VGG19 AlexNet VGG16 VGG19 AlexNet VGG16 VGG19 

AMI 88.50 95.50 91.50 95.50 99.50 97.50 92.11 94.56 93.91 
AMI grayscale 85.50 95.00 87.50 95.50 98.50 98.50 91.38 94.17 93.07 
AWE 30.25 47.25 40.25 50.25 73.75 66.75 56.54 75.41 72.44 
AWE grayscale 27.50 38.75 37.00 51.50 69.75 65.00 58.16 72.64 69.60 

 
According to the CMC data in Figure 5.6, there is a clear trend toward declining 

recognition rates for both datasets when all recommended models are used. These findings 

indicate a compelling need for a solution other than merely augmenting the training set with 

grayscale images. However, if the recognition rate margin obtained is insufficient, the 

convenience of adding a grayscale version of the training set might be traded off against the 

computational cost of our suggested system. 
(a) AMI dataset 

AlexNet VGG16 VGG19 

   

(b) AWE dataset 
AlexNet VGG16 VGG19 

   
 

Figure 5.6 CMC curves of using original color images against grayscale images: (a) AMI 
dataset, and (b) AWE dataset. 

5.6.4 Experimental Scenario #2 

We employed three experimental scenarios to demonstrate the proposed framework's 

reliability and efficiency. We first used genuine colored images for CNN-based classification 
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model fine-tuning, and we used the original test-colored dataset. While in the second situation, 

we conducted the test phase using grayscale test images converted from the original color 

image-graphs in the first scenario. 

In the third case, we supplemented the training set with images that have been falsely 

colored. The generative model generated these images, identical in shape and edge to the 

originals but not in color. The training procedure is depicted in Figure 5.7. 

 

Figure 5.7 The training process in the third scenario. 

The cDCGAN was trained using the original color training images to build another 

dataset of similar grayscale images as a condition input during training. To evaluate its 

performance, we employed accuracy, which is defined as the ratio of accurately colored pixels 

to total pixels. A pixel is said to be "accurately colored" if the difference between its colors and 

the original colors is smaller than a preset threshold ϵc for each color channel c, as 

mathematically represented in Eq. 5.4: 

,ݔ)ݕܿܽݎݑܿܿܣ (ݕ =  
1
݊݉(ෑ 1[,ఢ](หݔ, − ,ݕ ห)

ଷ

ୀଵ

)


ୀଵ



ୀଵ

 
(5.4) 

where x is the colorized image, y is the associated image of the ground truth image, 1[,ఢ] is 

the indicator function, n and m are image dimensions, i and j are pixel index counters, and c is 

the color channel. 

We trained the cDCGAN model for 144 mini-batch iterations in total for the AMI 

dataset scenarios, obtaining a distance loss of 2.92 for the generator, 1.36 for the discriminator, 

and a colorization accuracy of 67.86%, as illustrated in Figures 5.8 and 5.9. 

In a similar scenario for the AWE dataset, we trained the colorization model using 587 

images from 600 train splits; 13 images were eliminated since they were grayscale in the first 

place and hence could not be used for learning. The model's final accuracy was 24.41%. 
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Figure 5.8 cDCGAN training accuracy using the AMI dataset. 

 

Figure 5.9 Generator/Discriminator training loss. 

The colorized images created by the cDCGAN generator model have good quality. The 

resulting colorized images are shown in Figure 5.10 alongside their original ground truth. We 

did not restore only missing colors but also equalized color intensity, and brightness using the 

generative model, which improved the classification identification rate, particularly for the 

AWE unconstrained images. 
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(a) 

      
(b) 

      
(c) 

      
(d) 

      
Figure 5.10 Colorization results with the cDCGAN model: (a) Original AMI images, (b) 

Colorized AMI images, (c) Original AWE images, and (d) Colorized AWE images. 

We pre-trained all CNN-based classification models from the ImageNet dataset in our 

proposed scheme. These models' only purpose is to classify incoming images and determine 

which individual an image belongs to. We performed the fine-tuning process on the AMI 

dataset using 400 images from the training set for scenarios 1 and 2. We supplemented the 

training dataset with 400 new images colorized using the previously developed cDCGAN 

model. Similarly, as with the AMI dataset, we experimentally fine-tuned the classification 

models for the AWE dataset using the training set. 

Table 5.4 summarizes the recognition rates for rank-1 and rank-5 in the three scenarios 

stated previously, using the AUCMC. The italicized values represent the results of tests using 

grayscale images, while the bold values represent the results of a third scenario utilizing 

colorized images. The collected results demonstrated the severe detrimental influence of color 

loss on the performance of classification processes. 

We evaluated the classification models in the first case using just the original unaltered 

color images, with no data augmentation. The AlexNet model achieved a Rank-1 recognition 

rate of 88.50% when trained on the AMI dataset. Whereas VGG16 had the highest rank-1 
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recognition rate of 95.50%, it was outperformed the VGG19-based model, which had a 

recognition rate of 91.50%. In the second case, where we gave grayscale images to the 

classifier, the recognition rate for all models decreased significantly. The VGG19-based model 

was the most affected, with a recognition rate of 68.50%. These findings demonstrated the 

critical nature of the color information contained in the original test images, which we 

duplicated in the following situation. 

Table 5.4 Resultant performance metrics that show the effect of color information loss. 

