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General Introduction

The discovery of X-ray diffraction from crystals, in 1912, by Max von Laue and, in
1913, by W.L. Bragg and W.H. Bragg was a truly important event in the history of
science. Since then, the development of this branch has particularly accelerated in
recent decades, thanks to several factors : the development of theoretical work on
the structure of matter, and the huge evolution of sources for X-ray radiation and
neutrons, as well as the development of new generations of radiation detectors. It is
now considered as one of the most powerful and flexible analytical technique for the
identification and the quantitative determination of the crystalline phases of solids.
X-ray powder diffraction is a more powerful, efficient, easy-to-use, inexpensive and
non-destructive method of analyzing crystal structures. [cite]

The Rietveld method was proposed in 1969 as best suited for neutron powder
techniques, born from the simple idea of refining crystal structure together with
parameters describing the diffraction profile employing directly the profile intensities,
in particular, refining nuclear and magnetic structures [cite]. It was later extended
to X-ray powder diagrams, and used for different kinds of analyses. It has been one
of the most innovative methods for studying materials from powder diffraction data,
and it is still widely applied. It has given a great impulse to the process of crystal
structure solution by powder diffraction data, expanding the fields of application
of powder diffraction, which, up to the end of the 1970s, was primarily used for
qualitative and semiquantitative analysis. Powder diffraction without the Rietveld
method would have been much less popular.

In this work we focus on the following objectives:

1. To become familiar with the Rietveld refinement.

2. To improve our skills in the field of crystallographic software.

3. Testing of some samples with different forms : powder contained one phase,
powder contained three phases, and thin film contains two phases.

In order to achieve these aims we suggest to subdivide this dissertation into three
chapters:

1. The first chapter presents general information on X-ray diffraction, powder
samples and some features that affect the X-ray diffraction phenomena.

2. The second chapter is devoted to the theoretical study of the diffraction dia-
gram using the Rietveld method, where we try to expose in some detail the
theoretical aspects of various parameters during the Rietveld refinement pro-
cess.

1
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3. The third chapter presents a description of the Fullprfo program, and at the
same time it brings together the results of the refinement of X-ray diffraction
patterns for different compounds: Y2O3 powder, ZnO–Al2O3 –CaF2 powder,
and Hematite-proto with pure Hematite thin film.

Finally, we shall conclude this dissertation with a general conclusion.
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Chapter 1

Basic concepts of X-ray diffraction

1.1 Introduction
Throughout modern history, scientists have been interested in observing the atoms
and molecules of materials, and aimed to determine the crystal structure of these
materials. They have instrumented a new eye that can allow them to observe what
their own eyes cannot, with the help of a source of rays that can get into atomic
level (small wavelength) and a suitable detector. These rays are known today as
X-rays, which we will briefly talk about in this chapter.

1.2 Nature of X-rays
X-rays are of an electromagnetic nature with a wavelength from 0.1 to 100 Å, which
are located between 𝛾-rays and ultraviolet rays. We usually tend to use the wave-
length range between 0.5 to 2.5 Å in crystallography because this is the order of the
smallest interatomic distance observed [1].

Figure 1.1: Schematic of transversal electromagnetic wave and the spectrum of
electromagnetic waves.

3



CHAPTER 1. BASIC CONCEPTS OF X-RAY DIFFRACTION

1.3 Production of X-rays

We can generate X-rays using two different methods. The first is by bombarding a
metal with high energy electrons, see Figure 1.2. This method is commonly linked
to a device called X-ray tube, and is widely used in any size laboratories. However,
X-ray tubes have low efficiency as the target metal must be continuously cooled
because of the excessive heat produced from high energy electrons that collide into
it. Furthermore, the brightness of these X-ray tubes is limited by the thermal
properties of the metal target material [1, 2].

Figure 1.2: Schematic of an X-ray tube.

The second method is of a high brightness for the lake of heat transformation
in the sealed coven known as the synchrotron, where a high energy electrons are
accelerated inside a circular orbit, thus emitting electromagnetic radiations. The
X-ray brightness on this type of source is only limited by the flux of electrons in
the high energy beam. Sadly, the cost of building and maintaining a synchrotron
is so high for any regular laboratory which limits the number of available facilities
available for a synchrotron [1, 2].

4
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Figure 1.3: Schematic of a synchrotron.

1.4 Fundamentals of diffraction
1.4.1 Diffraction processes
In the phenomenon of diffraction, we should take into consideration these different
processes [2, 3, 4]:

• Elastic scattering, which will produce beams with the same wavelengths as
the incident beams, which in turn means it conserves the energy of photons
emitted.

• Non-elastic scattering, which will produce beams with increased wave-
lengths compared to the incident beams, due to the loss of photons’ energy
when it collapses with core-electron.

• Absorption of X-rays. When X-rays penetrate the matter they are partially
transmitted and partially absorbed. Thus, when an X-ray beam travels the
infinitesimal distance, dx, its intensity is reduced by the infinitesimal fraction
𝐼/𝐼 .

1.4.2 Diffraction approximations
The interaction of X-rays with a crystal is complex and multifaceted, which lead us
to two different approximations: kinematic and dynamic, [1, 2, 3, 5].

Kinematic approximation

This one takes two assumptions. The first is that we consider that the amplitude
of the incident wave to be constant, and the second one is that the wave will only

5
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be scattered once by an atom, and is not allowed to be scattered again by another
atom. Only by respecting these two assumptions that we can relatively explain and
describe the phenomena in a relatively easy way.

It also requires respecting these postulates:

• A crystal consists of individual mosaic blocks which are slightly misaligned
with respect to one another.

• The size of the crystallites is small.

• The misalignment of the crystallites is large enough.

This theory does not take into account wave interferences inside the crystal.

Dynamic approximation

This theory takes into consideration the interaction of all electromagnetic waves
inside the crystal and does not apply any restraints , in order to calculate the
intensities of these waves. The mathematical discussion of this approximation is too
large to cover in this dissertation.

Difference between the two approximations

The kinematic approximation does not usually give precise results when applied to
near perfect crystals or in the presence of multiple interferences inside the crystal.
The dynamic approximation will correct the results from the kinematic approxima-
tion.

1.4.3 X-ray scattering by an electron

An oscillating electric field is produced from the incident wave that exerts a force
on the electric-charge (electron) forcing the electron to oscillate with the same fre-
quency as the electric-field component of the electromagnetic wave. The oscillating
electron will vibrate with the varying amplitude of the electric field vector, and emit
electromagnetic radiation, which spreads in all directions (X-ray radiation), and it
has the same wavelength and frequency as the primary incident wave.

The electron produces a spherical elastically scattered wave. Thus, the scattering
of X-rays by a single electron yields an identical scattered intensity in every direction
[1, 3, 5].

6



CHAPTER 1. BASIC CONCEPTS OF X-RAY DIFFRACTION

Figure 1.4: X-ray scattering by an electron.

1.4.4 Scattering by an atom
We now consider Bohr’s model for an atom instead of a stationary electron. An
atom is made up of a positively charged nucleus surrounded by a cloud of electrons.
The scattered waves from the electrons in the atom combine, so that the scattering
effect of an atom may be regarded as essentially that of a point source of scattered
X-rays. The scattering intensity is dependent on the number of electrons present in
the atom’s orbits, but this time the electrons are not stationary and are distributed
throughout the volume of the atom, and the intensity varies with direction. In
treating the geometry of diffraction we consider the atom as the scattering source
[1, 3].

Figure 1.5: X-ray scattering by an atom.

7
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1.4.5 Scattering by a lattice of atoms
A straight row of regularly spaced atoms constitutes a linear lattice. Let us consider
that a parallel beam of X-rays meets such a row of atoms. A destructive and
constructive interference will arise between the scattered X-ray waves from the atoms.
The atoms will become a source of spherically scattered waves of the same frequency
and wavelength. If we consider the scattering as a pair of neighbouring atoms
for that the interatomic distance and the wavelength of X-ray define the geometry
of diffraction effects, we can say that the scattering from the more distant atoms
in the row merely contributes to the scattered beam depicted, which will lead to
us to have all points of intersection of the two sets of concentric arcs are points
at which the crests of the waves from both atoms coincide and their amplitude
add (constructive interference) and a diffraction maximum, at points between the
intersections the waves are more or less out of phase and lead to various degrees of
destructive interference or extinction. Thus, diffraction peaks occur only at specific
points, which establish a one-dimensional lattice in the diffraction space [1, 3, 6].

Figure 1.6: X-ray scattering by a lattice.

