<u>République Algérienne Démocratique et Populaire</u> <u>Ministère de l'Enseignement Supérieur et de la Recherche Scientifique</u> <u>Université A. M. OULHADJ - Bouira</u> <u>Faculté des Sciences et des Sciences Appliquées</u> <u>Département de Génie des Procédés</u>

Présenté par

CHOUIMET Tinhinane

Pour l'obtention du diplôme de

MASTER

Filière : Génie des Procédés

Spécialité : Génie Chimique

Etude d'un système de production de CO₂ alimentaire au sein de Linde Gas Algérie – Bouira

Déposé le 30/06/2022

Le jury est composé de :

M. SAHNOUNE M.	MCB	UAMO, Bouira	Examinateur
Mme BELLACHE D.	MCB	UAMO, Bouira	Examinatrice
Mme ZAABAR A.	MCA	UAMO, Bouira	Encadrant

Remerciements

Toutes les louanges sont à notre seigneur, le miséricordieux de m'avoir accordé parmi ces innombrables grâce, santé et courage depuis le début de mon études jusqu'à l'aboutissement de ce travail.

Tout d'abord, ce travail ne serait pas aussi riche et n'aurait pas pu avoir le jour sans l'aide et l'encadrement de **Madame Aida ZAABAR**, je la remercie pour la qualité de son encadrement exceptionnel, pour sa patience, sa rigueur et sa disponibilité durant ma préparation de ce mémoire.

Je tiens à remercier **Monsieur Fouad KACIMI** pour son aide pratique et son soutien moral et ses encouragements,

Je tiens à remercier plus particulièrement Le Directeur de Linde Gas Bouira de m'avoir permis de faire mon stage au sein de son entreprise.

En fin, j'adresse mes sincères remerciements à tous ceux qui ont participé de près ou de loin à la réalisation de ce projet, aux personnes, même si leurs noms ne figurent pas dans ce document, étaient toujours prêtes à aider et à contribuer dans le bon déroulement d ce travail.

Dédicaces

J'ai le grand plaisir de dédier ce modeste travail :

A ma très chère mère, Qui me donne toujours l'espoir de vivre et qui n'a jamais cessé de prier pour moi.

A mon frère et mes sœurs, Qu'ils puissent trouver dans ce modeste mémoire l'expression de mon attachement et de ma profonde reconnaissance.

A toute ma famille et à tous mes chers amis, Qu'ils trouvent dans ce travail l'expression de mon profond respect et reconnaissance.

i

Liste des Abréviations & des Notations	v
Liste des figures & des tableaux	vii

Introduction Generale	Introduction	n Générale	1
-----------------------	--------------	------------	---

CHAPITRE I : Généralités sur la société Linde Gas Algérie

I-1- Présentation de Linde Gas Algérie3	;
I-2- Historique5	5
I-3- Structuration de Linde Gas Algérie – Bouira6	5
I-3-1- Situation géographique6	5
I-3-2- Infrastructure de Linde Gaz Algérie – Bouira6	5
I-3-3- Principaux équipements7	7
I-3-4- Structure fonctionnelle de Linde Gaz Algérie – Bouira8	3
I-3-4-1- Direction	3
I-3-4-2-Processus « SHEQ »8	3
I-3-4-3- Processus « Finances »	3
I-4Activités de l'unité9)
I-4-1- Gamme des gaz produits et / ou conditionnés1	0
I-4-2- Gamme des produits commercialisés1	.0

CHAPITRE II : Généralités sur la combustion

II-1- Introduction	11
II-2- la combustion	11
II-3- Le comburant	13
II-4- Les combustibles	13
II-4-1- Les principaux combustibles industriels	13
II-4-2- Gaz propane et sa composition	13
II-4-2-1- Caractéristiques physico-chimique du propane C ₃ H ₈	14
II-4-2-2- Comparaison entre fioul lourd et gaz propane	15
II-5- Produits de la combustion	16
II-6- Différents types de combustion	16
II-6-1- Combustion rapide	16

*

ii

II-6-2- Combustion lente16
II-6-3- Combustion steechiométrique17
II-6-4- Combustion non stæchiométrique17
II-6-5- Diagramme de la combustion18
II-7- Quantité d'air nécessaire
II-7-1- Température de l'air comburant20
II-7-2- Température des fumées20
II-8- Qualité de la combustion20
II-9- Rendements de combustion21
II-9-1- Rendement instantané21
II-9-2- Rendement utile
II-9-3-Rendement global
II-10- Générateurs à vapeur
II-10-1- Rappel sur le fonctionnement d'un générateur de vapeur
II-10-2- Caractéristiques et principe de fonctionnement des chaudières22
II-10-2-1- Caractéristiques des chaudières
II-10-2-2- Principe de fonctionnement des chaudières
II-10-3- Classification et différents types de chaudières
II-10-3-1-Chaudière à tubes de fumées24
II-10-3-2-Chaudière à tubes d'eau25
II-11- Propriétés thermodynamiques des espèces en réaction
II-11-1- Pouvoir calorifique
II-11-2- Enthalpie de formation
II-11-3- Chaleur de réaction

CHAPITRE III : Revue des déférents procédés de récupération du CO₂

III-1- Principe de récupération du CO ₂	28
III-2- Etapes principales de fonctionnement du système	29
III-2-1- Lavage et refroidissement des gaz de combustion	30
III-2-2- Absoption du CO ₂	30
III-2-3- Extraction	31
III-2-4- Condensation des vapeurs et séparation du CO ₂	32
III-2-5- Compression	33

×

iii

III-2-6- Liquéfaction et stockage
III-3- Différentes voies de captage du CO ₂
III-3-1- Captage postcombustion
III-3-2- Captage par oxycombustion
III-3-3- Captage précombustion
III-4- Techniques de séparations de CO2
III-4-1- Les solvants utilisés
III-4-2- Critères de choix des solvants pour la capture du CO2
III-4-2-1- Monoéthanolamine (MEA)
III-4-2-2- Solution aqueuse d'amines
III-4-2-3- Les liquides ioniques
III-5- Absorption chimique du CO ₂ par la solution aqueuse de la monoéthanolamine (MEA)
III-5-1- Mécanisme de la réaction d'absorption du CO ₂ par la solution aqueuse de MEA.41
III-5-1-1- Absorption du CO ₂
III-5-1-2- Régénération de la MEA42
III-5-2- Solubilité du CO ₂ dans les solutions aqueuses d'amines42
III-5-3- Cinétique de réaction du CO ₂ 42
III-5-4- Mesure d'une isotherme d'absorption
III-5-5- Effet de la concentration de MEA sur la cinétique de réaction45
III-5-6- Effet du taux et pureté du CO ₂ capté45
III-6- Corrosion dans le processus de capture MEA-CO ₂
III-7- Conditionnement et Transport du CO ₂
III-8- Stockage géologique
III-8-1- Durée de stockage
III-8-2- Les sous-sols possibles
III-9 - Contraintes liées au transport et au stockage de CO ₂
III-10- Analyse économique du processus de capture de CO ₂
III-11- État des lieux sur la récupération du CO2 des gaz de combustion à partir de la solution aqueuse de MEA
III-12- Conclusion

iv

CHAPITRE IV : Etude technique du système de récupération du CO₂

IV-1- Objectif	57
IV-2- Schéma de principe du système de récupération	57
IV-3- Caracteristique des gas de combustion issu des deux chaudieres	58
IV-4- Étude technique du système de récupération	58
IV-4-1- Hypothèse et dimensionnement	58
IV-4.2- Dimensionnement de l'économiseur de cheminé	59
IV-4-3- Dimensionnement de la tour de lavage des gaz de combustion	60
IV-4-4- Dimensionnement de la pompe de circulation	61
IV-4-5- Dimensionnement du refroidisseur d'eau de recirculation	62
IV-4-6- Dimensionnement de la colonne d'absorption	62
IV-4-6-1 Bilan de masse sur la colonne	64
IV-4-6-2- Calculs des différents débits et rapports molaires	64
IV-4-7- Dimensionnement de la pompe de MEA riche	65
IV-4-8- Dimensionnement de l'échangeur de chaleur à courants croisés	66
IV-4-8-1- Principe de calcul	66
IV-4-8-2- État des deux fluides aux côtés entrés et sortie de l'échangeur	66
IV-4-9- Dimensionnement du filtre de la solution de MEA pauvre	67
IV-4-10- Dimensionnement du refroidisseur de la solution de MEA pauvre	68
IV-4-11- Dimensionnement de la colonne de régénération	69
IV-4-12- Quantité de soude utilisée dans le récupérateur de MEA	70
IV-5- Traitement du CO2 récupéré et production du CO2 alimentaire	70
IV-6- Conclusion	70

Conclusion Générale	71
Références Bibliographiques	73
Annexes	

v

Liste des Abréviations

Symbole	Désignation
ANP	Armée Nationale Populaire
BULK	EN GROS
CCS	Capteur de Carbone et Stockage
СЕ	Conseil de l'Europe
CO ₂	Dioxyde de carbone
CSC	Captage et Stockage de gaz Carbonique
EOR	Enhanced Oil Recovred
FOD	Fuel Oil Domestique
GI	Gaz Industriel
GPL	Gaz de Pétrole Liquide
LGA	Linde Gas Algérie
PCI	Pouvoir Calorifique Inferieur
PCS	Pouvoir Calorifique Supérieur
PGP	Pretty Good Privacy
RC	Rendement de Combustion
SAPTA	Société Algérienne des Ponts et Travaux d'Art
SGP	les Sociétés de Gestion des Participations
SGP GEPHAC	Sociétés de Gestion des Participations de
Chimie/Pharmacie	l'état Chimie et Pharmacie
SNS	Société Nationale Sidérurgie
SNTV	Société Nationale du Transport des Voyageurs
SPA	Société Protectrice des Animaux

vi

Liste des Notations

Symbole	Désignation	Unité
Ø	Quantité de chaleur	kw
ΔH_{F}	enthalpie de formation	Kj/mol
E	efficacité	/
HMT	Hauteur Manométrique Totale	mCE
K	est le coefficient global d'échange	kW/ ^{m2} .K
NUT	Nombre d'Unité de Transfert	/
q	Débit thermique	Kw/°C
q	Le débit des gaz de combustion	m ³ /h
R	facteur de déséquilibre	/
Re	Le nombre de Reynolds	/
Т	Température	°C
W	Teneur	%
Р	Puissance	kw
Σ	la surface d'échange	m²

vii

LISTE DES FIGURES

Figure	Page	
Figure I.1- Positionnement des sites de Linde Gas Algérie.	3	
Figure I.2 Gamme de production des gaz par site en Algérie.		
Figure I.3 Infrastructure de Linde Gas Algérie – site Bouira.	7	
Figure I.4- Organigramme de LGA site Bouira.	9	
Figure II.1.a-triangle de feu.	12	
Figure II.1.b- tétraèdre de feu.	12	
Figure II.2-Représentation symbolique de la combustion.	12	
Figure II.3- Molécule de propane.	14	
Figure II.4- Diagramme de combustion.	18	
Figure II.5- Evolution du contenu des fumées avec l'excès d'air [%] de		
combustion : cas de la combustion avec pré-mélange air-combustible (par	19	
exemple mélange d'air et de gaz.		
Figure II.6- Aspect intérieur d'une chaudière.	23	
Figure II.7- Aspect extérieur d'une chaudière.	24	
Figure II.8-Chaudière à tubes de fumées.	25	
Figure II.9-Chaudière à tubes d'eau.	25	
Figure III.1- Etapes de production de CO ₂ vrac 285 kg/h ASCO.	28	
Figure III.2- Système de production de CO ₂ .	29	
Figure III.3-Procèdes contre-courant d'absorption.	31	
Figure III.4-procèdes contrecourant de régénération de la MEA.	32	
Figure III.5- Tour de condensation et de séparation.	33	
Figure III.6- Compresseur CO ₂ à deux étages.		
Figure III.7-Unité de liquéfaction.	34	
Figure III.8- Schéma de principe d'un procédé de capture du CO ₂ par absorption chimique.		
Figure III.9- Représentation abrégée et formule chimique d'amines pouvant être utilisées pour le captage du CO ₂ .	39	
Figure III.10- Schéma de principe d'un procédé de capture du CO ₂ par absorption chimique.		
Figure IV.1- Schéma de principe de procèdes de récupération de CO ₂ par la solution aqueuse de MEA		
Figure IV.2- Contre-courant d'absorption		
Figure IV.3- Schématisation de l'échangeur à courants croisés		
Figure IV.4- Procédé contre-courant de régénération de la MEA	69	

LISTE DES TABLEAUX

Tableau	Page	
Tableau II-1- Composition de propane	14	
Tableau II-2- Caractéristique de fioul lourd		
Tableau II-3- Caractéristiques des chaudières		
Tableau III-1- Caractéristiques physiques de la MEA	37	
Tableau III-2- Revue bibliographique sur la solubilité du CO2 dans des	40	
solvants aqueux à base d'amines	42	
Tableau IV-1- Etat des lieux des gaz de combustion du propane	58	
Tableau IV-2- Résultats pour l'économiseur de cheminé	58	
Tableau IV-3 - Résultats du dimensionnement de la colonne de refroidissement	60	
Tableau IV-4- Valeurs des singularités dans le circuit sur le circuit	61	
d'alimentation d'eau du refroidisseur des gaz de combustion.	01	
Tableau IV-5- Résultats du dimensionnement de la pompe d'eau de	62	
refroidissement	02	
Tableau IV-6- Refroidissement de l'eau par échangeur thermique	62	
Tableau IV-7- Résultats du dimensionnement de la colonne d'absorption		
Tableau IV-8-Résultats du dimensionnement de la pompe de MEA riche		
Tableau IV-9- Résultats du dimensionnement de l'échangeur thermique à	67	
courants croisés	07	
Tableau IV-10- Refroidisseur de la solution de MEA pauvre	68	
Tableau IV-11- Pompe de la solution aqueuse de MEA pauvre	69	
Tableau IV-12- Résultats du dimensionnement du condenseur pour le	60	
refroidissement de la vapeur	U7	

Les énergies, bien que nécessaire dans notre quotidien moderne, sont toutes émettrices de CO_2 (directes ou indirectes). Les énergies fossiles étant largement en tête. Le charbon, le pétrole et le gaz naturel sont aujourd'hui les principales sources d'énergie dans le monde. Environ 80 % de l'énergie que nous consommons provient de l'utilisation de combustibles fossiles, La combustion de ces sources énergétiques produit des émissions de dioxyde du carbone. Ces émissions de CO_2 sont l'une des principales causes du réchauffement climatique. En effet L'application du CO_2 comme matière première chimique permet de traiter le problème des émissions de manière plus active en recyclant le CO_2 en produits à valeur ajoutée [1].

Aujourd'hui, il existe des opportunités considérables d'utilisation du CO_2 dans un large éventail d'applications industrielles, telles que la récupération assistée des hydrocarbures, les pâtes et papiers, les serres, la production chimique et la carbonatation des boissons. En fait, le dioxyde de carbone est largement utilisé par les entreprises de boissons gazeuses pour la carbonatation des boissons, un processus souvent coûteux et, pour de nombreux sites, qui peut présenter des défis logistiques [2]. Dans cette logique, les producteurs de boissons gazeuses ont la possibilité de remplacer leur CO_2 externe par une source de CO_2 plus économique et plus sûre issue des gaz de combustion issus du fonctionnement de leurs chaudières. Encore une fois, le recyclage de ce dioxyde de carbone leur donne un moyen d'améliorer leur empreinte environnementale [3].

L'objectif de cette étude est de trouver une autre alternative pour compléter le processus de carbonatation des boissons en proposant de récupérer les gaz de combustion d'une chaudière LOOS pour la production du CO_2 alimentaire. Dans ce but, Il évalue le potentiel de récupération du dioxyde de carbone et propose 96 % en potentiel du système de recyclage. Le système proposé est basé sur le principe d'absorption chimique du CO_2 dans une solution aqueuse à 30% de Monoéthanolamine, suivie d'une désorption thermique à l'amine.

A cet effet, il nous a été confié dans le cadre de l'élaboration de ce mémoire de fin de formation à travers un stage pratique à Linde Gas Bouira, un sujet pouvant permettre à la société de répondre aux besoins en CO₂ de carbonatation des boissons. C'est ce qui justifie donc le thème « *Etude d'un système de production de CO₂ alimentaire au sein de Linde Gas Algérie – Bouira* ».

Ainsi, ce travail est subdivisé en quatre chapitres qui sont :

• Le premier chapitre présente une généralité sur la société Linde gaz Algérie – Bouira ;

- Le deuxième chapitre englobe des généralités sur la combustion ;
- Le troisième chapitre présente une revue des différents procèdes de récupération du CO₂ des gaz de combustion ;
- Une étude technique du système de récupération du CO₂ est présentée dans le quatrième chapitre.

Ce travail se termine par une conclusion générale et quelques perspectives à entreprendre pour approfondir cette étude.

I-1- Présentation de Linde Gas Algérie [1]

Linde est un groupe international Américano-Allemand, qui s'est inauguré en 1979 dont le gaz et l'ingénierie sont ses principales spécialités. Elle est implantée à Munich (Allemagne) mais représentée ainsi dans cent pays ou plus à travers ses différentes filiales. La société recrute aujourd'hui les meilleurs employés aux niveaux de ses filiales implantées dans les différentes zones. En Algérie, elle collabore environ 609 personnels.

Linde Gas Algérie (LGA) est activement au niveau national avec dix (10) unités de production et de conditionnement des gaz industriels et médicaux (Alger (Hussein Dey et Réghaïa), Bouira, Annaba, Constantine, Skikda, Oran, Sidi Bel Abbès, Arzew, Ouargla et Hassi Messaoud). Ses sites de production sont pilotés par trois directions régionales, renforcés par un réseau et d'une cinquantaine de concessionnaires et agents agrées implantés sur tout le territoire national afin d'assurer une couverture de plus de 80 % du marché Algérien.

Figure I.1- Positionnement des sites de Linde Gas Algérie.

A travers une gamme complète en Gaz industriels, Linde Gas Algérie, a pour objectif principal la prise en charge des besoins générés par la multiplication de l'utilisation de ces gaz dans divers secteurs économiques.

