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Abstract

Nowadays, speech recognition is essential in designing a natural voice interface for com-

munication between human and their modern digital life equipment. But the obvious

issue in this field is the lack of wide support for several universal languages and their

dialects.

This research comes to ensure the viability of designing the Automatic speech recog-

nition model for the Modern Standard Arabic.

The automatic speech recognition model was developed by training it to recognize

each character of the Modern Standard Arabic . The model’s architecture followed the

end-to-end speech recognition approach by using Mozilla DeepSpeech model which is a

pretrained end-to-end neural network ASR in English language.

The obtained result showed a word error rate as low as 24.3% and character error

rate as low as 17.6%. Therefore, we concluded that the model can reach a much better

word error rate by deploying any improvement such as combining more datasets. The

applications of this research are vastly available such as developing a real-time speech

recognizer for Arabic audio lectures.

key Words: Arabic Automatic Speech recognition, Deep learning, Artificial neural

networks, Arabic Language.
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Résumé

De nos jours, la reconnaissance de la parole est essentielle dans la conception d’une inter-

face vocale naturelle pour la communication entre les humain et leurs équipements de vie

numériques modernes.

Cette recherche vise à assurer la viabilité de la conception du modèle de reconnaissance

automatique de la parole arabe standard, et moderne. Le modèle de reconnaissance vo-

cale automatique a été développé en l’entrâınant à reconnâıtre chaque caractère de l’Arabe

Standard Moderne. L’architecture du modèle a suivi l’approche de reconnaissance de pa-

role End-to-End en utilisant le modèle Mozilla DeepSpeech qui est un ASR de réseau

neuronal End-to-End préentrâıné en langue anglaise.

Le résultat obtenu a montré un taux d’erreur de mots (WER) aussi bas que 24.3% et

un taux d’erreur de caractères (CER) aussi bas que 17.6%. Par conséquent, nous avons

conclu que le modèle peut atteindre un taux d’erreur plus bas de mots en déployant toute

amélioration, comme la combinaison d’un plus grand nombre d’ensembles de données.

Les applications de cette recherche sont largement disponibles, comme le développement

d’un outil de reconnaissance de parole en temps réel pour les conférences audio arabes.

Mots Clés : Reconnaissance Automatique de la Parole Arabe, Apprentissage Profond,

Réseaux de Neurones Artificiels, Langue Arabe.
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General Introduction

Speech is the primary mode of human communication, and as a result, massive amounts

of data are transmitted via speech. To carry out further processing and analysis on speech

data, transcription of the speech becomes a crucial part in technology development. The

technology that aids in transcribing speech is known as Automatic Speech Recognition

(ASR) which is also known as speech-to-text technology. ASR has influenced the way

we interact with devices in recent years, and as a result, it has changed how we live and

work. Digital assistants, voice search engines, educational aids, and health aids are just

a few examples of ASR applications.

Commercially, there are several commercial ASR technologies providers with reasonable

reliability, availability, and performance, such as Google Cloud Speech-to-Text, Microsoft

Azure Speech-to-Text, and Amazon Web Service Speech-to-Text. However, these services

have some limitations, such as data privacy violations, cost, limitation of data throughput

of the web services, training data availability, and domain-specific recognition.

ASR continues to be an active and exciting research field in general and in the Ara-

bic language in particular. Arabic is a Semitic language and one of the world’s oldest

languages. It is now the sixth most widely spoken language in the world. The Arabic

language is divided into three types: Classical Arabic, Modern standard Arabic (MSA),

Dialectal Arabic.

• Problem Statement

Due to the high variability and complex morphology of the Arabic language, cur-

rent research on it is still limited. The first works on Arabic ASR have concentrated

on developing recognizers for Modern Standard Arabic (MSA). The most difficult

problems in developing highly accurate ASR systems for Arabic are the morpholog-

1



General Introduction

ical complexity, predominance of non diacritized text material, and the enormous

dialectal variety. Traditional ASR systems used a modular design. Different models

are trained for pronunciation lexicon, acoustic modeling, and language modeling

separately in these systems, each of which can be complex. For example, training

of an acoustic model is a multi-stage process of model training and time alignment

between the speech acoustic feature sequence and output label sequence.

• Objectives

The main objective of this work is to develop an ASR system using Neural net-

work ”end to end approach” for Modern Standard Arabic Language. In end-to-end

(E2E) approach, all the traditional ASR’s models are trained to convert the fea-

tures of acoustic to text transcriptions directly. End-to-end ASR’s purpose is to

make it easier to train the above module-based components into a single deep neu-

ral network, in order to fix these issues. End-to-end ASR approach depends only

on acoustic and language data with no need of linguistic knowledge, and train the

model with a single algorithm. So, the goal of this research will be achieved by:

– Collecting dataset that reflect and represent the Modern Standard Arabic lan-

guage.

– Align the transcriptions of the audio file and save it as (comma-separated

values) file to feed it to the model.

– Develop a model to recognize the speech and map it into a textual format, to

achieve the goal of this research.

• Methodology

The methodology of this research to develop the End to End ASR model is to find

a way to collect and pre-processing data and preparing them for the next stage.

Second, taking the data from the last step and pass it the DeepSpeech model to

train and improve using it.

This reseach is organized as follows:

Chapter 1: Arabic Language Background

In this chapter, we will give basic background about Arabic where we will discuss its two

major classes, are Arabic dialectal and MSA and its script and phonology

2



General Introduction

Chapter 2: Automatic Speech Recognition Overview

In this chapter, we will talk about the important concepts related to Automatic Speech

Recognition, we will give a brief overview of the various aspects of modern speech recogni-

tion systems, also we will describe the frameworks and services that aid in the development

of the ASR system

Chapter 3: A New Neural Network for Automatic ASR

In this chapter, we will review surveys and journal papers about Automatic Speech Recog-

nition and we will mention most of the techniques related to it. Therefore we will present

our proposed approach to develop a speech recognition model for Modern Standard Ara-

bic.

Chapter 4: Implementation and Experiment

In this chapter, we will cover the implementation phase of our proposed approach for this

research and discuss the obtained results.

Finally, we close our work with a general conclusion.
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Chapter 1
Arabic Language Background

1.1 Introduction

Arabic is one of the most widely spoken languages in the world, with an estimated 274

million native speakers [74]. Arabic is the sixth most spoken language in the world, After

English, Mandarin, Hindi, Spanish and French [74]. The modern standard Arabic (MSA)

language is based on classical Arabic. It’s mostly found in contemporary publications, ed-

ucation, and journalism. MSA is syntactically, morphologically and phonologically derived

from classical Arabic (CA), the language of the Quran (Islam’s Holy Book). However, it

is now the most widely used language since, in addition to being formal, it is easier to

learn than classical Arabic. While most Arabic-speaking residents can communicate with

one another despite dialectal differences, communication can be difficult for some other

countries because they speak different languages. In general, Arabic can be classified into

three groups:

• Modern Standard Arabic
�
èQå�AªÖÏ @

�
éJ
K. QªË@

�
é
	
ªÊË @ : Modern Standard Arabic and it is

also called Al-Arabiyya Al-Fusha, and MSA is also known as the main language of

all Arabs. MSA is used more often in writing than in spoken form.

• Classical Arabic (CA)
�
é
�
®J

�
JªË@

�
éJ
K. QªË@

�
é
	
ªÊË @ : Muslims regard classical Arabic as sacred

since it is the language used in the Quran (Koran). CA also known as alturath, used

to be the main language in the pre-Islamic time, more than 1400 years ago. CA is

commonly used today in studying Arabic poetry and in Friday prayers’ speeches in

mosques.
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Chapter 1 Arabic Language Background

• Dialectal Arabic (DA)
�
éJ
K. QªË@

�
éJ
ÓAªË@ : Arabic dialects differ depending on the social

environment and how concerned and impacted individuals are by elements using

tongues other than Arabic. DA is also known as ” alamia ” and is used in everyday

life speech such as phone calls and family discussions.

1.2 Arabic Script

Arabic is both written and read from right to left. Arabic script is also used for writing

several other languages around the world such as Persian (Farsi / Dari), Malay (Jawi),

Uyghur, Kurdish, Urdu.

• Letters Arabic letters are written in the cursive form in both print and script

(handwriting). They typically consist of two parts: letter form (Õæ�P rasm) and letter

mark (ÐAj. «@
 AiçjAm). The letter form is an important component in every letter.

There is a total of 19 letter forms (See Figure 1.1). The letter marks, also called

consonantal diacritics which are mainly dominated by hamzas, and dots. The Arabic

alphabet is widely thought to have 28 letters (basic 28, sometimes substituting @ with


@ ) or 29 letters (basic 28 plus the Hamza-on-the-line letter constructed from the

Hamza letter form).

Figure 1.1: Letter forms of Arabic Language.

• Arabic keyboard: Different type bars (the equivalent of symbols) for different

ligatures and letter shapes were used on typewriters and print press machines before

computers. When typing on a typewriter, the correct letter shape has to be specified.

In Roman script, this is a more complicated method of specifying capitals and small

letters. Arabic data entering via keyboard is greatly simplified due to the encoding

options available on modern computers. Arabic is simply graphemically entered in

a logical sequence. Yamli, Google’s ta3reeb, and Microsoft’s Maren are just a few
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Chapter 1 Arabic Language Background

examples of web tools that let users type in either a strict or loose romanization. A

phonetic keyboard for Arabic is available on some operating systems [9].

• Diacritics (ÉJ
º
�
�
�
�Ë @) : The diacritics are a class of symbols in the Arabic script.

Whereas letters are always written, diacritics are optional: written Arabic can be

fully diacritized, partially diacritized, or entirely undiacritized. Except in religious

texts, children’s educational books, and certain poetry, Arabic text is mostly un-

diacritized. In modern written Arabic, some diacritics are used to help readers

disambiguate some words. There are three types of diacritics: Vowel, Nunation,

and Shadda [9]. They are presented in Figure 1.2.

Figure 1.2: Types of Arabic diacritics [11]

• Normalization: Orthographic normalization is a basic task that Arabic Natural

Language Processing (NLP) researchers always perform with the same goal in mind:

to reduce noise and sparsity in the data and It doesn’t matter what task we are work-

ing on: preparing parallel text for machine translation, documents for information

retrieval or text for language modeling. In Arabic, there are four letters that are

so often misspelled using variants that researchers find it more useful to completely

make these variants ambiguous (normalized). The following are the four letters in

6



Chapter 1 Arabic Language Background

order of most commonly normalized to least commonly normalized (the first two are

what most researchers do by default, and the last two are less commonly applied).

1. The Hamza forms of Alef are normalised to Alef.

2. The Alif-Maqsura (ø) is normalized to a Ya (ø


). In Egypt, but not in other

Arab countries necessarily, a final Ya is often written dotless (i.e., as an Alif-

Maqsura).

3. The Ta-Marbuta (
�
è ) is normalized to a Ha ( è).

4. The non-Alif forms of Hamza ( 
ð ŵ and 
ø ŷ ) are normalized to the Hamza

letter (Z).

1.3 Classical Arabic

Classical Arabic is the foundation of Arabic linguistic theory, and the educated Arabic

reader understands it well. It differs from Modern Standard Arabic in numerous aspects,

including its lexical, syntactic, morphological, phraseological, and semantic structure.

Classical Arabic is regarded as the language that evolved from the various Bedouin tribes

of the Arabian Peninsula, as recorded in the pre-Islamic poetry [32]. Because the Quran

was revealed in Arabic, it has a sacred and prestigious place not only among Arabs but

also among all Muslims worldwide. All Muslims around the world must learn Arabic to

be able to carry out their religious acts properly. Classical Arabic could have maintained

its purity and linguistic features over 1500 years[5] due to its religious status as a language

of Quran being recited daily and mostly five times a day (in the prayers) by all Muslims

around the world. Furthermore, every Friday, all Muslims are obligated to assemble

in their local mosques to hear the weekly-based oration (Xutbah) delivered in Classical

Arabic. Therefore, all of the above factors helped Arabic maintain its dynamic utility for

many years.

1.4 Modern Standard Arabic

Modern Standard Arabic is the Arab world’s official language. The media and culture

use it as their primary language. In terms of syntax, morphology, and phonology MSA
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Chapter 1 Arabic Language Background

is based on Classical Arabic, the language of the Qur’an (Islam’s Holy Book). MSA, on

the other hand, is much more modern lexically. MSA is primarily a written language,

not a spoken one. Most educated Arabic speakers can utilize MSA as a ”linguafranca” to

speak with each other regardless their nationalities or spoken native dialects. It is almost

assimilated and understandable by all Arabs because the majority of Arabs are exposed

to MSA through media, printed materials, religious practices, and certain work-related or

social situations [70]. Arabic is a symbol of Arab unity, and it is the concerted ingredient

that linguistically unifies Arab nations, since it is the official language of all Arab coun-

tries.