Dataset Scenario Rank-1 (%) Rank-5 (%) AUCMC (%) 
  AlexNet VGG16 VGG19 AlexNet VGG16 VGG19 AlexNet VGG16 VGG19 

AMI 1 88.50 95.50 91.50 95.50 99.50 97.50 92.11 94.56 93.91 
AMI 2 78.50 89.00 68.50 90.50 96.00 92.00 88.41 93.22 88.80 
AMI 3 88.00 96.00 93.00 96.00 99.00 98.00 91.79 94.47 93.58 
AWE 1 30.25 47.25 40.25 50.25 73.75 66.75 56.54 75.41 72.44 
AWE 2 22.00 31.25 29.75 42.50 62.75 58.00 48.36 67.37 64.84 
AWE 3 34.50 50.53 49.60 59.50 76.35 76.85 64.35 80.97 80.07 

 
Not surprisingly, we restored the recognition rate and more in the last experiment in 

which we colorized all images using the cDCGAN model, much as we did in the AMI dataset 

experiments using the VGG16-based model; this was possible because of the ability to restore 

missing colors using a cDCGAN on the one hand and to alter the brightness and equalize the 

intensity on the other. The AWE dataset experiments produced similar results to the AMI 

dataset experiments. As shown in Table 3, the recognition rate for all three CNN-based 

classifiers decreased dramatically when grayscale images were used; however, when 

artificially colored test images were used, the classification accuracy was restored and even 

exceeded for all three CNN-based models.   

The lack of color information was overcome in the third experiment by utilizing trained 

conditional cDCGANs, as illustrated in Figure 5.11 of the CMC curves. The recognition rate 

for the AMI dataset is essentially identical to that in the first scenario when using an AlexNet-

based model, but it has improved by 1.50% and 2.50% when using VGG-16 and VGG-19-

based models, respectively. 

The AWE dataset scenario resulted in a 4.25% increase in the Rank-1 recognition rate 

over the original test; this increase is attributable to grayscale images in the original train and 

test datasets, which were colorized using the generative model. Additionally, the cDCGAN 

model's colorization equalized the intensity and lighting of train and test images. As a result, 

the classification model distinguished an increased number of ear images. We observed the 

same improvement of 3.28% and 9.35% for VGG16 and VGG19, respectively, when all VGG-

based models were used. 
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(a) AMI dataset 
AlexNet VGG16 VGG19 

   
(b) AWE dataset 

AlexNet VGG16 VGG19 

   
 

Figure 5.11 CMC curves of (a) AMI dataset and (b) AWE dataset. 

5.6.5 Comparison 

To conduct a comprehensive study, we compared our obtained results to many recent 

studies on ear recognition. Table 5.5 compares and contrasts the suggested approach's rank-1 

identification rate with other well-known and current representative approaches based on 2D 

ear images. As can be seen, our suggested strategy, which utilizes a cDCGAN model to colorize 

grayscale and dark images, shows extremely intriguing and competitive performance 

outperforming current work on ear biometrics under comparable settings. 
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Table 5.5 A comparison of rank-1of the proposed approach with other representative 
methods. 

Publication Dataset Data 
augmentation Method Rank-1 

Emeršič et al. (2017) [74] AWE+CVLE+
500 images 

No SqueezNet 41.26% 
Yes SqueezNet 62.00% 

Alshazly et al. (2019) [67] AMIC NO VGG19 96.78% 
AWE NO VGG-face 50.00% 

Kacar et al. (2019) [68] WPUT+AWE
+UERC 

NO ScoreNet 47.80% 

Emeršič et al. (2017) [139] AWE NO BSIF 48.40% 
AWE NO POEM 49.60% 

Hassaballah et al. (2019) [60] AMI NO CLBP 73.71% 
Alshazly et al. (2018) [143] AMI NO LOOP 72.10% 
Chowdhury et al. (2017) [53] AMI NO Tunable Filter 70.58% 

This study AMI NO cDCGAN+VGG16 96.00% 
AWE NO cDCGAN+VGG16 50.53% 

 

5.7 Conclusion 
One particular issue with ear recognition that we addressed in this chapter is the absence 

of color information in test images when fed to a model trained on colored images. To address 

this issue, we suggested an efficient system that utilizes a generative cDCGAN model for 

colorization of grayscale and dark images and a CNN-based classification model for 

classification. 

We conducted the first experiment to demonstrate that dropping color information from 

an image harms the model’s accuracy, necessitating our proposed framework’s requirement to 

re-generate lost color. We used the AMI and AWE datasets to demonstrate that the proposed 

framework could restore missing color information. Hence, it restored recognition rates to 

levels comparable to those obtained when using original color images, if not higher, by 

equalizing intensity and stabilizing illumination using a cDCGAN model. 
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6.1 Introduction 
We propose in this chapter to incorporate ear segmentation into the recognition process 

by exposing the input images to a segmentation operation to allow the classification model to 

handle only ear-related pixels. To obtain a region-of-interest (RoI) segmentation of the ear 

from the initial image, we employed Image-To-Image translation, i.e., Pix2Pix GAN, to 

generate it. By deleting as many occlusions as feasible during the image-mapping process, we 

could manipulate ear pixels to our advantage. Because the RoI synthetic segmentation 

eliminates all non-ear pixels, the feature extraction techniques and classification phase will 

concentrate exclusively on ear pixel-by-pixel segmentation. The suggested scheme was 

assessed using the AWE dataset, a recent and challenging ear dataset comprised of 

unconstrained ear photos acquired from the web. The segmentation operation was evaluated 

using pixel-level accuracy and Intersection Over Union (IoU) criteria. We then employed 

various local feature extraction algorithms to extract texture features for classification from the 

resulting photos. We repeated the feature extraction and classification studies using the original 

AWE dataset to emphasize the critical impact of segmentation. The obtained findings validated 

the efficacy of the suggested approach and demonstrated that feeding precise ear segmentation 

results in improved classification results. 