1.4.6 Laue equations
These equations represent the relationship between the directions of the incident
and diffracted X-ray waves. We can observe a sharp diffraction peak only when
these equations are satisfied simultaneously which are:

⎧{{
⎨{{⎩

𝑎(cos 𝜃1 − 𝜎1) = ℎ𝜆

𝑏(cos 𝜃2 − 𝜎2) = 𝑘𝜆

𝑐(cos 𝜃3 − 𝜎3) = 𝑙𝜆

(1.1)

8
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where:

𝑎, 𝑏, 𝑐: the dimensions of the unit cell.
𝜃1−3 and 𝜎1−3: angles of incident and diffracted X-ray waves.
ℎ, 𝑘, 𝑙: plane indices.

𝜆: wavelength of the wave (X-ray).

Figure 1.7: Graphical illustration of Laue’s equations.

1.4.7 Bragg’s law

The law formulated by W.H. Bragg and W.L. Bragg establishes certain relationships
among the diffraction angle (Bragg angle), wavelength, and interplanar spacing.
Bragg’s law indicates that diffraction from a crystalline sample can be explained in a
simple way by using a simple example of mirror reflection of the incident X-ray beam
from a series of crystallographic planes. All planes with identical triplets of Miller
indices are parallel to one another, and they have the same distance from each other.
Thus, each plane may be considered as an independent scattering surface. The set is
periodic in the direction perpendicular to the planes and the repeat distance in this
direction is equal to the interplanar distance. The Bragg’s law allows us to establish
a specific angle that allows us a diffraction to occur from a set of equally spaced
objects is noted as follows [1, 3, 6]:

2𝑑ℎ𝑘𝑙 sin 𝜃 = 𝑛𝜆 (1.2)

9
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Figure 1.8: Geometrical figure of Bragg’s law.

1.4.8 Ewald’s sphere

The best visual representation of the diffraction phenomena has been introduced by
P.P. Ewald. The Ewald sphere was introduced as a sphere centred at 𝑂, the origin
of the direct and diffracted wave vectors. He considered an incident wave with a
certain propagation vector 𝑘0, and a wavelength 𝜆, and if we select the length of 𝑘0
as the inverse of the wavelength then the entire wave is fully characterized, and 𝑘0
is its wavevector.

The wavelength remains constant when the primary wave is scattered elastically.
Thus, the scattered wave is characterized by a different wavevector, 𝑘1, which has
the same length as 𝑘0, see Figure 1.4.8. The angle between 𝑘0 and 𝑘1 is 2𝜃. We
now overlap these two wavevectors with a reciprocal lattice such that the end of
𝑘0coincides with the origin of the lattice. As shown by Ewald, when 𝑘1’s end coin-
cides with a point in the reciprocal lattice a diffraction in the direction of 𝑘1 occurs.
Considering that 𝑘0 and 𝑘1 have identical lengths regardless of the direction of 𝑘1,
their ends are equidistant from a common point, and therefore, all possible orienta-
tions of 𝑘1 delineate a sphere in three dimensions. This sphere is called the Ewald’s
sphere. Obviously, the radius of the Ewald’s sphere is the same as the length of 𝑘0.
In other words, it is equal to 1/𝜆 [1, 3].

The Ewald’s sphere and the reciprocal lattice are essential tools in the visualiza-
tion of the three-dimensional diffraction patterns from single crystals. They are also
invaluable in the understanding of the geometry of diffraction from polycrystalline
specimens.

10
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Figure 1.9: Ewald’s sphere superposition on the reciprocal space (2D).

1.5 Powder diffraction

Powder diffraction suffered from so much limitation, and it did not draw much
attention in the early years of its appearance due to the lack of experimental tools.
But with technological development it has become the cornerstone of truly materials’
characterization technique. Crystallographers used this technique for many decades
with outstanding success, which allowed us to have an accurate information about
the structure of materials. This information is only limited by the nature and energy
of the available radiation, resolution of the instrument, and the physical and chemical
conditions of the specimen. The large amount of information that this technique can
provide made it a major source of collecting data with X-rays for crystallographic
analyses [1, 7].

Powder diffraction scattered intensity is represented as a function of a single
variable which is Bragg’s angle 2𝜃. We call this plot the powder diffraction pattern
[1], see Figure 1.5.

11
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Figure 1.10: A powder diffraction pattern for LaB6.

A large amount of structural information is embedded in a material’s diffraction
pattern, and each structural feature of a material has a different effect on various
parameters of its powder diffraction pattern. We can describe the structure of a
typical powder diffraction pattern according to the following components [1]:

• Positions of multiple Bragg reflections.

• Intensities of multiple Bragg reflections.

• Shape of multiple Bragg reflections.

Which contain information about:

• Crystal structure of the material.

• Properties of the specimen.

• The instrumental parameters.

Using the following table we can differentiate between them.

Pattern compo-
nent

struc-Crystal
ture

Specimen prop-
erty

Instrumental
parameter

Peak position
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CHAPTER 1. BASIC CONCEPTS OF X-RAY DIFFRACTION

Peak intensity Atomic

Peak shape
stress

X-ray scattering by the periodic lattices will produce diffraction peaks at specific
angles which are called Bragg’s peaks, the angles are discontinuous function of Miller
indices, the interplanar distances and the wavelength. We can determine Bragg
peaks from Bragg’s law as a function of the wavelength and the interplanar distances
[1] according to :

2𝜃ℎ𝑘𝑙 = 2 arcsin( 𝜆
𝑑ℎ𝑘𝑙

) (1.3)

In order to obtain both the positions and intensities of individual Bragg peaks,
we need to process the data by fitting peak shapes to a suitable function. The same
is also needed in structure refinement using the full profile fitting approach like the
Rietveld method [1], which we will discuss in the next chapter.

There are complete program systems available today which incorporates most
of the computer programs necessary for the analysis of powder diffraction data
including Rietveld formalisms. One such system is Fullprof [7], which we will use to
refine some examples.

1.6 Conclusion
In this chapter we have reviewed the nature X-ray and how we can create it. We
have seen this radiation diffraction instruments and theoretical behaviour at atomic
level and how we can use that behaviour to get a diffraction pattern that will help us
study a crystal structure by the help of the Rietveld method and its mathematical
related equations which we will talk about in the next chapter.
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Chapter 2

The Rietveld method

2.1 Introduction
The Rietveld method is a structure refinement and a complex minimization proce-
dure, and it works by slightly modifying a preconceived model built on external
previous knowledge. The starting parameters for such a model must be reasonably
close to the final values. Moreover, the sequence into which the different parame-
ters are being refined needs to be carefully studied. It uses step intensity data 𝑦(𝑖),
whereby each data point is treated as an observation [8]. The idea behind the Ri-
etveld method is to approximate the intrinsic problem of powder diffraction pattern
with its systematic and accidental peak overlaps by considering the entire powder
diffraction pattern using different refine-able parameters and the entire information
content of a powder pattern available in step-scanned intensity data is fitted with a
model which are refined using a least squares procedure to optimize the fit [7].

2.2 Least squares procedure
The method of least squares is a powerful technique for estimating the values of
the adjustable parameters in a model, 𝑀(𝑥), that predicts the values of a set of
observable quantities 𝑦(𝑖). One seeks the minimum, as a function of 𝑥, of the
quadratic form

𝑄 = [𝑦 − 𝑀(𝑥)]𝑇 𝑊[𝑦 − 𝑀(𝑥)] (2.1)
where 𝑊 is a weight matrix that must be positive definite [8]. The individual
observations, 𝑦𝑖, are assumed to be drawn at random from a population whose mean
is 𝑀𝑖(𝑥) when 𝑥 has its unknown “correct” value. In other words, ⟨𝑦⟩ = 𝑀(𝑥), if
the model is linear, so that 𝑦 = 𝐴𝑥, then

𝑋 = (𝐴𝑇 𝑊𝐴)−1𝐴𝑇 𝑊𝑦. (2.2)

This is known as the least squares estimate. We call it an estimate because it
is a function of random variables, and it is itself a random variable drawn from a
population with a mean and a variance. If the mean of this population is equal to
the “correct” value, i.e. if ⟨𝑋⟩ = 𝑋𝑐, then the estimate is said to be unbiased for

14
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the least squares estimate.