There are some differences between Classical Arabic and Modern Standard Arabic in terms

of vocabulary, morphology, and syntax. Modern Standard Arabic includes a series of new

lexical entries that are often borrowed or adapted from French (e.g. secrétaire /sikriti:r/

‘secretary‘ , informatique /ma’lu:mijja:t/ ‘Computer Science’). Morphologically, Modern

Standard Arabic does not make much use of the case endings that are common in Classical

Arabic. Syntactically, a new word order, namely subject-verb-object, emerged as a result

of the contact between Arabic and other languages. It is now used as an alternative, in

addition to the traditional word order subject-verb-object. The preposition li ( which

is equivalent to the English word to ) is used instead of the traditional construct state,

in which word order is critical. Therefore, the main characteristics of modern Standard

Arabic are as follows: a new vocabulary enriched by a variety of French and English loan-

words and assimilation idiomatic expressions; changes in syntactic and stylistic structure

modeled by the French or English System; as well as sound pattern strongly affected by

dialectal Arabic phonetics.

1.5 Arabic Phonology

Phonology is the study of the organization of natural language sounds, or phones. The

phoneme, or smallest contrastive element in a language’s sound system, is an essential

element in phonology. Being contrastive implies that the language in issue contains a

minimum pair including the phoneme: two words with different meanings that differ

phonologically only in that phoneme. For the phonemes /q/ and /k/, for example, the

MSA words I. Ê
�
¯ /qalb/ ’heart’ and I. Ê¿ /kalb/ ’dog’ form a minimal pair. A phoneme
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can be associated with several phones, or basic sounds, which are distributed according

to phonotactics, or predictable rules. Allophones are the predictable phonemes connected

with a phoneme. While Arabic does not have a phoneme /p/, which frequently leads to the

notably Arabic-accented p-b mix in English speech, the phone [p] appears as an allophone

of the phoneme /b/ in certain instances, such as before a voiceless phone: The term ��. X

/dibs/, which means molasses, is transcribed phonetically as [dips] but phonemically as

/dibs/.

The problem in describing the phonology of MSA is that MSA is not natively spoken

by any groups of Arabs, so no contemporary regional or social grouping can reasonably

claim that its habits of performance represent a model of what is ”correct”. In the native

grammatical tradition, /fasaha/ (= ’purity’ and, by extension, ’correctness’), whether in

phonology or any other aspect of the language, ultimately derives from historical prece-

dent: that is, the classical Arabic as elaborated by the grammarians. Although we have a

clear picture of what Arabic morphology, syntax, and vocabulary were like from an early

period from the copious textual material that survives, we have little or no information

on many aspects of how it was pronounced [47].

Like most Semitic languages, has a large consonantal vocabulary but a small vocalic

system [78] [47]. In contrast to other Semitic languages, Arabic has retained the majority

of the pharyngeal and emphatic consonants that were thought to exist in Proto-Semitic.

MSA has 34 phonemes in its phonemic inventory, six of which are vowels. At the phonetic

level, there would generally be more consonants and vowels. While MSA is a significantly

simplified variant of CA in terms of lexicon and grammar, it is reasonable to infer that the

differences between MSA and CA extend to phonology, specifically its phonemic inventory.

The phonemic inventory of MSA :

• Consonants :

Arabic consonantal phonemic inventory. The different manners of articulation are

represented by rows, while the different places of articulation are represented by

columns. Phoneme pairs are simple and emphatic variants.
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Table 1.1: Arabic consonantal phonemic inventory

Manner

Place
Labial Labio-

dental

Inter-

dental

Dental Alveolar Palatal Velar Uvular Pharyngeal Glotal

Stop
voiceless �

H   ¼
�
� Z

voiced H. X
	

�

Fricative
voiceless

	
¬ � �

�
� p h è

voiced
	
X

	
  	P

	
¨ ¨

Affricate
voiceless

voiced h.

Glide ð ø



Nasal Ð
	
à

Trill P

Liquid È

The classification of consonants looks as follows [28]:

– labial
�
éK
ñ

	
®
�
�Ë@

	
¬ðQmÌ'@ – sounds which are created with the help of upper and

lower lips due to their conjunction : /b/ H. , /m/Ð, and /w/ ð .

– labiodental
�
éJ

	
K A�ÊË @

�
éK
ñ

	
®
�
�Ë@

	
¬ðQmÌ'@ – are created by upper teeth and lower lip:

/f/
	

¬ in Arabic .

– dental
�
éJ

	
K A
	
J�B@

	
¬ðQmÌ'@– are created by putting the tongue behind the upper

teeth:/t/ �
H, /t/   /d/X,/d/ 	

� /s /�, /z/ 	P .

– interdental
�
éJ

	
K A
	
J�B@

	á�
K.
	

¬ðQmÌ'@ – are created by putting the tongue between

the teeth: exist only in Arabic /θ/ �
H, d

	
X, D̆ 	

  .

– alveolar
�
éK
ñ

�
JÊË @

	
¬ðQmÌ'@ – as the name says for itself, sounds are created with

the help of alveolar ridge: /r/ P, /l/ È and /n/ 	
à .

– velar
�
éJ

�
®J.¢Ë@

	
¬ðQmÌ'@– are created with the help of soft palate and back of

tongue: /x/p, and /k/¼ .

– palatal
�
éK
PA

	
ªË @

	
¬ðQmÌ'@ - are made by soft palate and front part of tongue: /y/ø




.
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– glotal
�
éK
Qj.

	
JmÌ'@

	
¬ðQmÌ'@– are created only by air without any obstructions: /h/ è

.

– pharyngeal
�
éJ

�
®ÊmÌ'@

	
¬ðQmÌ'@ – are created with the help of pharynx and tongue:

/H/ h .

– uvular
�
éK
ñêÊË @

	
¬ðQmÌ'@– created with the participation of uvula: they are repre-

sented by only one symbol /q/
�
�, which exists just in Arabic.

• Vowels �
HA¿QmÌ'@:

The height and backness of the tongue position are used to express vowels.

Arabic vocalic phonemic inventory. Vowels are represented in terms of height and

backness of the position of the tongue.

Table 1.2: Arabic vocalic phonemic inventory

Front Central Back

High @� ø


�
@ ð

Low
�
@ @

Finally MSA has two diphthongs: /ay/ and /aw/. Tables 1.1 and 1.2 present the

various consonantal and vocalic (respectively) phonemes in MSA in terms of their

articulatory features. In Table 1.1, the presence of a pair of phonemes in one cell,

as in ‘t T’, indicates that they are plain and emphatic, respectively. Emphasis

Õæ



	
j
	
®
�
K (tafxiym) is a bass effect giving an acoustic impression of hollow resonance

to the basic sound [47]. Emphasis together with the presence of eight consonants

in the velar and post-velar region is what gives Arabic pronunciation its distinctive

guttural quality [47]. Vowel phoneme pairs in Table 1.2 indicate length differences

(short and long).

• Characteristics Of The Arabic Letters
	

¬ðQmÌ'@
�
HA

	
®� :

We have studied the exit points of the letters (Makharij) previously. Now, it is

fundamental to know their various characteristics. We call characteristic of a let-

ter (sifat �
HA

�	
®�� ), the state of this letter when pronounced. Previously, we saw
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that multiple letters could leave the same exit point. As a result, when letters are

pronounced, their characteristics allow them to be distinguished. The study of let-

ter characteristics allows us to distinguish between several letters coming from the

same exit point (makharij) and one another. It allows us to distinguish between

thin (muraqaqa) and emphatic (mufakhama) letters, which is useful when using the

”assimilations” (al idgham) rule, and it also allows us to improve our pronunciation.

Indeed, for letters with the same exit point (for example, the Xand the �
H), it is suf-

ficient to confuse a single characteristic so that one of these letters resembles the

other. When a small amount of air is allowed to be blown out while pronouncing

the X, it will sound like �
H.

By learning these characteristics – Sifat, We will learn to respect all of the elements

that make up these letters in order to preserve their purity until they can no longer

be confused. Some letters will have a soft sound. Some will sound hard. Some will

need breathing, some will not, etc.

The number of sifat is a point of contention among scholars. Some have risen to

17 sifat. Imam Ibn Al Jazary holds this viewpoint. Some have risen to 44 sifat.

Others excluded some characteristics(such as ”inhiraf” and ”leen”), and counted the

ghunna among them, bringing their total to 14. Some of sifat are listed below:

1. Al Hams – �
�

�
Ò
�
ê
�
Ë @ Al-hams is an Arabic word that means ”whisper.”. It is a

flow of air And its letters are ten [23]:

�
H ¼ � � p

�
� è

�
H h

	
¬

These letters are compelled in this sentence:

�
I

�
º

�
� �

�	
m�
�
�
� �
é

��
�
J
�
m

�	
¯

2. Al Jahr – �Q
�
ê
�
m.
Ì'@ Al-Jahr is the opposite of Al Hams . During the pronunciation

of the following letters, the airflow is stopped.[23]

ø



Z ð
	
à Ð È

�
�

	
¨ ¨

	
   

	
� 	P P

	
X X h. H. @

These letters are compelled in this sentence:

Yg.�
�
I.

�
Ê
�
£ ø




	
X�

��	
�

�	
« 
ø

�
P
�
A
��
¯

�	
à
�	P
�
ð

�
Ñ
�	
¢
�
«

3. Ash-shidda –
��
è
��
Y

��
�
�Ë@ al-shadda means the intensity. During the pronunciation

of the following letters (8), the sound flow stops [23].
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@ h. X

�
�   I. ¼

�
H

These letters are compelled in this sentence:

��
I

�
º
�
K. ¡�

��
¯

�
Yg.�

�

@

4. Al-istiala – �ZC �
ª
�
J�
�
�B� @ Al-istiala is an Arabic word that means elevation . The

upward pressure on the palate is caused by the letter’s pronunciation [23]. This

pressure is being applied to seven letters:

�
�  

	
©

	
� � p

	
 

These letters are compelled in this sentence: ¡
�
�̄ ¡

�

�	
ª
�	
�

��
�

�	
k

5. As Safeer –Q�

	
®�
�
�Ë@ as-saf̂ır means whistling. It’s an added sound that comes

out from between the lips when you pronounce one of these three letters[23]. :

� 	P �

6. Al Qalqala –
�
é
�
Ê
��
®
�
Ê
��
®Ë @ Al qalqala is an Arabic word that indicates restlessness,

instability, or disturbance. It is a strong rebound of the letter when sakin. It’s

a rule of Tajweed [23]. The letters of the Qalqala are:

X h. H.  
�
�

These letters are compelled in this sentence:

Y
�

�
g.

�
I.

�
¢
��
¯

7. Al istitala –
�
é
�
Ë A
�
¢
�
J�
�
�B

�
@ al istitala means elongation. This is the lengthening of

the sound when pronouncing the letter: 	
� [23].

8. At tafashee –ú


æ
�
�
�

�	
®
��
JË @ at-tafashee means propagation. It is propagation or

diffusion of the breath in the mouth during the pronunciation of the letter �
�

[23].

9. Al-leen – 	á
�
�


��
ÊË @it means gentle ness. It is a gentle and effortless pronunciation.

The letters concerned are the waw ð and ya ø


having a sukoon and preceded

by a fatha [23]. Example:
	

¬
�
�
ñ
�	
k 	áÓ� Ñ

�
î
�	
D
�
Ó
�
@
�
ð ¨

�

ñ
�
k.

�	áÓ� Ñ
�
ê
�
Ò
�
ª
�
£

�

@ ø



	
Y�

��
Ë @.

10. Al-itbaq –
�
�A

�
J.
�
£B

�
@ The word al-itbaq is derived from a verb, which means ”to

stick”. When pronouncing the following four letters, the tongue is glued to the

palate [23].
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�
	

�  
	
 

• Phonotactics �
HAJ


�
Kñ�Ë@

The study of sound distribution patterns and restrictions within words (and some-

times across word boundaries) is referred to as ”phonotactics”. Derivational and

inflectional morphology, as well as lexical root structure, are all influenced by phono-

tactic rules in Arabic. The Arabic grammarians discovered and described the ma-

jority of these rules and restrictions over a thousand years ago. The phonotactics of

root morphology and the phonotactics of derivational and inflectional morphology

are aspects of Arabic phonotactics. Morphophonemics is the study of how morpho-

logical processes interact with phonological structures and rules. The Arabic sound

system relies on four phonological processes: assimilation (one sound absorbs or

influences another), epenthesis (vowel insertion), deletion (of vowel or semivowel),

and vowel shift(displacement of a vowel from one position in a word to another).

– Syllable Structure

The structure of syllables is a part of the study of phonotactics and it forms the

element of phonological word division concentrated on pronounceable segments of

words and how they are divided, composed, and distributed, where each word con-

sists of one or more syllables.

All Arabic syllables begin with CV or CVV and never with vowels or consonant

clusters (two or more). For example Qî
	
E /nahr/: CVCC. CA and MSA have a

similar syllable structure inventory, which is listed below.