The rest of the chapter is organized as follows: Section 2 presents the proposed image 

synthesis approach. Next, we review the RoI segmentation technique in the third section. The 

fourth section discusses feature extraction and classification using well-known methods. 

Experimental analysis is carried out in section 5 to conclude the chapter in the 6th section. 

6.2 Proposed approach 
The suggested ear recognition pipeline is divided into two phases: first, the RoI is 

synthesized, and then, local features are extracted and classified. The first step is to scale all 

photos to [-1, 1], as the tanh activation function is employed in the generative model's output 

layer, and the resulting images' pixel values will likewise be in the [-1, 1] range. Then, we use 

a trained Pix2Pix GAN to synthesize the RoI of each image. Following that, we isolate the 

RGB-color components of the image, divide them into non-overlapping blocks as necessary, 
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and extract local features. Finally, as indicated in Figure 6.1, we concatenate the histograms 

before giving them to the classifier. 

 

Figure 6.1 The framework of the proposed method. 

6.3 RoI segmentation synthesis 
Image-to-Image translation has been widely utilized in recent years to accomplish 

various tasks, including image super-resolution, image painting, object transformation, and 

image enhancement. The overall objective is to discover the mapping between an input and an 

output image. Utilizing a Pix2Pix generative model is one approach to do this task. 

We used a cDCGAN model to perform the RoI segmentation synthesis task; the 

decoding process contains a sequence of transposed convolutional layers concatenated with the 

mirror layer from the encoding side after upsampling using a 2×2 stride, batch normalization 

layer, and ReLu activation function. As shown in Figure 6.2, the final convolution layer applies 

upsampling using three 256×256 filters followed by the tanh activation function to generate 

the target image. 

 

Figure 6.2 The architecture of the generator. 
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The discriminative model takes an input image and an unknown image and attempts to 

determine if the generator made the unknown image. Its architecture is more symmetrical than 

the generator's, as illustrated in Figure 6.3. It is a five-layer convolutional structure. The first 

four layers convolved with 4×4 filters, sliding by two steps. After each layer, batch 

normalization and the Leaky-ReLu activation function are applied. The final 30×30 layer 

represents the credibility of each of the input image's 70×70 patches; thus, it is named 

PatchGAN. The average of the output layer represents the likelihood that the image is genuine 

or a forgery. 

 

Figure 6.3 The architecture of the discriminator. 

6.4 Feature extraction and classification 
We extracted features using three well-known local feature descriptors, namely Local 

Binary Pattern (LBP) [54, 144], Local Phase Quantization (LPQ) [145], and Binarized 

Statistical Image Features (BSIF) [146]. The similarity of feature vectors is determined by 

calculating the chi-square distance between them, which is defined as follows: 

߯(௫,௬) =  
1
2

ݔ) − )ଶݕ 

ݔ) + (ݕ 



ୀଵ

 (6.1)  

where x and y are feature vectors of size n. 

LBP is a texture analysis operator that is sometimes referred to as a gray-scale invariant 

texture measure. It is produced from a general texture description in a local neighborhood. It 

possesses a solid discriminative ability while using minimal computational resources. Each 

pixel's local patterns are retrieved by thresholding its neighboring pixels (P, R) with P sampling 
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points on a circle of radius R. The equation gives the LBP code of each pixel (xc, yc) is expressed 

in Eq. 6.2: 

ݔ),ோܲܤܮ (ݕ, =  ܵ(݃
,ோ −  ݃)



ୀଵ

2ିଵ (6.2) 

݃ and ݃ 
,ோ are the values of the central pixel and its neighbors, respectively, with S(x) defined 

as follows: 

(ݔ)ܵ =  ൜1,      ݂݅ ݔ ≥ 0
 (6.3)  ݁ݏ݅ݓݎℎ݁ݐ   ,0

The LBP operator has been extended to capture large-scale structures in the image by 

utilizing different sized neighborhoods. 

The LPQ technique was introduced to address LBP's relative sensitivity to blur. This 

technique quantizes the Fourier transformation phase in local neighborhoods. The phase is 

retrieved using the following formula over a rectangular M×M neighborhood Nx for each pixel 

position x of the image f(x): 

(ݔ,ݑ)ܨ =   ݔ)݂ − ଶగ௨௬ି݁(ݕ
௬ ∈ேೣ

 (6.4) 

The transform in Eq. 6.4 can be computed independently for the rows and columns 

using 1-D convolutions. Then, only four complex coefficients are considered, namely ݑଵ =

 [ܽ, ଶݑ ,்[0 = ଷݑ ,்[ܽ,0]  =  [ܽ,ܽ]், and ݑସ =  [ܽ,−ܽ]், where a is a sufficiently small scalar 

to satisfy H(u) > 0, H is the point spread function (PSF). Eq. 6.5 defines the Fx vector as the 

outcome of each pixel position x: 

௫ܨ = ,ଵݑ)ܨ]  ,ଷݑ)ܨ,(ݔ,ଶݑ)ܨ,(ݔ ,ସݑ)ܨ,(ݔ  (6.5) [(ݔ

௫ܨ = ,{௫ܨ}ܴ݁]   (6.6) ்[{௫ܨ}݉ܫ

where Re{.} and Im{.} denote the complex number's real and imaginary parts, respectively, 

the corresponding 8×M2 transformation matrix is calculated by observing the signs of the real 

and imaginary parts of each component in Fx using the quantizer described bellow: 

(ݔ)ݍ =  ൜1,        ݂݅ ݂(ݔ)  ≥ 0
݁ݏ݅ݓݎℎ݁ݐ           ,0  (6.7) 

where ݂(ݔ) is the ith component of the vector Fx. 