⟨𝑋⟩ = ⟨(𝐴𝑇 𝑊𝐴)−1 𝐴𝑇 𝑊𝑦⟩
= (𝐴𝑇 𝑊𝐴)−1 𝐴𝑇 𝑊 ⟨𝑦⟩
= (𝐴𝑇 𝑊𝐴)−1 𝐴𝑇 𝑊𝐴𝑋𝑐

= 𝑋𝑐

So the least squares estimate is unbiased irrespective of the choice of 𝑊 . However,
the joint probability density function of the populations from which the observations
𝑦𝑖 are drawn has a variance-covariance matrix 𝑉𝑦, and 𝑉𝑦

−1, then the variances of
the population distributions for the elements of 𝑋 can be shown to have the lowest
values that they can have for any choice of 𝑊 . The particular, the least squares
estimate

𝑋 = (𝐴𝑇 𝑉𝑦
−1𝐴)−1𝐴𝑇 𝑉𝑦

−1𝑦 (2.3)

It is said to be the best linear unbiased estimate of 𝑋.
The models for many important phenomena, including X-ray diffraction, are non-

linear, The usual procedure for applying the method of least squares to a non-linear
model is to find, by iterative numerical methods, a set of parameter values, 𝑥′, close
enough to a point at which the gradient of 𝑄 vanishes for the approximation

𝑀𝑖(𝑥) = 𝑀𝑖 (𝑥′) +
𝑝

∑
𝑗=1

(𝑥𝑗 − 𝑥′
𝑗)𝜕𝑀𝑖 (𝑥′) /𝜕𝑥𝑗 (2.4)

to be a good one. 𝐴𝑖𝑗 is then set to be equal to 𝜕𝑀𝑖 (𝑥′) /𝜕𝑥𝑗, and the least squares
estimate is

𝑋 = 𝑋′ + (𝐴𝑇 𝑊𝐴)−1𝐴𝑇 𝑊 [𝑦 − 𝑀 (𝑥′)] (2.5)

Because the point at which the approximation in Equation (2.5) is most likely
to be valid is 𝑥′ = 𝑋, it is customary to iterate to full convergence. It is important
to distinguish between 𝑋′, which is a basically arbitrary displaced origin, and 𝑋,
which is a random variable drawn from a population whose mean is 𝑋.

2.3 Mathematical approach for Rietveld method
In the Rietveld method the observations are the raw data, the numbers of X-ray
photons counted at a point in a powder diffraction pattern [8]. The model is:

𝑀(𝑆𝑖, 𝑥) = 𝑏(𝑠𝑖, 𝑥𝑏) +
𝑘2

∑
𝑘=𝑘1

𝐼𝑘(𝑥𝑠)𝜙(𝑠𝑖 − 𝑠𝑘, 𝑥𝑝), (2.6)

where:

𝑥𝑏: the background parameters.

𝑥𝑠: the structure parameters.
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𝑥𝑝: the peakshape parameters.

𝑠𝑖: 2
𝜆𝑖

sin 𝜃𝑖 where 𝜃𝑖 and 𝜆𝑖 are the angle and the wave length of radiation, respec-
tively.

𝑏(𝑠𝑖, 𝑥𝑏): the background function.

𝐼𝑘(𝑥𝑠): the integrated intensity of the 𝑘th Bragg reflection.

𝜙(𝑠𝑖 − 𝑠𝑘, 𝑥𝑝): the peakshape function normalized.

According to the method of least squares, the squared sum of differences between
the 𝑁 observed 𝑦obs,𝑖 and calculated 𝑦calc,𝑖 step-scanned intensities are subject to
minimization:

∑
𝑖

(𝑤𝑖 (𝑦obs,𝑖 − 𝑦calc,𝑖)
2) ⟶ Min (2.7)

The weights 𝑤𝑖 iare usually derived from the variance of 𝑦obs,𝑖 as 1/𝜎2(𝑦obs,𝑖)
while all covariances between different 𝑦obs,𝑖 are assumed to be zero [9].

The calculated intensities 𝑦calc,𝑖are expressed by combinations of mostly nonlin-
ear analytic or nonanalytic functions as:

𝑦calc,𝑖 = ∑
𝑝

⎛⎜
⎝

𝑆𝑝 ∑
𝑆(𝑝)

(∣𝐹calc,𝑠,𝑝∣2 𝜙𝑠,𝑝,𝑖Corr𝑠,𝑝,𝑖)⎞⎟
⎠

+ 𝐵𝑘𝑔𝑖 (2.8)

The outer sum runs over all crystalline phases 𝑝 with Bragg peaks in the powder
pattern. The inner sum runs over all Bragg reflections 𝑠 = (ℎ𝑘𝑙) of a phase 𝑝, which
contribute to the position 𝑖 in the powder pattern. A scaling factor 𝑆𝑝 which is
proportional to the weight fraction of phase 𝑝, is applied to the reflection intensities
of each phase. Corr𝑠,𝑝,𝑖 represents the product of various correction factors that
need to be applied to the reflection intensities ∣𝐹calc,𝑠,𝑝∣2 that may depend on the
diffraction geometry and/or individual reflection indices. The value of the profile
function 𝜙𝑠,𝑝,𝑖 is given for the profile point 𝐼 relative to the position 𝑠 = |𝑠| =
2sin 𝜃/𝜆 of the Bragg reflection.

Therefore, the peak profile depends only on the peak position given by the scalar
𝑠, and not on ℎ𝑘𝑙, This restriction is lifted in the case of anisotropic line broadening,
where an explicit ℎ𝑘𝑙 dependent 𝜙𝑠,𝑝,𝑖 is considered. The observed background
coming from thermal diffuse scattering, incoherent scattering, inelastic scattering,
sample environment and so on at position 𝑖 in the powder pattern is denoted as
𝐵𝑘𝑔𝑖, [9].

We can simplify modelling an entire powder pattern, and we can divide the infor-
mation content of the powder pattern into different parts that allow us separation
of groups of parameters with respect to their origin according to [8]:

• Peak position 𝑠 which is geometrically determined by the crystallographic
lattice.

• Integrated peak intensity ∣𝐹calc,𝑠,𝑝∣2 Corr𝑠,𝑝 that is determined by the time
and space averaged crystal structure and geometrical contributions Corr𝑠,𝑝 𝑝
is the value of Corr at the peak position 𝑠 for phase 𝑝.
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• Peak profile 𝜙𝑠,𝑝,𝑖 that is determined by the instrument profile and microstruc-
tural parameters of the sample.

• Background 𝐵𝑘𝑔𝑖.

Each part has contributions from both the sample and the instrument. To meet
Rietveld refinement requirements of the starting values of all parameters within the
range of convergence we can consider different aspects of the pattern separately
according to different empirical, phenological or physical models.

2.4 Factors affecting different parameter groups
2.4.1 The peak position
We can calculate the observed scattering angle 2𝜃 of a Bragg reflection from the
corresponding 𝑑-spacing by the Bragg equation corrected by aberrations �2𝜃corr due
to misalignment of the diffractometer or the sample, or due to transparency, axial
divergence effects [3], according to:

2𝜃𝑠 = 2 arcsin (𝜆
2

1
𝑑𝑠

) + �2𝜃corr (2.9)

Given a set of lattice parameters (𝑎, 𝑏, 𝑐, 𝛼, 𝛽, 𝛾) or their reciprocal counterparts
(𝑎∗, 𝑏∗, 𝑐∗, 𝛼∗, 𝛽∗, 𝛾∗) and the unit cell volume 𝑉 , the positions for all possible reflec-
tions 𝑠 can be calculated for the triclinic case according to: [9]

1
𝑑𝑠

= 1
𝑉

√√√√√√
⎷

ℎ2𝑏2𝑐2 sin2 𝛼 + 𝑘2𝑎2𝑐2 sin2 𝛽 + 𝑙2𝑎2𝑏2 sin2 𝛾
+2ℎ𝑘𝑎𝑏𝑐2(cos 𝛼 cos 𝛽 − cos 𝛾)
+2𝑘𝑙𝑎2𝑏𝑐(cos 𝛽 cos 𝛾 − cos 𝛼)
+2ℎ𝑙𝑎𝑏2𝑐(cos 𝛼 cos 𝛾 − cos 𝛽)

= √ℎ2𝑎∗2 + 𝑘2𝑏∗2 + 𝑙2𝑐∗2 + 2ℎ𝑘𝑎∗𝑏∗ cos 𝛾∗ + 2ℎ𝑙𝑎∗𝑐∗ cos 𝛽∗ + 2𝑘𝑙𝑏∗𝑐∗ cos 𝛼∗

(2.10)
And it simplifies for orthorhombic, tetragonal and cubic system to:

1
𝑑𝑠

= √ℎ2

𝑎2 + 𝑘2

𝑏2 + 𝑙2
𝑐2 (2.11)

Corrections to the peak position

A series of contributions coming from the sample and from the instrument can affect
the position of the Bragg reflection in a linear or non-linear manner, we can define
the absolute error in the interplanar spacing Δ𝑑 for a constant wavelength data
as a function of the measured diffraction angle [9], and by evaluating the exact
differential of the Bragg equation it can be easily calculated:

Δ𝑑 = (𝜆
2

cos 𝜃
sin2 𝜃

) d𝜃 + 2𝑑 cos 𝜃d𝜆 (2.12)
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We can see the strong nonlinear increase of Δ𝑑 at low diffraction angles even for
small constant errors in 2𝜃 immediately after neglecting the error in the wavelength

The cos 𝜃 dependent peak shift caused by a flat sample whose surface deviates
from the focusing circle is a common nonlinear correction for angular dispersive
Bragg–Brentano geometry [9], and it is called the height error 𝑐 in mm:

�2𝜃corr/0 = −2 (1800

𝜋 ) cos 𝜃
𝑅DS

𝑐 (2.13)

with RDS the distance between sample and detector in mm.