– light syllable: CV(consonant-short vowel).

e.g.,-ma(
�
Ð),-bi(H.�

),-hu(
�
è)

– heavy syllable: CVC(consonant-Short vowel-consonant) or CVV (consonant-

long vowel).

e.g.,-faa( A
�	
¯),-dii(ú



æ
	
�),-tab (I.

��
K)

– super heavy syllable: CVVC(consonant-long vowel-consonant)or CVCC(consonant-

short vowel-consonant-consonant)

e.g.,-riim(Õç'
P),nuun(
	
àñ

	
K),rabt(¡�.

�P)
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• Word Stress

In Arabic, Stress is defined as the compression of a syllable within a word to make it

clearer in perception and higher than other syllables within the same word. Stress,

according to certain phonologists, refers to prominence or appearance. Traditional

phonologists use terminology such as prod, height, rising, power of speech, empha-

sizing, and lengthening stir to describe stress. Stress in Arabic is determined by

syllable structure and is automatic and it is assigned based on the structure of the

words. This means that the phonological word’s syllable structure determines the

stress assignment. The syllable is stressed in Arabic when it contains a long vowel

followed by a consonant (vvc) or a short vowel followed by two consonants or more

(vcc) [15].

Stress and its location are predictable because rules can be created based on the

word’s structural patterns to pinpoint the syllable on which stress falls. Most lin-

guists distinguish three levels of nonphonemic stress: primary, secondary, and weak.

• Local variations of MSA

Spoken varieties differ from Classical Arabic and Modern Standard Arabic (MSA)

not only in grammar but also in pronunciation. Some of the common variations

are shown in Table 1.3. In this table, example words are written as they will be

pronounced by each dialect. Like in the first example , ¡�. A
	
£ ”Police Officer” is

pronounced as shown in table. First example shows the MSA consonant ( 	
 ) is

pronounced as

/D̆/ in MSA, as /z/ in Egyptian Arabic (EGY) and Levantin arabic (LEV) includes

the dialects of Syria, Lebanon, Jordan, Palestine. The second example shows that

The MSA consonant �
H /θ/ is pronounced as /t/ in LEV and EGY (or /s/ in more

recent borrowings from MSA), e.g.,
�
é
�
KC

�
K ‘three’ is pronounced /θalāθa/ in MSA

versus /talāta/ in EGY. The last example shows that the The MSA consonant
	
X

/d/ is pronounced as /z/ in EGY and X /d/ in Levantine.
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Table 1.3: Local variation

EGY GLF LAV MSA NOR English gross

¡�. @
	P /ZābiT/ ¡�. A

	
£/ĎābiT/ ¡�. @

	P/ZābiT/ ¡�. A
	
£/ĎābiT/ ¡�. A

	
£/ĎābiT/ Police Officer

�
é
�
KC

�
K /talāta/

�
é
�
KC

�
K/θalāθa/

�
é
�
KC

�
K /talāta/

�
é
�
KC

�
K/θalāθa/

�
é
�
KC

�
K/θalāθa/ Three

@ 	Që/hāza/ @
	
Yë/hāda/ @Yë/hāda/ @

	
Yë/hāda/ @

	
Yë/hāda/ This

– EGY : Egyptian arabic includes dialects of Egypt and Sudan.

– LEV or LAV : Levantin arabic covers the dialects of Syria, Lebanon, Jordan,

Palestine.

– GLF : Gulf arabic includes the dialects of Kuwait, United Arab Emirates,

Bahrain, Saudi arabia and Qatar.

– NOR : North african arabic includes the dialects of Algeria, Morocco, Tunisia

and Mauritania and Libyan arabic sometimes.

1.6 Conclusion

This chapter gave basic background about Arabic. We started with a linguistic description

of Arabic script followed by a discussion of the two major classes of Arabic, dialectal and

MSA. This is followed by Arabic Phonology where we presented Arabic consonants, vowels

and word stress and also we showed the structure of syllables which is a subdivision of

Phonotactics as well as we included some of the common variations among Arabic dialects

and MSA.

The next chapter discusses the important concepts related to Automatic Speech Recog-

nition.
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Chapter 2
Automatic Speech Recognition Overview

2.1 Introduction

With the success of Google Home, Amazon Echo, Siri, Cortana, and other voice assistants

in recent years, they have become ubiquitous. These are the most well-known automatic

speech recognition (ASR) examples. This category of applications starts with a sample

of spoken audio in a certain language and converts the words uttered into text. As a

result, they’re often referred to as Speech-to-Text algorithms. For this reason, they are

also called as Speech-to-Text algorithms. The traditional ASR system includes acoustic

modeling, pronunciation lexicon, and language modeling modules. All of these systems

work together to recognize speech, identify a specific speaker, detect multiple dialects,

and so on, all from a single speech signal.

2.2 ASR Architecture

ASR system is composed of two major components: the front end and the decoder as

shown in Figure 2.1. The spectrum representation of the voice waveform is extracted by

the front end block. Mel Frequency Cepstral Coefficients are the most extensively used

characteristics (MFCC). Based on the acoustic model, lexicon, and language model, the

decoder block looks for the best match of word sequences for the input acoustic data.
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Figure 2.1: Diagram of automatic speech recognition system [36].

A sequence of speech vectors or observations ”O” can be used to represent the input

speech data. As a result, the difficulty in predicting the most likely word sequence wh

may be characterized by solving equation 2.1, often known as the fundamental equation

of statistical speech recognition [26].

Wh = argmax
w

P
(
w
∣∣o) (2.1)

Where:

• o : represent the sequence of acoustic feature vectors (observations) .

• w : represent word sequence.

• argmaxw : is the search space, a function of the vocabulary.

The Bayes’ rule is still used in the main stream of speech recognition to decompose

equation 2.1 into the likelihood P
(
o
∣∣w), the prior P (w), and the denominator P (o) which

is independent of the word sequence and have no effect on the word sequence search. As

a result, P(o) is removed [26].

Wh = argmax
w

P
(
o
∣∣w)P (w)

P (o)

= argmax
w

P
(
o
∣∣w)P (w)

(2.2)
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The likelihood of the acoustic model is often referred to as P
(
o
∣∣w), and the language

model is referred to as P (w). Since the probability of the language model P (w) is

independent of acoustics, it can be calculated independently and use different corpora.

The task of developing a speech recognition system is divided into two main modules,

as shown in equation 2.2 : acoustic modeling and language modeling. The goal of acoustic

modeling is to develop a model that can explain speech signals in the presence of an

observation vector o. The acoustic observation o = [o1, o2, ..., oT ] vector is the result of

front-end signal processing extracted from the raw waveform, which should ideally be

invariant with respect to non-speech related factors like speaker factors, pronunciation

variability, and environmental noise. However, in practice, the feature processing step

will not be able to normalize all of the variability, so the acoustic models will have to

share the task. On the other hand, before observing speech signals, language models

should try to predict the prior distribution of the word sequence w. Traditional language

models are based on the frequency of n-grams, which assume that the distribution of each

word is dependent on the previous n−k words, where k is the language model’s history,

also known as the order of language model. The remainder of this chapter provides an

overview of a standard speech recognition system, and at the end will shed light on recent

efforts in Arabic speech recognition.

2.3 Front-end Feature Extraction

Feature extraction is a crucial aspect of the speech recognition process since it extracts

significant data from sample speech. The raw waveform is received in a continuous time

and magnitude format. The signal processing front end’s goal is to sample the raw acous-

tic waveform into feature vectors and extract the acoustic features that will be modelled

by the acoustic modeling. The acoustic feature representation for speech recognition will

be compact, preserving as much signal information as possible while minimizing variabil-

ity across speakers and environmental acoustic conditions. It usually takes a frame of

the speech signal every 16-32 milliseconds and updates it every 8-16 milliseconds [44],[79],

as well as performing spectrum analysis. The regular frontend comprises the following

algorithmic blocks, among others: Fast Fourier Transformation (FFT), Logarithm Calcu-

lation (LOG), Discrete Cosine Transformation (DCT), and Linear Discriminate Analysis
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(LDA). To extract features from speech. MFCC is the most used approach and is based

on the frequency domain using the Mel scale [79]. First, the speech signal is divided into

time frames, each of which contains an arbitrary number of samples. In most systems,

frame overlapping is used to create a smooth transition from one frame to the next. To

eliminate discontinuities at the edges, each time frame is then windowed with a Hamming

window. next, Fast Fourier Transformation (FFT) is calculated for each frame to extract

frequency components of a signal in the time domain. The logarithmic Mel-Scaled filter

bank is applied to the Fourier transformed frame. The mel scale is used to map the actual

frequency to the frequency that human beings will perceive. The last step is to calculate

Discrete Cosine Transformation (DCT) of the outputs from the filter bank. The overall

procedure of MFCC extraction is shown on Figure 2.2.

Figure 2.2: Process of extracting Mel-Frequency Cepstral Coefficient (MFCC) [82].

For each speech frame, a set of MFCC is computed. This set of coefficients is called

an acoustic vector which represents the phonetically important characteristics of speech

and is very useful for further analysis and processing in Speech Recognition
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2.4 Acoustic Modeling

In voice (speech) recognition, acoustic modeling is the initial and important step. The

acoustic model establishes a relation between acoustic data and language units. Due

to feature extraction and statistical representation, the majority of the calculations are

performed in acoustic modeling, which has the most impact on the recognition process.

Extracted features are used to create statistical representations. The distribution of the

extracted features with a specific sound has been designed in an Acoustic Model (AM) to

establish the relation between the extracted features and the structures of the language

module. Various feature extraction approaches have been reported, including those based

on human perception and the working of voice producing systems. Because these systems

pose issues in speech recognition, features were extracted for AM in speaker-independent

mode recognition.

For the development of acoustic models, the selection of a classification method is also an

important step. Many studies have been reported on acoustic modeling based on different

classification techniques. The work reports the use of different classification methods

such as based on hidden Markov model (HMM), discriminant training to optimize model

parameters, artificial neural network (ANN), deep neural networks (DNNs) and sequence

to sequence acoustic modeling.

2.4.1 Neural Network Acoustic Model

Neural network-based systems have attracted a big interest in voice recognition for acous-

tic modeling since the mid-1980s. One of the first successful applications was phoneme

recognition [55], [77]. Then it was expanded to recognize isolated words [17]. Successful

results were also achieved for continuous speech recognition, but only on small vocabular-

ies [40]. At the same time, a hybrid HMM/ANN approach was developed [20], [14], [67],

[63].

• Deep Neural Network

Following the success of hybrid HMM / ANN systems, the recent increase in com-

puting resources has led to the development of deep neural networks (DNNs). These

types of neural networks are made up of several hidden layers :
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Yout = h(Mnh(Mn−1....h(M1x))) (2.3)

Mn is the weight matrix of layer n, while h(.) is the activation function. This

approach has been shown to enhance the performance of speech recognition tasks

compared to standard MLP with one hidden layer [45]. However, these types of

networks are known to be difficult to train , especially when the amount of data is

limited. Pre-training techniques have been developed to address this issue. These

techniques are usually based on learning ”good” intermediate representations using

unsupervised generative models. These representations serve as a starting point

for identification training. Approaches such as greedy layer-wise training and noisy

auto-encoder approaches have been proposed. One of the most popular techniques

in the speech community is the Deep Belief Networks approach.

The aim of this pretraining approach is to maximize the likelihood of the joint

probability of data and labels. It is based on the limited Boltzmann machines

framework. Other regularization methods, such as the dropout method, have also

been presented. This approach is based on randomly setting to zero a certain amount

of the weights on each training update. This approach has the effect of forcing the

neurons to not rely on each other, hence enhancing the network’s generalization

capabilities.

• Recurrent Neural Networks

Recurrent Neural Networks (RNN) [30] are a type of neural network in which the

connections between the units (or neurons) form a directed graph. To put it another

way, an RNN-based model can use the predictions of previous examples to classify

an example at a specific time. Bi-directional RNNs [72] have also been proposed,

which are made up of two RNNs, one in each direction. As a result, at any given

time, the prediction can access predictions in both directions.

Recurrent neural networks-based systems have been proposed in the context of

HMM-based speech recognition. The alpha-net [21] is a recurrent neural network

technique presented in the HMM framework. Also Robinson [69] suggested a re-

current network in which the network’s output is calculated based on the current
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input and a hidden state variable that is dependent on all prior inputs. The vanish-

ing gradient problem is the main limitation of these models and that limits access

to long-range context. Long-short-term memory networks (LSTM) [46] have been

shown to help with this problem.

2.5 Language modeling

A probability distribution over word sequences is what a statistical language model is.

The n-gram LM is the simplest model for assigning a probability to a sequence of words.