Within local regions, histograms of blur-insensitive LPQ features are produced as a 

texture descriptor. The LPQ descriptor has generated considerable interest in blur-invariant 
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texture recognition. LPQ is indifferent to image blurring, and fuzzy and sharp images are highly 

effective pattern descriptors. 

BSIF was initially proposed for texture categorization. BSIF's goal, influenced by LBP 

and LPQ, is to automatically learn a predefined set of filters from a limited range of natural 

images rather than utilizing handcrafted filters like LBP and LPQ. BSIF uses machine learning 

to generate a statistically meaningful representation of the images, allowing for efficient 

information encoding. Histograms of pixels characterize the image attributes inside each image 

block. Every element's value is determined by binarizing the image's response to a linear filter 

with a zero threshold. Each bit corresponds to a distinct filter, and the length of the bit string 

dictates the number of filters utilized [49]. Eq. 6.8 states the response si of an image patch X of 

size l×l to a specified filter ܹ  of the same size: 

ݏ =   ܹ(ݑ, ,ݑ)ܺ(ݒ (ݒ = ݔ்ݓ 
௨,௩

 (6.8) 

where the index i in Wi indicates the ith filter, w and x are vector notations of Wi and X.  

The binarized feature bi is calculated by: 

ܾ =  ൜1,             ݂݅ ݏ  ≥ 0
 (6.9) ݁ݏ݅ݓݎℎ݁ݐ           ,0

Classification can be accomplished using supervised machine-learning techniques such 

as K-Nearest Neighbors (K-NN). The K-NN method assumes that similar objects exist near 

one another. The distance between the feature vectors may quantify the proximity relationship 

in this case study. 

6.5 Experimental analysis 
The experimental technique and performance metrics used to evaluate our suggested 

approach are described in this section before we move on to experiments. 

6.5.1 Ear dataset 

We used photo-editing software to train the Pix2Pix GAN to generate synthetic 

segmentation from input ear photos to construct a new version of the AWE ear dataset called 

RoI-AWE. This dataset comprises only the RoI of each ear image. The RoI is a precise 

segmentation of the ear pixels without a backdrop and with the fewest possible occlusions; it 
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serves as the ground truth for segmentation. Figure 6.4 illustrates a few photos from the AWE 

collection with their RoI-AWE counterparts. 

(a) 

     
(b) 

     
Figure 6.4 Sample images from the (a) AWE dataset, (b) RoI-AWE dataset. 

 

 

Table 6.1 Summary of the configurations used by each descriptor. 

Descriptor Configuration 
LBP Uniform LBP, radius: 2 pixels, neighborhood size: 8, block size: 8×8 

pixels. 
LPQ Window size: 5×5 pixels, block size: 25×25 pixels. 
BSIF Bit string length: 15, filter size: 12×12, block size: 50×50 pixels. 

We conducted a basic ear recognition experiment applying local feature descriptors to 

compare the original AWE photos to the synthesized RoI-AWE. The configurations utilized 

by each descriptor are summarized in Table 6.1. The rank-1 recognition rate was utilized to 

evaluate the categorization procedure at this stage. 

6.5.2 Experimental protocol 

We choose to evaluate the first performance parameter for the segmentation synthesis 

process which is the pixel-wise color accuracy. Due to the generative model's function of 

generating ear segmentations, the colors may deviate somewhat from the original 

segmentation, even if the difference is imperceptible to the human sight. The image color space 

was transformed from RGB to CIELab (CIEL*a*b*). Measuring the difference in this color 

space produces more precise findings than calculating the difference in RGB color space, and 

it is also more representative of the difference perceived by the human eye. 
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The pixel-level accuracy is defined as the ratio of correctly colored pixels to the total 

number of pixels. A pixel is considered "properly colored" if the difference between its colors 

and the original colors is smaller than a predetermined threshold ܿ for each color channel. The 

formula theoretically states it in Eq. 6.10: 

Accuracy(x, y) =  
1

nm
(ෑ1[,ౙ](หx୧,୨ୡ − y୧,୨ୡ ห)

ଷ

ୡୀଵ

)
୫

୨ୀଵ

୬

୧ୀଵ

 (6.10) 

where x is the generated RoI image, y is the corresponding ground truth image, and 1[,ఢ] is 

the indicator function. 

The IoU metric was chosen as the second metric; it is one of the most often used 

performance metrics for segmentation. It is a relatively simple metric; it is the overlap between 

the predicted segmentation and the ground truth divided by the area of union between the 

predicted segmentation and the ground truth, as defined in Eq. 6.11: 

IoU =  
SEG ∩  GT
SEG ∪  GT

 (6.11) 

where SEG denotes the generated ear segmentation pixels, whereas GT denotes the ground-

truth ear segmentation pixels. 

On the other hand, we evaluated the classification model's performance using original 

AWE dataset photos and RoI-AWE synthetic images via the Rank-1 recognition rate. 

6.5.3 Results and discussion 

We trained the Pix2Pix GAN for 32000 iterations using the RoI-AWE dataset; we 

utilized the Adam optimizer with an initial learning rate of 2×10-4 and a Mean Absolute Error 

(MAE) loss function. The convergence of the loss for both the generator and discriminator 

during training epochs is depicted in Figure 6.5. 
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Figure 6.5 Generator/Discriminator loss over training iterations. 

Figure 6.6 illustrates examples of RoI segmentation images generated by the GAN. The 

edges exhibit considerable deformation. We believe that training the generative model on a 

combination of constrained and unconstrained ear datasets improves performance since the 

model can recognize a greater variety of ear shapes with varying poses, variations, and scales. 

However, this needs the creation of a sizable ground-truth RoI dataset. 