A suitable correction function for the nonlinear shift in the angular position
caused by the displacement of a capillary away from the centre of the goniometer in
the Debye–Scherrer geometry is noted as:

�2𝜃corr = arcsin ( 𝑑𝐿
𝑅DS

sin (2𝜃)) − arcsin ( 𝑑𝑉
𝑅DS cos (2𝜃)) (2.14)

𝜃-dependent absorption is the reason behind peak shift for capillary samples in
angular dispersive powder diffraction experiments, Sabine (1988) gave an expression
for that:

Δ2𝜃corr/0 = 2𝐴𝜃𝑏(90 − 𝜃)𝑐

𝐴 = 0.000033𝜇eff𝑅
𝐵 = 1.168 − 0.22𝜇eff𝑅 + 0.0168(𝜇eff𝑅)2

𝑐 = 1.155 + 0.2054𝜇eff𝑅 − 0.0224(𝜇eff𝑅)2
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Figure 2.1: Peak shift of capillary samples in angular dispersive powder diffraction
experiments caused by 𝜃-dependent absorption as a function of diffraction angle for
different values of 𝜇eff.

The intensity of a Bragg reflection The intensity of a Bragg reflection is
proportional to the squared complex structure factor that itself is the vector sum of
complex atomic form factors (for X-rays) by additional complex phase factors. The
following sub headings we discuss factors that influence peak intensities [9].

The atomic form factor The scattering power of an atom or ion as a function of
the scattering vector length 𝑠 is expressed by the atomic form factor 𝑓𝑖. And in the
case of X-rays, this factor depends strongly on 𝑠 with a marked decrease at higher
values. Note that most explicit parameterizations of 𝑓𝑖 and others are formulated
as a function of ̃𝑠 = 𝑠

2 = sin 𝜃/𝜆 and not of 𝑠, [9].
The value at ̃𝑠 = 0 is normalized to the number of electrons of the scatterer.

The form factor consists of a wavelength independent and a complex wavelength
dependent part

𝑓𝑗 ( ̃𝑠) = 𝑓0
𝑗 ( ̃𝑠) + Δ𝑓 ′

𝑗 (𝜆) + √−1Δ𝑓 ′𝑖
𝑗 (𝜆) (2.15)

We usually avoid anomalous scattering effects for simplicity, but we cannot deny
its importance when the wavelength used is in the vicinity of an absorption edge
of an atomic species in the sample. In case of presence of a strong scatterer, the
change in scattering power can amount to the equivalent of several electrons and so-
called anomalous dispersion measurements can be used to give extra element-specific
information on structures [3].
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Displacement parameter A decrease in peak intensities is caused by static local
atomic displacements that exit in disordered structures (atoms vibrate about their
equilibrium position at any temperature), we can express it through multiplying the
atomic form factor with a correction factor. Moreover, we can distinguish between
anisotropic and isotropic displacements [9].

We define the displacement factor (Debye–Waller factor) for the entire crystal
structure, groups of atoms or an individual atom for isotropic case as follows:

𝑡 = 𝑒−𝐵 ̃𝑠2 (2.16)

where 𝐵 is an isotropic displacement parameter equal to 𝐵 = 8𝜋2𝑢2, where we define
𝑢2 as the mean square deviation from the equilibrium position of the atom or atomic
group. A range of 0.1Å

2 ≤ 𝐵 ≤ 1.5Å
2

is considered normal for inorganic compounds,
while for coordination compounds 𝐵 ≤ 3Å

2
is usually acceptable. Larger values

usually indicate errors or a severe disorder in the crystal structure. Negative values
often indicate systematic errors in the intensities due to, for example, absorption or
surface roughness or misassignment of an atom type [9].

Figure 2.2: Intensity reduction 𝑡 as a function of 𝑠 for a series if normalized displace-
ment parameters 𝐵.

The structure factor Ignoring anomalous scattering, the structure factor of a
Bragg reflection is defined as a complex sum over all atoms 𝑗 in the unit cell [4, 9]

𝐹(𝑠) = ∑
𝑗

(𝑡𝑗𝑓𝑗(𝑠)𝑒2𝜋𝑖𝑠𝑥𝑗) (2.17)
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with the positional vector 𝑥𝑗 of an atom 𝑗 in the unit cell defined by fractional
crystal coordinates:

𝑥𝑗 = ⎛⎜
⎝

𝑥
𝑦
𝑧
⎞⎟
⎠

For brevity we omitted the displacement factor 𝑡𝑗 for every atom 𝑗 on this equation.
And using the Euler identity we can separate the real and complex parts of the
structure factor [4, 9]

𝐹(𝑠) = ∑
𝑗

(𝑓𝑗(𝑠) cos (2𝜋𝑠𝑥𝑗)) +
√

−1 ∑
𝑗

(𝑓𝑗(𝑠) sin (2𝜋𝑠𝑥𝑗)) = (𝑥) + 𝑖𝐵(𝑠)

(2.18)

2.4.2 Intensity correction factors
To calculate the integrated reflection intensities observed experimentally in a powder
diffraction pattern, a series of correction factors have to be applied to the squared
structure factors, which depend on the scattering vector ⃗𝑠 or its length 𝑠. A list of
the most common correction factors is given by the product [9]:

corr(𝑠) = 𝑀 ( ⃗𝑠) LP(𝑠)𝐴(𝑠)PO ( ⃗𝑠) 𝐸 ( ⃗𝑠) … (2.19)

𝑀( ⃗𝑠): the multiplicity of a reflection given by the lattice symmetry.

𝐴(𝑠): absorption correction.

LP(𝑠): the Lorentz - polarization factor.

PO( ⃗𝑠): the preferred orrientation correction.

𝐸( ⃗𝑠): the correction for primary extinction.

The individual correction factors are not important, as any constant gets ab-
sorbed in the scale factor.

Multiplicity The observed intensity is always multiplied corresponding to a min-
imum value of two for the reflection multiplicity for all crystal systems according
to the overlap of Friedel pairs. Also, for symmetries higher than triclinic, identical
d-spacing symmetry-equivalent reflections have identical intensity and overlap com-
pletely. The total number of these reflections is called multiplicity and lies between
2 and 48, [8, 9].

Lorentz–polarization factor The Lorentz and the polarization factors are purely
geometric factors. One of The Lorentz factor contributions is the relative time that
a reciprocal lattice point moving with angular velocity 𝜔 spends passing through
the finite thickness of the Ewald sphere, [1, 8, 9]:

𝑣 = 𝜔𝑑∗cos 𝜃 = 𝜔2sin 𝜃
𝜆 cos 𝜃 ∝ sin 𝜃 cos 𝜃, 𝐿 ∝ 1

𝑉 (2.20)
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Additional geometrical factor occurs in case of powder diffraction that normalizes
the different radius of the Debye–Scherrer rings, at low and very high angles, the
fraction of the diffraction cone that intersects the detector is at his highest values.
The factor is proportional to 1/ sin 𝜃, The typical form of the Lorentz factor for
powders is then [9]:

𝐿 = 1
cos 𝜃 sin2 𝜃

∝ 1
sin 𝜃 sin (2𝜃) (2.21)

where any constant factor gets absorbed by the overall scale factor.
The intensity ratio between the diffracted and the primary beam When a pri-

mary or secondary beam monochromator is present for unpolarized radiation from
a laboratory X-ray tube is expressed as [9]:

𝑝 = 1 − cos2 2𝜃 cos2 2𝜃𝑚
2 (2.22)

where 𝜃𝑚 is Bragg’s angle of the reflection from the monochromator.

Figure 2.3: Simulated powder pattern of LaB6 for Ag–K𝛼1 radiation with and
without LP factor.

Absorption correction For simple transmission through a solid material, the
transmitted intensity 𝐼 with respect to the initial intensity 𝐼0 depends on the thick-
ness 𝑥 of the material and its linear absorption coefficient 𝜇, [1, 3, 9].

𝐼 = 𝐼0𝑒−𝜇𝑥 (2.23)
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Calculated intensities appropriate absorption correction factor is defined as:

𝐴 = 𝐼
𝐼0

(2.24)

The wavelength of the radiation used has a powerful effect on the absorption,
also when is near to the absorption edges the absorption changes rapidly. Matching
the experimental wavelength with the system being studies will minimize absorption
effects [3, 9].

Figure 2.4: Intensity correction factor required for solid samples in transmission
geometry with different absorption coefficients.