Linde Gas Algérie est le principal fournisseur des gaz médicaux, ces gaz sont principalement : l'oxygène médical, utilisé dans les insuffisances respiratoires, le protoxyde d'azote médicinal, utilisé dans l'anesthésie, ainsi que d'autres gaz médicaux qui participent aux soins comme le dioxyde de carbone, utilisé dans la cœlioscopie. Ils fournissent en outre des produits chimiques

4

conditionnés, utilisés en production et dans les process de nombreuses industries, ainsi qu'une , large gamme de gaz réfrigérants pour des applications de climatisation et de réfrigération.

Figure 1.2- Gamme de production des gaz par site en Algérie.

Pour garantir une livraison au moment et en quantité voulus et s'adapter parfaitement aux différentes exigences, Linde propose des modes de conditionnements diversifies, allant des bouteilles basse pression et à faible volume aux approvisionnements par pipeline. Il développe également une activité de revente de matériel médical, visant à la mise en œuvre des applications des gaz médicaux. A cela s'ajoute un potentiel commercial et technique proposant des solutions qui s'appuient sur des technologies innovantes.

Au-delà de la fourniture de gaz industriels, Linde propose à ses clients une gamme étendue de matériels, dans des domaines aussi différents que le soudage et la sécurité, les produits alimentaires et les boissons, ou encore les équipements et la technologie de refroidissement et de surgélation. Afin de garantir la qualité, la conformité et la sécurité des produits, Linde Gas Algérie développe une politique qualité d'amélioration continue des processus liés à la recherche, à la production, à la traçabilité des emballages et à la distribution des gaz.

Linde Gas Algérie, se consacre à sa mission principale, celle de garantir la qualité des produits vitaux afin d'assurer la sécurité des utilisateurs.

5

I-2- Historique

Linde Gas est un groupe Allemand de droit privé et droit Algérien. Présent en Algérie depuis les années 1970. Parmi ses importants projets en Algérie : la fourniture en 1979 d'unités de séparation des gaz de l'air au complexe d'El Hadjar de Annaba.

Après en 1999 et 2001, elle a subit une extension (Production de CO₂), a la faveur du programme de privatisation initié par l'Etat, 66 % des actions du capital de GI sont détenues, depuis juillet 2007 par le groupe Linde, et 34 % détenues par la SGP chimie/pharmacie avec le transfert du management de GI au groupe Linde.

Il dispose également d'une longue expérience dans la réalisation et l'entretien d'installations et d'équipements hospitaliers et matériel cryogénique. En 2013, plusieurs de ses cadres avaient été auditionnés par les services de sécurité dans le cadre d'une enquête ouverte sur des informations portant sur le transfert illégal de dividendes.

En juillet 2007, il a acquis 66 % du capital de l'Entreprise Publique Economique du Gaz Industriel (EPEGI). En novembre 2014, le groupe Sonatrach avait obtenu 34 % des actions détenues et transférées par la SGP-Gephac chimie/pharmacie avec le transfert de management de gaz industriels au groupe Linde [2].

En 2013 à Réghaïa, la directrice chargée du commercial et du marketing rappelle, au chapitre des réalisations, qu'entre autres projets achevés, la construction d'une nouvelle unité de production de gaz de l'air d'une capacité de 100 tonnes par jour. Linde Gaz a mis en chantier une unité de production du protoxyde d'azote qui permettra de répondre aux besoins nationaux et aussi d'exporter. Et en projet, une unité de production de CO₂ qui répondra non seulement au marché national mais également à tout le marché du grand Maghreb, a-t-elle affirmé. L'entreprise travaille en outre à la mise aux standards internationaux des unités de productions. Quant au management de Linde Gaz Algérie, SPA, il est confié, selon notre interlocutrice, à l'actionnaire Linde. En matière d'organisation, Linde Gaz Algérie est soumise aux mêmes règles que celles appliquées aux autres filiales, en ce qui concerne les reportings et les contrôles **[3]**.

I-3- Structuration de Linde Gas Algérie - Bouira

I-3-1- Situation géographique

Linde Gas Algérie (LGA) site de Bouira est situé dans la zone industrielle de Sidi Khaled, commune d'Oued el Berdi, Daïra d'El Hachimia, implanté en bordure de la route de wilaya reliant les villes de Bouira et de Sour El Ghozlane en passant par l'agglomération d'Oued El Berdi. Le site est délimité :

- Au Nord par l'entreprise de Granulats ;
- A l'Est par les ex-unités SNS, SAPTA, SNTV, EPTVC et le détachement ANP ;
- Au Sud par une tannerie privée ;
- A l'Ouest par l'entreprise North Africain Chemicals.

I-3-2- Infrastructure de Linde Gaz Algérie - Bouira

- Superficie : 2 ha,
- Un bloc administratif et social en dur,
- Un atelier de conditionnement des gaz de l'air en charpente métallique et des tanks de stockage,
- Un atelier de ré-épreuve en charpente métallique,
- Un atelier de production d'acétylène en dur,
- Un hangar de stockage de carbure de calcium en dur,
- Un hangar pour conditionnement de fréons en dur,
- Un Atelier de production CO₂ vrac (capacité de production de 500 kg/h),
- Un atelier de production de CO₂ vrac (capacité de production de 285 kg/h),
- Un hangar magasin des stocks,
- Un atelier de maintenance,
- Une station de pompage et un réseau de lutte anti-incendie.

Figure I.3- Infrastructure de Linde Gas Algérie – site Bouira.

I-3-3- Principaux équipements

Il s'agit essentiellement d'équipements destinés au stockage :

- 01 tank de stockage de gaz propane liquéfié (capacité : 50000 litres),
- 01 tank de stockage de CO₂ vrac (capacité : 23 tonnes),
- 02 tanks de stockage de CO₂ vrac (capacité : 30 tonnes chacun),
- 01 tank de stockage de CO₂ vrac (capacité : 100 tonnes),
- 01 tank de stockage d'oxygène liquide (capacité : 50000 litres),
- 01 tank de stockage d'azote liquide (capacité : 10000 litres),
- 01 tank de stockage d'argon (capacité : 10000 litres),
- 01 tank de stockage de protoxyde d'azote (capacité : 6000 kg),
- 01 citerne mobile de CO₂ vrac (capacité : 16 tonnes),

7

- 02 unités mobiles de conditionnement d'O₂ gazeux (capacité : 6000 kg),
- 01 camion-citerne d'O₂ (capacité : 18000 litres),
- 01 camion-citerne d'O₂ (capacité : 10000 litres),
- Bouteilles de gaz de différents types et tailles.

Le stockage de l'eau se fait dans une bâche d'une capacité de 240 mètres cubes pour l'eau incendie et 240 mètres cubes pour l'eau industrielle.

I-3-4- Structure fonctionnelle de Linde Gaz Algérie - Bouira

I-3-4-1- Direction

La direction de Linde Gas Algérie - Bouira est assurée par un directeur sous mission de :

- Communication externe avec les autorités ;
- Prise de décision sur site ;
- Gestion et organisation.

I-3-4-2-Processus « SHEQ »

La politique SHEQ (Sécurité, Santé, Environnement & Qualité) fait partie intégrante de Linde Group. Chaque personne travaillant au sein de Linde Gaz est responsable de ses actes.

Ce processus admet l'identification des exigences légales est décrite dans la procédure permettant également de procéder à l'identification des dangers et l'évaluation des risques sur la santé et la sécurité au travail.

Le résultat de cette identification fait l'objet de plans d'action qui sont suivi des revues de processus périodiques qui sont tenues :

- trimestriellement au niveau sites ;
- semestriellement au niveau central.

I-3-4-3- Processus « Finances »

Ce processus est sous la responsabilité des directions Bulk/PGP prenant en compte l'ensemble des activités de production, conditionnement et prestations associées. Les directions Bulk et

9

PGP ont pour mission d'utiliser à leur maximum les capacités installées de production et de conditionnement. Les responsables opération au niveau site disposent, pour la réalisation de cette mission, des moyens, des méthodes et des ressources associées **[4]**.

Figure I.4- Organigramme de LGA site Bouira.

I-4-_Activités de l'unité

L'entreprise Linde Gaz Algérie – Bouira a pour mission essentielle la production et la distribution d'une gamme diversifiée des gaz industriels qui se présente sous trois états :

- ➢ Etat liquéfié :
 - Oxygène.
 - CO₂.

- ► Etat gazeux :
 - Oxygène.
 - Azote.
 - Fréon.
 - Argon.
- ➢ Etat dissous :
 - Acétylène.

I-4-1- Gamme des gaz produits et / ou conditionnés

- Production :
 - Acétylène.
 - CO₂.
- Conditionnement :
 - Oxygène.
 - CO₂ bouteille.
 - Azote.
 - Acétylène.
 - Protoxyde d'azote.

I-4-2- Gamme des produits commercialisés

- Acétylène.
- Oxygène.
- CO₂.
- Azote.
- Fréon.
- Argon.
- Protoxyde d'azote.

II-1- Introduction

Les principaux producteurs d'énergie de notre civilisation dans le passé existent encore aujourd'hui et le seront toujours dans un avenir proche. Comme les combustibles fossiles brûlent de plus en plus vite, ces processus doivent être correctement gérés pour protéger l'environnement et assurer la viabilité de notre civilisation. Les mêmes principes de combustion s'appliquent aux chaudières, aux appareils de chauffage et aux autres formes de combustion industrielle, telles que les cheminées et les foyers.

Idéalement, l'étude de la combustion est l'un des thèmes de recherche les plus rencontrés dans le domaine de l'énergétique. En effet, la combustion décompose la structure moléculaire du combustible : le carbone est oxydé en dioxyde de carbone (CO₂) et l'hydrogène est oxydé en vapeur d'eau (H₂O). Cependant, un processus incomplet aboutit à des produits médiocres et dangereux. Pour assurer une combustion complète, les équipements modernes et riches en fonctionnalités doivent fonctionner avec un excès d'air. En d'autres termes, pour obtenir une combustion complète, plus d'air (contenant environ 21 % d'oxygène en volume) doit traverser le brûleur qu'il n'en faut chimiquement. Cet excès d'air accélère le mélange air-carburant.

D'autre part, l'excès d'air gaspille de l'énergie en diffusant de la chaleur à travers le conduit de fumée. Il existe une différence subtile entre l'efficacité énergétique et la sécurité lorsqu'il s'agit de fournir le moins d'air possible au brûleur. Par conséquent, les propriétaires et exploitants de chaudières voudront savoir si leur entreprise est rentable. Puisque l'objectif est d'augmenter l'efficacité énergétique de la chaudière, il serait utile d'examiner la cause de la perte de chaleur lors du fonctionnement de la chaudière [5].

II-2- la combustion

Une combustion est la réaction chimique complète ou partielle qui a lieu lors de la combinaison entre l'oxygène de l'air (comburant) et une matière combustible (gaz, pétrole, bois, charbon, etc.). Cette réaction est globalement exothermique, c'est-à-dire qu'elle se produit avec un dégagement de chaleur ainsi qu'une émission de rayonnement, cette chaleur et essentiellement utilisée pour maintenir une température de confort **[6]**.

Combustible + Comburant = Produits de combustion + Chaleur + Lumière

La combinaison, porte le nom symbolique du triangle de feu., il est bien connu que la chimie du feu est basée sur le tétraèdre du feu, qui consiste en oxygène, carburant, chaleur et les radicaux libres, En absence de radicaux libres, la combustion peut se poursuivre, mais sans flammes.

Figure II.1- (a) Triangle de feu, (b) Tétraèdre du feu.

Figure II.2- Représentation symbolique de la combustion.

L'oxydation est toute réaction qui se produit entre un atome ou une molécule donneur d'électrons et un atome ou une molécule accepteur d'électrons : c'est le transfert d'électrons et d'énergie. La flamme est définie dans l'espace où la majeure partie de la réaction à lieu (essentiellement dans la partie visible), et le gaz de combustion est une extension de la même réaction [6].

II-3- Le comburant

Un comburant est une substance chimique qui a pour propriété de permettre la combustion d'un combustible **[7]**. Dans certains chalumeaux, on apporte du dioxygène pur pour améliorer la combustion et élever la température de la flamme. Un mélange approprié de comburant et de combustible peut entraîner une combustion, un incendie en présence d'une source d'ignition (étincelle, point chaud, flamme, etc.), le comburant étant l'un des trois éléments du triangle du feu (figure II.1).

II-4- Les combustibles

Le combustible est une matière dont en brûlant dégage une quantité de chaleur, qui peut être utilisée comme source d'énergie dans des applications industrielles (production de l'électricité par exemple) ou domestique (chauffage, chauffe-eau, etc.).

Il convient également de noter que malgré leur diversité, ils ont tous un point commun, c'est qu'ils contiennent majoritairement des hydrocarbures (combinés multiples de carbone et d'hydrogène).

II-4-1- Les principaux combustibles industriels

Les combustibles se répartissent en trois grandes catégories selon leur état physique, dans les conditions standard de température et de pression. On distingue ainsi **[8]** :

- **4** les combustibles solides (charbon, bois, paille, coke, ordures ménagères, etc.) ;
- les combustibles liquides (GPL, fioul lourd et produits assimilés), tous issus du pétrole brut et parfois, pour une très faible part, de la biomasse (dérivés d'huiles végétales);
- **4** les combustibles gazeux, le gaz naturel constituant, à lui seul, une source d'énergie primaire importante, le propane C_3H_8 et butane.

II-4-2- Gaz propane et sa composition

Le gaz propane est un hydrocarbure saturé de formule C_3H_8 , dérivé d'autres produits pétroliers par des processus de thermochimie de gaz ou de pétrole, mais commence aussi à être dérivé du biogaz. Il est couramment utilisé comme source d'énergie chimique (combustible gazeux)

par combustion dans les moteurs à combustion interne, chaudières, barbecue. Dont les molécules sont composées d'hydrogène et de carbone. Une molécule de propane est composée de 3 atomes de carbone et de 8 atomes d'hydrogène (figure II.3) **[9].**

Figure II.3- Molécule de propane.

Dans des conditions normales de température et de pression (15 °C et 1 bar), le gaz propane est naturellement gazeux. Il peut être liquéfié à faible pression. C'est cet état liquide qui permet de le manipuler, transporter et stocker facilement. Ainsi, 1 litre de propane liquide libère 278 litres de gaz (15 °C – 1 bar).

Tableau II.1- Composition de propane.

Point d'ébullition	Masse volumique du liquide	Masse volumique du gaz
(°C)	(kg/m ³) à 15 °C	(kg/m³) à 15 °C
- 44	515	1,85

II-4-2-1- Caractéristiques physico-chimique du propane C₃H₈

Le propane est un gaz plus dense que l'air (1,5 fois) dans les conditions normales de température et de pression, il forme donc des poches au sol dans une pièce remplie d'air. Il se décompose à partir d'une température supérieure à 780–800 °C.

La combustion du propane est plus propre que celle de l'essence, mais significativement plus polluante que celle du méthane ou de l'hydrogène. La présence de liaisons C-C crée des résidus organiques, en plus de la vapeur d'eau et du dioxyde de carbone. Ces produits rendent la flamme visible **[9]**.

II-4-2-2- Comparaison entre fioul lourd et gaz propane

Tableau II.2-	· Caracté	ristique d	le fioul	lourd	[10].
---------------	-----------	------------	----------	-------	-------

Caractéristiques	Fioul lourd	Gaz propane
Pouvoir Calorifique Inférieur	 - n°2 Ordinaire = 9650 mth/kg = 11,21 kWh/kg. - n°2 BTS 2 % = 9900 mth/kg = 11,50 kWh/kg. - n°2 BTS 0,55 = 10000 mth/kg = 11,63 kWh/kg 	11000 mth/kg = 12,79 kWh/kg 11900 mth/kg = 13,83 kWh/kg
Combustion	Incomplète	Complète
Produits de combustion	 Fumées, suies, cendre, odeur (due au soufre). Corrosion importante (forte teneur en soufre). 	Propres.Non corrosifs et neutres.Flamme directe possible
Conduit d'évacuation des produits de combustion	Maçonné ou calorifugé.	Simple (aluminium, inox).Hauteur et dépression réduite.Possible au travers de parois.
Conduite de l'installation	 Additifs pour combustion. Réchauffage et stockage. Réchauffage tuyauterie. Pompe de circulation. Rinçage fuel domestique avant arrêt. Allumage fuel domestique préalable. Préchauffage foyer. Variation de la viscosité et de la qualité. 	- Facilité. - Souplesse.
Entretien de l'installation	 Tenue réfractaire foyer. Nettoyage appareil (carneaux, échangeurs). Ramonage conduit. Nettoyage des filtres. Encrassement électrodes. Pompe d'injection. Installation de réchauffage stockage. Installation de réchauffage tuyauteries. Nettoyage réseau de distribution éventuellement. 	 Réduit ou inexistant. Maintenance de l'éventuel vaporiseur.

×

II-5- Produits de la combustion

Deux produits principaux résulteront d'une combustion correcte : du dioxyde de carbone (CO_2) et de l'eau (H_2O). En effet, si on considère la combustion « stœchiométrique » (c'est-à-dire, contenant la quantité d'oxygène exacte pour faire réagir le combustible de manière parfaite), on obtient :

$$CH_y O_x + (1 + \frac{y}{4} - \frac{x}{2}) O_2 \rightarrow CO_2 + \frac{y}{2} H_2 O$$
 (II.1)

Par exemple,

Pour la combustion de méthane :

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$
 (II.2)

Et pour la combustion du propane :

$$C_3 H_8 + 5 O_2 \to 3 CO_2 + 4 H_2 O \tag{II.3}$$

C'est le CO_2 dont on parle au niveau de la pollution atmosphérique et de la problématique du réchauffement de la planète qu'il entraîne. Il est principalement lié à l'utilisation des combustibles fossiles, elle-même liée à l'activité économique.

II-6- Différents types de combustion

II-6-1- Combustion rapide

La combustion rapide est une forme de combustion au cours de la quelle de grandes quantités de chaleur et d'énergie sous forme de lumière sont relâchées donnant ainsi naissance au feu [7].

II-6-2- Combustion lente

La combustion lente est une réaction qui entraine un faible dégagement de calories avec peu d'élévation de température et une absence de flammes.