(a) 

     
(b) 

     
 

Figure 6.6 Example images of the RoI segmentation synthesis: (a) Ground truth image, (b) 
Generated RoI. 
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As shown in Table 6.2, the IoU values of the produced RoI segmentations ranged from 

86.24% to 97.21%, with an average of 94.98%. 

(a) (b) 

  
Figure 6.7 Histograms of: (a) IoU, (b) Pixel-wise accuracy. 

However, most results are centered about 94%, as illustrated in Figure 6.7's histogram 

of the IoU distribution. On the other hand, the distribution of pixel-level accuracy was more 

significant. It ranges between 43.51% and 97.08%, with an average of 83.81%. 

Table 6.2 Resultant performance metrics of the RoI segmentation synthesis. 

Metric Minimum Maximum Average 
IoU 0.8624 0.9721 0.9498 
Pixel-wise Accuracy 0.4351 0.9708 0.8331 

 

The second half of the trials is dedicated to featuring extraction and classification, in 

which we extracted ear features using LBP, LPQ, and BSIF descriptors and fed the histograms 

to a K-NN classifier. The same experiments are repeated with the same set of train/test images 

using both the RoI AWE and the original AWE datasets to demonstrate the benefits of RoI 

segmentation. Synthetic ear RoI pictures achieved a higher rank-1 identification rate in all three 

cases. As indicated in Table 6.3, the classification of LBP, LPQ, and BSIF characteristics rose 

by 7,55%, 7,44%, and 3,95%, accordingly. 
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Table 6.3 Recognition rate of the AWE and the RoI-AWE synthetic datasets. 

Method AWE Rank-1 (%) RoI AWE Rank-1 (%) 
LBP 19.69 27.24 
LPQ 37.25 44.69 
BSIF 44.53 48.48 

 

6.6 Conclusion 
In this chapter, we attempted to bridge the gap in the literature about ear RoI synthetic 

segmentation by proposing to use Image-to-Image translation to synthesize ear segmentation 

and patch absent sections, and eliminate occlusions as much as possible. We investigated the 

suggested technique on the unconstrained AWE dataset and discovered that it could produce 

good ear segmentations based on the resulting performance measures. 

We used synthetic ear segmentations with local feature extraction and classification 

approaches such as LBP, LPQ, and BSIF. The recognition rate obtained demonstrated the 

effectiveness of the method we proposed and its importance in the ear recognition pipeline. 

Additional research with a larger ear dataset is necessary to train the generative model and even 

generate ear RoI segmentations with uniform rotations and sizes. 
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7.1 Introduction 
Traditionally, ear recognition has been accomplished using a machine-learning process, 

which entails training the model on a subset of labeled data, testing it, and deploying it in the 

actual world. This strategy has been highly effective. However, one may inquire whether our 

model can acquire additional features when predicting new data. Cooperative Machine 

Learning (CML) [147] has been widely used to aid decision-making, data annotation, and other 

tasks. The basic concept is to train a model on partially labeled data and then predict new labels 

for new data. Then, using the updated predicted and corrected labels, a human agent or 

corrector revises the low confidence forecasted data and retrains the model. This concept has 

been used for various other tasks, including speeding up the annotation of social signals [148], 

dynamic decision-making [149], and so on. 

Along with model prediction, CML is always dependent on human intervention and 

correction, which means that we must correlate the model with an observing human agent that 

can monitor and correct model behavior. From here, a critical question arises: What if our 

model is accurate enough that it can be trusted to gain new knowledge on its own (with a tiny 

margin of error) throughout the testing phase, without the assistance of a human agent? 

This study recommends that active unsupervised learning be used during the test phase 

of a trained ear recognition model. The classification model aims to forecast and classify test 

subjects' labels. Meanwhile, the unsupervised active learning stage adds certain test images 

with their predicted labels to the training dataset and performs additional training epochs (if 

the predictive confidence is more significant than a predetermined threshold). The proposed 

training method is called Deep Unsupervised Active Learning (DUAL). 

The rest of the chapter is organized as follows: Second section introduces the proposed 

training workflow. Experimental analysis is carried out in the third section. Finally, Section 

four concludes the chapter. 

7.2 Deep Unsupervised Active Learning workflow 
  The proposed DUAL training scheme comprises three sequential phases: supervised 

training, validation and hyper-parameter customization, and unsupervised active learning. We 

trained the supervised classification model using a labeled training dataset in the first phase. 

Then, using a small validation set, we conducted a validation experiment to discover the 

optimal value of the hyper-parameter. Finally, we performed unsupervised active learning on 

the test images during the test phase. As a result, the unsupervised active learning phase is 
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independent of the original training dataset, i.e., when deploying a biometric model, it should 

be trained exclusively utilizing the initially labeled dataset. Then, an unsupervised active 

learning phase is done using real-time test images. 

  During the typical testing phase, the classification model cannot acquire additional 

knowledge from the test images (i.e., the model's recognition rate will not improve), even if 

the model has a high recognition rate. As a result, we present an alternative testing technique 

in which a model can acquire more knowledge through unsupervised active learning while 

classifying test images. This testing step is referred to as the unsupervised active learning 

testing phase. 

  During the test phase, images categorized with a confidence level greater than the 

threshold are included in the initial training dataset before completing additional training 

epochs. As illustrated in Figure 7.1, we proceed through the test subjects one by one. 

  We used the VGG16 architecture as the basis for our classification model. The purpose 

of this effort is not to improve the categorization model itself. As a result, we excluded various 

CNN-based designs such as VGG19, ResNet, and others. It is sufficient to use a classification 

model architecture with a high recognition rate to validate the suggested method. On top of the 

convolutional layers of the VGG16 model, which is pre-trained on the ImageNet dataset [61], 

we added a fully connected layer and a softmax output layer. 