Surface roughness If we consider the packing density in Bragg–Brentano geome-
try differ with depth, therefore a “rough surface” the so-called porosity effect reduces
the intensity at low Bragg angles. Which is another type of absorption. The two
most usual corrections are those of Pitschke et al., [10]:

𝐴 =
1 − 𝑎1 ( 1

sin 𝜃 − 𝑎2
sin2 𝜃)

1 − 𝑎1 (1 − 𝑎2) (2.25)

And of Suortti [11]:

𝐴 = 𝑎1 + (1 − 𝑎1)𝑒−𝑎2/sin 𝜃

𝑎1 + (1 − 𝑎1)𝑒−𝑎2
(2.26)

where 𝑎1 and 𝑎2 are refinable parameters.

23



CHAPTER 2. THE RIETVELD METHOD

Figure 2.5: Correction factor for porosity effect in Bragg-Brentano geometry as a
function of diffraction angle according to Pitschke et al (left) and Suortti (right).

Overspill effect One particular important condition in Bragg–Brentano geometry
is the constant illumination volume which ensured by making sure that the incident
beam stay smaller than the sample area at all different angles. However, at low
angles it is familiar for the irradiated zone to become greater than the zone covered
by the sample on the sample holder. This “overspilling” lowers the intensities up
to the diffraction angle at which the two zones are identical for divergent beam
Bragg-Brentano geometries with a tube opening angle 𝜑, which is determined by
the divergence slit, the irradiated length calculates to [9]:

𝐿 = 𝑙1 + 𝑙2 = 𝑅 sin𝜑
2

sin(𝜃 + 𝜑
2 ) + 𝑅 sin𝜑

2
sin(𝜃 − 𝜑

2 ) ≅ 𝑅𝜑[rad]
sin 𝜃 (2.27)

with the goniometer radius 𝑅.

In the case of small divergence, the beam can be seen as quasi-parallel and the
term 𝑅𝜑[rad] refer to the thickness of the beam 𝑑. An intensity correction factor
as a function of the diffraction angle can consequently be calculated for a sample
length 𝑆.

𝑂𝑣 = 𝑆
𝐿𝐷

for 0 ≤ 2𝜃 [rad] ≤ 2 arcsin (𝑅𝜑
𝑆 ) . (2.28)
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Figure 2.6: Left: Irradiated length on the surface of a flat plate sample in Bragg–
Brentano geometry with a divergent beam for different opening angles 𝜑.
Right: Corresponding intensity correction function for the overspill effect for a sam-
ple length of 10 mm.

Preferred orientation The idea of powder diffraction is based on the perfect
randomness of the orientations of the crystallites as Hull mentions back in 1917
. Which is only experimentally easily realized in the case of spherical crystallites.
Crystallites tend to align themselves in one or more preferred orientation(s) that
if we prepare a needle or plate-like crystallites in a flat plate sample holder for
reflection geometry or between foils in transmission geometry, [1, 8, 9].

In one simple approach where there is a single preferred orientation direction,
the angle between the reciprocal lattice vector 𝑠 of each Bragg reflection and the
specific reciprocal lattice vector 𝑠pref of the preferred orientation is calculated using
the scalar product [9]:

cos 𝜔𝑠 = 𝑠pref ⋅ 𝑠
∣𝑠pref∣ ⋅ |𝑠| (2.29)

A correction factor can be calculated by the March–Dollase function (March,
1932) according to which:

𝑇𝑠 = 1
𝑁

𝑁
∑
𝑖=1

(𝜏2 cos2 𝜔𝑖
𝑠 + 𝜏−1 sin2 𝜔𝑖

𝑠)−3/2
(2.30)

where the sum runs over all 𝑁 symmetry equivalent reciprocal lattice points and 𝜏
is the refined preferred orientation parameter, which is defined as the ratio between
the correction factors for Bragg peaks perpendicular and parallel to the direction of
the preferred orientation.

Preferred orientation should be distinguished from graininess, where a small
number of large oriented crystallites will lead to incorrectly measured intensities.
There is no simple correction for graininess, except for collecting data on a better-
prepared sample.
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Figure 2.7: 3D second order spherical harmonic representation 𝑛 of the preferred
orientation correction of a 2 H graphite sample measured in flat plate mode, showing
strong preferred orientation along the 𝑐-direction.

The scale factor

The scale factor is a linear, phase-specific factor that absorbs the constants of all
intensity correction factors. It is specific for a particular instrumental configuration
and depends on the incident intensity and measuring time. In the case of multiphase
Rietveld refinement using Bragg–Brentano geometry, the scale factor can be used
for full standardless quantitative phase analysis [1, 8, 9], based on the following
equation:

𝑋𝑝 =
𝑆𝑝(𝑍𝑀𝑉 )𝑝𝜇∗

𝑚
𝐾 (2.31)

where

𝑋𝑝 ∶ the relative weight function of the phase 𝑝 in a mixture of several crystalline
phases.

𝑍 ∶ the number of formula units of phase 𝑝 in the unit cell.

𝑀 ∶ the molecular mass of the formula unit of phase 𝑝.

𝑉 ∶ the volume of the unit cell.

𝑆𝑝 ∶ the scale factor of phase 𝑝.

𝑘 ∶ the scalling factor.

𝜇∗
𝑚 ∶ the mass absorption coefficient of the entire sample.
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Knowing 𝑘 and 𝜇∗
𝑚 is not necessary to perform quantitative Rietveld refinement

because the instrumental conditions and absorption coefficient influence the equation
as constants and for all phases they are identical. However, the scale factor is directly
related to the weight fraction 𝑋𝛼 of the phase 𝛼 for the case of multiphase mixture
[9], and can be used for quantitative phase analysis as follows:

𝑋𝛼 = 𝑆𝛼𝜌𝛼
∑𝑝 (𝑆𝑝𝜌𝑝

(2.32)

with the density of a single phase 𝜌𝛼 (in 𝑔/cm3), which can easily be calculated
according to [9]:

𝜌𝛼 = 1.66055 ⋅ 𝑍𝛼𝑀𝛼
𝑉𝛼

(2.33)

The peak profile

The measured profile of a single, well resolved powder diffraction peak is dependent
on two intrinsic parameters [8]:

• An instrumental parameter including the spectral distribution, and the trans-
mission function determined by the slits.

• The sample contribution based on the crystal structure and the crystallinity
of the sample.

While these contributions can have a form not necessarily Gaussian, it is an
empirical fact that their convolution produces in neutron diffraction patterns almost
exactly a Gaussian peak shape. This is different in X-ray diffraction, where especially
the instrumental contributions lead to rather complicated peak profiles. A number
of profiles have been suggested and tested in the past and some are still preferred
by most scientists [9]. A list of common functions are introduced on the next sub
headings:

The box function The box function can relate to many aberrations and some
of them include the size of the source in the equatorial plane, thickness of sample
surface as projected onto the equatorial plane, width of the receiving slit in the
equatorial plane, width of strips in position sensitive strip detectors [9], we can
define the box function of width a as:

box(𝑋) = {𝐴 for −𝑎
2 < (𝑋) < 𝑎

2
0 for (𝑋) ≤ −𝑎

2 and (𝑋) ≥ 𝑎
2

(2.34)

with the normalization 𝐴 = 1/𝑎.
The Fourier transform of a box function with the reciprocal variable ℎ is calcu-

lated as [9]:
BOX (ℎ) = 𝐴𝑎sin(𝜋ℎ𝑎)

𝜋ℎ𝑎 (2.35)
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Figure 2.8: The box function (left) and its Fourier transform (right).

Gaussian distribution Is a continuous probability distribution function, Physi-
cal quantities that are expected to be the sum of many independent processes often
have distributions that are nearly normal [9]. The expression for a normalized Gaus-
sian distribution in terms of its full width at half maximum fwhm is:

gauss(𝑥) = 2√ln (2) /𝜋
fwhm 𝑒−4 ln(2)( 𝑥

fwhm )2
(2.36)

The Fourier transform of a Gaussian function is itself a Gaussian function:

GAUSS (ℎ) = 𝑒− 𝜋2fwh𝑚2
4 ln 2 ℎ2 (2.37)

Figure 2.9: The Gaussian function (left) and its Fourier transform (right).

Cauchy (Lorentz) distribution To describe an emission profile from an X-ray
tube, as well as crystallite size and strain effects from a sample we usually use the
Lorentzian function. Moreover, when it comes to a perfect infinite crystal, Bragg
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peaks are not 𝛿-functions, but finite Lorentzians with the fwhm being the Darwin
width, [9].

The normalized Cauchy or Lorentz distribution is defined as:

lorentz(𝑥) = 2𝜋/fwhm
1 + 4( 𝑥

fwhm)2 (2.38)

And its Fourier transformation is defined by (real part):

LORENTZ (ℎ) = 𝑒−2𝜋fwhm|ℎ| (2.39)

Figure 2.10: The Lorentzian function (left) and the real part of its Fourier transform
(right).