On peut citer le cas de la respiration cellulaire ; cette lenteur est due à des enzymes spécifiques permettant d'augmenter les réactions d'oxydoréduction et ainsi d'obtenir un très bon rendement par récupération d'une grande partie de l'énergie **[7]**.

II-6-3- Combustion stechiométrique

La combustion stœchiométrique qui est la base des calculs théorique en combustion, appelée aussi la combustion neutre ou théorique, si l'air comburant est en quantité suffisante et strictement nécessaire à la combustion complète de l'unité de combustible. Les fumées ne contiennent pas d'oxygène.

$$C_x H_Y + (x + {y/_4})(O_2 + 3,76 N_2) \rightarrow xCO_2 + {y/_2}H_2O + 3,76(x + {y/_4})N_2$$
 (II.4)

La combustion stœchiométrique conduit à la température de combustion la plus élevée. Par conséquent, elle est considérée comme combustion idéale **[8]**.

II-6-4- Combustion non steechiométrique

Elle peut être défini de plusieurs manières, notamment grâce à son excès d'air (+e) ou son défaut d'air (-e), ou encore par sa richesse R $(R = \frac{1}{\lambda} avec \lambda = 1 + e$ qui est le facteur d'air théorique).

Si $\lambda > 1$, c'est à dire qu'on a un excès d'air ; alors, dans ce cas, le volume d'air admis pour la combustion de l'unité de combustible est supérieur au volume d'air stœchiométrique. Ainsi, une partie de l'air comburant est utilisée pour l'oxydation du combustible, l'autre partie se retrouve dans la fumée [11]. Dans ce cas précis, on dit que le mélange est pauvre et se traduit par l'équation de la réaction suivante :

$$C_{x} H_{Y} + \lambda (x + \frac{y}{4}) (O_{2} + 3,76 N_{2}) \rightarrow x CO_{2} + \frac{y}{2} H_{2}O + 3,76 \lambda (x + \frac{y}{4}) N_{2} + E(x + \frac{y}{4}) O_{2}$$
(II.5)

Si $\lambda < 1$, c'est-à-dire qu'on a un défaut d'air ; alors, dans ce cas, le volume d'air admis pour la combustion de l'unité de combustible est inférieur au volume d'air stœchiométrique ; l'oxygène y est néanmoins totalement utilisé donc pas de présence d'O₂ dans les fumées, mais, il y'a formation du monoxyde de carbone CO [11]. Dans ce cas précis, on dit que le mélange est riche et se traduit par l'équation de réaction suivante :

$$C_{x} H_{Y} + \lambda \left(x + \frac{y}{4}\right) (O_{2} + 3,76 N_{2}) \rightarrow 2\lambda \left(\left(1 + \frac{y}{4}\right) - \left(1 + \frac{y}{2}\right)\right) CO_{2} + \frac{y}{2} H_{2}O + 3,76 \lambda \left(x + \frac{y}{4}\right) N_{2} + \left(E\left(x + \frac{y}{4}\right) + 2(1 - \lambda)\left(1 + \frac{y}{4}\right)\right) CO$$
(II.6)

Mais si ce défaut est important, il n'y aura même pas assez d'oxygène pour la formation du monoxyde de carbone.

II-6-5- Diagramme de la combustion

A l'aide de la valeur maximale du CO₂. On peut tracer un diagramme de combustion d'un triangle rectangle dont la verticale (ordonnée) comportera un point représentant le maximum de CO₂, appelé "point stœchiométrique".

LES 4 TIPES DE COMBUSTION SUR LE DIAGRAMME

Figure II.4- Diagramme de combustion.

Sur la ligne horizontale (abscisse), un point représente le maximum d'oxygène dans l'air. La ligne reliant ces deux informations le long de l'hypoténuse est appelée "Excess Air Complete Burn Line" ou ligne "GREBEL", et elle peut être divisée en différentes sections graduées par facteur d'air (ou même en pourcentage d'excès d'air).

II-7- Quantité d'air nécessaire

La quantité d'air nécessaire pour brûler 1 m³ ou 1 litre de combustible dépendra des caractéristiques de celui-ci. Mais il est bon d'avoir en tête un ordre de grandeur.

"La combustion de 1 m³ de gaz naturel ou d'1 litre de fuel requiert environ 10 m³ d'air à 15° C".

A cette quantité « stœchiométrique », c'est-à-dire requise par l'équation chimique de la combustion, s'ajoute un léger excès d'air pour s'assurer que toutes les molécules de combustible soient bien en contact avec l'oxygène. En effet, il faut prévoir que certaines molécules d'oxygène vont traverser le foyer sans se lier au combustible. Dit autrement, il faut éviter d'avoir des zones, des poches, où le processus de combustion viendrait à manquer localement d'oxygène. On travaille donc avec un excès d'air comburant qui s'élève par exemple pour la combustion du fuel à environ 20 %. Il faut donc prévoir 12 m³ d'air pour brûler 1 litre de fuel. Lorsqu'une combustion se fait avec une arrivée insuffisante d'oxygène, on parle de combustion incomplète. Celle-ci se traduit par la production d'imbrûlés (suies qui encrassent la chaudière) ou d'éléments partiellement oxydés, pouvant encore brûler, comme le monoxyde de carbone (CO) **[12]**.

La figure suivante montre l'évolution de la composition des fumées en fonction de l'excès d'air dans le cas d'une combustion à prémélange (d'air et du combustible). On constate qu'en présence d'un manque d'oxygène, il y production de CO. Lorsque l'excès d'air augmente audelà d'une certaine valeur, la teneur en CO₂ des fumées diminue par dilution, dilution qui diminue le rendement de combustion dans la mesure où les fumées ont une température plus basse.

Figure II.5- Evolution du contenu des fumées avec l'excès d'air (en %) de combustion : cas de la combustion avec prémélange air-combustible (par exemple mélange d'air et de gaz naturel) [12].

II-7-1- Température de l'air comburant

La température de l'air ambiante évolue suivant les saisons, c'est une énergie gratuite que l'on déduit de la température des fumées pour calculer le rendement instantané du bruleur : ainsi avec une température négative (- 5 °C par exemple). Ce rendement devrait être égale à celui obtenu avec une température positive (de + 20 °C par exemple).

Pour une plus grande stabilité de la combustion et de rendement, on réchauffe parfois l'air aspiré par le bruleur en le faisant circuler autour du générateur.

II-7-2- Température des fumées

Cette perte d'énergie est particulièrement utile pour les équipements traditionnels : elle est un des paramètres du calcul de la cheminée (vitesse ascensionnelle et la dépression nécessaire dans tous les cas pour l'évacuation des gaz de combustion), elle participe au maintien à l'état gazeux des vapeurs d'eau et autres composants contenus dans les fumées. Pour obtenir une meilleure performance, certaines installations fonctionnant au gaz naturel (et parfois aux GPL et au FOD) récupèrent la chaleur latente des gaz de combustion en les condensant soit à travers des chaudières à condensation ou en intégrant un ou plusieurs échangeurs à la sortie des générateurs dans le circuit des fumées. On notera au passage que, vu les températures respectives des fumées sortantes (la température du four) et celle de l'air parasite (la température ambiante), la masse volumique (ou la densité) des fumées est beaucoup plus faible que celle de l'air ambiant **[13]**.

II-8- Qualité de la combustion

Deux facteurs principaux déterminent la qualité de la réaction de combustion :

4 Rendement : c'est le degré de réussite d'une réaction chimique. En d'autres termes, pas de composés non brûlés ou incomplètement oxydés.

♣ Degré thermique atteint par les températures de combustion : qui est le rapport de la quantité de chaleur dégagée à la quantité de réactifs produits. En pratique, c'est la proportion d'air en excès qui permet d'optimiser la combustion. Plus l'excès d'air est important, moins il y a d'imbrûlés, meilleure est la qualité de la combustion.

II-9- Rendements de combustion

II-9-1- Rendement instantané

Par définition, c'est une grandeur lue et par convention, le rendement de combustion (noté RC) est exprimé en % sur P.C.I. (Pouvoir Calorifique Inférieur). L'hydrogène contenu dans les gaz de combustion reste en suspension si la température est plus élevée que le point de rosée (environ 60 °C pour du gaz naturel).

Si les gaz de combustion sont refroidis pour être totalement condensés, le rendement est évalué sur P.C.S. (Pouvoir Calorifique Supérieur) mais sera exprimé par rapport au P.C.I. (par exemple 104 %). Un bon rendement de combustion est consécutif à :

- L'absence d'imbrûlés (ni CO, ni suie) ;
- Au taux de CO₂ le plus élevé ;
- A la température des gaz de combustion la plus basse.

II-9-2- Rendement utile [14]

On ajoute aux pertes par les fumées celle des :

- pertes par balayage à l'arrêt (porte, façade et chaudière non étanches) ;
- de la pré-ventilation et/ou de la post-ventilation ;
- du rayonnement des générateurs (sans calorifuge ou jaquette).

II-9-3-Rendement global

Rendement global Instantané : le calcul s'effectue en divisant l'énergie consommée en combustible par celle produite et mesurée à la sortie des générateurs.

Rendement global annuel : le bilan annuel intégrera dans le calcul le rendement global instantané et le besoin en chauffage de l'installation (degrés jour unifié).

II-10- Générateurs à vapeur

II-10-1- Rappel sur le fonctionnement d'un générateur de vapeur

Une chaudière, également appelée générateur de vapeur, est un appareil qui forme essentiellement un ensemble d'échangeurs de chaleur conçus pour convertir l'eau en vapeur et délivrée à une pression et une température définies, utilisant une source de chaleur bien définie [15].

Dans certaines chaudières, on souhaitera une vapeur surchauffée, ou encore appelée vapeur sèche. Le calcul de l'énergie nécessaire à l'évaporation peut se faire avec la différence des enthalpies et les chaleurs spécifiques (constante) [16].

$$q = C_p \times AT_n + AL_{23} + C_p \times AT \tag{II.7}$$

L'équation (II.7) représente la chaleur nécessaire pour chauffer (ATa), évaporer (AL_{23}), et surchauffer (AT_{34}) 1 kg d'eau.

Les modes de transfert de chaleur dans une chaudière à vapeur en séquence les plus importants sont le rayonnement, la convection et la conduction. Premièrement, la combustion qui a lieu dans le four dégage une forte quantité de chaleur, ce qui la flamme est délivrée par rayonnement. Puis la fumée ardente passe à travers la chaudière et transfère son potentiel énergétique à l'eau par convection et conduction à travers le tube **[16]**.

II-10-2- Caractéristiques et principe de fonctionnement des chaudières

II-10-2-1- Caractéristiques des chaudières

La principale caractéristique des chaudières de type "Loos" est donc de disposer d'une grande quantité d'eau sous pression (la même que celle de la vapeur produite) avec pour conséquences premières :

• de présenter une grande inertie thermique (démarrage lent) ;

• d'être très destructive en cas d'explosion (un gros volume d'eau se transforme instantanément en vapeur).

Constánictions	Chaudières		
Caracteristiques	1	2	
Marque	LOOS	LOOS	
Туре	UL-S 14000	UL-S 14000	
Timbre (bars)	13	13	
Température maxi (°C)	195	195	
Débit vapeur (kg/h)	14000	15500	
Contenu total (L)	22400	22400	
N° de fabrication	99574	104859	
Année de fabrication	Juillet 2005	Décembre 2008	

Tableau II.3- Caractéristiques des chaudières.

II-10-2-2- Principe de fonctionnement des chaudières

Dans une chaudière à tubes de fumée, les gaz de combustion circulent dans les tubes tandis que l'eau les entoure. L'ensemble est contenu dans une grande coque qui forme le corps cylindrique de la chaudière. Ces générateurs sont également appelés "chaudières à foyer intérieur" ou simplement "chaudières".

Les sections suivantes permettent de mieux comprendre comment les chaudières à vapeur sont construites :

Figure II.6- Aspect intérieur d'une chaudière.

Tandis que la photo ci-dessous montre l'aspect extérieur d'une chaudière

Figure II.7- Aspect extérieur d'une chaudière.

Le débit de la chaudière varie de 0,2 à environ 40 à 50 t/h de vapeur. Cela correspond à des puissances thermiques de l'ordre de 100 kW à 30 MW. On voit que le premier "tube" de très grand diamètre constitue la chambre ou foyer dans lequel se développe la flamme. Les fumées sont ensuite dirigées dans des faisceaux tubulaires pour terminer leur parcours dans un éventuel économiseur qui assure le préchauffage des fumées en récupérant leur enthalpie résiduelle. L'ensemble " tube foyer" et faisceau de tubes est immergé dans un grand volume d'eau à l'intérieur du carénage qui constitue le corps de la chaudière **[17].**

II-10-3- Classification et différents types de chaudières

La chaudière utilise l'énergie chimique contenue à l'état latent dans les combustibles et l'air comburant, et le transmet à un support qui, dans le cas qui nous intéresse, est la vapeur d'eau **[18]**.

On retrouve deux principaux types de générateur de vapeur (tube d'eau et tube de fumées) :

II-10-3-1-Chaudière à tubes de fumées

Ce sont les chaudières les plus courantes dans l'industrie. Les hautes pressions ne sont pas autorisées, mais elles ont de grandes réserves de vapeur et Peut absorber les demandes du réseau sans observer de creux excessifs pressions. En fait, le chemin de la fumée se produit dans les tuyaux traversant des réservoirs (contrairement aux conduites d'eau), qui traversent un réservoir cylindrique rempli d'eau. L'évaporation se produit à la surface extérieure des

tubes. La température des fumées diminue avant de retourner à l'atmosphère et la surface d'échange est augmentée.

Figure II.8- Chaudière à tubes de fumées.

II-10-3-2-Chaudière à tubes d'eau

Les chaudières à tubes d'eau sont beaucoup plus onéreuses que les chaudières à tubes de fumées plus compactes. Mais sont les plus utilisées dans les centrales thermiques. Elles permettent grâce à leurs configurations d'atteindre des pressions plus élevées nécessaires à la production d'électricité. La pression dans les tubes est égale à la pression du mélange diphasique à l'intérieur de ces derniers **[16]**. L'eau circule à l'intérieur de faisceaux de tubes monte en général en parallèle **[18]**. La circulation peut être :

- Forcée (par pompes),
- ✤ Naturelles (par convection).

Les tubes peuvent être soit :

- Lisses,
- ✤ Ailettes.

Figure II.9- Chaudière à tubes d'eau.

II-11- Propriétés thermodynamiques des espèces en réaction

Le but visé lors d'une étude de la combustion, est la détermination des échanges d'énergies qui ont eu lieu lors des réactions chimiques. Pour cela, il est primordial de connaitre les énergies internes et les enthalpies des réactifs et des produits, car les échanges d'énergies dépendent uniquement des états initiaux et finaux des espèces chimiques en réaction **[19]**.

II-11-1- Pouvoir calorifique

Aussi appelée chaleur de combustion, le pouvoir calorifique est l'énergie dégagée sous forme de chaleur par kilogramme de combustible solide, de combustible liquide ou de 1 Nm³ de combustible gazeux. Il existe deux types de pouvoir calorifique :

• Pouvoir Calorifique Supérieur (PCS) : Le pouvoir calorifique est dit supérieur quand l'eau produite lors de la combustion est supposée ramenée à l'état liquide dans les produits de combustion donc on tient compte de la chaleur restituée par la condensation de la vapeur d'eau dans les fumées **[19]**.

• Pouvoir Calorifique Inferieur (PCI) : il est déterminé lorsque l'eau produite après la réaction de combustion est sous forme de vapeur. La différence entre PCS et PCI nous donne la chaleur latente de vaporisation, qui est la chaleur nécessaire pour convertir une mole de liquide à son point d'ébullition atmosphérique.

Remarque

- 4 Le PCS et le PCI sont exprimés en kJ/m^3 pour les combustibles gazeux.
- Le PCS et le PCI sont exprimés en kJ/kg pour les combustibles solides et liquides.

PCS > PCI sauf pour les combustibles qui ne contiennent pas d'hydrogène, dans ce cas
PCS = PCI [19].

II-11-2- Enthalpie de formation

On appelle enthalpie de formation (notée ΔH_f), l'enthalpie d'une substance chimique dans un état donné, et qui caractérise la composition chimique de la substance, dans des conditions

normales de température et de pression (15 °C – 1 bar). Il est nul pour tout éléments simples \checkmark stables (tels que N₂, O₂ et H₂).

II-11-3- Chaleur de réaction

La chaleur de réaction (notée Q) est par définition la chaleur dégagée lors de la combustion et elle se calcule selon le premier principe de la thermodynamique. Dans le cas de systèmes réactifs en régime permanent, en négligeant l'énergie cinétique et l'énergie potentielle, et pour un système à flux constant :

$$Q + W = \Delta H_p - \Delta H_r \tag{II.8}$$

Avec :

- ΔH_p : somme des enthalpies des produits *i*,
- ΔH_r : somme des enthalpies des réactifs *i*,
- *Q* : Quantité de chaleur dégagée par la combustion,
- *W* : Travail.

III-1- Principe de récupération du CO₂

La récupération du dioxyde de carbone des gaz de combustion peut également être effectuée à partir de la chaudière en même temps à la biomasse. Cependant, de tels systèmes conviennent généralement aux grandes serres (15 hectares et plus) en raison des coûts d'installation et d'exploitation élevés.

Les gaz d'échappement issus de la combustion de combustibles fossiles contiennent généralement beaucoup de gaz carbonique. Ces gaz de combustion sont généralement assez purs, ils sont expulsés à une température moyenne de 200 °C et doit être refroidie à 30 °C avec un condenseur dans la serre **[20]**.

En premier temps, les gaz de combustion à purifier pénètrent en pied de la colonne d'absorption. Au niveau des garnissages qu'il contient, la teneur en gaz carbonique du solvant d'absorption est très faible et la charge est initialement en tête de colonne et circule à contrecourant. Ainsi, une réaction acido-basique (exothermique) se produit avec du dioxyde de carbone, purifiant en conséquence la fumée montant. En utilisant un solvant, une section de lavage peut être utilisée en tête de la colonne pour récupérer le solvant mécaniquement entraîné ou évaporé. Le solvant récupéré peut ensuite être réutilisé comme solvant supplémentaire. En tête d'absorbeur, le flux gazeux épuré au CO_2 est vidé en bas de l'absorbeur pour récupérer le solvant riche en CO_2 [21].