 
Figure 7.1 Our proposed Deep Unsupervised Active Learning scheme. 

The global structure of the classification model is detailed in Table 7.1. 
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Table 7.1 Details of the parameters of the classification model architecture. 

Layer Neurons number Activation function Drop 
<VGG16 convolutional layers> 

Dense layer 1024 ReLu 50.00% 
Output layer nbr_of_persons Softmax - 

 
  We measured our model's performance using categorical cross-entropy as a loss 

function throughout the training phase. The cross-entropy can be calculated using Eq. (7.1), 

which is the most straightforward and most frequently used cost function due to its direct 

relationship to the concept of entropy. On the other hand, we updated the model weights 

depending on the training data using Adam's well-known optimizer [150]. 

,)ݕݎݐ݊ܧݏݏݎܥ (ݕ =  −ݕ,log (,)


ୀଵ

 (7.1) 

where M denotes the number of classes in each dataset, y is the binary indicator vector if label 

c is the correct classification for image o, and p is the vector of the estimated probability that 

image o belongs to class c. 

7.3 Experimental analysis 

7.3.1 Experimental Databases 

We conducted a series of tests employing ear pictures from the USTB2, AMI, and AWE 

ear datasets to assess our framework's performance. Figure 7.2 illustrates representative photos 

from the datasets analyzed. 

The university of science and technology of Beijing (USTB) [58] obtained four pictures 

of 77 subjects' ears under various lighting conditions (students and teachers). The whole 

collection contains 308 photos that are not cropped. The first image shows the frontal view of 

the ear under standard illumination; the second and third images show the ear rotated by +30 

and -30 degrees, correspondingly; and the fourth image shows the ear under poor illumination. 

 

Figure 7.2 Sample ear images from (a) the AMI dataset, (b) the USTB2 dataset, and (c) the 
AWE dataset. 
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7.3.2 Setup 

  Prior to validating the proposed learning strategy, we colored the USTB2 images to 

increase the recognition rate, defined as the total number of properly-identified images divided 

by the total number of probe images, as shown in Eq. (7.2). 

Recognition rate =   
Number of correctly identified probe images

Total Number of probe images  (7.2) 

  Using a cDCGAN model, we created a new colorized dataset named C-USTB2. 

Because we utilized a VGG16-based model pre-trained on ImageNet using color photos, this 

colorization step significantly enhances identification rates compared to grayscale images. 

  To train the cDCGAN colorization model, we used colored photos from the AMI 

dataset; but, we could use any other ear dataset with colored images; the labels are irrelevant, 

as we are interested in the colors, not the color labels. For each colored image, the model 

implicitly generates a corresponding grayscale image and then tries to generate a colorized 

image. To quantify its performance, we calculated the accuracy, defined as the ratio of correctly 

colored pixels to total pixels. If the difference between a pixel's RGB of colored image and the 

original image is less than a particular threshold, the pixel is adequately colored. More 

precisely, the equation (7.3) [135] defines correctness mathematically as follows: 

,ݔ)ݕܿܽݎݑܿܿܣ (ݕ =   
1
݊݉൭ෑ 1[,ఢ]൫หݔ, − ,ݕ ห൯

ଷ

ୀଵ

൱


ୀଵ



ୀଵ

 (7.3) 

where x is the colorized image, y is the corresponding ground truth image, 1[,ఢ] is the indicator 

function, ݊ and ݉ are the image dimensions, ݅ and ݆ are the pixel indices of the image, ܿ is the 

color channel, and ߳ is the channel threshold. 

  As shown in Figure 7.3, we trained the model for a total of 62 epochs (more than 1000 

mini-batch repetitions) to obtain a distance loss of 2.41 for the generator and 1.38 for the 

discriminator, as well as a training colorization accuracy of 79.7%. The obtained colorization 

accuracy is the best to utilize only the AMI color pictures. While the outcome is entirely 

satisfactory, we believe it might be enhanced by including a broader set of multi-color ear 

datasets. 

 As illustrated in Figure 7.4, we obtained a colorized version of USTB2 and equalized the 

brightness and intensity of the images using cDCGAN. 

  We extended the training set by creating two more images for each training image, as 

illustrated in Figure 7.5. One image has been rotated 20° to the left, while the other has been 

rotated 20° to the right. In the case of AMI, we used 60% of the photos for training and 40% 
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for testing. We used three images for training and one image for testing in C-USTB2. The AWE 

datasets' owners have established the train/test distribution, using 600 images for training and 

400 images for testing. 

 
Figure 7.3 Accuracy of the training colorization of the cDCGAN model. 

 
Figure 7.4 Coloring of USTB2 images with cDCGAN (C-USTB2), (a) original images of 

USTB2, (b) colored images of C-USTB2. 

 
Figure 7.5 Increase in the training dataset. 

7.3.3 Experiment #1 

  To demonstrate the beneficial effect of coloring the USTB2 dataset on recognition rate, 

we used the identical configuration of the VGG-based pre-trained classification model with the 

USTB2 and C-USTB2 datasets. We obtained a recognition rate of 98.70% using the C-USTB2 

dataset and 97.40% using the USTB2 grayscale dataset. The CMC curves for both 



CHAPTER 7: Ear Recognition Based on Deep Unsupervised Active Learning 
 

107 
 

circumstances are depicted in Figure 7.6. As expected, coloring the USTB2 dataset increased 

recognition rates; this could be attributed to a pre-trained VGG model on color images 

(ImageNet). Hence it is recommended to employ color images in the following steps. 

 
Figure 7.6 Cumulative matching characteristic curves for USTB2 and C-USTB2 datasets. 