An n-gram is a sequence of n words, a 2-gram (called a bigram) is a two-word sequence of

words such as ”Arabic Speech”, and a 3-gram (called a trigram) is a three-word sequence

of words for example ”Automatic Speech recognition” [50]. The n-gram can be expressed

as indicated in equation 2.4.

p (w) =
K∏
k=1

p(Wk

∣∣wk−1, wk−2, ..., wk−n+1) (2.4)

This equation has two primary hyper-parameters; K is the number of words in W and

n is the order of the LM: two for the bigram and three for the trigram LM.

Ideally, one can compute LM for an arbitrary order. However, The increasing value of

n in n-gram can lead to sparsity. Therefore, zero probabilities are due to data sparsity,

where n values for speech recognition applications are typically in the range of two to four.

Maximum likelihood estimation, or MLE, is a simple method for estimating probabilities.

We obtain the MLE estimate for the parameters of an n-gram model by obtaining counts

from a corpus and normalizing the counts so that they lie between 0 and 1. For example,

the following formula can be used to compute the bigram probability of a word wk given

a preceding word wk−1

p
(
wk

∣∣wk−1

)
=

C (wk−1wk)

C (wk−1)
(2.5)

For the general case of MLE n-gram parameter estimation:

p
(
wk

∣∣wk−1, wk−2, ..., wk−n+1

)
=

C (wk−n+1, ..., wk)

C (wk−n+1, ..., wk−1)
(2.6)
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Equation 2.6 (like Eq.2.5) estimates the n-gram probability by dividing the observed

frequency of a particular sequence by the observed frequency of a prefix. This ratio is

called a relative frequency. In the training text for some word sequences may be very

low or even zero. To prevent the language model from assigning 0 probability to these

unseen word sequences, we must reserve some probability mass from more frequent word

sequences and allocate it to the unseen word sequences. This is referred to as smoothing

or discounting. Normally, two major techniques are used to address this (i) back-off or

interpolation [51] in which the model will distribute the probability mass unevenly to

unseen word tokens in proportion to the probability that it is less than the lower-order n-

gram, (ii)discounting [53] where the smoothing technique is based on assigning some of the

probability distribution mass to n-gram sequences that were not seen in training. More

advanced language model based on recurrent neural network have also been proposed [60],

[56].

2.5.1 Evaluating a Language Model

One method of evaluating Language Model’s performance is to embed it in an application

and track the application’s progress. This end-end evaluation of the Language Model is

known as Extrinsic evaluation. In the case of speech recognition, for example, we can run it

again with both LMs and see which one offers better transcription. This evaluation makes

more sense intuitively because we can tell whether the specific component is improving

the application. We can test the quality of the Language Model without relying on any

application. This is commonly known as Intrinsic Evaluation. After splitting the corpus

into train and test splits, we train two different N-Gram models on the training data and

see which LM returns the highest probability for the test sentences. This type of evaluation

with the test set is known as intrinsic evaluation. Perplexity (PP) is a quantifiable metric

that is used for intrinsic evaluation. It is the inverse probability of the test set. Simply,

the lower the perplexity the better the LM. PP can be expressed as shown in equation

2.7.

PP = exp
{
− 1

k

k∑
k=1

log
(
p
(
wk

∣∣wk−1, wk−2, ..., wk−n+1

)) }
(2.7)
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2.6 Decoding

The acoustic models and language models are used in decoding for searching the recog-

nition hypothesis that fits best to the models. The Viterbi algorithm [34] is used to find

the most probable word sequence. A full breadth search is however infeasible in practice,

therefore pruning using beam search technique [39] is usually used to efficiently infer the

word sequence.

The following is how beam search is done. We feed a special start of sentence token

⟨sos⟩ to the decoder during the first decoding step. After that, the decoder generates a

P
(
y1
∣∣⟨sos⟩, c0) distribution over the G graphemes that make up the output vocabulary.

We create a partial transcript and add it to our beam for each of the top k most likely

graphemes. We extend each of these k partial transcripts by each of the G graphemes

in the next decoding step, resulting in a total of kG candidates. Then, from this set of

extensions, we keep only the k most likely partial transcripts. The transcript is considered

complete and removed from the beam when the special end of sentence token ⟨eos⟩ is

encountered. This repeats until there are no more partial transcripts.

2.7 Evaluation

An important issue in speech recognition is how to measure the performance of the system.

A commonly metric is the word error rate(WER). WER reflects the number of corrections

needed to transform the ASR output into the ground truth. Generally, a lower WER

indicates a better quality ASR system. To calculate WER, we can use this formula

WER =
I + S +D

N
∗ 100% (2.8)
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Figure 2.3: Example About WER

• Insertion (I):Words that are incorrectly added in the hypothesis transcript.

• Deletion (D): Words that are undetected in the hypothesis transcript.

• Substitution (S): Words that were substituted between reference and hypothesis.

• N : Total word number.

The example above shows how to calculate the WER. We can see that the ASR has made

a few errors. It has inserted the word ”Ég”, identified ”
�
éJ
ÓA�” as ”

�
éJ
ÖÞ

�” and deleted the

word ”½ËAg” from the ground truth.

To calculate WER, we can use the formula in:(2.8). D is the number of deletions, I is

the number of insertions, S is the number of substitutions and N is the number of words

in the ground truth. In this example, the ASR output made 3 mistakes in total from 5

words in the ground truth. In this case, the WER would be 3 / 5 = 0.6.

2.8 Classification of Speech Recognition System

2.8.1 Types of Speech Recognition System Based on Utterances

Speech recognition systems can be classified in different classes by describing what types

of utterances they can recognize
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Isolated Words

Isolated word recognition system which recognizes single utterances, or words. Isolated

word recognition is appropriate for situations in which the user is required to provide

a single word response or command, but it is unnatural for multiple word inputs. The

main advantage of this type is that word boundaries are obvious and the words tend to

be clearly pronounced, making it simple and easy to implement [54].

Connected Words

A connected words system works similarly to isolated words, but a connected words system

allows separate utterances to be ”run-together” with minimal pause between them [54].

The vocalization of a word or words that represent a single meaning to the computer is

known as utterance.

Continuous Speech

In a continuous speech recognition system, users can speak almost naturally while the

computer determines the content [54].

It is a computer dictation. In this closest words run together without a pause or any

other separation between them. It is difficult to develop a continuous speech recognition

system.

Spontaneous Speech

Spontaneous speech has a large number of definitions. Basically, it can be considered

as speech that sounds naturally and is not repeated. The speaker starts an utterance

and reaches a point where he cannot find the right word or thinks better about a word,

and needs time to find a suitable alternative, they repeat a word as a kind of ”race” on

the second attempt. An ASR system with spontaneous speech capability should be able

to handle a variety of non-standard grammatical speech features such as words running

together ”ÕÜØ@” and ” éJ
K
 @”, and even slight stuttering [54].
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2.8.2 Types of Speech Recognition System Based on Speaker

Model

Each person has a particular voice, due to his unique physical body and personality.

Speech recognition system is classified into two main categories as follows:

Speaker Dependent Models

Speaker dependent systems are designed to work with a specific type of speaker. They

are more accurate for a specific speaker, but they may be less accurate for other types of

speakers. These systems are typically less expensive, easier to develop, and more accurate.

But these systems, are not flexible as speaker independent systems.

Speaker Independent Models

The Speaker Independent system can recognize a variety of speakers without any prior

training. A speaker independent system is created to work with any type of speaker. It’s

used in Interactive Voice Response Systems (IVRS) that have to accept input from a large

number of users. These systems are difficult to develop but they are very much flexible.

2.8.3 Types of Speech Recognition Based on Vocabulary

The complexity, processing, and recognition rate of an ASR system are all affected by the

vocabulary size of the system. As a result, ASR systems are classified as follows:

• Small Vocabulary - 1 to 100 words or sentences.

• Medium Vocabulary - 101 to 1000 words or sentences.

• Large Vocabulary- 1001 to 10,000 words or sentences.

• Very-large vocabulary - More than 10,000 words or sentences .

2.9 ASR Tools

Speech recognition using deep learning is an enormous task that its success depends on

the availability of a large training dataset. The existence of open-source deep learning

enabled frameworks and Application Programming Interfaces (API) would increase the
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development and research of ASR. There are different services and frameworks that pro-

vide developers with powerful deep learning abilities for speech recognition.

2.9.1 API Services

One of the most well-known applications is Cloud Speech-to-Text service from Google 1

which converts Arabic speech or audio files to text using a deep-learning neural network

algorithm. The Cloud Speech-to-Text service allows its translator system to directly

accept the spoken word to be converted to text before translating them. For developers

the service provides an API with multiple recognition features.

Another service is Microsoft Speech API from Microsoft 2. Developers can use this

service to create speech recognition systems using deep neural networks.

IBM 3 cloud furnish Watson service API for speech to text recognition support modern

standard Arabic language.

2.9.2 Frameworks

We only consider frameworks that can be used locally and without restrictions for this

work. Kaldi [66] is one such framework that proved to be the most successful open source

ASR system in a previous study [35] it is an open source C++ toolbox that supports both

traditional models (such as Gaussian mixing models) and deep neural networks [66].

Wav2Letter is an open-source speech recognition system developed by Facebook[27].

It’s a deep neural network framework written entirely in C++ that makes use of the Array

Firetensor library.

A more complete implementation was carried out by Mozilla with their DeepSpeech

project [42] that can convert an audio to text and is implemented by Tensorflow based

on Baidu’s DeepSpeech Architecture. These models can be generated for any language.

1https://cloud.google.com/speech-to-text/
2https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/
3https://www.ibm.com/watson/services/speech-to-text/
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2.10 Conclusion

We gave a brief overview of the various aspects of modern speech recognition systems.

We presented a literature overview on NN-based acoustic modeling. The language model

covered the n-gram approach. Lastly, we described the frameworks and services that aid

in the development of the ASR system. Finally, the final section shed some light on recent

efforts in Arabic ASR.

In the next chapter, we present the architecture of our proposed method and give an

overview about arabic speech recognition and mention most of techniques related to it.
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3.1 Introduction

Research in speech recognition is progressing with many state-of-the-art results in recent

times due to its huge applications that can be developed to help humans to improve

their daily life tasks. Implementing speech recognition models can be done using several

techniques, one of the modern techniques is using neural networks.

This chapter mentions the literature and related works in Modern Standard Arabic

based on Neural networks and gives a comparison between them. Also discuss the ar-

chitecture of our proposed model and the learning algorithm is going to be used in the

empirical part of this research to train and optimize the automatic speech recognition

model.

3.2 Related works

In this section, we will concentrate on neural network-based approaches, which are a

significant class of discriminatory techniques that have inspired biological neural networks.

We will go over the literature in terms of classification, steps, and AASR techniques.

3.2.1 General ASR

Dominique F & al [33] showed neural networks as the most extensively used artificial

intelligence product, and they provided and studied acoustic and linguistic models of

automatic speech recognition systems using the corpus ”radio broadcast news”. These
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models are Deep Neural Networks (DNN) and Hidden Markov Model (HMM) models

that were compared to conventional GMM/HMM models and found to have a significant

relative improvement of 24%. Hinton et al [45] provide an overview of the use of deep

neural networks, which consist of a large number of hidden layers that are trained using

some novel techniques. The overview summarizes the findings of four different research

groups who collaborated to reveal the benefit of a feed-forward neural network that takes

a large number of frames of coefficients as input and outputs subsequent probabilities over

HMM states. This method was studied as an alternative to using traditional HMMs and

GMMs for speech recognition acoustic modeling. Akushkin et al [48] considered speech

recognition in large-resource conditions for Russian language. Their system built on top

of the Mozilla DeepSpeech framework and trained with nearly 1650 hours of YouTube

crawled data A similar approach to [48] was performed by Zesch and Agarwal [2]. They

set out to train a German transcription system based on Mozilla DeepSpeech. A. Graves

and al, combined CNN with LSTM and used beam search for word decoding, and they

achieved good results.

Conventional automatic speech recognition systems use a modular, with separate modules

for acoustic modeling, pronunciation lexicon, and language modeling that are all trained

individually. End-to-end (E2E) models, on the other hand, are trained to convert acoustic

features directly to text transcriptions, potentially optimizing all parts for the end task,

E2E ASR has attracted interest from both academia and industry. The E2E system is

based on a single deep neural network that can be trained to directly transcribe speech

into labels (words, phonemes, etc).

3.2.2 Automatic Arabic Speech Recognition

In [80], authors divided the AASR system into four phases. First, the pre-processing

phase. Second, the feature extraction stage. Third, decoding utilizing the language model,

pronunciation dictionary, and acoustic model. Fourth, Post-processing results where the

best hypothesis is produced. The phases work as follows : First, speech waveform is used

as input in the pre-processing phase. Then, the output is a processed speech waveform

and this is used as input in the feature extraction phase, where they have the feature

vector as output and use it as input in the next phase, the decoding phase. In this phase,

the acoustic model is employed along with a pronunciation dictionary. Then, the n-best
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hypothesis - the output of the pronunciation dictionary phase is used in post-processing

as input. As a result, the best hypothesis is generated from this work process.