The Voigt distribution The Voigt distribution can be regarded as the convolu-
tion of a Gaussian and a Lorentzian [9]:

voigt(𝑋) = gauss(𝑋) ∘ Lorentz(𝑋). (2.40)
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Figure 2.11: Peak profile of the Voigt function with a Lorentzian and a Gaussian
fwhm of 0.5 each.

The TCHZ pseudo-Voigt function The modified Thompson–Cox–Hastings
pseudo-Voigt “TCHZ” is Another symmetric peak profile function that is commonly
used for angular dispersive data which is a popular approximation to the Voigt
function, The Voigt function can easily be convoluted, which is convenient when
modelling the profile of a diffraction peak. The requirement for a numerical approx-
imation of the Voigt function (due to lack of an analytical formulation), however,
makes the use of the true Voigt function computationally expensive [9]. We can
express the TCHZ function as:

PV(𝑥) = (1 − 𝜂) 𝐺(𝑥) + 𝜂𝐿(𝑥) (2.41)

with 𝐺 and 𝐿 usually being a Gaussian and Lorentzian function with equal fwhms,
that is, fwhm𝐺 = fwhm𝐿 and they are defined as:

fwhm𝐺 = √𝑈 tan2 𝜃 + 𝑉 tan 𝜃 + 𝑊 + 𝑍
cos2 𝜃 (2.42)

fwhm𝐿 = 𝑋 tan 𝜃 + 𝑌
cos 𝜃 (2.43)

where 𝑈, 𝑉 , 𝑊, 𝑋, 𝑌 and 𝑍 are refinable parameters. 𝑈 and 𝑋 are related to mi-
crostrain 𝑍 and 𝑌 are related to domain size.

The shape of the TCHZ pseudo-Voigt function looks practically identical to
that of the Voigt function. One advantage of the TCHZ pseudo-Voigt function, in
contrast to the Voigt function, is the ability to easily report the FWHM of the fitted
Bragg reflections.

The circles function A simple approximate function that we use for modelling
the asymmetry of a Bragg reflection which is known as circles function. The curva-
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ture 𝜀𝑚 is an adjustable parameter [9].

circles(𝑥) = 1 − √∣𝑋𝑚
𝑋 ∣ for 0 ≤ 𝑋 ≤ 𝑋𝑚 (2.44)

One of the main applications for this function is the phenomenological modelling
of the peak asymmetry caused by axial divergence which is mainly due to the in-
creasing curvature of the Debye–Scherrer rings at very low and extremely high angles
that are cut by (typically) rectangular receiving slits of finite width [9].

Figure 2.12: Circle function different curvature 𝜀𝑚 (left) and dependence of the
parameter 𝜀𝑚 on diffraction angle as typical for axial divergence (right).

The background

We can use analytical or empirical function to model an observed background at
position I in the powder pattern 𝐵𝑘𝑔𝑖 or it can be set manually. Background noise
in the powder pattern are caused by the instrument and the sample, such as disorder,
thermal diffuse scattering, incoherent scattering, inelastic scattering and so on. [7,
8, 9]

Usually we use high-order orthogonal Chebyshev polynomials of the first kind
to fit the background, the correlations between background coefficients and the
intensity of overlapping reflections at higher scattering angle gets higher with the
Chebyshev polynomials order, we can define Chebyshev polynomials of first kind by
a recursive relation [9]:

𝑇0(𝑥) = 1 (2.45)
𝑇1(𝑥) = 𝑥 (2.46)

𝑇𝑛+1(𝑥) = 2𝑥𝑇𝑛(𝑥) − 𝑇𝑛−1(𝑥) (2.47)

where the 𝑥-axis is normalized between −1 and 1, which is done for an equidistant
2𝜃-axis according to:

𝑥𝑖 = 2(2𝜃𝑖) − (2𝜃final + 2𝜃start)
2𝜃final − 2𝜃start

(2.48)
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The background values are then calculated as:

𝐵𝑘𝑔𝑖 =
𝑛

∑
𝑘=0

𝑐𝑘𝑇𝑘(𝑥𝑖) (2.49)

At low scattering angle we can usually observe a steep increase in the background,
especially if a position sensitive detector with large opening angle is used. We can fit
the background at this situation by adding a 𝑐

2𝜃𝑖
term to the Chebyshev polynomial:

𝐵𝑘𝑔𝑖 = 𝑐
2𝜃𝑖

+
𝑛

∑
𝑘=0

𝑐𝑘𝑇𝑘(𝑥𝑖) (2.50)

A background can also be defined manually by connecting specified points by
straight line segments.

Another possible background function is a cosine Fourier series:

𝐵𝑘𝑔𝑖 =
𝑛

∑
𝑘=0

𝑐𝑘 cos(𝑘2𝜃𝑖) (2.51)

2.4.3 Agreement factors
Now we still have one question, how we know that our refinement for the powder
diffraction pattern is correct, we can judge the quality of the Rietveld refinement
through different statistical agreements (𝑅) factors [7, 8, 9]. The most usual one is
known as profile 𝑅-factor which is a measure of the difference between the observed
and the calculated profile:

𝑅𝑝 = ∑𝑁
𝑖=1 ∣𝑦obs,𝑖 − 𝑦calc,𝑖(𝑝)∣

∑𝑁
𝑖=1 𝑦obs,𝑖

(2.52)

We can overcome the problems that are presented by the sum of all differences
relative to the sum of all observed values which are over emphasizing the strong
reflections and not taking experimental uncertainties into account, by applying a
weight scheme, where every data point gets a weight 𝑤𝑖:

𝑅wp =
√√√
⎷

∑𝑁
𝑖=1 𝑤𝑖(𝑦obs,𝑖 − 𝑦calc,𝑖(𝑝))2

∑𝑁
𝑖=1 𝑤𝑖𝑦obs,𝑖2

(2.53)

The influence of the background introduces us to the next problem. the profile
𝑅-value can be dominated by the well-fitted background points and relatively insen-
sitive to the structural model If the peak to background ratio is low, to stay away
from this problem, it is useful to subtract the background from the observed step
scan intensities in the denominator:

𝑅′
𝑝 = ∑𝑁

𝑖=1 ∣𝑦obs,𝑖 − 𝑦calc,𝑖(𝑝)∣
∑𝑁

𝑖=1 ∣𝑦obs,𝑖 − 𝐵𝑘𝑔𝑖∣
(2.54)
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𝑅′
wp =

√√√
⎷

∑𝑁
𝑖=1 𝑤𝑖(𝑦obs,𝑖 − 𝑦calc,𝑖(𝑝))2

∑𝑁
𝑖=1 𝑤𝑖(𝑦obs,𝑖 − 𝐵𝑘𝑔𝑖)2

(2.55)

Despite these corrections, profile 𝑅-values of different refinements can only be
compared for identical statistical conditions. The so-called expected 𝑅-factor, which
is mainly determined by counting statistics, gives a measure of the best possible fit:

𝑅exp = √
𝑁 − 𝑃

∑𝑁
𝑖=1 𝑤𝑖𝑦obs,𝑖2

(2.56)

𝑅′
exp =

√√
⎷

𝑁 − 𝑃
∑𝑁

𝑖=1 𝑤𝑖(𝑦obs,𝑖 − 𝐵𝑘𝑔𝑖)
2 (2.57)

The ratio 𝜒 between the weighted profile 𝑅-value and the expected 𝑅-value is a
good measure on the quality of the Rietveld refinement:

𝜒 = 𝑅wp
𝑅exp

= √∑𝑁
𝑖=1 𝑤𝑖(𝑦obs,𝑖 − 𝑦calc,𝑖(𝑝))2

𝑁 − 𝑃 . (2.58)

A 𝜒 between 1 and 1.5 is considered good.
For comparison with single crystal data, the Bragg-𝑅-value can be used that is

based on integrated reflection intensities rather than step scan intensities:

𝑅Bragg = ∑𝑘
𝑘=1 ∣𝐼obs,𝑘 − 𝐼calc,𝑘∣

∑𝑘
𝑘=1 𝐼obs,𝑘

(2.59)

where 𝐼obs,𝑘 and 𝐼calc,𝑘 are the observed and calculated intensities of the 𝐾th reflec-
tion out of 𝑘 reflections.

Interpreting Rietveld 𝑅Bragg values with caution is a must cause they are often
lower than those one we would expect in a single crystal experiments, the reason
behind this is for overlapping reflections the intensity is apportioned to individual
ℎ𝑘𝑙-reflections according to the ratio of the calculated intensities averaging out mis-
fits of individual reflection intensities. This leads to a biased or overly optimistic
assessment of the Bragg-𝑅-value.