Figure III.1- Système de production de CO₂.

Figure III.2- Etapes de production de CO₂ vrac.

III-2- Etapes principales de fonctionnement du système

Le fonctionnemt de système de récupération de CO_2 est basé sur six etapes principals qui sont :

- 1. Lavage et refroidissement des gaz de combustion ;
- 2. Absorption du CO_2 ;
- 3. Régénération de la MEA et formation des vapeurs humides ;

- 4. Condensation des vapeurs humides et la séparation du CO₂ ;
- **5.** Compression et purification ;
- 6. Liquéfaction.

III-2-1- Lavage et refroidissement des gaz de combustion

Les gaz de combustion sortant des chaudières à une température de 340 à 380 °C. Ces gaz sont soufflés et entrent dans la tour par le bas et l'eau avec la soude caustique par le haut où se trouvent des anneaux métalliques qui sert à distribuer la fumée en tous points et avoir une grande surface de frottement.

Le refroidissement est assuré par la circulation de l'eau à contre-courant des gaz de combustion. Ces gaz sont refroidis jusqu'à 40 °C par évaporation de l'eau, Cette évaporation conduit à une perte de l'eau de refroidissement et pour compenser cette perte, il est prévu un système d'appoint.

L'effet de refroidissement est de réduire l'humidité dans les gaz de combustion à la sortie de la tour. Contribue également à améliorer l'absorption de CO_2 par MEA, à minimiser les pertes de MEA, et éviter une perte excessive d'humidité dans les gaz de combustion. La MEA est ainsi soumise à une dégradation oxydante par l'oxygène O_2 dissous et par le SO₂ présent dans la fumée de combustion [**22**].

Une fois laver et refroidis, les gaz de combustion sont évacués par le haut de la tour de lavage et envoyé à la tour d'absorption.

III-2-2- Absoption du CO₂

Le mélange des gaz de combustions de concentration réglable est introduit en pied d'une colonne d'absorption à garnissage où le CO_2 est capté à contre courant par une solustion liquide froide de MEA.

L'absorption du dioxide de carbon par une solution aqueuse de MEA implique une exposition d'un flux gazaux à une solustion aqueuse de MEA qui réagit avec le CO₂ pour former un sel carbonaté soluble appelé « carbamate » à travers une réaction acide basique neutre .

31

Figure III.3- Procèdes d'absorption à contre-courant.

Le CO₂ contenu dans les fumées est absorbé par la solution de monoéthanolamine selon la réaction suivante **[23]** :

Cependant, lorsque le dioxyde de carbone est absorbé par une solution aqueuse de MEA, il y a principalement trois composés, c'est à dire le CO₂, la MEA et l'eau (H₂O) qui sont actif dans le système. Le flux de MEA riche en CO₂ quitte l'absorbeur est envoyé à la pompe de MEA riche et passe ensuite par un échangeur de chaleur à courant croisé où préchauffée à la température de 101 °C. Dans l'échangeur de chaleur, le flux de MEA riche en dioxyde de carbone échange sa chaleur avec le flux de MEA pauvre. Il est ensuite admis vers la colonne d'extraction.

III-2-3- Extraction

Le MEA riche sera envoyé vers l'échangeur pour élever sa température jusqu'à 126 °C, puis il sera pompé vers la tour d'extraction (le stripeur). Cette haute température produit une énergie qui permet la rupture des liaisons entre le MEA et le CO₂.

En fait, comme le carbamate descend dans la colonne, la vapeur provenant du rebouilleur en , bas de la colonne permet d'extraire la MEA qui sera ensuite refroidie dans un échangeur de chaleur à flux croisé avant d'être envoyée à l'absorbeur à travers le filtre. Cette extraction s'accompagne d'une formation de vapeur humide qui va sortir en tête de colonne et aller dans un condenseur. La présence d'impuretés de gaz acides tels que le SO₂ et les NOX dans les fumées entraine la formation de sels aminés thermiquement stables dans le flux de MEA qui, même sous l'effet de la chaleur ne se dissocient pas. Pour éviter l'accumulation de ces sels dans le solvant et de récupérer une partie de cette perte de MEA, une partie du flux de MEA sera périodiquement distillée dans un récupérateur. Le récupérateur de MEA va convertir les sels aminés thermiquement stables et les produits de dégradation en amines utilisables, tout en éliminant les anions indésirables. L'ajout de la soude caustique permettra de récupérer en partie la MEA qui sera renvoyée au régénérateur et de neutraliser les sels aminés thermiquement stables pendant la filtration.

Figure III.4- Procèdes à contrecourant de régénération de la MEA.

III-2-4- Condensation des vapeurs et séparation du CO2

La vapeur humide générée lors de la régénération de la MEA contient en plus du CO_2 , de la vapeur d'eau et de la vapeur de MEA. Elle était envoyée au condenseur. Le condenseur refroidit les vapeurs surchauffées et la plupart des vapeurs d'eau et de MEA se condensent. Le CO_2 n'est pas condensé ; le liquide surchauffé issu de la condensation des vapeurs et le CO_2 gazeux passent par un séparateur où le CO_2 est séparé. Le CO_2 produit ira à la station de traitement et le liquide (appelé reflux) retournera en tête de colonne grâce à une pompe.

Figure III.5- Tour de condensation et de séparation.

III-2-5- Compression

Le CO₂ est canalisé vers le premier étage du compresseur ou il est comprimé à la pression de 5 bar et à la température de 125 °C et 130 °C, puis il sera refroidi par un échangeur, et l'humidité condensé est drainée à l'extérieure du compresseur. Le CO₂ refroidi passe dans le deuxième étage du compresseur où il est comprimé à la pression de 19 bar et à la température de 125 °C à 135 °C, il est ensuite refroidi par un flux d'eau de refroidissement jusqu'à une température de 35° C à 40 °C.

Figure III.6- Compresseur de CO₂ à deux étages.

III-2-6- Liquéfaction et stockage

Une colonne de filtration au charbon de grande capacité est installée dans la ligne d'entrée de gaz CO_2 vers le liquéfacteur, pour fournir une garantie supplémentaire d'un CO_2 pur et inodore. Le gaz est réfrigéré à une température de 40 °C au contact de l'ammoniaque liquide, en utilisant un réfrigérant contacteur. Après liquéfaction, le CO_2 liquide se réserve dans un tank isolant qui contient un petit réfrigérant pour éviter l'évaporation du CO_2 à l'intérieur de tank.

Figure III.7- Unité de liquéfaction.

III-3- Différentes voies de captage du CO₂ [10]

Pour le captage du CO_2 et des gaz de combustion, plusieurs procédés industriels existent, en fonction de la nature des fumées à traiter (composition, température et pression). Ils relèvent de trois catégories principales :

III-3-1- Captage postcombustion

Le captage du CO_2 en postcombustion est la voie la plus directe puisque le CO_2 présent dans la fumée de combustion est capté en sortie de cheminée. Différents éléments font clairement apparaître que si le CCS devait être appliqué à moyen terme, l'étape de captage du CO_2 devrait se dérouler en postcombustion. La très grande majorité des centrales existantes ou en construction ne présente pas de système de captage d'ores et déjà intégré. Compte tenu de la durée de vie de ces centrales, la question de leur modernisation se pose et les possibilités d'implémentation de systèmes de captage du CO_2 sur ces anciennes centrales sont étudiées.

III-3-2- Captage par oxycombustion

Il s'agit de produire une fumée concentrée en CO_2 en modifiant le procédé de combustion qui repose sur l'utilisation d'oxygène pur à la place de l'air.

III-3-3- Captage précombustion

Avec ce type de procédé, l'objectif est de produire et de capter le CO₂ avant même la phase de combustion.

III-4- Techniques de séparations de CO2

Il existe plusieurs techniques pour la récupération du CO₂ des gaz de combustion. Il s'agit de **[24]** :

- la technique de séparation membranaire ;
- la technique de séparation cryogénique ;
- la technique de séparation par adsorption ;
- la technique de séparation par absorption physique ;
- > la technique de séparation par absorption chimique.

Le choix d'une technique convenable dépend des caractéristiques des gaz de combustion desquels le CO₂ sera récupéré qui, elles aussi dépendent de l'installation générant ces gaz [**22**]. En tenant compte de la faible pression du CO₂ dans les gaz de combustions issus des chaudières, seule la technique de séparation par absorption chimique est convenable et est la plus favorable. En effet, les fumées sortent généralement des chaudières à une pression proche de celle atmosphérique et la pression partielle en CO₂ est très faible. Elle vaut moins de 15,169 kPa [**24**]. La technique de récupération de CO₂ par absorption chimique repose sur le principe de transfert de masse et utilise deux colonne : une colonne d'absorption permettant de séparer le CO₂ des autre constituants gazeux à l'aide d'un solvant et une colonne de régénération permettant de récupéré le CO₂ sous forme gazeux et de régénérer le solvant.

*Figure III.8- Schéma de principe d'un procédé de capture du CO*² *par absorption chimique.*

III-4-1- Les solvants utilisés

Les solvants chimiques sont généralement des solutions aqueuses à base d'amines. Les amines sont des molécules organiques comportant une ou plusieurs fonctions amines (N). Le groupement amine assure la basicité de la solution nécessaire à la réaction avec les gaz acides. Ces amines sont classées suivant le degré de substitution de leur atome d'azote. Leur usage dans la récupération de l'hydrogène sulfureux et du CO_2 des flux gazeux dans les industries chimiques et pétrolières remonte à plus de 60 ans et l'absorption chimique du CO_2 par ces amines est aujourd'hui une technologie prouvée et bien connue [25]. Il s'agit de :

- la diéthanolamine (DEA) ;
- la N-méthyldiéthanolamine (MDEA) ;
- la triéthanolamine (TEA) ;
- la diisopropanolamine (DIPA) ;
- la diglycolamine (DGA) ;
- la monoéthanolamine (MEA).

La plus utilisée de ces alcanolamines est la MEA. En effet, de nombreux travaux ont été effectués dans le cadre de l'absorption chimique du CO₂ par la MEA. Il s'agit d'une

alcanolamine moins chère, de faible masse molaire, complètement soluble dans l'eau et facilement biodégradable. Elle a une cinétique de réaction élevée avec le CO₂ et permet de réaliser des séparations de grandes puretés.

Formule chimique générale	C ₂ H ₇ NO	
Masse moléculaire (g/mol)	61,08	
Point de fusion (°C)	10,5	
Point d'ébullition (à 10325 Pa)	170,6	
Viscosité absolue à 20 °C (Pa.s)	0,0241	
Chaleur spécifique à 15,6 °C (J/kg.K)	2546	
Point d'éclair (°C)	93,3	
Pression de vapeur (Pa) à 20 °C	50	
Densité (kg/m ³) à 20 °C	1016	
pKa à 20 °C	9,5	

Tableau III.1-	Caractéristiques	physiques	de la	MEA	[25].
I woreaw IIIII	curacierisingues	physiques		1/1 201 1	[-0]

III-4-2- Critères de choix des solvants pour la capture du CO2

Davison [26] a défini le solvant idéal pour la capture du CO_2 en postcombustion comme celui offrant :

✤ Haut réactivité au CO₂ (particulièrement une cinétique élevée). Le but est de réduire la taille de l'absorbeur et/ou de réduire les débits de circulation des solvants ;

Faible chaleur de la réaction, faibles besoins énergétiques pendant la régénération ;

Grande capacité d'absorption pour réduire les débits de solvants.

De plus, il est important que le solvant choisi présente une stabilité thermique élevée ainsi que la parfaite résistance aux différents composés présents dans la fumée traité. Enfin, le bon solvant devrait aussi à terme, avoir moins d'impact sur l'environnement ainsi qu'un faible coût de production.

Le respect de ces normes est essentiel dans le but pour minimiser les coûts de mis en œuvre un canal CCS. Malheureusement, la recherche de l'absorbant le plus adapté pour capter les

38

émissions de CO_2 de la postcombustion sont basée sur un dilemme : le solvant sont ceux qui ont de bonnes propriétés d'adsorption du CO_2 et aussi ceux qui sont régénérés et plus énergivores. Ceci explique les dons du monde entier, visant à mettre en évidence les solvants les plus appropriés pour capture de CO_2 après combustion [10].

III-4-2-1- Monoéthanolamine (MEA)

Le MEA est le solvant le plus étudié pour la capture de CO₂ et est le système pour lequel de nombreuses données expérimentales sont disponibles **[27]**. Une amine primaire qui, en conséquence de sa très grande réactivité, assure une efficacité de capture élevée même à concentration en CO₂ faible dans la fumée. La capture du CO₂ par la MEA a, dès les années 70, fait l'objet d'un intérêt industriel important, initialement pour la récupération assistée du pétrole. Particulièrement, l'emploi de la MEA de façon continue entre absorbeur et stripper pour la capture du CO₂ mène à une dégradation importante de ce solvant laquelle est parfois estimée à environ 10 % du coût total de la capture **[28]**. La MEA est ainsi soumise à une dégradation oxydante par l'oxygène O₂ dissous et par le SO₂ présent dans la fumée de combustion **[29]**. Ce phénomène mène à la formation de sels stables à la température résistants à la régénération thermique. Un appoint important de solvant frais est alors nécessaire afin d'éviter une chute importante des performances de capture.

III-4-2-2- Solution aqueuse d'amines

Les solvants chimiques couramment utilisés pour la capture du dioxyde de carbone sont des solutions aqueuses d'amines. Selon le degré de substitution de l'azote, il est divisé en amine primaire, secondaire et tertiaire. Utiliser la concentration d'amine en solution aqueuse allant d'environ 10 à 55 % en masse. Les amines les plus utilisées pour la capture de CO_2 est les alcanolamines. La fonction alcool améliore la solubilité des phases en abaissant leur pression de vapeur, l'eau de ces amines se lie, réduisant ainsi les pertes par évaporation dans un régénérateur. Des exemples de ces amines sont présentés dans la figure ci-dessous [30].

*Figure III.9- Représentation abrégée et formule chimique d'amines pouvant être utilisées pour le captage du CO*₂.

(*MEA* : Monoétanolamine ; *DEA* : Diéthanolamine ; *TEA* : Triéthanolamine ; *DGA* : Diglycolamine ; *DIPA* : Diisopropanolamine ; *MDEA* : Méthyldiéthanolamine).

Dans le cas d'une amine primaire et secondaire, le CO_2 réagit avec une molécule d'amine pour former un zwittérion intermédiaire, qui à son tour réagit avec une seconde molécule d'amine pour former le sel d'amine et l'espèce carbamate. Comme elles ont également un caractère basique, en plus de la formation des carbamates, les amines primaires et secondaires peuvent réagir avec le CO_2 par réaction acide/base comme dans le cas des amines tertiaires, La vitesse de réaction du CO_2 via la formation du carbamate est beaucoup plus rapide que la réaction d'hydrolyse du CO_2 . La cinétique d'absorption est donc généralement plus favorable pour les amines primaires ou secondaires. Cependant, l'avantage des amines tertiaires est que l'équilibre d'absorption est inversé dans le « stripper » avec une consommation énergétique moindre que dans le cas des amines primaires ou secondaires. Enfin la capacité d'absorption est inférieure à l'unité (en général 0,5) d'où la stœchiométrie amine- CO_2 dans un rapport 1/1 fait que les amines tertiaires possèdent un potentiel d'absorption du CO_2 plus important que les amines primaires et secondaires [15].

III-4-2-3- Les liquides ioniques

De nombreuses études sur la solubilité des gaz et plus particulièrement celle du CO_2 dans les liquides ioniques ont été entreprises. En effet, les liquides ioniques présentent de nombreuses propriétés physico-chimiques intéressantes qui font d'eux une classe de solvants très recherchée. Ils sont thermiquement stables, peuvent être miscibles avec l'eau, non inflammable, et considérés comme non toxiques. L'absorption du CO_2 par les liquides ioniques est un phénomène physique, différent de celui décrit jusqu'à présent avec les amines où de véritables réactions chimiques ont lieu. Dans le cas des liquides ioniques, l'absorption du CO_2 ne met en jeu que des interactions de faible énergie. Par conséquent la solubilité du CO_2 est généralement plus faible dans les liquides ioniques que celle obtenue par exemple avec la MEA.

III-5- Absorption chimique du CO₂ par la solution aqueuse de la monoéthanolamine (MEA)

Les recherches récentes sur la capture du CO₂ portent sur l'optimisation de l'absorption du CO₂ à l'aide d'amines (principalement la monoéthanolamine - MEA) afin de minimiser la consommation d'énergie de ce procédé très énergivore et d'améliorer l'efficacité de l'absorption. L'optimisation des processus est toujours requise et cette recherche vaut la peine et est nécessaire. Cependant, la principale préoccupation se pose lorsque l'on pense au processus global : production de solvant, utilisation et régénération de solvant, et effets environnementaux liés à son utilisation/émissions **[12].**

La monoéthanolamine (MEA) est l'amine de référence la plus étudiée pour l'absorption de CO₂. Cependant, cela présente de nombreux inconvénients, tout d'abord il y a des pertes d'énergie élevées associées à la régénération de solvant. MEA devient sensible à la dégradation thermique et chimique, corrosive, toxique et volatile. De nombreuses autres amines sont donc envisagées : la diéthanolamine (DEA) et la trithanolamine (TEA) ont été testées mais pas encore sur le marché, leurs capacités d'absorption du CO₂ sont inférieures à celle du MEA. D'autres amines telles que les amines des composés tertiaires (MDEA-méthyldiéthanolamine) ont été étudiés, même satiriquement encombrés (lié aux groupes fonctionnels), se dégrade plus lentement et forme moins de sel stable au CO₂, cela réduit les coûts de régénérations. Certaines solvants sont produit également à partir de mélanges d'amies (exemple : MEA-Pipérazine, MEA-MDEA,

MEA-AMP). La Diethylene Glycol Amine (DGA) à une capacité d'absorption élevée et a donc , un potentiel intéressant en termes de consommation d'énergie.

D'autres projets de recherche portent sur l'utilisation de sels d'acides aminés pour réduire essentiellement une pénalité énergique [13].