Turab, Khatatneh and Odeh in [52] discussed the recognition of phonemes as it relates

to speech recognition. To improve the results, the Gaussian low-pass filtering algorithm

and a neural network were applied in the pre-processing stage. Furthermore, the stages

of phoneme recognition are as follows: capturing a signal, sampling, quantification, and

energy setting. Following that, a neural network is used to improve the results. Further-

more, this work demonstrates the improved impact in results after applying the Gaussian

Low Pass filter to voice signals, resulting in noise reduction. Following that, in the train-

ing phase, the neural network was used to train the system to recognize speech signals.

Zerari, Naima and al [81] present a basic end-to-end approach for recognizing an isolated

Arabic word’s spoken digit spelling in Arabic. The key properties of the natural speech

signal were extracted using Mel frequency cepstral coefficients (MFCC) [4], which were

then processed by a deep neural network capable of dealing with the non uniformity length

of voice statement sequences. It first used Long Short Term Memory (LSTM) with three

gates to decode the sequences of these features as a fixed vector, which was then passed

to a multi-layer perceptron network for classification. The Arabic Digit Spoken dataset is

used for training and testing, and it contains 8800 tokens from 88 native Arabic speakers

(44 males and 44 females) [41]. This method achieves a 98.7% success rate.

The authors in [31] investigated the use of a neural network to recognize Arabic speech

using a distributed word representation. As a result, the neural network achieves robust

generalization that is capable of fighting the data sparseness problem in the best way pos-

sible. Many factors were investigated, including the n-gram order parameter experiment,

output vocabulary, normalization method, model size, and parameters. The Arabic news

broadcast and conversation broadcast were used in the evaluation. As a result, using an

optimized neural network model over 4-gram, some improvement of up to 3.8% relative

WER was achieved.

In [76] the recognition of three Arabic characters, sa (�), sya (
�

�), and tsa (
�
H)

which have the same pronunciation, presents a difficult problem. Indonesian speakers

pronounced these letters, however they had different makhraj in Arabic. From the 738

samples of the used dataset, he retrieved 13 MFCC feature vectors (248 samples of sa

), (254 samples of sya ), (and 236 samples of tsa ). As a classifier, he employed a back-
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propagation ANN model with a sigmoid activation function. He had a 92.42% accuracy

rate.

With a 1200-hour speech corpus, AlHanai and al in [6] proposed an AASR system.

Deep neural network (DNN) structure was used in the developed system, which included

many techniques such as feed-forward, convolutional, time delay, recurrent long short-

term memory (LSTM), highway LSTM (H-LSTM), and grid LSTM (GLSTM). The corpus

evaluation produces the best results, with 18.3% WER using trained GLSTM models.

In [59], they developed the Arabic Loria Automatic Speech Recognition (ALASR)

system, which is a voice recognition system based on Modern Standard Arabic (MSA)

with an expansion based on Algerian dialects. Because it is mixed with French, the

Algerian dialect is considerably distinct from the arabic dialects of the Middle East. The

ALASR based on MSA produces good results (a WER of 14.02%), but it entirely collapses

on an Algerian dialect data set (a WER of 89%), thus they created a new acoustic model

by combining two models: one for MSA and one for French. The WER was reduced as a

result of this combination, resulting in a more efficient rate of 65,45%.

The authors in [75] describe an ASR system in the framework of the 2016 Multi-Genre

Broadcast (MGB-2) Challenge in Arabic. The fundamental aim behind this research was

to integrate the use of GMM-derived features for training a DNN with time-delay neural

networks for acoustic models to automatically phonetize Arabic words. The final system

was a combination of five systems, and the outcome outperformed the best single LIUM

ASR system by 9% in WER.

Ahmed, Abdelrahman, and al [3] present the first complete end-to-end recipe for

an Arabic BDRNN-based speech-to-text transcription system. This system contains a

character-based decoder for search, which eliminates the need for a word lexicon. The

Connectionist Temporal Classification (CTC) is also utilized, which employs an objec-

tive function to maximize the output character sequences given the input auditory data.

It is made up of three parts: a BDRNNs acoustic model, a language model, and a

character-based decoder. The training and decoding processes are also based on the Ara-

bic grapheme. BDRNNs are trained using the CTC objective function, which eliminates

the need for pre-segmented acoustic observations. In order to verify the performance with

other word-based models, the test set will be evaluated at both the word and character

levels. The recipe was tested using a corpus of 1200 hours of Aljazeera’s multi-genre
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broadcast programs. The WER for non-overlapped speech on the development set is

12.03%. For both well-resourced and low-resourced tasks, morph-based models outper-

form word-based models, but character-based models are similar to their performance

in low-resource tasks, exceeding word-based models. Character-based models succeed in

predicting unique word forms not seen in the training data. The word model outperforms

the character-based model throughout the whole dataset, whereas the character-based

model outperforms the word model by 6% in the under-resourced situation.

Othmane rifki [68] proposed an ASR system using the Wav2Vec2-XLSR-53 Model. He

trained this model on the Arabic CommonVoice dataset, achieving a state of the art for

Commonvoice arabic test set WER of 46.77%.

Mohamed BEN ALI [10] fine-tuned wav2vec2-large-xlsr-53 on Arabic Language using

the Common Voice Corpus 5.1 dataset. As a result he had a 52% WER.

Mohammed Bakheet [13] fine-tuned Wav2vec2-large-xlsr-53 on Arabic using the train

splits of Common Voice and Arabic Speech Corpus, and he achieved a result of 36.699%

of WER.

Ali Safaya [71] finetuned the Arabic Hubert-Large Model on the Arabic CommonVoice

dataset with a 2000h of training, acheiving a state of the art for commonvoice arabic test

set WER of 17.68% and CER of 5.49%.

Table 3.1 gives a comparison between the previously described approaches for AASR.
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3.3 Arabic Speech Datasets for ASR

Automatic Speech Recognition (ASR) is a very niche field, and there are less resources

available for it compared to other ML projects and fields. Table 3.2 describes some Arabic

datasets for ASR.
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3.4 Proposed Approach

As mentioned earlier in this chapter, end-to-end speech recognition has gained wide

acceptance by numerous groups of researchers, for it proved to outperform most of the

conventional methods of speech recognition. Furthermore, recent research shows that

neural networks perform well in the field of speech recognition, especially when training

RNNs using CTC loss function. In this section we will present RNN and CTC loss

function.

3.4.1 Basic Structure of RNN

RNN [61] was created with the goal of processing sequence data. In the traditional

neural network model, it has input layers, hidden layers and output layers. Each layer

are fully connected, and the nodes between each layer are unconnected. But this common

neural network is incapable of solving a wide range of issues. For example, if we want to

predict the next word in a sentence, we usually need to use the previous word because

the words before and after in a sentence are not independent.

The reason why RNN are called recurrent neural networks is that the current output

of a sequence is also related to the previous output. The specific manifestation is that

the network memorizes the previous information and uses it for the computation of the

current output, i.e., the nodes between the hidden layers are no longer unconnected but

connected, and the hidden layer’s input comprises more than just the input layer’s output.

It also contains the outputs of the hidden layer from the previous moment. In theory,

RNN can process sequence data of any length.

RNNs have input units, the input set is marked as
{
x(0), x(1), ..., x(t), x(t+1), ...

}
, and the

output set of Output units is labeled as
{
y(0), y(1), ..., y(t), y(t+1), ...

}
. RNNs also contain

hidden units. We mark their output set as
{
h(0), h(1), ..., h(t), h(t+1), ...

}
. These hidden

units complete the most important work.
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Figure 3.1: Basic structure of RNN [62].

ht = fw(ht−1, xt) (3.1)

ht = tanh(Whhht−1 +Wxhxt) (3.2)

yt = Whyht (3.3)

Note that h(t) is the new state and h(t-1) is the old one. Each time the new state

is computed by new function f(w) with parameters old state h(t-1) and input vector at

some time step x(t). The unfold structure is shown below.
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Figure 3.2: RNN unfold structure [73]

3.4.2 LSTM

The Long Short Term Memory network, or LSTM for short, is a type of RNN that can

learn long-term dependency information. Hochreiter and Schmidhuber proposed LSTM

in 1997, and it has recently been improved and promoted by Alex Graves. In many issues,

LSTM has achieved considerable success.

Moreover, LSTM is designed to avoid long-term dependencies. A chained form of

repeating neural network modules exists in all RNNs. This repeated module in a standard

RNN has a very simple structure, such as a tanh layer. The structure of the LSTM is

the same, but the structure of the repeated modules is different. Unlike a single neural

network layer, there are four here to interact in a very special way. LSTM is a special

network structure that consists of three ”gate” structures. Figure 3.3 shows the structure

of LSTM.
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Figure 3.3: Structure of LSTM [16]

LSTM relies on some ”gate” structures to allow information to selectively affect the

state of each moment in the RNN. ”Gate” structure is a sigmod neural network and a

bitwise multiplication operation. These two operations form a ”gate” structure when

combined. The reason this structure is called a gate is because the fully connected neural

network layer uses sigmod as the activation function to output a value between 0 and 1.

It specifies how much data from the current input can pass through this structure, so its

function is similar to that of a door. When you open the door (sigmod output is 1), all

information can pass and when the door is closed (sigmod output is 0), no information

can pass. There are six formulas shown below to describe the structure of a LSTM.

input gate:

it = σ(Wi[ht−1, xt] + bi) (3.4)

forget gate:

ft = σ(Wf [ht−1, xt] + bf ) (3.5)

candidate memory unit:

ŻCt = tanh(WC [ht−1, xt] + bC) (3.6)

current memory unit:

Ct = ftCt−1 + itCt (3.7)
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output gate

ot = σ(Wf [ht−1, xt] + bo) (3.8)

output:

ht = ottanh(Ct) (3.9)

3.4.3 Connectionist Temporal Classification

The first method for training end-to-end neural network models for ASR was connectionist

temporal classification (CTC) [38]. CTC models are made up of a single recurrent network

(sometimes with multiple layers) that produces one output every input time-step. A

softmax layer sits at the top of the network, converting the inputs into a probability

distribution over the vocabulary. In this section, we will assume that the vocabulary is

the set of Arabic characters, plus a ‘blank’ unit, which is required for CTC and which will

be explained shortly. We will represent the blank unit with an underscore in this section.

After feeding a set of speech features into the CTC model, we get one probability

distribution per input time-step as the result. We will call the probability of observing

label k at time t ykt . We define a path π as a sequence of labels of length T, where T is

the length of both the input and output sequences. The probability of path π according

to the CTC model is p(π|x) =
∑T

t=1 y
πt
t , or the total probability of observing the labels

that make up π.

The ability of CTC to handle the vast majority of cases in which the desired transcript

is not the same length as the input sequence is its key feature. First, CTC makes an

assumption about the ASR task: that the length of the desired output is less than or

equal to the length of the input sequence. This assumption is a reasonable one for ASR

when there are, as is most common, tens or hundreds of speech feature frames per second.

Second, CTC is based on a simple function that maps the sequence of outputs to a

‘labeling’, which is the actual transcript of the input speech. This function handles cases

in which the desired transcript is shorter than the input sequence. Consider a simple

training example: a sequence of four speech feature frames and the word Qî
	
E. In CTC,
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there are several different ways that the model could take in these 4 frames and correctly

produce the labeling Qî
	
E. They are: Qî

	
E ,P é

	
K, Që 	

à, Qî 	E , PQî 	E, Qêî 	E, and Qî
	
D
	
K. The mapping

removes all blanks and repeated labels so that each of these output sequences map to the

same labeling, Qî 	E.

The CTC loss function is used to train CTC models, and it maximizes the likelihood of

the desired labeling by marginalizing over every possible output sequence that condenses

into that labeling. This is possible in part because of the way CTC models are structured:

the outputs are conditionally independent given the input. Given an input x and ground-

truth labeling y, the CTC objective function which we want to maximize is:

O(x, Y ) =
∑
π∈Y

p(π|x) (3.10)

where Y is the set of paths that condense to the labeling y. A variant of the forward-

backward algorithm specifically designed for CTC can compute both this objective func-

tion and the best labeling for a new input [38].

3.4.4 Model Architecture

The suggested model is going to be following the concept of Mozilla DeepSpeech [42],

because it is an end-to-end neural system that can be simply trained. We use a deep

recurrent neural network (RNN), which can be trained end-to-end using supervised learn-

ing. It extracts Mel-Frequency Cepstral Coefficients [49] as features and directly outputs

the transcription, without requiring the forced alignment on the input or any external

source of knowledge like a Grapheme to Phoneme (G2P) converter a neural network that

consists of six layers. The input layer contains m inputs, each of which corresponds to

m MFCC features extracted from a short audio signal. The second and third layers are

identical to the first . Concerning the first three layers, the nodes in the neighbouring

layers are fully connected and the ReLU (Rectifier Linear Unit) is used as an activation

function : ReLU(x) = max(0,x). The fourth layer is a recurrent neural network in this

case LSTM. The result is sent to the fifth layer having ReLU as the activation function.