7.3.4 Experiment #2 

  We investigated and analyzed the DUAL scheme's effectiveness and effects in this 

experiment. θ is a confidence level that is established to initiate the fine-tuning process. The 

optimal value is determined by conducting a single supervised learning test phase using a 

validation set and observing the number of correctly identified images with a confidence value 

more significant than a defined θ. We used a quarter of the test set from each dataset as a 

validation set. Visualizing the facts provides a more distinct perspective from which to decide. 

The relationship between θ values and the number of correctly recognized test subjects with 

greater or equal confidence than θ is illustrated in Figure 7.7. We used the best guess to 

determine the location with a minor vertical difference between the two curves, keeping in 

mind that our goal is to maximize the number of photos with a confidence level larger than θ. 
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(a) (b) 

 
(c) 

Figure 7.7 The number of subjects correctly identified with a given θ for (a) the AMI dataset, 
(b) the C-USTB2 dataset, and (c) the AWE dataset. 

  The optimum value for the variable is estimated differently depending on several 

factors, including the type of dataset utilized, whether limited or not, the type of classification 

model employed, and the variable's introductory recognition rate. In our experiment, we used 

threshold values of 0.89, 0.52, and 0.95 for the AMI, C-USTB2, and AWE datasets, 

accordingly. 
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Table 7.2 Results of the Supervised Learning and the DUAL scheme for AMI, C-USTB2, 
and AWE datasets. 

Method 
AMI C-USTB2 AWE 

Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5 

Supervised Learning 96.00% 99.66% 98.70% 100.00% 49.25% 77.00% 

Deep Unsupervised Active Learning 98.33% 100.00% 100.00% 100.00% 51.25% 78.75% 

  Table 7.2 demonstrates conclusively that the suggested DUAL technique considerably 

increased the model's recognition rate across all datasets; DUAL reports a greater recognition 

rate than supervised learning. The recognition rate increased from 96.00% to 98.33% for the 

AMI dataset. The DUAL method boosted the recognition rate to 100.00% for the C-USTB2 

dataset. Additionally, the AWE dataset's recognition rate increased by 2% points. 

  The number of successfully identified test subjects from all test subjects with 

confidence θ is shown in Table 7.3. (i.e., test subjects which the model attempts to learn from 

during the test phase). The recognition rate is improved by executing a new fine-tuning epoch 

on those test subjects with their projected values. For the AMI dataset, the model was re-trained 

using new data: 131 newly labeled images. In the second case, the model predicted correct 

labels for 57 photos with a confidence level greater than θ using the C-USTB2 dataset. As a 

result, it re-trained itself using accurate data throughout the test phase. Using the preset 

threshold, the DUAL method actively trained the model on the AWE dataset with 19 new 

images, 17 of which were identified correctly. Nonetheless, even though 10.52% of new data 

were misclassified, the recognition rate was increased because of the increased amount of 

correctly classified data used for active learning. 

 The CMC curves for the supervised and DUAL learning schemes are depicted in Figure 

7.8. 

Table 7.3 Supervised learning test statistics. 

Test images AMI C-USTB2 AWE 

Number of test images with confidence ≥ θ 132 57 19 

Number of images with confidence ≥ θ and Correctly classified 131 57 17 
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(a) (b) 

 
(c) 

Figure 7.8 Cumulative matching characteristic curves for (a) the AMI dataset, (b) the C-
USTB2 dataset, and (c) the AWE dataset. 

 During the DUAL test phase, we compared the number of correctly recognized photos to 

the number of correctly recognized images during the supervised learning test phase. As 

illustrated in Figure 7.9, the model was enhanced to gain additional knowledge by utilizing 

specific test images, and they are associated with accurately predicted labels anticipated by the 

DUAL method. This procedure improved the likelihood of recognizing the remaining test 

images. Retraining the model using test images enhanced the likelihood of adequately 

predicting the remaining test images in the AMI dataset. Similarly, the DUAL scheme 

improved the overall identification rate for the remaining test images in the C-USTB2 and 

AWE situations, respectively, as of test images #42 and #230. 
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(a) (b) 

 
(c) 

Figure 7.9 Number of correctly predicted labels during the test phase for (a) the AMI 
database, (b) the C-USTB2 database, and (c) the AWE dataset. 

7.3.5 Comparison of Rank-1 Recognition Rate 

  The Rank-1 recognition rate is compared in Table 7.4 between the proposed training 

strategy and well-known previous approaches that utilized the AMI, USTB2, or AWE datasets. 

As seen in Table 13, the DUAL approach outperformed state-of-the-art methods by straining 

the model's performance to its limits. While each approach has several advantages and 

disadvantages, we concentrated on one significant advantage of the proposed approach over 

the others in this work, namely the possibility of acquiring new knowledge during the testing 

phase rather than relying exclusively on what was learned during the learning phase. This, in 

our opinion, is a critical feature for artificial intelligence systems in general to gain. 
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 While it is essential to keep in mind that the suggested DUAL scheme demands additional 

processing time and memory space, implementing continuous active learning during the testing 

phase may be challenging, particularly in real-time. 

Table 7.4 A comparison of Rank-1 of the proposed approach with other representative 
methods. 