III-5-1- Mécanisme de la réaction d'absorption du CO2 par la solution aqueuse de MEA

L'absorption du dioxyde de carbone par une solution aqueuse de MEA implique une exposition d'un flux gazeux à une solution aqueuse de MEA qui réagit avec le CO_2 pour former un sel carbonaté soluble appelé « carbamate » à travers une réaction acido-basique neutre.

Cependant, lorsque le dioxyde de carbone est absorbé par une solution aqueuse de MEA, il y a principalement trois composés, c'est-à-dire le CO₂, la MEA et l'eau (H₂O) qui sont actifs dans le système. Les réactions d'équilibre suivantes ont lieu dans le volume du liquide **[14]** :

• Hydrolyse de l'eau

$$2H_20 \rightleftharpoons 0H^- + H_30^+ \tag{III.1}$$

• Formation du bicarbonate :

$$2H_2O + CO_2 \rightleftharpoons H_3O^+ + HCO_3^- \tag{III.2}$$

• Formation du carbonate :

$$2H_20 + HCO_3^- \leftrightarrows H_30^+ + CO_3^{2-}$$
(III.3)

• Formation du MEA :

$$H_3 O^+ + C_2 H_7 N O \rightleftharpoons H_2 O + C_2 H_4 O H + N H_3^+$$
 (III.4)

• Formation du carbonate :

$$C_2H_7NO + HCO_3^- \rightleftharpoons H_2O + C_2H_4OH - NH - COO^-$$
 (III.5)

Desideri et al. ont montré que les principales réactions qui se produisent sont [31] :

III-5-1-1- Absorption du CO₂

$$2C_2H_4OH - NH_2 + CO_2 \rightarrow C_2H_4OH - NH_3^+ + C_2H_4OH - NH - COO^-$$
(III.6)

Le constat est que seulement une demi-mole de dioxyde de carbone est absorbée par mole de la MEA. Cette réaction conduit à la formation du carbamate qui est assez stable.

III-5-1-2- Régénération de la MEA

Sous l'effet de la chaleur, le carbamate se dissocie pour donner le dioxyde de carbone et la MEA suivant l'équation :

$$C_2H_4OH - NH_3^+ + C_2H_4OH - NH - COO^- + Chaleur \rightarrow 2C_2H_4OH - NH_2 + CO_2$$
 (III.7)

III-5-2- Solubilité du CO2 dans les solutions aqueuses d'amines

Il est nécessaire de connaitre la solubilité de CO_2 dans les solvants pour le dimensionnement des colonnes ainsi que pour déterminer la chaleur de régénération du solvant. De nombreuses mesures ont été effectuées pour les amines les plus connues. Le tableau suivant regroupe les différentes mesures sur la solubilité du CO_2 dans de solutions aqueuses d'amine.

Tableau III.2- Revue bibliographique sur la solubilité du CO₂ dans des solvants aqueux à base d'amines.

Amines	Température	Pression		
MDEA/MEA	313 - 353 K	Jusqu'à 0 26 MPa		
MDEA/DEA	515 555 K	susqu'u 0,20 mi u		
MDEA/MEA	298 - 393 K	0,1 – 20 MPa		
MEA	273 - 423 К	Jusqu'à 20 MPa		
MDEA/PZ	313 - 373 K	0,876 – 1013 kPa		

III-5-3- Cinétique de réaction du CO2

Le modèle prend en compte le couplage entre l'équilibre chimique, transfert de masse et cinétique chimique de toutes les réactions chimiques possibles. Le modèle mathématique est capable de prédire les taux d'absorption de gaz et les facteurs d'amélioration de

l'hydrodynamique du système et les propriétés physico-chimiques, ainsi que la prédiction de la cinétique de réaction à partir de données d'absorption expérimentales.

On pense généralement que les amines primaires et secondaires réagissent directement et forme des carbamates avec le CO_2 . Les molécules de CO_2 vont réagir avec les groupes fonctionnels amine, un groupe COO^- se forme et un proton est libéré. La théorie la plus célèbre est la formation d'un Zwittérion qui est une espèce chimique qui a à la fois une charge positive et négative, ce zwittéerion est ensuite déportoné avec une base pour former un carbamate.

La formation d'un zwittérion entre l'amine et le CO₂ pour une amine primaire et secondaire est donnée comme suit :

Formation du zwittérion :

$$CO_2 + C_2 H_7 NO \stackrel{K_2, k_2, k_{-2}}{\longleftrightarrow} C_2 H_4 OH - NH_2^+ - COO^-$$
(III.8)

Déprotonation du zwitterion et formation du carbamate

$$C_2H_4OH - NH_2^+ - COO^- + B \stackrel{k_2,k_{-2},K_2}{\longleftrightarrow} C_2H_4OH - NH - COO^- + BH^+$$
(III.9)

Avec *B*, une base.

La vitesse de réaction est donnée par [14]. :

$$r_{CO_2-MEA} = \frac{k_2 \cdot [CO_2] \cdot [MEA]s}{1 + \frac{k_{-2}}{\sum k_b \cdot [B]_{S..}}}$$
(III.10)

Le terme de sommation représente la contribution de toutes les bases présentes dans la solution pour la déprotonation.

Dans des solutions aqueuses pauvres, MEA, eau et OH- peuvent agir comme des bases et déprotoner le zwittérion pour former des espèces de carbamate :

$$r_{CO_2-MEA} = k_2 [CO_2] [MEA] \frac{k_{H2O} [H_2O]}{k_{-2}}$$
 (III.11)

Aboudheir et al. **[15]**, ont montré dans l'explication de la formation du carbamate par le mécanisme termoléculaire que :

$$k_{\rm H_20} = 4,55.10^6.e^{-(\frac{3287}{T})}$$
 (III.12)

La constante de réaction réversible dans les régénérations est estimée à l'aide de corrélation , développée par Jamal et al. **[25]** :

$$k_{-2} = 3,95.10^{10}.e^{-(\frac{6863.8}{T})}$$
 (III.13)

Aux concentrations très élevées de MEA, la contribution de l'eau à la déprotonation est insignifiante, d'où :

$$r_{CO_2-MEA} = k_2.[CO_2].[MEA]$$
 (III.14)

Versteeg et al. ont répertorié de nombreuses études sur les amines et leurs mélanges afin de comparer les résultats entre eux. Dans le cas de la MEA, ils ont proposé une expression de la constante cinétique d'ordre 2 et du pseudo-premier ordre valable jusqu'à 313 K, basée sur l'ensemble des résultats de la littérature **[14]**.

$$k_2 = 4,4.10^8.e^{-(\frac{5400}{T})}$$
 (III.15)

En 2003, sur la base d'un mécanisme trimoléculaire, Aboudheir et al. **[15]** ont montré que la cinétique de réaction du dioxyde de carbone est des concentrations élevées de MEA peuvent prendre la forme de :

$$r_{CO_2-MEA} = \left(-k_{RNH_2} \cdot [RNH_2] + k_{H_2O} \cdot [H_2O]\right)_{\chi} \times \left([RNH_2] \cdot [CO_2] + \frac{1}{k_{RNH_2}} \left[RNHCOO^{-}\right] \cdot [H_3O^{+}]\right)$$
(III.16)

où: $k_{RNH_2} = 4,61.10^9 \cdot e^{-(\frac{4412}{T})}$

III-5-4- Mesure d'une isotherme d'absorption

La solubilité du CO_2 dans les solutions d'amines est généralement une propriété thermodynamique représenté par l'isotherme d'absorption. Ces données sont essentielles car elles nous permettent de déterminer les propriétés de capture du CO_2 des amines. L'isotherme est représentée par la pression partielle de CO_2 (PCO₂), fonction du taux de charge. Ce dernier est défini par le nombre de moles de CO_2 absorbé sur le nombre de moles d'amine. D'après les réactions de captage du CO_2 par des solutions aqueuses d'amines, les espèces pouvant être présentes en solution sont : l'amine libre A, l'amine protonée AH^+ , le carbamate

ACOO⁻, le CO₂ moléculaire, l'ion hydrogénocarbonate HCO_3^- et l'ion carbonate $CO_3^{2^-}$. Par , conséquent, la charge de la solution aqueuse d'amine est donnée par **[16]** :

$$\alpha = \frac{n_{CO_2}}{n_{amine}} = \frac{n_{HCO_3^-} + n_{CO_3^-} + n_{ACOO^-} + n_{CO_2^-}^{moleculaire}}{n_A + n_{AH^+} + n_{ACOO^-}}$$
(III.17)

Les isothermes d'absorption montrant la solubilité du CO_2 dans les amines aqueuses à température constante et concentration en amine donnée. Il permet la représentation de la capacité d'absorption du CO_2 dans le solvant.

La forme d'isothermes d'absorption dépend de plusieurs facteurs : classe de l'amine, structure moléculaire, concentration en amine, température, etc.

III-5-5- Effet de la concentration de MEA sur la cinétique de réaction

La cinétique de réaction du CO_2 dans la MEA est rapide et dépend fortement de la concentration en MEA dans la solution. Maximiser la cinétique de réaction implique d'augmenter la concentration en MEA. Une telle augmentation favorise l'étape d'absorption en réduisant la dimension de l'absorbeur. Par ailleurs, augmenter la concentration a également un effet positif sur la régénération en diminuant la chaleur sensible nécessaire mais aussi, la chaleur de vaporisation [20] à chaleur de régénération est estimée à environ 3,9 GJ/tonne CO_2 [21] et dépend de la concentration de la MEA. Elle vaut 3,3 GJ/tonne CO_2 lorsque la teneur en masse de la MEA fait 30 % de la solution aqueuse et 3 GJ/tonne CO_2 si cette teneur vaut 40 %. Le captage du CO_2 par une solution aqueuse d'amine primaire ou secondaire ne nécessite pas la présence d'eau pour former les carbamates. Par conséquent, la réaction de formation des carbamates peut toujours avoir lieu.

III-5-6- Effet du taux et pureté du CO2 capté

Typiquement, 75 % à 95 % du CO_2 du flux gazeux d'entrée à traiter est récupéré. Pour obtenir un taux de récupération supérieur, les dimensions de la colonne et les consommations d'énergie seraient telles que les coûts deviendraient trop élevés. Les puretés de CO_2 pouvant être atteintes par ce procédé sont supérieures à 99 % **[22]**. La pureté du CO_2 dépendra de son avenir, c'est-à-dire compression-transport-élimination (CSC), que ce soit son utilisation (par exemple, récupération assistée du pétrole ou EOR) ou son recyclage chimique selon les principes de la chimie durable. Plus la pureté ciblée est élevée, plus le coût opérationnel du

océdés de récupération du CO₂

46

processus de capture peut être élevé. Lors de la capture par absorption chimique, la pureté du CO₂ est très élevée tant que le liquide d'absorption n'est pas dégradé ou entraîné dans le processus d'absorption régénération.

III-6- Corrosion dans le processus de capture MEA-CO2

L'unité de captage du dioxyde de carbone (CO₂) utilisant des solvants amines réactifs est constamment soumise à problème de corrosion excessive. Dans le processus d'absorption de MEA, le principal problème opérationnel résulte de la corrosion, qui a un impact important sur l'économie de l'usine car elle peut entraîner les temps d'arrêt imprévus, les pertes de production et la durée de vie réduite des équipements ainsi que la limitation des plages opérationnelles des paramètres de processus [23]. Le mécanisme de corrosion dans un système aqueux amine-CO₂ n'est pas bien compris. Plusieurs mécanismes ont été utilisés pour postuler les phénomènes de corrosion. Riesenfeld et Blohm [24] ont suggéré que la corrosion est associée à un dégagement de CO2 des riches solutions d'amine. Le CO2 dégagé réagit alors directement avec l'acier au carbone pour former du fer carbonate (FeCO₃). Cependant, dans la plupart des cas, les mécanismes de dissolution du fer dans un système CO₂⁻, eau sont utilisés pour représenter le mécanisme de corrosion dans le système l'amine-CO₂ aqueuse. Trois différents types de réactions de dissolution du fer ont été proposés. Premièrement le la réaction de dissolution implique une réduction de l'ion hydrogène (H⁺) comme le montre la réaction (III.18). Deuxièmement, l'ion bicarbonate (HCO3⁻) dans la solution fonctionne comme un agent oxydant dans la réduction de la réaction (III.18). Troisièmement, la réaction est régie par l'acide carbonique non dissocié (H₂CO₃) réaction (III.20).

$$Fe + 2H^+ \rightarrow Fe^{2+} + H_2 \tag{III.18}$$

$$Fe + 2HCO_3^- \rightarrow FeCO_3 + CO_3^{2-} + H_2 \tag{III.19}$$

$$Fe + H_2CO_3 \rightarrow FeCO_3 + H_2 \tag{III.20}$$

On observe que le niveau de corrosion dans les installations de traitement aux amines est influencé par un nombre de facteurs dont **[25]** :

- type d'amine utilisé ;
- présence de contaminants dans la solution ;

- charge de CO₂, concentration d'amines ;
- pression et température de fonctionnement ;
- vitesse de la solution ;
- teneur en oxygène dans le système et produits de dégradation.

Généralement, l'amine primaire (MEA) s'avère plus corrosive que l'amine secondaire (DEA) et amine tertiaire (MDEA).

La charge de dioxyde de carbone dans le solvant affecte fortement la vitesse de corrosion et une augmenter la charge de CO_2 intensifie l'agressivité du système avec le processus de corrosion. Les charges maximales recommandées de CO_2 dans la solution riche en amines sont de l'ordre de 0,25-0,40 mol/mol pour MEA. La solution riche en amines est généralement plus corrosive que l'amine maigre.

Une augmentation de la concentration en amine entraîne également une vitesse de corrosion plus élevée, car à haute concentration de la solution d'amine, la vitesse de réaction serait élevée. Pour limiter la corrosion des plantes dans des limites acceptables et gérables, la plupart des usines d'amines sont exploitées en conformité avec les concentrations maximales recommandées en amine de 20 à 30 % en poids. La température a un impact significatif sur la corrosion. Si la température de la solution d'amine est trop élevée, la vitesse de réaction de chaque réaction augmenterait, y compris la réaction de corrosion dans afin de maintenir l'équilibre du système.

La vitesse de la solution peut provoquer une érosion et une corrosion sévères car le film protecteur développé par les inhibiteurs peut être enlevé ou endommagé par la force de cisaillement d'une vitesse élevée courant fluide. Les solutions aqueuses d'amines peuvent être dégradées en présence de dioxyde de carbone et d'oxygène. La dégradation des solvants conduit à la corrosion dans les usines MEA. L'oxygène existe dans les gaz de combustion et réagit avec d'autres substances dans le système. La source d'oxygène dans les gaz de combustion provient de l'excès d'air dans l'étape de combustion. La réaction de corrosion s'est produite à partir de l'oxygène sont montré dans les équations (III.21 et III.22).

$$2 Fe + 2 H_2 O + O_2 \rightarrow 2 Fe(OH)_2$$
 (III.21)

 $2 Fe(OH)_2 + 2HO_2 + \frac{1}{2}O_2 \rightarrow 2 Fe(OH)_2$ (III.22)

Les zones les plus sensibles comprennent la partie inférieure de l'absorbeur, le ballon flash, l'échangeur de chaleur riche et pauvre, le régénérateur et le rebouilleur. La corrosion détectée dans ces zones se produit sous de nombreuses formes, c'est-à-dire uniforme, piqûres, érosion, galvanique, fissuration par corrosion sous contrainte et intergranulaire. La corrosion peut être réduite par un certain nombre d'approches, notamment **[25]** :

- utilisation d'équipements de conception appropriée ;
- utilisation de matériaux résistants à la corrosion au lieu de l'acier au carbone ;
- maintien de basses températures de la solution et de la vapeur dans le rebouilleur ;
- éliminer en continu les solides en suspension et les produits de dégradation des amines ;
- ajouter de la soude caustique à la solution d'amine en circulation ;
- maintenir la pression la plus basse possible sur les colonnes de stripage et les rebouilleurs ;
- utilisation d'inhibiteurs de corrosion.

Parmi ces alternatives, l'utilisation d'inhibiteurs de corrosion est considérée comme la plus technique économique pour le contrôle de la corrosion.

III-7- Conditionnement et Transport du CO2

Le CO_2 proviens des unités de l'entreprise est transporté vers le site de stockage peut se faire soit sous forme liquide dans des wagons, des camions, ou des bateaux citernes (par exemple les mêmes qui amènent le méthane liquéfié) soit par pipeline.

L'objectif est d'amener le dioxyde de carbone à une moyenne de 110 bars sous pression. Puits d'injection (minimum 80, maximum 200) **[26]**. Les spécifications d'impuretés sont très strictes, notamment pour le bilan physico-chimique des impuretés Stade supercritique de stockage en profondeur. L'eau doit être éliminée comme l'oxygène (risque de corrosion, hydrates) pour atteindre des niveaux moins de dizaines de ppm Autres gaz : l'argon, l'azote et l'hydrogène ne doivent pas dépasser le pourcentage volumique.

III-8- Stockage géologique

III-8-1- Durée de stockage

Après capture, le dioxyde de carbone doit être stocké à long terme, au moins couvert. Pendant ce temps, le problème des émissions de CO_2 risque de demeurer critique. Il faut se baser sur les rythmes naturels. Le cycle du carbone est régi par les échanges entre l'atmosphère et l'océan d'une part, la biosphère et l'atmosphère d'autre part.

Si les échanges avec la biosphère se font à l'échelle décennale, le cycle océanique se prolongera depuis des siècles. Par conséquent, pour stabiliser le niveau de CO_2 dans l'atmosphère, il faut le protéger, en Sous-sol pour une durée compatible avec la circulation océanique. Par mesure de précaution, des solutions sont envisagées pour permettre à ce stockage de durer jusqu'à millénaires, du moins au-delà de l'ère de l'utilisation massive des énergies fossiles, c'est-à-dire au moins quelques siècles.