The final layer of the model is also a non-recurrent layer which outputs standard logits

corresponding to predicted character probabilities of each time slice and character in the

alphabet. SoftMax activation function is further applied on this layer. The number of
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nodes in the output layer corresponds to the number of alphabets in the language for in-

stance with Arabic alphabets, the number of nodes in the output layer is 36 denoting


@-ø


,

where the output value of each node is proportional to the probability of the respective

character of the alphabet. Further, the Connectionist Temporal Classification (CTC) loss

function [38] is used to maximize the probability of the correct transcription. Finally, the

model is optimized using Adam’s optimization. Dropout is applied to all five layers with

the probability of 0.4 in order to prevent the neural network from overfitting. The ASR

architecture used in our experiments is illustrated in Figure 3.4.

Figure 3.4: Architecture of DeepSpeech [42]

The output is an acoustic model, mapping acoustic features to probabilities of al-

phabets. The language model is used to convert these probabilities into a sequence of

meaningful words. The language model is trained over our corpus’s transcripts , which

then assigns probabilities to valid Arabic words and phrases. Once a language model has

been learned from the training data, the trained language model gives valid sentences

a higher probability than invalid sentences. A 5-gram language model is trained using
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kenLM [43].

The Figure 3.5 shows the paths and components for training and use after the model

is developed. Features are extracted from the audio input and with this the model is

trained, based on the results reflected in WER or loss function the weights and biases

are adjusted to improve the model. For a working model, the decoder outputs results

reflected in audio and text.

Figure 3.5: Diagram of our Proposed Approach

3.5 Conclusion

This chapter reviewed surveys and journal papers about Automatic Speech Recognition

and mentioned most of the techniques related to it, and showed that the field of Automatic

Speech Recognition is broadly investigated for Modern Standard Arabic and dialectical

arabic. Therefore, this research adopts an approach based on machine learning to develop

a speech recognition model for Modern Standard Arabic.
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Chapter 4
Implementation and Experiment

4.1 Introduction

This chapter is carried out to train and test DeepSpeech model for the Arabic language

(MSA). The reason why we choose Deep Speech as the core toolkit is that deep learning

is the most popular algorithm in recent years. Deep Speech is already implemented by

Mozilla. The source code for DeepSpeech is available on Github (https://github.com/

mozilla/DeepSpeech/). It has a pre-trained model for Mandarin and English. But it

doesn’t have pre-trained Arabic model. This experiment uses our corpus as the main

corpus to train, and we will describe this corpus in section 4.3. The Mozilla Deep Speech

is implemented based on a standard deep speech algorithm.

Section 4.2 shows a description of the files required to set up the entire system.

Section 4.3 provides a description of how each portion of the corpus was processed to

match requirements.

Section 4.5 contains all the steps to process the experiment.

4.2 Preliminaries

In order to train the Deep Speech system, there are few files must be provided. Deep

Speech is implemented by Mozilla under a DeepSpeech folder. The system’s directory has

the following structure:
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Figure 4.1: The structure of DeepSpeech directory

The main script is DeepSpeech.py located in the project’s root directory. For its list

of command line options, you can find in flags.py, which contains all the options, like

dropout rate, learning rate and so on. The details are placed in the appendix.

util file contains all the script for preparing the experiment and evaluating the final

results. The following files are included in it:

• check characters.py: checking what characters are contained in the csv file.

• evaluate.py: evaluate the result after testing.

• gpu.py: check GPU usage.

• config.py: check the configuration.

• stm.py: calculate the running time.

• taskcluster.py: check the process.

• flags.py: contains all the flags.
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4.3 Data Collection and Processing

The first main task in speech recognition is data collection and processing. The speech

dataset used for training contains audio utterances and their corresponding transcriptions.

Speech dataset can be of reading, conversational, or spontaneous speech. To create a

read speech corpus, the following minimal steps must be done. 1) Prepare large text data

(sentences) that cover the majority of the target language’s vocabulary. 2) Record the

sentences spoken by a variety of speakers (native, fluent, various ages and genders) in

various environments (noise, clean, outdoor/indoor). A conversational speech corpus can

be created by recording and transcribing a speaker’s normal conversation on any topic.

Commonly, these raw recordings are referred to as uncleaned dataset. To prepare a clean

dataset, post processing is required. Steps in the post-processing process include preparing

the transcriptions of audio utterances, cleaning audio samples by removing too noisy,

repeated words, etc, and synchronization of audio and text transcriptions. The entire

process is time-consuming and costly (recording setup, incentives to speakers, hosting of

data, etc). Mozilla has a good open-source initiative to create a free speech corpus [12],

the Common Voice Corpus 9.0, has recorded speech data of 20217h covering 93 languages.

Common Voice Corpus 9.0 has over 2953h of recorded speech for the English language,

while it has only 139h for the Modern standard Arabic language out of which only 88h

is validated. In our work, we collected the dataset from Common Voice (CV)(cv-5.1 and

cv-6.1) speech corpus for training Arabic ASR. The summary of the corpora, total words,

unique words, total duration, total utterances, and average duration of each utterance is

listed in Table 4.1

Table 4.1: Detail of the Corpus

Dataset Total

words

Total

unique

words

Total

utterance

Average

duration

(sec)

CommonVoice (train) 166723 27925 29875 4

CommonVoice (dev) 8415 3505 1918 3.75

CommonVoice (test) 8270 3430 1911 3.4
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4.3.1 Preprocessing

All MP3 audio clips are converted into wave format, and have a mono audio channel with

a sample rate of 16,000 Hz and a depth of 16 bit for each value so that they can be read

by our DeepSpeech pipeline. Data was divided into three sets training, validation and

test. Diacritics are used to provide a phonetic guide i.e. to show the correct pronun-

ciation because the normal Arabic text does not provide enough information about it.

Because DeepSpeech is a character level system, adding these representations may have

an impact on the acoustic model’s performance. More alphabets signify more possibilities

of prediction. We decided to remove all existing diacritics from the dataset. We cleaned

the transcriptions by removing commas, punctuation, special characters, etc. Using shell

script. As shown in Figure 4.2.

Figure 4.2: Preprocessing CommonVoice Arabic text

4.3.2 Forced Aligning

To make it possible for the model to train on the data, it is necessary to align the

transcriptions of the audio file and save it as (comma-separated values) file to feed it to

the model, each of the CSV file rows contains three values the first column represents

54



Chapter 4: Implementation and Experiment

audio filename, the second represents audio file size and the third column represents the

respected text to each audio file.

All of what was mentioned above has been done and the resulted CSV file totaled at 29875

records represents the audio files as long as their transcription is all aligned together.

Figure 4.3 shows a preview of the dataset and each of its columns.

Figure 4.3: Aligned Dataset Preview

4.4 Operation Environment

The implementation of the proposed methodology is executed by adopting a variety of

tools and concepts and choosing the proper platform for developing the speech recognizer,

all of the tools are briefly described below.

4.4.1 Jupyter Notebook

The Jupyter Notebook is an open source web application known as a computational

notebook that allows researchers to create and share documents with live code, equations,

visualizations, and text. The name, Jupyter, stands for Julia (Ju), Python (Py), and R

combined. A Jupyter notebook can be executed locally or on a remote server (cloud).

Each document is composed of multiple cells, each of which contains script language or

55



Chapter 4: Implementation and Experiment

markdown code. This technology makes it easier to share and replicate scientific works

[65].

4.4.2 TensorFlow

TensorFlow is a large-scale machine learning system that works in a Heterogeneous envi-

ronments, It maps the nodes of a dataflow graph across multiple machines in a cluster, as

well as multiple computational devices within a single machine, such as multicore CPUs,

general-purpose GPUs, and custom-designed ASICs known as Tensor Processing Units

(TPUs). TensorFlow allows developers to try out new optimizations and training algo-

rithms. TensorFlow supports a wide range of applications, with a focus on training and

inference on deep neural networks. TensorFlow is used in production by several Google

services. It was released as an open-source project, and become widely used for machine

learning research [1].

4.4.3 Google Colaboratory (Colab)

Google Colaboratory also known as Colab, is a project aimed at disseminating machine

learning education and research. Colaboratory notebooks are based on Jupyter and func-

tion similarly to Google Docs objects in that they can be shared and users can work

together on the same notebook. Colaboratory makes available Python 2 and 3 runtimes

pre-configured with machine learning and artificial intelligence libraries like TensorFlow,

Matplotlib, and Keras.

Colab operates under Ubuntu 17.10 64 bits and it is composed of an Intel Xeon

processor (not specified) with two cores @2.3 GHz and 13 GB RAM. It is equipped

with an NVIDIA Tesla K80 (GK210 chipset), 12 GB RAM, 2496 CUDA cores @560 MHz

[22]. The proposed model is going to be computed using Colab which is free to use the

Jupyter notebook environment.

4.5 Experiment Step

First, the master branch of the DeepSpeech repository was cloned using the following

command :
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Figure 4.4: Cloning DeepSpeech Repository

Next, all the pre-requested softwares were installed on the machine, including tensor-

flow, python, and so on. Then we can build the Language Model (LM) by using Kenlm,

using vocabulary.txt, which contains all the textual data. The command is shown below:

Figure 4.5: Building Language Model

Finally, the machine can start training the data with the following command:

Figure 4.6: Model Training
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In this command, the batch size for training, validation and testing is 80,80,64. The

numbers of hidden layers are 512. In order to avoid overfitting, we also set the dropout

rate as 0.4. After finishing all the experiment steps, the Model begins to train. The

training and testing took approximately 6 hours. In the next section, we will show the

final results.

4.6 Results of Experiment

In order to evaluate the results, we use WER as the standard to evaluate. WER stands

for word error rate. This standard is computed by the formula below.

Word Error Rate = 100 ∗ Insertion+ Substitution+Delete

NumberofWords
(4.1)

The key for training is to make small modifications to the parameters to see if the

results are good or not. Each time, we use the training set and validation set to train the

model. Then the model will be tested by test set, and it will output the WER. The best

WER we got is 0.243 (24.3%), which is a low value. Figure 4.7 shows some examples of

the recognition.

Figure 4.7: Results
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Figure 4.8 presents WER/epoch

Figure 4.8: Evolution of WER

4.6.1 Comparison of Results

The table below 4.2 gives a comparison between our DeepSpeech model and some previous

works on Arabic ASR:

Table 4.2: Comparison between ASR systems for Modern Standard Arabic

Model Dataset WER CER

Safaya’s hubert-large-arabic-ft CommonVoice 17.68% 5.49%

Our DeepSpeech Arabic model CommonVoice 24.3% 17.6%

Bakheet’s wav2vec large xlsr53 CommonVoice and arabic speech

corpus

36% -

Othmane’s Wav2Vec2 XLSR53 CommonVoice 46.77% -

It’s clearly visible that our model reduced theWER by 11.7% compared to Bakheet’sWav2Vec

model. the safaya’s model trained on 2000h dataset and tested on CommonVoice dataset.

Thus, to achieve better results than safaya’s model we need a large dataset and a powerful

GPUs.

59



Chapter 4: Implementation and Experiment

4.7 Deployment

After we have trained and evaluated our model, we are ready to use it for inference where

spoken phrases, utterances are assessed by our trained model and a text transcription

provided. Some examples are shown in Figures 4.9, 4.10, 4.11.

Figure 4.9: Example 1

Figure 4.10: Example 2
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Figure 4.11: Example 3

4.8 Conclusion

This chapter covered the implementation of our proposed approach for this research. We

demonstrated some of the essential tools and their underlining technology and features

needed to apply the methodology of this research. Moreover, we presented the results by

implementing the suggested setup and configuration to fulfill the paramount goal of this

research which is using neural networks (end to end approach) to train ASR model for

the Modern Standard Arabic language.
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General conclusion

This research addressed the possibility of designing ASR system with end to end neural

network for the Modern Standard Arabic. We started with the collection of related data

and then went through the process of designing the represented dataset. A suitable

learning algorithm was chosen, and the structure of the model was built by training

the DeepSpeech model. And evaluating the produced results from the machine learning

model.

From the beginning of this research, there have been a lot of hurdles to overcome,

especially the two major steps (collecting a dataset and training the model). Processing

of the collected data were achieved, and training the model took time because of the

shortage of computation power.

We designed the first DeepSpeech model for Modern standard Arabic using Common-

Voice dataset, which will be very helpful for relevant future researches, and developing

Modern Standard Arabic recognizer to convert spoken speech to corresponding text form.

The results were evaluated to measure the performance of the proposed model. The

Google Colab platform was used for training and validation. The results showed that the

model has potentials in converting spoken modern standard Arabic to text format, the

model reached 24.3% in term of WER and 17.6% in term of CER.

This was our first experience in dealing with real world projects in the field of deep

learning, this allowed us to improve our knowledge and skills in this field.