Publication Year Method USTB2 AMI AWE 
Geometric Methods 

Mu et al. [47] 2004 Geometrical Measures on Edge Images 85.00 - - 
Lakshmanan [57] 2013 Multi-Level Fusion 99.20 - - 

Holistic Methods 

Zhang and Mu [83] 2008 
PCA 81.80 - - 
ICA 92.20 - - 

Gutierrez et al. [41] 2010 Wavelet Transform 97.50 - - 

Tariq et al. [84] 2011 Haar Wavelets + Fast Normalized Cross 
Correlation 96.10 - - 

Local Methods 
Guo and Xu [54] 2008 LBP + Cellular NN 93.30 - - 
Ghoualmi et al. [59] 2016 SIFT 94.79 - - 

Emeršič et al. [151] 2017 
BSIF - - 48.40 

POEM - - 49.60 
Chowdhury et al. [53]  2018 Tunable Filter Bank - 70.14 - 
Hassaballah et al. [60] 2019 Completed LBP - 73.71 49.60 

Deep learning methods 
Omara et al. [69] 2018 Pairwise SVM 99.00 - - 
Alshazly et al. [67] 2019 VGG-13-16-19 ensemble - 97.50 - 
Zhang et al. [152] 2018 VGG-face - - 50.00 
Alshazly et al. [153] 2019 AlexNet (Fine Tuning) - 94.50 - 
Zhang et al. [80] 2019 MAML + CNN - 93.96 - 
Khaldi and Benzaoui 
[72] 2020 DCGAN + VGG16 - 96.00 50.53 

Priyadharshini et al. 
[71] 2020 CNN - 96.99 - 

Proposed method 2021 VGG16 + DUAL 100.00 98.33 51.25 
 

7.4 Conclusion 
The purpose of this study is to establish the feasibility of active learning in the field of 

ear identification and, more broadly, biometrics. We introduced a machine learning technique 

dubbed Deep Unsupervised Active Learning (DUAL) for continually updating a biometric 

model's knowledge after the training phase. A biometric model then performs additional 

learning epochs using the test images that have been categorized with a confidence value more 
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significant than a predetermined threshold. We next validated this fact by conducting in-depth 

tests on the recognition rate under supervised and DUAL learning using the limited AMI and 

C-USTB2 ear datasets and the unconstrained AWE dataset. The recognition rates for Rank 1 

are 100.00% and 98.33%, respectively, for the C-USTB2 and AMI datasets and 51.25% for the 

challenging AWE dataset. 

These preliminary findings lead to two conclusions: 

 It is critical to appropriately identify the dataset used when presenting the performance 

of a method. 

 The fact that the AWE dataset is noisy leads to relatively poor performance. As a result, 

picture pre-processing techniques such as de-noising background noise and texture data 

using first and second-generation wavelets, as well as multi-resolution analysis, are 

required. 

Although the obtained results are generally adequate, prospective enhancements include pre-

processing, better parameter adjustment, and the use of variable thresholds. 
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Conclusions and future work 
Biometrics refers to physical or behavioral features of humans that can be utilized for a 

variety of purposes, ranging from recognizing human action to identifying and verifying 

individuals. Biometric accuracy has been a subject of research for decades. Scientists are 

attempting to enhance the performance of biometric models by integrating as many obstacles 

and challenges as feasible, such as a pose, occlusions, expressions, and backgrounds. The ear 

is one physical biometric modality that is concerned with this issue. It has a distinctive structure 

that can be used to identify individuals. The ear, unlike the face, is unaffected by aging or 

expression. Ear image acquisition does not require expensive equipment, as fingerprint or iris 

image acquisition does. As a result, we sought to evaluate our approach using ear datasets. 

We were particularly interested in offering novel ideas and schemes for enhancing 

auditory recognition tasks in this thesis. While the proposed solutions outperformed state-of-

the-art methods, several complicated difficulties require additional development. 

We have concentrated on the following major issues in this thesis: 

1) During the testing phase, the loss of color information, i.e., providing grayscale, 

monochrome, or dark test images to a model trained on colored images. Because no 

previous study has examined the prospect of colorizing grayscale ear pictures to improve 

recognition rates, there is a general shortage of research on this subject. As a result, we 

want to contribute to the emerging field of ear biometrics by developing a new framework 

capable of recognizing grayscale ear photos with nearly the same efficiency as color 

photographs. The proposed system colorizes grayscale test images before feeding them to 

a trained classification model using Image-to-Image translation. On the other hand, we 

conducted an additional experiment to demonstrate that providing grayscale photos for the 

training process is insufficient when attempting to identify predicted grayscale test images. 

2) We attempted to bridge the gap in the literature about ear Region-of-Interest synthetic 

segmentation by proposing to use Image-to-Image translation not only to synthesize ear 

segmentation but also to patch missing sections and eliminate occlusions as much as 

feasible. We demonstrated that non-ear pixels, such as backdrops, hair, a portion of the 

face or neck skin, and even clothing, might adversely affect and degrade the categorization 

result. Thus, the suggested technique circumvented the issue by synthesizing an ear 

segmentation composed entirely of ear-related pixels. 
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3) We investigated and researched the Deep Unsupervised Active Learning technique for 

machine learning. A classification model incrementally gains new information throughout 

the test phase using the suggested training strategy without any operator direction or 

decision-making correction. Thus, a biometric model with a high initial identification rate 

can be continuously retrained using anticipated labels via test images. 

Although this work is extensible to many types of research and future research could, 

therefore, concentrate on:  

 Conduct additional research to generalize the Deep Unsupervised Active Learning 

scheme utilizing datasets from other areas of image classification, and study the 

feasibility of applying changeable thresholds in response to changes in the recognition 

curve. 

 Additional research should be conducted on a larger ear dataset to train the generative 

model and even generate ear RoI segmentations consistent to rotations and sizes. 

 For some complex datasets, such as the AWE, it is necessary to investigate additional 

preprocessing techniques, such as de-noising background noise and texture data using 

first and second-generation wavelets and multi-resolution analysis. 

 Optimization of the DUAL scheme by identifying more efficient and faster techniques 

for the model to learn information from test images less quickly and without 

compromising or altering previously gained knowledge. 
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