III-8-2- Les sous-sols possibles

Trois types de stockage géologique sont considérés :

- Injecter des aquifères salins profonds, où nous n'irons pas ensuite cherchez de l'eau car elle est très salée et elle ne répondra jamais à la demande de l'Humanité.
- Injection de réservoirs d'hydrocarbures : pétrole ou gaz naturel appauvri, avec la possibilité de faire de la récupération assistée de pétrole par injection de CO₂, ce que pratiquent déjà des pétroliers en utilisant du CO₂ provenant surtout de gisements naturels.
- Injection dans les veines de charbon en profitant du fait que le charbon a une affinité encore plus grande pour le gaz carbonique que pour le méthane (il peut en adsorber deux fois plus que de méthane). D'où l'idée de stocker le CO₂ dans d'anciennes mines de charbon. Dans le même temps, le méthane qui peut en résulter est récupérée. En raison de sa faible porosité, le charbon ne peut pas obtenir un débit élevé [27].

Figure III.10- Schéma de principe d'un procédé de capture du CO₂ par absorption chimique [28].

III-9 - Contraintes liées au transport et au stockage de CO2

> Risques et réglementation en matière de transport

Le transport du CO_2 est généralement considéré comme une étape bien maîtrisée entre le captage et la séquestration de CO_2 . Néanmoins, cette expérience reste singulière puisque le CO_2 transporté pour la récupération assistée du pétrole provient le plus souvent de gisements naturels et présente ainsi moins d'impureté **[29].**

Un compromis doit être fait entre une grande pureté du CO_2 à la sortie du procédé de captage et l'adaptation des canalisations (revêtement, type de matériaux) à un captage imparfait du CO_2 . Plus le taux de pureté est élevé, plus les coûts de captage sont élevés. A l'inverse, moins le CO_2 est pur, plus il faut adapter les matériaux contre la corrosion, ce qui implique des coûts d'investissement et révision. Outre ces problèmes techniques et économiques, les limites et les dispositions relatives aux impuretés doivent être spécifiées pour des raisons de santé et d'environnement lors du transport de dioxyde de carbone **[30]**.

> Risques et réglementation en matière de stockage

Le premier type de risque à analyser est le risque lié à la fuite de CO_2 et autres composés. Les conséquences peuvent être multiples pour les mineurs :

51

✓ A l'échelle mondiale, la persistance du stockage effectué doit être démontrée. Un relargage diffus et rapide provoquerait une accélération de l'augmentation de la teneur en CO_2 qui pourrait ainsi annuler une part des bénéfices du système de captage. Les fuites jugées acceptables doivent être réparées.

✓ Au niveau local, les fuites peuvent être dangereuses pour les populations, les écosystèmes et les eaux souterraines. Des réglementations sur le stockage du CO_2 sont en cours d'élaboration. Une des difficultés réside dans le caractère permanent du stockage du dioxyde de carbone, qui nécessite à terme de transférer la responsabilité du site à l'État après exploitation, fermeture et inspection du site selon des procédures bien précises [30]. La carbonatation et l'acidification des eaux pourraient favoriser la dissolution de métaux (fer, manganèse). Par ailleurs, l'oxydation des NOx et SOx par l'O₂ peut éventuellement engendrer une augmentation de la teneur en sulfates et nitrates dans l'eau [31].

III-10- Analyse économique du processus de capture de CO2

L'analyse économique du procédé d'absorption MEA-CO₂ se compose de deux parties ; Capitale investissements et le coût total du produit. Les détails de chaque partie sont décrits cidessous **[26]**.

Investissement en capital [23]

L'investissement en capital peut être divisé en deux catégories, à savoir les coûts directs et indirects.

Coûts directs

Les coûts directs comprennent les coûts suivants :

✓ Matériel acheté

Le coût d'acquisition de l'équipement est la base des estimations d'investissement en capital. cette Comprend tous les équipements, pièces de rechange et non installés comme indiqué sur le dessin complet Pièces de rechange d'équipement, équipement excédentaire, fournitures d'équipement et indemnités, coûts d'inflation Allocations, expédition, taxes, assurances, droits, indemnités lors de la modification début. La source du prix de l'équipement, la méthode d'ajustement du prix de l'équipement en fonction de la capacité de production, Par

conséquent, la méthode d'estimation de l'équipement de traitement auxiliaire est les , estimateurs font des estimations de coûts fiables.

✓ Instrumentation et commandes

Ce coût comprend le coût de l'instrument, la main-d'œuvre d'installation, l'étalonnage et l'équipement et les matériaux auxiliaires requis pour l'instrument. Le coût total de l'instrument dépend de la quantité de contrôle requise et peut représenter 6 à 30 % de tous les coûts d'achat de l'équipement. En fonction de la complexité de l'instrument et du service, les coûts supplémentaires d'installation et d'accessoires peuvent représenter 50 à 70 % du coût d'achat, les coûts d'installation étant approximativement égaux au coût des accessoires.

✓ Installations électriques

L'installation électrique se compose de quatre éléments principaux, à savoir le câblage d'alimentation, éclairage, transformation et services, câblage instrumentation et contrôle. Le coût pour les installations électriques se compose principalement d'équipements électriques, de matériaux et de main-d'œuvre. Dans des usines chimiques ordinaires, le coût des installations électriques représente 10 à 15 % de la valeur de tous les équipements achetés.

✓ Tuyauterie

Ce type de coût peut varier en fonction du type des processus chimiques, qui peuvent être divisés en processus solide, processus solide-fluide, et processus fluide. Le coût de la tuyauterie couvre le tuyau de traitement, la main-d'œuvre, les vannes, les supports de tuyau, les raccords, le tuyau, supports, isolation pour tuyauterie et autres éléments impliqués dans l'érection complète de tous tuyauterie utilisée directement dans le processus. La tuyauterie de l'usine de traitement peut fonctionner jusqu'à 80 % de la quantité achetée et le coût de l'équipement ou 20 % de l'investissement en capital fixe. Matériel et main d'œuvre pour tuyau varie de 15 à 25 % du coût total d'installation de la tuyauterie.

✓ Installation d'équipement acheté

L'installation d'équipements implique des coûts de main-d'œuvre, de fondations, de supports structuraux, plates-formes, dépenses de construction, isolation, peinture et autres facteurs ; directement lié au montage des équipements achetés. Selon la complexité de l'équipement et le type d'usine dans laquelle l'équipement est installé, les coûts d'installation pour l'équipement sont estimés de 25 à 55 pour cent du coût de l'équipement acheté.

✓ Terrain

Le coût du terrain pour les usines représente environ 4 à 8 % de l'équipement acheté ou 1 à 2 pour cent de l'investissement total en capital.

Coûts indirects

✓ ingénierie et supervision

Le coût de l'ingénierie et de la supervision comprend les coûts de conception de la construction et ingénierie, dessin, achat, comptabilité, construction et ingénierie des coûts, voyages, reproductions, communications et frais de bureau à domicile. Généralement, c'est environ 30 % du coût de l'équipement acheté ou 8 % du coût direct total coûts de l'usine de traitement.

✓ Dépenses de construction

Les dépenses de construction ou de terrain comprennent la construction et l'exploitation temporaires, outils de construction et location, personnel de bureau à domicile situé sur le chantier de construction, paie de la construction, voyage et séjour, taxes et assurances, et autres constructions aérien. Pour une usine chimique ordinaire, les frais de construction sont d'environ 10 % du coût direct total de l'usine.

✓ Honoraires de l'entrepreneur

Les honoraires de l'entrepreneur varient selon les situations, mais ils peuvent être estimés entre 2 et 8 pour cent du coût direct de l'usine ou 1,5 à 6 pour cent de l'investissement en capital fixe.

✓ Contingence

Le facteur de contingence est généralement inclus dans une estimation de l'investissement en capital pour compenser pour les événements imprévisibles, tels que les tempêtes, les inondations, les grèves, les changements de prix, la petite conception changements, erreurs d'estimation et autres dépenses imprévues. Facteur de contingence allant de 5 à 15 pour cent des coûts directs et indirects de l'usine sont couramment utilisés **[23]**.

III-11- État des lieux sur la récupération du CO2 des gaz de combustion à partir de la , solution aqueuse de MEA

Une grande partie du travail porte sur l'évaluation du processus en simulation, conception d'équipements, sélection de solvants, et les paramètres de processus tels que le taux de circulation du solvant, la dégradation du solvant, la corrosion, etc.

Le transfert de chaleur et les corrélations du transfert de masse des composés dans les colonnes d'absorption et de régénération ont été introduits dans le module de simulation. Le solvant utilisé dans le modèle contient environ 30 % en masse de la solution aqueuse de MEA. Les analyses de sensibilité aux variables du procédé dépendent du débit, de la taille de la colonne, de taux de solvant, récupération, chargement et concentration en sel stable et la concentration de CO₂, la pression dans le régénérateur et température dans l'absorbeur. Pour trouver des conditions de fonctionnement avec une faible demande de chaleur régénération. Les résultats de cette étude montrent que le taux de circulation peut sérieusement affecter les besoins en chaleur de régénération, et il est recommandé d'exécuter le processus à un taux de solvant légèrement supérieur au taux optimal. De plus, l'étude a souligné que la vapeur consommée dans l'absorbeur et le régénérateur peut être réduire en augmentant la taille de la charge. Également, prouver que la pression optimale simple doit être de 1,5 à 2 atmosphères. Cependant, La pression dans le régénérateur n'a pas d'effet significatif ; le régénérateur peut donc fonctionner à n'importe quelle pression **[32]**.

Chakma et al. [33] ont étudié la récupération du dioxyde de carbone des fumées de charbon des centrales électriques contenant 15 % ce gaz. Ils ont effectué des simulations numériques à l'aide du logiciel Hisense. L'étude porte sur l'impact des coûts de récupération sur les paramètres expérimentaux tels que la composition et la pression des gaz de combustion, énergie dans l'absorbeur, nombre d'étages, type de solvant et concentration de solvant. Le taux simulé est à 95 % et la charge en CO₂/amine sont limitées de sorte que la corrosion soit éventuellement réduite. Température maximale de l'absorbeur est de 122 °C pour éviter la dégradation thermique du solvant. La température en partie haute du régénérateur est limitée à 50°C. La recherche indique :

➢ Il est désavantageux de faire fonctionner la colonne d'absorption aux hautes températures et pressions ; par conséquent, l'absorbeur doit fonctionner sous pression aussi bas que possible ;

\succ Le coût de la séparation du CO₂ des gaz de combustion augmente presque exponentiellement avec le débit de solvant. Elle doit donc être réduite au minimum ;

➢ Une augmentation de la concentration en MEA conduit essentiellement à l'augmentation de coût de la séparation. La corrosion et la dégradation des solvants doivent être notées dans le choix de la concentration du solvant.

Barchas et al. [34] ont étudié la récupération du dioxyde de carbone dans les gaz d'oxycombustion par la technologie "Kerr-McGee/Lummus Crest" pour le gaz carburant contenant de l'oxygène ou une petite quantité de dioxyde de carbone de soufre. En fait, la principale caractéristique de cette technologie est la synthèse de la littérature du gaz naturel au charbon en passant par la Coke à haute teneur en soufre à base de charbon. Au cours de ce processus, le gaz d'alimentation est d'abord traité dans un système de désulfuration, puis dans un système qui élimine sa teneur en eau et envoyer à l'absorbeur d'amine où il est mélangé à 15 % à 20 % en masse de la solution aqueuse de MEA. Environ 90 % de dioxyde de carbone contenu dans le gaz brut est récupéré.

Jou et al. [35] ont quantifié la dissolution du CO_2 à 30 % en masse de monoéthanolamine aqueuse à 0°, 25°, 40°, 60°, 80°, 100°, 120° et 150 °C avec une pression partielle de dioxyde de carbone allant de 0,0001 à 20 kPa. Ce travail est réalisé pour permettre aux données disponibles et générer une base de données de température et de pression disponibles en standard dans la modélisation de l'équilibre liquide-vapeur en solution de MEA.

Rao et al. [36] quant à leur études est sur la récupération de CO_2 , émissions et coûts des centrales électriques, basé sur des informations disponibles et en tenant compte des incertitudes et l'invariance des paramètres clés de performance et de coût. Leur objectif était de développer un modèle préliminaire sur la performance et le coût des procédés de récupération de CO_2 à base d'amine, Les auteurs ont développé un modèle mathématique pour simuler la récupération du CO_2 à base d'amines (MEA). Deux types de paramètres d'entrée pour le modèle sont considérés :

- paramètres d'usine, c'est-à-dire débit, température, pression et composition des gaz de combustion à l'entrée de l'absorbeur ;

- paramètres du système de récupération.

Wilson et al. [37] fournit des détails sur l'installation pilote des centrales électriques. Les , résultats obtenus en termes de propriétés d'absorption ont été analysés. La capacité annuelle de traitement de l'usine pilote est de 14 000 Brûler du gaz et récupérer 4 tonnes de CO_2 par jour. L'unité de récupération d'amine se compose de 18 absorbeurs et 16 régénérateurs fonctionnant sur la base de l'expert technique "Fluor Econamine FG". Les résultats de la recherche ont montré que l'absorption de CO_2 se produit principalement à la base de l'absorbeur.

III-12- Conclusion

Nous venons de voir d'après la revue bibliographique que la récupération du CO_2 des gaz de combustion pourrait se faire à partir des gaz d'échappement d'une chaudière au propane et traité pour la carbonatation des boisson.

Nous avons également mis en évidence que le captage du CO_2 par une solution aqueuse d'amine primaire ou secondaire ne nécessite pas la présence d'eau pour former les carbamates. Par conséquent, la réaction de formation des carbamates peut toujours avoir lieu. De plus, l'évaluation de la capacité d'absorption d'une amine se fait par la mesure de données de solubilité du CO_2 via des isothermes d'absorption.

Les résultats des différents travaux sur les systèmes de récupération de ce gaz nous permettent de retenir la technique d'absorption chimique par une solution aqueuse de 30 % en masse de MEA.

On a vue aussi que, plus la pureté ciblée est élevée, plus le coût opérationnel du processus de capture de CO_2 peut être élevé. Lors de la capture par absorption chimique, La pureté du CO_2 est très élevée tant que le liquide d'absorption n'est pas dégradé ou entraîné dans le processus d'absorption régénération. Des études cinétiques d'absorption complémentaires devraient cependant être réalisées afin de vérifier que la vitesse d'absorption du CO_2 ne soit pas une étape limitante du procédé.

IV-1- Objectif

L'objectif de cette étude est de dresser l'état de l'art des procèdes et des techniques déjà développés ou en cours de développement avec différents aspect et de différents équipements visant au captage de CO_2 et d'évaluer le potentiel de récupération des gaz de combustion par une absorption chimique par la solution aqueuse de MEA, ainsi que son traitement afin de le rendre alimentaire.

IV-2- Schéma de principe du système de récupération

Le CO₂ présent dans les fumées est récupéré en sortie de chaudière avec l'utilisation de deux colonnes : une colonne d'absorption permettant de séparer le CO₂ des autres constituants gazeux à l'aide d'une solution aqueuse de MEA, et une colonne de régénération permettant de récupérer le CO₂ sous forme gazeuse et de régénérer le MEA. La figure IV.1 montre de façon synoptique le principe de fonctionnement du système **[38]**.

Figure IV.1- Schéma de principe de procèdes de récupération de CO2 par la solution aqueuse de MEA.

IV-3- Caracteristique des gas de combustion issu des deux chaudieres

Les tableaux IV.1. et IV.2 Montrent l'état des lieux des gaz de combustion issus des deux chaudières.

Tableau	IV.1-	Etat	des	lieux	des	gaz d	le	combustion	du	propane.
1 00000000		11000	cieb	1101111	creb.	00000	ve	comonstion	civi	properio.

Paramètres	Unité	Valeur
Quantité des gaz produits	m ³ /h	1704
Température des gaz	°C	240
Pression des gaz	Кра	101,4 -150

Tableau IV.2- Propriétés des gaz de combustion à l'entrée du système.

Paramètres	Unité	Gaz							
i ur unicer es	Cinte	CO ₂	O ₂	CO	NO	NO _X	SO ₂		
Pourcentage en volume	%	12	6	0	0,0307	0,0323	0,1126		
Débit volumique	m ^{3/} h	305,1	162	-	0,83	0,87	3,04		
Débit massique	Kg/h	319,4	123,3	-	0,591	0,95	4,63		
Débit molaire	Kmol/h	7,26		-			0,072		
Pourcentage molaire	% mol	0,1129	0,0598	-	0,000306	0,000322	0,001120		

IV-4- Étude technique du système de récupération

IV-4-1- Hypothèse et dimensionnement

Pour le dimensionnement du système, nous faisons les considérations suivantes basées sur des données disponibles dans la bibliographie [35] :

 $\bullet\,$ les gaz de combustion sont considérés étant à la pression atmosphérique et seront refroidis jusqu'à 40 °C ;

• la teneur en masse de la MEA dans la solution aqueuse est $W_{MEA} = 30$ % avec une injection d'inhibiteurs de corrosion ;

• la pureté souhaitée du CO₂ récupéré est de 99,8 % en volume ;

 la température de l'eau de refroidissement des gaz de combustion dans la tour de lavage est de 30 °C ;

 pour les différents refroidissements, la différence de température minimale entre les utilités chaudes et froides est fixée à 10 °C ;

- toutes les pompes ont un rendement de 75 % [40] ;
- le souffleur à un rendement de 80 % [41] ;
- la pression est de 1,2 bar dans l'absorbeur et de 1,9 bar dans le régénérateur [42].

IV-4.2- Dimensionnement de l'économiseur de cheminé

Le débit des gaz de combustions entrant dans la chaudière est de 1704 m³/h. Les gaz entrent dans l'économiseur à 240 °C et y sortent à 120 °C. L'eau de refroidissement provenant de la bâche alimentaire entre dans l'économiseur à 105 °C et permet d'avoir un accroissement de 17 à 33 °C de la température alors : $\Delta T_{moy} = \frac{17+33}{2} = 25 °C$. D'où la température à la sortie de l'économiseur est de 130 °C. Son débit massique est de 1,82 kg/s.

La puissance thermique échangé dans l'économiseur est donnée par :

$$P_{te} = m_0 \times \Delta T_{gc} \times C_{gc}$$
 (IV.1)
 $P_{te} = 0.79 \times 120 \times 1.2 = 113.76$
 $P_{te} = 113.76 \ kW$

Avec :

 $\dot{m_0}$: le débit des gaz de combustion à l'entrée de l'économiseur ; $\dot{m_0} = 0,79$ kg/s,

 ΔT_{gc} : variation de température des gaz de combustion ; $\Delta T_{gc} = 240 - 120 = 120$ °C,

 C_{gc} : chaleur spécifique des gaz de combustion ; $C_{gc} = 1,2 \text{ kj/kg.C.}$

Le tableau IV.2 récapitule le calcul de l'économiseur utilisé pour le refroidissement des gaz de combustion.