2.4.4 Refinable parameters
The parameters that can be adjusted in the Rietveld method refinement procedure,
in principle simultaneously, [8] include:

• Lattice parameters (𝑎, 𝑏, 𝑐, 𝛼, 𝛽, 𝛾).

• Atomic occupancies.

• Atomic thermal vibrational parameters, isotropic or anisotropic.

• Atomic positions (𝑥, 𝑦, 𝑧).
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• Profile including 𝑈, 𝑉 , 𝑊 from the Cagliotti formula and asymmetry.

• Preferred orientation.

• Background function.

• The scale factor.

• The isotropic thermal 𝐵.

• Zero point of instrument.

2.5 Conclusion
The Rietveld method is based on using multiple mathematical corrections on multi-
ple refinable parameters to adjust a known X-ray diffraction pattern to match the
observed new diffraction pattern, this will allow us to get or approach the structural
information values that are contained within that diffraction pattern, this previous
chapter have walked us around these mathematical basis and introduced us to the
refinable parameters that we can apply these equations to, in the next chapter we
will try to apply this method on some examples.
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Application of Rietveld method

3.1 Introduction
The Rietveld method is the most reliable and powerful tool for refining crystal
structure when X-ray diffraction data are available . It requires the structure model
to be refined in as close as possible to the true structure. The Rietveld method
usually represents the final step of the powder solution process. In particular, when
a new structure is going to be determined and published.

There are several commercial programs that are designed for Rietveld refinement
such as : Match!3, TOPAS, X’Pert HighScore Plus. In addition, there are many
free programs like: GSAS/EXPGUI, MAUD, Rietica, EXPO2014 and Fullprof. The
last program is used in this work, where in this chapter, we briefly demonstrate all
the steps of the Rietveld refinement process. Moreover, in the last sections, we show
some examples related to the Rietveld refinement using the Fullprof program.

Appendix ….

3.2 Sample refinement steps
The refinement procedure usually goes through these steps :

1. Scale factor.

2. Scale factor, zero point of the detector, 1st background parameter and lattice
constants. In case of very sloppy background, it may be wise to actually refine
at least two background parameters, or better fix the background using linear
interpolation between a set of fixed points provided by the user.

3. Add the refinement of atomic positions and (eventually) an overall Debye-
Waller factor, especially for high temperature data.

4. Add the peak shape and asymmetry parameters.

5. Add atom occupancies (if required).

6. Turn the overall temperature factor into individual isotropic thermal parame-
ters.
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7. Include additional background parameters (if the background is refined).

8. Refine the individual anisotropic thermal parameters if the quality of the data
is good enough.

9. In case of constant wavelength data, the parameters Sycos and/or Sysin to
correct for instrumental or physical 2𝜃 aberrations with a COS or SIN angular
dependence.

10. Microstructural parameters: size and strain effects.

3.3 Application of the Rietveld refinement to dif-
ferent samples

In this section we present the refinement results obtained for three different com-
pounds: Y2O3 powder, ZnO–Al2O3 –CaF2 powder, and Hematite-proto with pure
Hematite thin film.

3.3.1 Powder sample

A Y2O3 powder sample was prepared and treated with a radiation 𝜆 = 1.54060
and a step size 0.02. The collected data were measured carefully in order to refine
them, then we created a PCR file accordingly. Finally, the following sets of refine-
ments were applied on the range from 2𝜃min = 15.62 to 2𝜃max = 100.22 during the
refinement process:

Set_1: We refined scale factors and shifts on 2theta axis (zero point).
Set_2: We refined scale factor and specimen displacement.
Set_3: We refined scale factor and specimen displacement, unit cell parameters,

profile shape parameters, background coefficient 1.
Set_4: We refined scale factor and unit cell parameters, background coefficient

1 and Caglioti half-width parameter 𝑈 .
Set_5: We refined scale factor and unit cell parameters, background coefficient

1 and Caglioti half-width parameter 𝑈 , overall isotropic displacement parameters.
Set_6: Scale factor and asymmetry parameters.
Set_7: 𝑈 and 𝑉 .
Set_8: 𝑉 and 𝑊 .
Set_9: 𝑈 and 𝑊 .
Set_10: Scale parameter with shape parameters.
Set_11: Cell parameters.
Set_12: Atomic positions.
The resulting plot of observed and calculated pattern is as follows:

36



CHAPTER 3. APPLICATION OF RIETVELD METHOD

Figure 3.1: Plot of calculated and observed patterns with peaks positions and dif-
ferences plot of Y2O3.
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Agreement factors

Rp Rwp Rexp chi2 RBragg �

7.89 8.51 4.49 3.59 2.86 1.89

The factor between 𝑅wp and 𝑅exp is considered as average when working with
the quality of the data presented.

• Structural information

Cell parameters

a 𝜶, 𝜷 and 𝛾 system

10.6003 90.0000 cubic

Asymmetry parameters

P1 P2 P3 P4 Space group symbol

-0.09940 -0.02730 0.309820 0.111770 I a -3

Halfwidth parameters

U V W

0.014052 -0.012670 0.014835

Atoms positions

Atom 𝑥 𝑦 𝑧 B occ

Y1 -0.03231 0.00000 0.25000 0.04500 0.50000
O2 0.25000 0.25000 0.25000 0.04500 0.16667
Y3 0.39113 0.15181 0.38041 0.04500 1.00000
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Figure 3.2: 2D structural for Y2O3 phase.

3D structural plot

Figure 3.3: 3D structural plot for Y2O3 powder [14].

3.3.2 Powder sample (3 phases)
The raw data file of triplet phases: ZnO, Al2O3, and CaF2 was provided by the
International Union of Crystallography and it was treated with a radiation 𝜆 =
1.54060 and a step size equals to 0.02. In this case we applied the following sets
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of refinements to the refinable parameters on the range from 2𝜃min = 21.32 to
2𝜃max = 148.32.

Set_1: We refined scale factors and shifts on 2theta axis (zero point).

Set_2: We refined scale factor and specimen displacement.

Set_3: We refined scale factor and specimen displacement, unit cell parameters,
profile shape parameters, background coefficient 1.

Set_4: We refined scale factor and unit cell parameters, background coefficient
1 and Caglioti half-width parameter 𝑈 .

Set_5: We refined scale factor and unit cell parameters, background coefficient
1 and Caglioti half-width parameter 𝑈 , overall isotropic displacement parameters.

Set_6: Asymmetry parameters.

Set_7: 𝑈 and 𝑉 for phase 1.

Set_8: 𝑉 and 𝑊 for phase 1.

Set_9: 𝑈 and 𝑊 for phase 1.

Set_10: 𝑈 and 𝑉 for phase 2.

Set_11: 𝑉 and 𝑊 for phase 2.

Set_12: 𝑈 and 𝑊 for phase 2.

Set_13: 𝑈 and 𝑉 for phase 3.

Set_14: 𝑉 and 𝑊 for phase 3.

Set_15: 𝑈 and 𝑊 for phase 3.

Set_16: Scale parameter with shape parameters for all phases.

Set_17: Preferred orientation for all phases.

Set_17: Cell parameters for all phases.

Set_18: Atomic positions for all phases.

Set_19: Isotropic displacement parameter for all phases.

Set_19: Atomic site occupancies.

Set_20: Background coefficients (1.2 and 3).

The resulting plot of observed and calculated pattern is as follows:
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Figure 3.4: Plot of calculated and observed patterns with peaks positions and dif-
ferences plot of Al2O3 –ZnO–CaF2.
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Agreement factors:

Rp Rwp Rexp chi2 �

2.523 5.7412.311.8 19.6 1.587.614.43

The factor between 𝑅wp and 𝑅exp is considered as good.

• Structural information for phase 1 Al2O3

Cell parameters

a b c 𝜶 𝜷 𝛾

4.758140 4.758141 12.989100 90.000000 90.000000 120.000000

Asymmetry parameters

P1 P2 P3 P4 Space group symbol system

0.179190 0.127290 -0.255430 -0.156860 -R 3 2”c Trigonal

Halfwidth parameters

U V W

0.018423 -0.006189 0.024060

Atoms positions

Atom 𝑥 𝑦 𝑧 B occ

Al 0.00000 0.00000 0.35214 1.03830 0.33093
O 0.30648 0.00000 0.25000 0.86879 0.51214

• Structural information for phase 2 Ca𝐹2

Cell parameters

a b c 𝜶 𝛽 𝛾

5.46302 5.46302 5.46302 90.000000 90.000000 90.000000

Asymmetry parameters
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P1 P2 P3 P4 Space group symbol system

0.37923 0.20402 -0.67532 -0.31777 -F 4 2 3 cubic

Halfwidth parameters

U V W

0.03074 -0.01503 0.02554

Atoms positions

Atom 𝑥 𝑦 𝑧 B occ

Ca 0.00000 0.00000 0.00000 0.97567 0.02095
F 0.25000 0.25000 0.25000 0.98345 0.04041

• Structural information for phase 3 (ZnO)

Cell parameters

a b c 𝜶 𝛽 𝛾

3.24904 3.24904 5.20568 90.000000 90.000000 120.000000

Asymmetry parameters

P1 P2 P3 P4 Space group symbol system

0.57716 0.29098 -1.11740 -0.52231 P 6c -2c Hexagonal

Halfwidth parameters

U V W

0.00187 0.00299 0.02634

Atoms positions

Atom 𝑥 𝑦 𝑧 B Occ

Zn 0.33333 0.66667 -0.02734 1.75250 0.16676
O 0.33333 0.66667 0.35750 0.87121 0.16997
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2D structural plots

• Phase 1

Figure 3.5: 2D structural plot along (b) axis for Al2O3 phase.