We have more ideas, we plan to try in the future in order to improve the performance

of the model that we worked with, including increasing the dataset size by combining

more datasets. Preprocessing the audio to improve its quality is another development

also that would improve the overall performance of the model. While we did the inference
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the model predicted different transcripts for the same audio which could have resulted

from the quality of the various audio files passed to the model. A solution to this issue

would be to implement further preprocessing such as noise cancellation on the audio file

before passing them to the model for the transcript.

63



Bibliography

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-

mawat, S., Irving, G., Isard, M., et al. (2016). {TensorFlow}: A system for {Large-

Scale} machine learning. In 12th USENIX symposium on operating systems design and

implementation (OSDI 16), pages 265–283.

[2] Agarwal, A. and Zesch, T. (2019). German end-to-end speech recognition based on

deepspeech. In KONVENS.

[3] Ahmed, A., Hifny, Y., Shaalan, K., and Toral, S. (2019). End-to-end lexicon free ara-

bic speech recognition using recurrent neural networks. In Computational Linguistics,

Speech And Image Processing For Arabic Language, pages 231–248. World Scientific.

[4] Al-Anzi, F. S. and AbuZeina, D. (2017). The capacity of mel frequency cepstral

coefficients for speech recognition. International Journal of Computer and Information

Engineering, 11(10):1149–1153.

[5] AL I FA RG HA, L. (2012). Statistical and symbolic paradigms in arabic computa-

tional linguistics. Arabic language and linguistics, page 35.

[6] AlHanai, T., Hsu, W.-N., and Glass, J. (2016). Development of the mit asr system

for the 2016 arabic multi-genre broadcast challenge. In 2016 IEEE Spoken Language

Technology Workshop (SLT), pages 299–304. IEEE.

[7] Ali, A., Bell, P., Glass, J., Messaoui, Y., Mubarak, H., Renals, S., and Zhang, Y.

(2016). The mgb-2 challenge: Arabic multi-dialect broadcast media recognition. In

2016 IEEE Spoken Language Technology Workshop (SLT), pages 279–284. IEEE.

64



Bibliography

[8] Ali, A., Vogel, S., and Renals, S. (2017). Speech recognition challenge in the wild: Ara-

bic mgb-3. In 2017 IEEE Automatic Speech Recognition and Understanding Workshop

(ASRU), pages 316–322. IEEE.

[9] Ali, A. M. A. M. (2018). Multi-dialect arabic broadcast speech recognition.

[10] ALI, M. B. (2021). Speech recognition on common voice arabic. https://

huggingface.co/mohamed1ai/wav2vec2-large-xls-ar. Accessed 07 June 2022.

[11] Alqrainy, S. and Rashaideh, H. (n.d). Toward developing a universal and standard

system for transliteration and transcription arabic language.

[12] Ardila, R., Branson, M., Davis, K., Henretty, M., Kohler, M., Meyer, J., Morais,

R., Saunders, L., Tyers, F. M., and Weber, G. (2019). Common voice: A massively-

multilingual speech corpus. arXiv preprint arXiv:1912.06670.

[13] Bakheet, M. (2021). Speech recognition on common voice arabic. https://

huggingface.co/mohammed/wav2vec2-large-xlsr-arabic. Accessed 07 June 2022.

[14] Bengio, Y. (1993). A connectionist approach to speech recognition. In Advances in

Pattern Recognition Systems Using Neural Network Technologies, pages 3–23. World

Scientific.

[15] Betti, M. J. and Ulaiwi, W. A. (2018). Stress in english and arabic: A contrastive

study. English Language and Literature Studies, 8(1):83–91.

[16] Biswal, A. (2022). Recurrent neural networks (rnn) tutorial: Types, examples, lstm

and more. https://www.simplilearn.com/tutorials/deep-learning-tutorial/

rnn. Accessed: 23 April 2022.
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Appendix A

This appendix reports the whole flags file, which contains all the parameters for Deep

Speech to set up.

1 f . DEFINE string ( ’ t r a i n f i l e s ’ , ’ ’ , ’ comma separated l i s t

o f f i l e s s p e c i f y i n g the datase t used f o r t r a i n i n g . Mult ip l e

f i l e s w i l l get merged . I f empty , t r a i n i n g w i l l not be run

. ’ )

2 f . DEFINE string ( ’ d e v f i l e s ’ , ’ ’ , ’ comma separated

3 l i s t o f f i l e s s p e c i f y i n g the datase t used f o r

4 va l i d a t i o n . Mult ip l e f i l e s w i l l get merged . I f

5 empty , v a l i d a t i o n w i l l not be run . ’ )

6

7 f . DEFINE string ( ’ t e s t f i l e s ’ , ’ ’ , ’ comma separated

8 l i s t o f f i l e s s p e c i f y i n g the datase t used f o r

9 t e s t i n g . Mult ip l e f i l e s w i l l get merged . I f empty

10 , the model w i l l not be t e s t ed . )

11 f . DEFINE string ( ’ f e a tu r e c a ch e ’ , ’ ’ , ’ path where

12 cached f e a t u r e s ex t rac t ed from −− t r a i n f i l e s w i l l

13 be saved . I f empty , caching w i l l be done in

14 memory and no f i l e s w i l l be wr i t t en . )

15 f . DEFINE integer ( ’ f e a t u r e w i n l e n ’ , 32 , ’ f e a t u r e

16 ex t r a c t i on audio window length in m i l l i s e c ond s ’ )

17 f . DEFINE integer ( ’ f e a t u r e w in s t ep ’ , 20 , ’ f e a t u r e

18 ex t r a c t i on window step l ength in m i l l i s e c ond s ’ )

73



Appendix A

1 f . DEFINE integer ( ’ aud io sample ra t e ’ , 16000 , ’ sample ra t e

va lue expected by model ’ )

2

3 # Global Constants

4 # ================

5 f . DEFINE integer ( ’ epochs ’ , 75 , ’how many epochs ( complete

runs through the t r a i n f i l e s ) to t r a i n f o r ’ )

6 f . DEFINE float ( ’ d ropout ra te ’ , 0 .05 , ’ dropout ra t e f o r

f eed forward l a y e r s ’ )

7 f . DEFINE float ( ’ dropout rate2 ’ , −1.0 , ’ dropout ra t e f o r

l a y e r 2 − d e f a u l t s to dropout ra te ’ )

8 f . DEFINE float ( ’ dropout rate3 ’ , −1.0 , ’ dropout ra t e f o r l a y e r

3 − d e f a u l t s to dropout ra te ’ )

9

10 f . DEFINE float ( ’ dropout rate4 ’ , 0 . 0 , ’ dropout ra t e f o r

l a y e r 4 − d e f a u l t s to 0 .0 ’ )

11 f . DEFINE float ( ’ d ropout rate5 ’ , 0 . 0 , ’ dropout ra t e f o r

l a y e r 5 − d e f a u l t s to 0 .0 ’ )

12 f . DEFINE float ( ’ d ropout rate6 ’ , −1.0 , ’ dropout ra t e f o r

l a y e r 6 − d e f a u l t s to dropout ra te ’ )

13 f . DEFINE float ( ’ r e l u c l i p ’ , 20 .0 , ’ ReLU c l i p p i n g value

f o r non − r e cu r r en t l a y e r s ’ )

14 # Adam opt imize r parameters

15 f . DEFINE float ( ’ beta1 ’ , 0 . 9 , ’ beta 1 parameter o f Adam

opt imize r ’ )

16 f . DEFINE float ( ’ beta2 ’ , 0 .999 , ’ beta 2 parameter o f

17 Adam opt imize r ’ )

18 f . DEFINE float ( ’ e p s i l o n ’ , 1e −8 , ’ e p s i l o n parameter o f

Adam opt imize r ’ )

19 f . DEFINE float ( ’ l e a r n i n g r a t e ’ , 0 .001 , ’ l e a rn i ng ra t e o f Adam

opt imize r ’ )
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1 # Batch s i z e s

2 f . DEFINE integer ( ’ t r a i n b a t c h s i z e ’ , 1 , ’ number o f e l ements

in a t r a i n i n g batch ’ )

3 f . DEFINE integer ( ’ d ev ba t ch s i z e ’ , 1 , ’ number o f e lements

in a va l i d a t i o n batch ’ )

4 f . DEFINE integer ( ’ t e s t b a t c h s i z e ’ , 1 , ’ number o f e lements

in a t e s t batch ’ )

5 f . DEFINE integer ( ’ e xpo r t b a t ch s i z e ’ , 1 , ’ number o f

e lements per batch on the exported graph ’ )

6 # Performance

7 f . DEFINE integer ( ’ i n t e r o p p a r a l l e l i sm th r e a d s ’ , 0 , ’ number o f

i n t e r−op pa r a l l e l i sm threads − s e e t f . Conf igProto f o r more

d e t a i l s . USE OF THIS FLAG IS UNSUPPORTED’ )

8 f . DEFINE integer ( ’ i n t r a op pa r a l l e l i sm th r e ad s ’ , 0 , ’ number o f

in t ra−op pa r a l l e l i sm threads − s e e t f . Conf igProto f o r more

d e t a i l s . USE OF THIS FLAG IS UNSUPPORTED’ )

9 f . DEFINE boolean ( ’ use a l low growth ’ , False , ’ use Allow Growth

f l a g which w i l l a l l o c a t e only r equ i r ed amount o f GPU memory

and prevent f u l l a l l o c a t i o n o f a v a i l a b l e GPU memory ’ )

10 f . DEFINE boolean ( ’ load cudnn ’ , False , ’ Sp e c i f y i ng t h i s f l a g

a l l ows one to convert a CuDNN RNN checkpoint to a checkpoint

capable o f running on a CPU graph . ’ )

11 f . DEFINE boolean ( ’ tra in cudnn ’ , False , ’ use CuDNN RNN backend

f o r t r a i n i n g on GPU. Note that checkpo int s c r ea ted with t h i s

f l a g can only be used with CuDNN RNN, i . e . f i n e tuning on a

CPU dev i ce w i l l not work ’ ) f . DEFINE boolean ( ’

automat i c mixed prec i s i on ’ , False , ’ whether to a l low

automatic mixed p r e c i s i o n t r a i n i n g . USE OF THIS FLAG IS

UNSUPPORTED. Checkpoints c r ea ted with automatic mixed

p r e c i s i o n t r a i n i n g w i l l not be usab le without mixed p r e c i s i o n

. ’ )
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1 # Sample l im i t s

2 # Sample l im i t s

3 f . DEFINE integer ( ’ l im i t t r a i n ’ , 0 , ’maximum number o f e lements

to use from t r a i n s e t − 0 means no l im i t ’ )

4 f . DEFINE integer ( ’ l im i t dev ’ , 0 , ’maximum number o f e lements to

use from va l i d a t i o n set− 0 means no l im i t ’ )

5 f . DEFINE integer ( ’ l im i t t e s t ’ , 0 , ’maximum number o f

e lements to use from t e s t set− 0 means no l im i t ’ )

6 # Checkpoint ing

7 f . DEFINE string ( ’ checkpo in t d i r ’ , ’ ’ , ’ d i r e c t o r y from which

checkpo int s are loaded and to which they are saved − d e f a u l t s

to d i r e c t o r y ”deepspeech / checkpo int s ” with in user \ ’ s data

home s p e c i f i e d by the XDG Base Di rec to ry Sp e c i f i c a t i o n ’ )

8 f . DEFINE string ( ’ l o ad che ckpo in t d i r ’ , ’ ’ , ’ d i r e c t o r y in

which checkpo int s are s to r ed − d e f a u l t s to d i r e c t o r y ”

deepspeech / checkpo int s ” with in user \ ’ s data home

s p e c i f i e d by the XDG Base Di rec to ry Sp e c i f i c a t i o n ’ )

9 f . DEFINE string ( ’ s ave che ckpo in t d i r ’ , ’ ’ , ’ d i r e c t o r y to

which checkpo int s are saved − d e f a u l t s to d i r e c t o r y ”

deepspeech / checkpo int s ” with in user \ ’ s data home

s p e c i f i e d by the XDG Base Di rec to ry Sp e c i f i c a t i o n ’ )

10 f . DEFINE integer ( ’ checkpo in t s e c s ’ , 600 , ’ checkpo int sav ing

i n t e r v a l in seconds ’ )

11 f . DEFINE integer ( ’ max to keep ’ , 5 , ’ number o f checkpo int

f i l e s to keep − de f au l t va lue i s 5 ’ )