Economiseur de cheminé							
	Température àTempérature à lal'entrée (°C)sortie (°C)		Débit (kg/s)				
Gaz de combustion	240	120	0,79				
Eau pour le refroidissement	105	130	1,82				
Puissance thermique Echangé (kW)							
Efficacité	0,9						
Surface (m ²)		19,76					

Tableau IV	-2-	Résultats	pour	l'économ	iseur d	le cl	heminé.
I uvicuu I V		<i>i</i> (<i>c</i>) <i>m</i> (<i>m</i>)	pour		iscui u		iemine.

IV-4-3- Dimensionnement de la tour de lavage des gaz de combustion

Les gaz de combustion arrivent dans le refroidisseur à la température de 226,8 °C sous une pression de 121,4 kPa et ils sortent à 40 °C. Le tableau IV.3 récapitule les caractéristiques de la colonne de refroidissement.

Tableau IV.3-	Résultats d	u dimensioni	nement de la	i colonne d	e refroidissement.
---------------	-------------	--------------	--------------	-------------	--------------------

Colonne de lavage des gaz de combustion (refroidissement)						
Gaz de combustion	Température à l'entrée (°C)		Température à la sortie (°C)			
	113,4		40			
Eau pour le refroidissement	30		40			
Débit d'eau évaporé (m ³ /h)			0,044			
Débit d'eau de circulation (m ³ /h)			2,88			
Débit d'eau déversé dans les égouts (m ³ /h)			0,022			
puissance thermique échangé dans la tour (kW)			33,57			

IV-4-4- Dimensionnement de la pompe de circulation

Le tableau IV.4 donne les valeurs des coefficients correspondant à ces singularités.

Tableau IV.4- Valeurs des singularités dans le circuit sur le circuit d'alimentation d'eau durefroidisseur des gaz de combustion [43].

Désignations	k
Échangeur de chaleur	2,5
4 courbes de 90 $^\circ$	$4 \times 0,5 = 2$
vanne à passage direct	4

La Hauteur Manométrique Totale (HMT) de la pompe s'écrit [44] :

$$HMT = \frac{p_{s}}{\rho g} + h$$
(IV.2)

$$HMT = \frac{331790}{992 \times 9,18} + 3 = 37,09 \text{ m}$$

$$HMT \approx 40 \text{ mCE}$$

Avec :

 P_S : la pression finale de l'eau ; P=331,8 kPa,

 ρ et g : respectivement la masse volumique de l'eau et l'accélération de la pesanteur,

h : la hauteur maximale d'élévation de l'eau par rapport à l'aspiration de la pompe (h = 3 m).

La puissance absorbée par l'arbre de la pompe est donnée par [44] :

$$Pa = \frac{\rho g.HMT.Q}{\eta}$$
(IV.3)
$$Pa = \frac{992 \times 9,81 \times 40 \times 0.0008}{0,75} = 415,21 \text{ W}$$

Avec η le rendement de la pompe ; $\eta=75$ %.

Le tableau IV.5 résume les résultats du dimensionnement de la pompe de recirculation d'eau de refroidissement.

Caractéristiques	Valeurs
Pression d'eau à l'entrée	3,314 Bar
Pression d'eau à la sortie	3,318 Bar
Hauteur Manométrique Totale (HMT)	40 MCE
Rendement	75 %
Puissance	0,42 Kw

 Tableau IV-5- Résultats du dimensionnement de la pompe d'eau de refroidissement.

IV-4-5- Dimensionnement du refroidisseur d'eau de recirculation

Le tableau IV.6 récapitule les calculs pour le refroidissement de l'eau par échangeur thermique.

Echangeur thermique pour le refroidissement de l'eau						
	Température	Température de	Débit (kg/s)			
	d'entrée (°C)	sortie (°C)				
Eau chaude à refroidir	40	30	0,8			
Eau glacée	15	25	0,78			
Puissance thermique échangé	angé 33,728 kW					
Efficacité	40 %					
Surface d'échange	1,81 m²					

Tableau IV.6- Refroidissement de l'eau par échangeur thermique.

IV-4-6- Dimensionnement de la colonne d'absorption

Les gaz de combustion arrivent en bas de colonne d'absorption avec un débit de 1392 m³/h ou encore : 56518,43 mol de fumée par heure à la température de 40 °C et sous une pression de 121,4 kPa. Ces gaz véhiculent 264,66 m³ de CO₂ par heure ou encore 6620 mol de CO₂ par heure. L'absorption du CO₂ par la solution aqueuse de monoéthanolamine met en jeu deux phases : une phase liquide (MEA + eau) et une phase gazeuse et est traduite par l'équation chimique suivante [**45**] :

$$2C_2H_4OH - NH_2 + CO_2 \rightarrow C_2H_4OH - NH_3 + C_2H_4OH - NH - COO^-$$

Ou encore :

$$2 MEA + CO_2 \rightarrow 2 MEA. CO_2 \tag{IV.4}$$

La figure IV.2 illustre le schéma d'une colonne dans laquelle les deux phases, mélange gazeux et solvant liquide, circulent à contre-courant.

Figure IV.2- Procèdes d'absorption à contre-courant.

Le mélange gazeux G entre en pied de colonne, et une partie du CO_2 est évacuée (absorbé par le solvant) par l'extrémité supérieure. Introduit en haut de l'appareil, la phase liquide L est progressivement enrichie en CO_2 et évacuée en fond de colonne. L'indice "0" représente le paramètre d'entrée et l'indice "1" représente le paramètre libération **[46]**.

- Notation phase liquide :
 - L est le débit de la phase liquide ;
 - x est le titre massique en CO2 dans la phase liquide ;
 - X est le rapport massique en CO₂ dans la phase liquide, avec X = $\frac{x}{(1-x)}$;
 - L' est le débit du liquide exempt de CO₂ c'est-à-dire L' = L(1 x).
- Notations phase gaz :
 - G est le débit de la phase gaz ;

- y est le titre massique ou molaire en CO2 dans la phase gaz ;
- Y est le rapport massique ou molaire en CO2 dans la phase gaz, Y = $\frac{y}{(1-y)}$;
- G' est le débit de gaz exempt de CO2 c'est-à-dire G'= G (1-y).

IV-4-6-1-. Bilan de masse sur la colonne [45]

L'équation bilan de toute la colonne d'absorption pour le dioxyde de carbone s'exprime comme suit :

$$\begin{cases}
L_0 + G_0 = L_1 + G_1 \\
x_0 L_0 + y_0 G_0 = x_1 L_1 + y_1 G_1 \\
L' = L_0 (1 - x_0) = L_1 (1 - x_1) \\
G' = G_0 (1 - y_0) = G_1 (1 - y_1)
\end{cases}$$
(IV.5)

IV-4-6-2- Calculs des différents débits et rapports molaires

Le tableau IV.7 récapitule les résultats du dimensionnement de la colonne d'absorption.

Tableau IV-7- Résultats du dimensionnement de la colonne d'absorption [47].

		Colonne d'absorption				
Gaz de comb	oustion de	Débit	Pression	Température		
combustion à	l'entrée de	(mol/h)	(bar)	(°C)		
colonne		56518 ,43	1,214	40		
CO ₂ à l'entrée d colonne	e la	6620	-			
Solution pauvre	de MEA	45087,57	-	40		
Solution riche de	e MEA	41565,11	1,2	54		
Effluents gazeux	x rejetés	49087,57	1,013 36			
CO ₂ absorbé		7430, 86	-	-		
Section de lavage des gaz sortant de la colonne						
Eau de lavage	Débit	Température (Pression			
des gaz	(kg/s)	à l'entrée	à la sortie	(bar)		

	0,125		30		35,85	0,01013	
Refroidisseur d'eau de lavage	Température l'entrée (°C	e à C)	Température à la sortie (°C)	Débit (kg/s)	Puissance (kW)	Surface d'échange (m ²)	
	25		30	0,146	3,07	1,2	
Quantité de MEA utilisée		907 kg/h					
Perte de la solution de MEA	0,42 kg/h						

IV-4-7- Dimensionnement de la pompe de MEA riche

La solution d'amine riche sortante en bas de colonne d'absorption vient à la pompe à 54 °C et sous une pression de 1,2 bar (pression devant régner dans la colonne) et un débit de 2,8 kg/s ou encore 2,42.10⁻³ m³/s. A la sortie de la pompe, elle passe dans l'échangeur de chaleur à courant croisé. Le tableau IV.8 résume les résultats du dimensionnement de la pompe de MEA riche **[48]**.

Tableau IV.8- Résultats du dimensionnement de la pompe de MEA riche.

	Pompe de 2	MEA riche	
Solution de MEA	Débit (mol/h)	T à l'entrée (°C)	P à l'entrée (bar)
riche	45610,85	54	1,2
Rendement de la pompe		75%	
Puissance de la pompe		300,73kw	

IV-4-8- Dimensionnement de l'échangeur de chaleur à courants croisés

IV-4-8-1- Principe de calcul

La Tour de régénération fonctionne à température de 100 °C et 140 °C et sous une pression de 1,9 bar. Ici on le laisse tourner à 130 °C.

Beaucoup de travaux ont été effectués afin de déterminer les conditions optimales de fonctionnement de la colonne de régénération et surtout des conditions qui évitent la dégradation du solvant.

Selon S. M. Nazmul Hassan, les solvants se dégradent à certaines températures au-dessus de 125 °C dans le rebouilleur. La pression limite de la solution évitant sa dégradation au-delà de 125 °C est d'environ 2 bars. Au cours du processus de désorption, la solution MEA riche est chauffée par le mélange gazeux de vapeur d'eau, d'amine et de CO₂ produit dans le rebouilleur à une température comprise entre 100 °C et 140 °C. Cela signifie qu'à la sortie de la tour de régénération, la température de la solution pauvre de MEA doit être comprise entre 100 °C et 140 °C. Dans cette étude, nous retenons la valeur moyenne de 120 °C. Comme étant la température de la solution aqueuse de MEA pauvre de la colonne de régénération [49, 50].

IV-4-8-2- État des deux fluides aux côtés entrés et sortie de l'échangeur

La solution aqueuse de MEA riche sortant de la colonne d'absorption rentre dans l'échangeur de chaleur avec un débit d'environ 2,5 kg/s et une température de 54 °C. Elle sort de l'échangeur à la température 115 °C, après avoir été chauffée par la solution aqueuse de MEA pauvre. Quant à la solution de MEA pauvre, elle vient dans l'échangeur avec une température de 120 °C. Elle est refroidie par la solution de MEA riche jusqu'à 40 °C ; sa température requise dans l'absorbeur. La figure (IV.3) montre le sens de transfert dans l'échangeur.

Figure IV.3- Schématisation de l'échangeur à courants croisés.

Le tableau IV.9 récapitule le calcul de l'échangeur thermique à courants croisés.

Tableau IV.9- Résultats du dimensionnement de l'échangeur thermique à courants croisés.

	Température à	Température à la	Débit
	l'entrée (°C)	sortie (°C)	(kg/s)
Solution de MEA riche	54	115	2,8
Solution de MEA pauvre	120	71,56	3,18
Puissance thermique échangée		567, 397 kW	
Efficacité		92%	
Surface d'échange		106,1 m²	

IV-4-9- Dimensionnement du filtre de la solution de MEA pauvre

Dans cette étude, il est assuré que la solution de MEA pauvre est filtrée afin d'extraire les solides en suspension et est ensuite envoyée dans une couche de charbon actif qui adsorbe les impuretés (tels que les produits de la dégradation de MEA) et les autres contaminants contenus dans la solution, car cette étape est nécessaire pour réduire les problèmes de fonctionnement crées par la présence de ces contaminants. La quantité moyenne de carbone actif consommé est donnée par 0,021 kg/h [**51**].

67

Il faut rappeler qu'après une période de 3 à 6 mois, la couche de carbone actif doit être « remplacée.

IV-4-10- Dimensionnement du refroidisseur de la solution de MEA pauvre

Après avoir échangé la chaleur de la solution de MEA pauvre avec la solution de MEA riche, sort de l'échangeur à 71,56 °C, elle devra être refroidie jusqu'à 40 °C afin de satisfaire les conditions de fonctionnement de la colonne d'absorption. Le refroidissement sera assuré par de l'eau prise à 25 °C à travers un échangeur de chaleur à plaques. Cette eau est prévue pour sortir à 50 °C de l'échangeur. Le tableau IV.10 récapitule le calcul du refroidisseur de la solution de MEA pauvre [52].

Tableau IV.10- Refroidisseur de la solution de MEA pauvre.

	Température à l'entrée (°C)	Température à la sortie (°C)	Débit (kg/s)
Solution de MEA pauvre	71,56	40	3,18
Eau de refroidissement	25	50	3,51
Puissance thermique échangée		370,13 kW	
Efficacité		67 ,7	
Surface d'échange		42,52	

IV-4-11- Dimensionnement de la pompe de la solution de MEA pauvre

La solution aqueuse de MEA circule dans la pompe avec un débit de 3,18 kg/s ou encore $3,08.10^{-3}$ m³/s. Le diamètre optimal et donc économique de la tuyauterie est de 41,49 mm. Le tableau IV.11 présente les résultats du dimensionnement de la pompe de la solution aqueuse de MEA pauvre **[53-55]**.

Tableau IV.11- Pompe de la solution aqueuse de MEA pauvre.

Débit de la solution de MEA pauvre	3,18 kg/s
Puissance de la pompe	363,07 kW

IV-4-11- Dimensionnement de la colonne de régénération

Figure IV.4- Procédé contre-courant de régénération de la MEA.

La solution MEA arrive du haut de la tour de régénération à 115 °C et à la pression est de 4,2 bar et le débit est de 3,18 kg/s. Dans le régénérateur, sous l'action de la chaleur apportée sous forme de vapeur, avec un débit G'_0 par le rebouilleur, la MEA est régénérée et renvoyée à l'absorbeur au flux L'₀. Les vapeurs sortant du haut de la colonne sont le CO₂ et la vapeur (vapeur d'eau et vapeur MEA) avec un débit de G'1. Le tableau IV.12 récapitule les résultats obtenus [**56**, **57**].

Tableau IV-12- Résultats de régénération de la MEA.

	Température à l'entrée (°C)	Température à la sortie (°C)	Débit (kg/s)
Vapeur à refroidir	91	40	0,26
Eau de refroidissement	15	25	1,29
Puissance thermique échangée (kW)		55,57 kW	
Efficacité		57 %	
Surface d'échange		0, 65 m ²	

69

IV-4-12 Quantité de soude utilisée dans le récupérateur de MEA

L'ajout de la soude caustique permettra de récupérer en partie la MEA qui sera renvoyée au régénérateur et de neutraliser les sels aminés thermiquement stables pendant la filtration. Il est montré qu'environ 0,13 kg de soude est utilisée par tonne de CO_2 récupérée **[58]**. Il est récupéré 0,33 tonne de CO_2 par heure et la quantité de soude utilisée est alors :

m NaOH = 0,13 * 0,280 = 0,0364m NaOH = 0,036 kg/h

IV-5- Traitement du CO₂ récupéré et production du CO₂ alimentaire

Le processus de combustion libère le gaz CO_2 brut. La station de cracking nous permettra donc de récupérer environ 251 kg de CO_2 alimentaire par heure. Apres avoir acheminé le CO_2 dans une colonne sèche verticale à deux étages. Et Après un séchage complet dans un sécheur automatique à tamis moléculaire à double tour, le CO_2 reçoit une purification finale dans un filtre à charbon actif avant d'être alimentant une boucle frigorifique dans le liquéfacteur. Le CO_2 pur et liquéfié peut ensuite être alimenté vers un réservoir de stockage de CO_2 en vrac. Ce processus continu est efficace, fiable et sûr. Le CO_2 répond à la qualité alimentaire internationale normes de qualité et est utilisé quotidiennement par les plus grandes sociétés gazières, les marques de boissons gazeuses et de bière au monde plus de 100 pays [**59**].

IV-6- Conclusion

Notre système de récupération de CO_2 des gaz de combustion permet de récupérer en une heure environ 252 kg de CO_2 . Pour l'absorption du CO_2 des fumées, il sera utilisé 907 kg de MEA par heure. La régénération de la MEA nécessite par heure 891,89 kg de vapeur. Par ailleurs, le procédé nécessite également 0,036 kg de soude et 0,021 kg de charbon actif toutes les heures.

Le CO₂ est principalement utilisé sous forme gazeux dans l'industrie des boissons pour la carbonatation des sodas, de la bière et de l'eau gazeuse. Ils garantissent davantage le plaisir et la joie de vivre, grâce à l'utilisation de gaz dans la qualité alimentaire. Les applications pratiques des gaz vont cependant bien au-delà des solutions de carbonatation. De façon annuelle, les entreprises déboursent d'importants coûts financiers pour l'acquisition de ce gaz.

Notre étude fait partie des travaux consacrés à la récupération de CO_2 alimentaire à partir des gaz de combustion au sein de l'entreprise Linde Gas Algérie – Bouira. Ce thème général était d'ouvrir la voie à la mise au point d'un procédé en rupture permettant une économie de 20 à 30 % de l'énergie de récupération du CO_2 émis par des installations industrielles.

Cependant, la récupération de CO_2 est basée sur les émissions gazeuses des deux chaudières « LOOS » produisant en moyenne 1704 m² de fumées par heure. Le principe de récupération est celui de l'absorption chimique de CO_2 par une solution aqueuse à 30 % en masse de monoéthanolamine (MEA). En moyenne, 285 kg de dioxyde de carbone seront absorbés par heure par la solution aqueuse de MEA.

En effet, dans le cadre des procédés d'absorption chimique du CO_2 , les solutions aqueuses d'amines sont généralement employées en raison de la faible teneur en CO_2 dans les fumées, donc de leurs très faibles pressions partielles. Les amines réagissent avec le CO_2 accélérant ainsi le transfert de la phase gazeuse vers la phase aqueuse (réaction acido-basique). De plus, une pureté de CO_2 d'environ 99 % peut être atteinte. Les objectifs en matière de pureté de CO_2 vont dépendre sur son devenir, plus la pureté visée sera élevée, plus les coûts d'opération du procédé de récupération seront élevés, le meilleur compromis doit être recherché.

Dans cette optique, L'étude est d'une double importance. En effet, en fin de traitement, il sera produit chaque heure, environ 270 kg de CO₂. L'autre importance de la présente étude concerne les retombés positifs sur l'environnement de la réduction des émissions de dioxyde de carbone.

Le travail présenté passe le relais à une phase de réalisation après quoi, une expérimentation sera faite dessus pour apprécier ses performances. Mais en attendant, on peut planifier la perspective d'expansion de l'emploi en écrivant des programmes de dimensionnement à partir de la méthodologie utilisée dans le document. Par conséquent, des programmes de sorte que lorsque nous entrons et sortons des informations, nous ayons des

72

informations détaillées sur les transferts de masse et d'énergie ainsi que sur les dimensions é détaillées des composants essentiels.

L'autre perspective est l'adaptation du système à d'autres absorbants autre que la monoéthanolamine dans le but de l'optimisation des performances énergétiques du système.

Par ailleurs, en ce qui concerne le transport de CO_2 , l'attention portera principalement sur la présence d'eau et d'oxygène qui peut causer des risques de corrosion, les autres composés étant présents en quantités très faibles après traitement des fumées. Aucune norme légale n'étant encore connue, il conviendra de vérifier ce point.

Des études supplémentaires sont requises afin d'analyser et de réduire les coûts, et pour évaluer la capacité de stockage potentielle des sites géologiques appropriés. Pour ce qui est des autres formes de stockage, des expériences pilotes en matière de carbonatation minérale sont nécessaires si l'on veut réduire les coûts et les besoins nets en énergie.

Enfin, la recherche sur l'optimisation des systèmes devrait également se concentrer sur les échangeurs de chaleur largement utilisés dans le système.

[1] Mohamed SMAIL, Toufik ALI-CHERIF, Manipulation des capteurs utilisés à la séparation des gaz (Oxygène, Azote, Argon) à l'unité de Linde Gas Algérie, Mémoire de

Master, Université Mouloud MAMMERI Tizi-Ouzou, 2015.

[2] Hind OUGUENOUNE, La politique de promotion et d'attraction de l'investissement direct étranger en Algérie, Thèse de Doctorat, Université Paris 3 – Sorbonne Nouvelle, 2015.

[3] Youcef SALAMI, Linde Gas Algérie : 100 millions d'euros d'investissements, Article de presse, 2015.

[4] Safia AZZAZ, Mahmoud REZKALLAH, Management de l'environnement, Application de la norme ISO 14001 Cas de l'entreprise Linde Gas Algérie site Bouira, Mémoire de Master, Université de Bouira, 2017.

[5] Nabil MOKRANI, Effet des paramètres physiques et d'additifs sur l'allumage du n-décane par claquage laser non résonant, Thèse de Doctorat, Université d'Orléans, 2016.

[6] Amine AIT AMEUR, Yacine REZGUI, Etude de l'effet de l'ajout de l'éthanol sur la quantité de méthane formée lors de la combustion du benzène, Mémoire de Master, Université Oum El Bouaghi 2013.

[7] André AGOUT, Tableau comparatif pouvoir calorique inférieur PCI énergies, Page d'information, Picbleu société, 2016.

[8]Anonyme, Chaudière ou générateur de vapeur ? Lequel de ces deux moyens de production répond-t-il le mieux à mes besoins ?, Page d'information, Entreprises, indépendants, artisans, secteur non marchand, 2012.

[9]Claudia BERGER, récupération du gaz carbonique à partir des gaz de combustion du système de génération de chaleur (propane ou gaz naturel), Les Producteurs en serre du Québec, 2018.

[10] Camel MAKHLOUFI, Étude expérimentale et modélisation d'un procédé de captage en CO_2 en postcombustion par l'ammoniaque à l'aide de contacteurs membranaires : du matériau à l'évaluation de l'intensification de l'absorption, Thèse de Doctorat, Université de Loraine, 2018.

[11] John DAVISON, performance and costs of power plants with capture and storage of CO₂, sciencedirect, use gas r&d programme, orchard business centre, stoke orchard, cheltenham, gl52 7rz, uk,2006.

[12] Patricia LUIS, Use of monoethanolamine (MEA) for CO2 capture in a global scenario:

Consequences and alternatives, Materials & Process Engineering (iMMC-IMAP), Université catholique de Louvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium, 2016.

[13] A. LOPEZ, D. ROIZARD, E. FAVRE, A. DUFOUR - laboratoire reactions et genie des procedes (lrgp) – nancy les procedes de capture du co2 cas des unites de traitement et de valorisation thermique des dechets, rapport final, <u>2013</u>.

[14] Jean-MARC AMANN, Etude de procédés de captage du CO₂ dans les centrales thermiques, Chimie. École Nationale Supérieure des Mines de Paris, 2007.

[15] Ahmed ABOUDHEIR et al. Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions. Chemical Engineering Science, Faculty of Engineering, University of Regina, Regina, SK, Canada S4S 0A2 b University of Waterloo, Waterloo, ON, Canada N2L3G1 ,2003.

[16] Nabil EL HADRI,_Captage du CO2 par des solutions aqueuses d'amines : Relations structures/propriétés établies par une approche Expérimentation Haut Débit (E.H.D.), Autre. Université Claude Bernard - Lyon I, 2012

[17]Jean-MARC AMANN, Cathy Descamps, Mohamed Kanniche, Chakib BOUALLOU, Modeling of the CO2 capture in post-combustion. Scientific Study & Research, 2006.

[18] Hector JAVIER CHAVARRO, Montenegro NOVEL solvents for CO₂ capture flowsheet analysis, a dissertation submitted to the University of Manchester for the degree of MSc Refinery Design and Operation in the Faculty of Engineering and Physical Sciences, 2011.

[19] A.CHAKMA, A.K.MEHROTRA,B.NIELSEN, Comparison of chemical solvents for mitigating CO₂ emissions from coal-fired power plants. Heat Recovery Systems and CHP, Department of Chemical and Petroleum Engineering University of Calgary, Calgary, Alberta Canada T2N 1N4, 2003.

[20]_Barchas, R.; DAVIS, R , The Kerr-McGee/ABB Lummus Crest technology for the recovery of CO₂ from stack gases, Energy Conversion Management,2003.

Canadian journal of chemical engineering, 1995.

[22] S. EDWARD, Rubin & B. Rao ANAND, A Technical, Economic and Environmental Assessment of Amine-based CO2 Capture Technology for Power Plant Greenhouse Gas Control,article ,2002.

[23] M.A.WILSON[,]R.M.WRUBLESKI, L.YARBOROUGH, Recovery of CO₂ from power plant flue gases usingamines. Article Energy Conversion and Management, 2003.

[24] A. Rey, Camille Gouedard, N. Ledirac, Albert Cohen, J. Dugay, J. Vial, Valérie Pichon, L. Bertomeu, D. Picq, Pierre-Louis Carrette, Amine degradation in CO₂ capture. 2. New degradation products of MEA. Pyrazine and alkylpyrazines: analysis, mechanism of formation and toxicity, 2013.

[25] B. Rao, ANAND, Jamal et al, Edward S. Rubin & Michael B. Berkenpas. An integrated modeling framework for carbon management technologies. Final Report of Work Performed Under Contract No.: DE-FC26-00NT40935, Carnegie Mellon University Center for Energy and Environmental Studies Department of Engineering and Public Policy, 2003,

[**26**] **Ove Braut KALLEVIK,** Cost estimation of CO₂ removal in HYSYS. Thèse de Doctorat, Collège Universitaire de Telemark, 2010.

[27] Eric P. ROBERTSON. Analysis of CO₂ Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal, The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, September 2007,

[28] S. M. Hassan NAZMUL, Techno-Economic Study of CO2 Capture Process for Cement Plants, A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied Science in Chemical Engineering, Waterloo, Ontario, Canada, 2005.

[29] Bert METZ, Ogunlade DAVIDSON, Heleen DE CONINCK ,Manuela LOOS ,Leo MEYER, IPCC Special Report on Carbon Dioxide Capture and Storage, article, CAMBRIDGE UNIVERSITY PRESS, Prepared by Working Group III of the Intergovernmental Panel on Climate Change, 2005.

[**30**] J. **Kittel**, S. **Gonzalez**₂Corrosion in CO 2 Post-Combustion Capture with Alkanolamines – A Review, Archives ouvertes, Institut Français du Pétrole, 2014.

[**31**] Max S. Peters Klaus D. Timmerhaus Ronald E. West, Plant Design and Economics for Chemical Engineers, Fifth Edition, University of Colorado McGraw-Hill Book Company, 2003.

[**32**]_Claude ACKET, Séquestration du CO₂, Conférence de Paul Broutin (Chef de Projet IFP, Coordinateur du Projet Capture du CO₂ au sein du Projet Européen « CASTOR ») à l'IFP Solaize ,11/10/2007.

[33] Dr. Kelly THAMBIMUTHU, WORKSHOP ON CARBON DIOXIDE CAPTURE AND STORAGE, Senior Scientist, CANMET Energy Technology Centre, Natural Resources Canada Chairman, IEA Greenhouse Gas R&D Programme, 2002.

[**34**] **Fatiha DERGAL**, captage du CO₂ par les amines demixantes,_Thèse de Doctorat, Université Abou Bekr Belkaid de Tlemcen, 2013.

[35] Anusha Kothandaraman, carbon dioxide capture by chemical absorption: a solvent comparison study, institute of chemical technology, university of mumbai, m.s. chemical engineering practice massachusetts institute of technology, doctor of philosophy in chemical engineering practice at the massachusetts institute of technology, 2010.

[**36**] **A. B. Rao et E. S. Rubin,** A Technical, Economic, and Environmental Assessment of Amine-Based CO2 Capture Technology for Power Plant Greenhouse Gas Control , Environmental Science & Technology, Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, 2002.

[**37**] Gouedard. C, Picq. D, Launay. F, et P.L. Carrette, Amine degradation in CO₂ capture.I. A review, International Journal of Greenhouse Gas Control, 2013.

[38] Nicolas JACQUEMEt, Géraldine PICOT-COLBEAUX, Chan QUANG VONG, Julie LIONS, Olivier BOUC, Jeremy ROHMER. Intrusion of CO₂ and impurities in a freshwater aquifer - impact evaluation by reactive trasport modelling. s.l. Energy Procedia, 2011.

[**39**] **BROUTIN Paul, LEBAS Etienne, LECOMTE Fabrice**, Le captage du CO₂. s.l. Editions TECHNIP - IFP Publications, 2010.

[40] Rubin, E. S., Rao, A. B. A Technical Economic and Environmental Assessment of Amine-Based. s.l. Carnegie Mellon University, 2002.

[41] Calas GUILLAUME, Le transport de dioxyde de carbone par canalisation. Modalités de développement et modélisation en France des réseaux de transport dans le cadre du captage et stockage de CO₂, Mémoire de Master, 2010.

[42] Shrikar CHAKRAVARTI, Amitabh GUPTA & Balazs HUNEK. Advanced Technology for the Capture of Carbon Dioxide from Flue Gases. First National Conference on Carbon Sequestration, Washington, DC, 2001.

[43]_Yih-Hang CHEN, Ming-TIEN SHEN and Hsuan CHANG, Dynamic Modeling and Control of the Carbon Dioxide Capture Process Using Monoethanolamine Solvent, Journal of Applied Science and Engineering, Department of Chemical and Materials Engineering, Tamkang University, 2019.

[44] F.BEETSCHEN, J.THIBEAUD, principe de la combustion thermique, cours professeur, 2020.

[45] Anthony GONCALVES, développement d'un système de combustion pour les résidus forestiers, mémoire de master, université du Québec à Chicoutimi, 2010.

[46]. ANDRIANARIVO Herimalala Ionihasiniaina, Le générateur de vapeur, Mémoire d'ingénieur, Université d'Antananarivo Ecole Supérieure Polytechnique d'Antananarivo, 2003.

[47] adel SAKRI, Fours & Chaudières, SUPPORT DU COURS ,1ière Année Master, génie chimique, 2019.

[48] O. Bonnefoy, Combustion, Eléments de cours, école nationale supérieure des mines, 2014-15.

[49] Michael A BOLEs, Yunus A CENGEL, Mehmet KANOGLU, Thermodynamique : Une approche pragmatique, de Boeck supérieure, 3e Édition, 2021.

[50] https://fr.wikipedia.org/wiki/Comburant.

[51] https://fr.wikipedia.org/wiki/Propane.

[52] mohamed abdel hakim AZZOUG, Modélisation d'une chaudière a l'aide d'un outil graphique, Mémoire de Master, Univercité FERHAT ABBAS -SETIF, Faculté de Technologie, Département d'Electrotechnique. 2014.

[53] Ir. Jacques MICHOTTE, facilitateur URE process, Articles de fond, 2011.

[54] Danielle MAKAIRE, Systèmes de chauffage et de production d'eau chaude sanitaire, formation bâtiment durable, outils de diagnostic pour la rénovation, 2020.

[**55**] Jennifer WILCOX, Carbon Capture. Dept. of Energy Resources Engineering, New York: Springer Science & Business Media, Stanford University, 2012.

[56] Guilhem Mollon. Hydraulique des terrains, calcul des pertes de charges». Univ. Grenoble,2013.

[57] Adams DEBORAH, Flue gas treatment for CO2 capture. IEA Clean Coal Centre, 2010.

[58] Aleb STEWART & Mir-Akbar HESSAMI, A study of methods of carbon dioxide capture and sequestration the sustainability of a photosynthetic bioreactor approach, Energy Conversion and Management, thesis, 2005.

[**59**] **DUMERGUES L., FAVIER B., ALVARO CLAVER R.**, Les filières de valorisation du CO₂ état de l'art et avis d'experts cas des activités de traitement et valorisation des déchets, Thèse de Doctorat, 2014.

Annexe 3 : TANK CARBOSCAN 300

ertificate-No.: 20220504_013 ate/Time: 2022-05-04 / 15:29:03			
2022-03-047 13.23.03		0	
ata		Truck Control a to CAR NT	106-89n
uccessful:		successful 1 + V2 0 1/jcl	Arcit A 18719
needlastics and analytical root	.1.		19 20 20 17 MT
Parameter	Unit	Specification Limit	Result
Moisture (H2O)	ppm	< 20.0	4.6
Oxygen (O2)	ppm	< 30.0	14.5
Carbon monoxide (CO)	ppm	< 10.0	< 0.5
Ammonia (NH3)	ppm	< 2.50	< 0.50
Nitric monoxide (NO)	ppm	< 2.50	< 0.50
Nitric dioxide (NO2)	ppm	< 2.50	< 0.70
Total NO NO2 (NO NO2)	ppm	< 10.0	< 1.0
Methanol (CH3OH)	ppm	< 20.0	< 1.0
Methane (CH4)	ppm	< 20.0	< 1.0
Ethanol (C2H6O_ETH)	ppm	< 20.0	< 1.0
Ethano (C2H6)	ppm	< 20.0	< 1.0
Propage (C3H8)	ppm	< 20.0	< 1.0
Total CH (THC)	ppm	< 50.0	< 4.0
Total Non-Methane CH (TNMHC)	ppm	< 20.0	< 4.0
Acetaldehyde (C2H4O)	ppm	< 0.20	0.03
Benzene (C6H6)	ppm	< 0.020	0.007
Toluene (C7H8)	ppm	< 0.020	< 0.004
Xylene (C8H10)	ppm	< 0.020	< 0.004
Total BTX (AHC)	ppm	< 0.020	< 0.04
Sum Sulfur (TSC)	ppm	< 0.10	< 0.04
	ppm	<0.10	< 0.02
Hydrogen sullide (H23)	ppm	<1.0	< 0.2
N A = None detected, ppm = parts pe	r million by vol	ume, ppb = parts per billion by volume	
the stand do to to the part of a		, , , , , , , , , , , , , , , , , , ,	
		at Summer 23.	
• • •		COE GAS , A	
	-		
Long on us		ANTIAR MAR	
Jonne		BLANTOIRE X	
\bigwedge		LYSES S	
U		Charles State	
		Capital de Ti	

Résumé

Dans ce travail, à caractère purement pédagogique, on s'est intéressé à la production de CO_2 alimentaire au sien de l'unité Linde Gas, dont l'objectif est de trouver une autre alternative pour compléter le processus de carbonatation des boissons. En effet, l'étude vise à comprendre et à concevoir le système de récupération de CO_2 à partir des gaz de combustions issus des chaudières.

Le système proposé est basé sur le principe d'absorption chimique du CO_2 dans une solution aqueuse à 30 % de Monoéthanolamine, suivie d'une désorption thermique de l'amine. Cependant, les solutions aqueuses d'amines sont généralement employées en raison de la faible teneur en CO_2 dans les fumées donc de leurs très faibles pressions partielles. Il évalue le potentiel de récupération du dioxyde de carbone et propose un recyclage de 96 % en potentiel du système. En moyenne, 285 kg de dioxyde de carbone seront absorbés par heure par la solution aqueuse. Le système mis en place dans cette étude permet de récupérer environ 252 kg de CO_2 par heures.

Mots clés : CO₂, Linde Gas, Monoéthanolamine, pressions partielles.

Abstract

In this work, of a purely pedagogical nature, we are interested in the production of food CO_2 at the Linde Gas unit, whose objective is to find another alternative to complete the process of beverage carbonation. Indeed, the study aims at understanding and designing the system of CO_2 recovery from the combustion gases coming from the boilers.

The proposed system is based on the principle of chemical absorption of CO_2 in a 30 % aqueous solution of Monoethanolamine, followed by thermal desorption of the amine. However, aqueous amine solutions are generally used because of the low CO_2 content in the flue gas and therefore their very low partial pressures. He evaluates the carbon dioxide recovery potential and proposes a 96 % recycling potential of the system. On average, 285 kg of carbon dioxide will be absorbed per hour by the aqueous solution. The system implemented in this study allows for the recovery of approximately 252 kg of CO_2 per hour.

Keywords: CO₂, Linde Gas, Monoethanolamine, partial pressures.