12 f . DEFINE string ( ’ l o ad t r a i n ’ , ’ auto ’ , ’ what checkpoint to

load be f o r e s t a r t i n g the t r a i n i n g proce s s . ” l a s t ” f o r

l oad ing most r e c en t epoch checkpoint , ” bes t ” f o r l oad ing

best v a l i d a t i o n l o s s checkpoint , ” i n i t ” f o r i n i t i a l i z i n g

a new checkpoint , ” auto” f o r t ry ing s e v e r a l opt ions . ’ )
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1 f . DEFINE string ( ’ l oad eva lua te ’ , ’ auto ’ , ’ what checkpoint

to load f o r eva lua t i on ta sk s ( t e s t epochs , model export ,

s i n g l e f i l e i n f e r enc e , e t c ) . ” l a s t ” f o r l oad ing most

r e c en t epoch checkpoint , ” bes t ” f o r l oad ing best

v a l i d a t i o n l o s s checkpoint , ” auto” f o r t ry ing s e v e r a l

opt ions . ’ )

2

3 # Trans fe r Learning

4

5 f . DEFINE integer ( ’ d r op sou r c e l ay e r s ’ , 0 , ’ s i n g l e i n t e g e r

f o r how many l a y e r s to drop from source model ( to drop

j u s t output == 1 , drop penult imate and output ==2, e t c ) ’ )

6

7 # Exporting

8

9 f . DEFINE string ( ’ expor t d i r ’ , ’ ’ , ’ d i r e c t o r y in which

exported models are s to r ed − i f omitted , the model won\ ’ t

get exported ’ )

10 f . DEFINE boolean ( ’ remove export ’ , False , ’ whether to remove

o ld exported models ’ )

11 f . DEFINE boolean ( ’ e x p o r t t f l i t e ’ , False , ’ export a graph

ready f o r TF Li t e engine ’ )

12 f . DEFINE integer ( ’ n s teps ’ , 16 , ’how many t imes teps to

p roce s s at once by the export graph , h igher va lue s mean

more latency ’ )

13 f . DEFINE boolean ( ’ expor t z ip ’ , False , ’ export a TFLite model

and package with LM and i n f o . json ’ )

14 f . DEFINE string ( ’ expo r t f i l e name ’ , ’ output graph ’ , ’name

f o r the exported model f i l e name ’ )

15 f . DEFINE integer ( ’ export beam width ’ , 500 , ’ d e f au l t beam

width to embed in to exported graph ’ )
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1

2 # Model metadata

3 f . DEFINE string ( ’ expor t author id ’ , ’ author ’ , ’ author o f the

exported model . GitHub user or o r gan i z a t i on name used to

unique ly i d e n t i f y the author o f t h i s model ’ )

4 f . DEFINE string ( ’ export model name ’ , ’model ’ , ’name o f the

exported model . Must not conta in forward s l a s h e s . ’ )

5 f . DEFINE string ( ’ expor t mode l ve r s ion ’ , ’ 0 . 0 . 1 ’ , ’ semantic

v e r s i on o f the exported model . See https : // semver . org / .

This i s f u l l y c on t r o l l e d by you as author o f the model

and has no r equ i r ed connect ion with DeepSpeech ve r s i ons ’ )

6 de f s t r v a l e q u a l s h e l p (name , va l d e s c ) :

7 f . DEFINE string (name , ’<{}> ’. format ( va l d e s c ) , v a l d e s c )

8 s t r v a l e q u a l s h e l p ( ’ e xpo r t c on t a c t i n f o ’ , ’ pub l i c contact

in fo rmat ion o f the author . Can be an emai l address , or a

l i n k to a contact form , i s s u e t racker , or d i s c u s s i o n

forum . Must prov ide a way to reach the model authors ’ )

9 s t r v a l e q u a l s h e l p ( ’ e xpo r t l i c e n s e ’ , ’SPDX i d e n t i f i e r o f

the l i c e n s e o f the exported model . See https : // spdx . org /

l i c e n s e s / . I f the l i c e n s e does not have an SPDX

i d e n t i f i e r , use the l i c e n s e name . ’ )

10 s t r v a l e q u a l s h e l p ( ’ export language ’ , ’ language the model

was t ra in ed on − IETF BCP 47 language tag i n c l ud ing at

l e a s t language , s c r i p t and reg i on subtags . E . g . ”en−Latn−

UK” or ”de−Latn−DE” or ”cmn−Hans−CN” . Inc lude as much

i n f o as you can without l o s s o f p r e c i s i o n . For example ,

i f a model i s t r a in ed on Sco t t i s h Engl ish , i n c lude the

var i an t subtag : ”en−Latn−GB−Scot land ” . ’ )

11 s t r v a l e q u a l s h e l p ( ’ expor t min ds ve r s i on ’ , ’minimum

DeepSpeech ve r s i on ( i n c l u s i v e ) the exported model i s

compatible with ’ )

78



Appendix A

1 s t r v a l e q u a l s h e l p ( ’ export max ds vers ion ’ , ’maximum

DeepSpeech ve r s i on ( i n c l u s i v e ) the exported model i s

compatible with ’ )

2 s t r v a l e q u a l s h e l p ( ’ e xpo r t d e s c r i p t i on ’ , ’ Freeform

de s c r i p t i o n o f the model be ing exported . Markdown

accepted . You can a l s o l eave t h i s f l a g unchanged and ed i t

the generated .md f i l e d i r e c t l y . Use fu l th ing s to

d e s c r i b e are demographic and acou s t i c c h a r a c t e r i s t i c s o f

the data used to t r a i n the model , any a r c h i t e c t u r a l

changes , names o f pub l i c da ta s e t s that were used when

app l i c ab l e , hyperparameters used f o r t r a in ing , eva lua t i on

r e s u l t s on standard benchmark dataset s , e t c . ’ )

3

4 # Reporting

5 f . DEFINE integer ( ’ l o g l e v e l ’ , 1 , ’ l og l e v e l f o r conso l e

l o g s − 0 : DEBUG, 1 : INFO, 2 : WARN, 3 : ERROR’ )

6 f . DEFINE boolean ( ’ show progressbar ’ , True , ’Show prog r e s s f o r

t r a in ing , v a l i d a t i o n and t e s t i n g p r o c e s s e s . Log l e v e l should

be > 0 . ’ )

7 f . DEFINE boolean ( ’ log placement ’ , False , ’ whether to l og dev i ce

placement o f the ope ra to r s to the conso le ’ )

8 f . DEFINE integer ( ’ r eport count ’ , 5 , ’ number o f phrases f o r each

o f bes t WER, median WER and worst WER to pr in t out during a

WER report ’ )

9 f . DEFINE string ( ’ summary dir ’ , ’ ’ , ’ t a r g e t d i r e c t o r y f o r

TensorBoard summaries − d e f a u l t s to d i r e c t o r y ”deepspeech /

summaries” with in user \ ’ s data home s p e c i f i e d by the XDG Base

Di rec to ry Sp e c i f i c a t i o n ’ )

10 f . DEFINE string ( ’ t e s t o u t p u t f i l e ’ , ’ ’ , ’ path to a f i l e to save

a l l s r c /decoded/ d i s t anc e / l o s s tup l e s generated during a t e s t

epoch ’ )
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1

2 # Geometry

3 f . DEFINE integer ( ’ n hidden ’ , 2048 , ’ l a y e r width to use when

i n i t i a l i s i n g l aye r s ’ )

4 # I n i t i a l i z a t i o n

5 f . DEFINE integer ( ’ random seed ’ , 4568 , ’ d e f au l t random seed that

i s used to i n i t i a l i z e va r i ab l e s ’ )

6 # Early Stopping

7 f . DEFINE boolean ( ’ e a r l y s t op ’ , False , ’ Enable e a r l y stopping

mechanism over v a l i d a t i o n datase t . I f v a l i d a t i o n i s not being

run , e a r l y stopping i s d i s ab l ed . ’ )

8 f . DEFINE integer ( ’ e s epochs ’ , 25 , ’Number o f epochs with no

improvement a f t e r which t r a i n i n g w i l l be stopped . Loss i s not

s to r ed in the checkpoint so when checkpo int i s r ev ived i t

s t a r t s the l o s s c a l c u l a t i o n from s t a r t at that point ’ )

9 f . DEFINE float ( ’ e s min de l ta ’ , 0 . 05 , ’Minimum change in l o s s to

qu a l i f y as an improvement . This va lue w i l l a l s o be used in

Reduce l e a rn i ng ra t e on plateau ’ )

10 # Reduce l e a rn i ng ra t e on p lateau

11 f . DEFINE boolean ( ’ r educ e l r on p l a t e au ’ , False , ’ Enable reduc ing

the l e a rn i ng ra t e i f a p lateau i s reached . This i s the case

i f the v a l i d a t i o n l o s s did not improve f o r some epochs . ’ )

12 f . DEFINE integer ( ’ p lateau epochs ’ , 10 , ’Number o f epochs to

con s id e r f o r RLROP. Has to be sma l l e r than es epochs from

ea r l y stopping ’ )

13 f . DEFINE float ( ’ p l a t eau reduc t i on ’ , 0 . 1 , ’ Mu l t i p l i c a t i v e f a c t o r

to apply to the cur r ent l e a rn i ng ra t e i f a p lateau has

occurred . ’ )

14 f . DEFINE boolean ( ’ f o r c e i n i t i a l i z e l e a r n i n g r a t e ’ , False , ’ Force

re− i n i t i a l i z a t i o n o f l e a rn i ng ra t e which was p r ev i ou s l y

reduced . ’ )

80



Appendix A

1 # Decoder

2 f . DEFINE boolean ( ’ utf8 ’ , False , ’ enable UTF−8 mode . When t h i s i s

used the model outputs UTF−8 sequences d i r e c t l y ra the r than

us ing an alphabet mapping . ’ )

3 f . DEFINE string ( ’ a lphabe t con f i g pa th ’ , ’ data/ alphabet . txt ’ , ’

path to the c on f i gu r a t i on f i l e s p e c i f y i n g the alphabet used

by the network . See the comment in data/ alphabet . txt f o r a

d e s c r i p t i o n o f the format . ’ )

4 f . DEFINE string ( ’ s co re r path ’ , ’ data/lm/kenlm . sco re r ’ , ’ path

to the ex t e rna l s c o r e r f i l e c r ea ted with data/lm/

generate package . py ’ )

5 f . DEFINE alias ( ’ s co re r ’ , ’ s co re r path ’ )

6 f . DEFINE integer ( ’ beam width ’ , 1024 , ’beam width used in the

CTC decoder when bu i l d i ng candidate t r an s c r i p t i o n s ’ )

7 f . DEFINE float ( ’ lm alpha ’ , 0 .931289039105002 , ’ the alpha

hyperparameter o f the CTC decoder . Language Model weight

. ’ )

8 f . DEFINE float ( ’ lm beta ’ , 1 .1834137581510284 , ’ the beta

hyperparameter o f the CTC decoder . Word i n s e r t i o n weight

. ’ )

9 f . DEFINE float ( ’ cu to f f p rob ’ , 1 . 0 , ’ only con s id e r cha ra c t e r s

u n t i l t h i s p r obab i l i t y mass i s reached . 1 . 0 = d i s ab l ed

. ’ )

10 f . DEFINE integer ( ’ cu t o f f t op n ’ , 300 , ’ only proce s s t h i s

number o f cha ra c t e r s so r t ed by p r obab i l i t y mass f o r each

time step . I f b i gge r than alphabet s i z e , d i s ab l ed . ’ )

11

12 # In f e r en c e mode

13 f . DEFINE string ( ’ o n e s ho t i n f e r ’ , ’ ’ , ’ one−shot i n f e r e n c e mode :

s p e c i f y a wav f i l e and the s c r i p t w i l l load the checkpoint

and perform i n f e r e n c e on i t . ’ )

81


	Table of content
	List of Figures
	List of Tables
	List of Equations
	Abbreviations list
	General Introduction 
	Arabic Language Background
	Introduction
	Arabic Script
	Classical Arabic
	Modern Standard Arabic
	Arabic Phonology 
	Conclusion

	Automatic Speech Recognition Overview 
	Introduction
	ASR Architecture
	Front-end Feature Extraction
	Acoustic Modeling 
	Neural Network Acoustic Model

	Language modeling
	Evaluating a Language Model

	Decoding
	Evaluation
	Classification of Speech Recognition System
	Types of Speech Recognition System Based on Utterances
	Types of Speech Recognition System Based on Speaker Model
	Types of Speech Recognition Based on Vocabulary

	ASR Tools
	API Services
	Frameworks

	Conclusion

	A New Neural Network for Automatic ASR
	Introduction
	 Related works
	General ASR
	Automatic Arabic Speech Recognition 

	Arabic Speech Datasets for ASR
	Proposed Approach
	Basic Structure of RNN
	LSTM
	Connectionist Temporal Classification
	Model Architecture

	Conclusion

	Implementation and Experiment
	Introduction
	Preliminaries
	Data Collection and Processing
	Preprocessing
	Forced Aligning

	Operation Environment
	Jupyter Notebook
	TensorFlow
	Google Colaboratory (Colab) 

	Experiment Step
	Results of Experiment
	Comparison of Results

	Deployment
	Conclusion

	General conclusion
	Bibliography
	Appendix A