Figure 3.6: 2D structural plot along (c) axis for Al2O3 phase.
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Figure 3.7: 2D structural plot along (a) axis for Al2O3 phase.
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Figure 3.8: 2D structural plot along (b) axis for Ca𝐹2 phase.

Figure 3.9: 2D structural plot along (c) axis for C𝑎𝐹2 phase.
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Figure 3.10: 2D structural plot along (a) axis for Ca𝐹2 phase.

• Phase 3

Figure 3.11: 2D structural plot along (b) axis for ZnO phase.
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Figure 3.12: 2D structural plot along (c) axis for ZnO phase.

Figure 3.13: 2D structural plot along (a) axis for ZnO phase.
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Figure 3.14: 3D structural plot of Al2O3 powder sample.

Figure 3.15: 3D structural plot of ZnO powder sample.
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Figure 3.16: 3D structural plot of CaF2 powder sample.

3.3.3 Thin film
Fe2O3 thin film was synthesized and analysed in our laboratory . We treated the
sample with an X-ray of radiation 𝜆min= 1.54060 𝜆max =1.54443 and a step size
equal to 0.02, then we applied the following sets of refinements to the refinable
parameters on the range from 2𝜃min =22.5637 to 2𝜃max= 79.0926.

Set_1: We refined scale factors and shifts on 2theta axis (zero point)
Set_2: We refined scale factor and specimen displacement
Set_3: We refined We refined scale factor and specimen displacement, unit cell

parameters, profile shape parameters, background coefficient 1
Set_4: We refined scale factor and unit cell parameters, background coefficient

1 and Caglioti half-width parameter U
Set_5: We refined scale factor and unit cell parameters, background coefficient

1 and Caglioti half-width parameter U, overall isotropic displacement parameters
Set_6: Caglioti half-width parameter 𝑈 and 𝑉 for phase 1.
Set_7: Caglioti half-width parameter 𝑈 and 𝑊 for phase 1.
Set_8: Caglioti half-width parameter 𝑊 and 𝑉 for phase 1.
Set_9: Caglioti half-width parameter 𝑈 and 𝑉 for phase 2.
Set_10: Caglioti half-width parameter 𝑈 and 𝑊 for phase 2.
Set_11: Caglioti half-width parameter 𝑉 and 𝑊 for phase 2.
Set_12: Scale factor and Asymmetry parameters for phase 1.
Set_13: Scale factor and Asymmetry parameters for phase 2.
Set_14: Cell parameters for phase 1.
Set_15: Cell parameters for phase 2.
Set_16: Atomic coordinates for phase 1.
Set_17: Atomic coordinates for phase 2 except for hydrogen atoms.
Set_18: Isotropic displacement parameter for all phases except for hydrogen

atoms.
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Set_19: Atomic site occupancies except for hydrogen atoms.

Set_20: Background coefficients (1, 2 and 3)

The resulting plot of observed and calculated pattern is as follows:
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Figure 3.17: Plot of calculated and observed patterns with peaks positions and
differences plot of Fe2O3.
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Agreement factors

𝑅𝑝 𝑅wp 𝑅exp chi2 𝑅Bragg phase 1 𝑅Bragg phase 2 𝜒

23.2 20.3 16.49 1.52 6.900 5.984 1.23

kkk vs ?
The factor between 𝑅wp and 𝑅exp is considered as good.

• Structural information for phase 1 (Hematite)

Cell parameters

a b c 𝜶 𝛽 𝛾

5.03266 5.03266 13.76140 90.000000 90.000000 120.000000

Asymmetry parameters

P1 P2 P3 P4 Space group symbol system

0.16083 0.11941 -0.33148 -0.24946 -R 3 2”c Trigonal

Halfwidth parameters

U V W

-0.31336 0.21568 0.28716

Atoms positions

Atom 𝑥 𝑦 𝑧 B occ

Fe 0.00000 0.00000 0.35600 0.45817 0.33328
O 0.30523 0.00000 0.25000 -0.12935 0.50364

• Structural information for phase 2 (Hematite proto)

Cell parameters

a b c 𝛼 𝛽 𝛾

5.022151 5.022151 13.680600 90.000000 90.000000 120.000000

Asymmetry parameters
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P1 P2 P3 P4 Space group symbol system

-0.232500 -0.312040 0.695210 0.793370 -R 3 2”c Trigonal

Halfwidth parameters

U V W

-0.276825 -0.094643 0.277632

Atoms positions

Atom 𝑥 𝑦 𝑧 B occ

Fe 0.00000 0.00000 0.35557 4.55900 0.31760
H -0.14600 0.32100 -0.14200 5.52600 0.01000
O 0.29965 0.00000 0.25000 5.36740 0.51266

2D structural plots

• Phase 1 (hematite)

Figure 3.18: 2D structural plot along (c) axis for hematite phase.
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Figure 3.19: 2D structural plot along (a) axis for hematite phase.

Figure 3.20: 2D structural plot along (b) axis for hematite phase.
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Figure 3.21: 2D structural plot along (c) axis for hematite proto phase.

Figure 3.22: 2D structural plot along (a) axis for hematite proto phase.
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Figure 3.23: 2D structural plot along (b) axis for hematite proto phase.

3D structural plot [14]

Figure 3.24: 3D structural plot of hematite.
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Figure 3.25: 3D structural plot of hematite proto.

3.4 Conclusion
The Rietveld refinement is the last necessary step in the structural study of powder
diffraction data. It requires the structure model to be adjusted is physically and
chemically close to the observed one. If these conditions are not fulfilled then the
risk of obtaining an incorrect refined structure model is highly possible.

In this chapter we tried to refine different types of X-ray diffraction patterns that
spans from mono-phase material nature to triple-phase. We concluded the results
according to the agreement factors , and we tried to give a structural approach both
in numbers and as structural plots in 3D and 2D.
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General conclusion

The powder diffraction method was developed as early as 1916 by Peter Debye and
Paul Scherrer. In its first half decade of use it was exclusively limited to phase
analysis of materials. The major difficulty was the accidental and systematic peak
overlap caused by a projection of three-dimensional reciprocal space on to the one-
dimensional 2𝜃 axis of a powder pattern. This leads to a reduced information content
compared to a single crystal data set.

The Rietveld method overcomes the overlap problem by modelling the whole
powder pattern with a set of parameters that can be refined to minimize the dif-
ference between the calculated and the measured powder pattern. This allow us to
have sufficient information in the one-dimensional data set to reconstruct the three
dimensional structure.

In this work we have reviewed the necessary basic information on X-ray instru-
ments, in the first chapter, to allow for better transition to the theoretical approach
of Rietveld method in the second chapter, where we present, in some detail, the the-
oretical aspects of the many parameters that effect the Rietveld refinement process.
In the last chapter we have tried to apply the Rietveld method using a software
suite called Fullprof to extract as much structural information as possible from a set
of X-ray powder diffraction patterns.

We noticed that the agreement factors vary between phases – some meet the
required values and some do not. According to Brian Toby [15] we cannot rely on
these factors to identify the best fit because they are affected by many variables
(instruments or conditions for measuring the points 𝑦(𝑖)) but we have to calculate
them anyways to guide us through the refinement and to know whether we are
on the right way to fit the observed pattern. According to his experience we can
rely on graphical visualization and compare the calculated and observed patterns to
determine the goodness of fit. Then we can try to identify the reasons behind the
high values of agreement factors if such high values arise.

In conclusion, we can consider the Bragg factor and 𝜒2 as a guideline to help us
through fitting the calculated patterns but not to have the final results that help us
to determine the structural solution.
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Appendix A

The Fullprof Suite

The FullProf Suite [12] is formed by a set of crystallographic programs (FullProf,
WinPLOTR, EdPCR, etc.) mainly developed for Rietveld analysis (structure profile
refinement) of neutron or X-ray powder diffraction data collected at a constant or
variable step in scattering angle 2𝜃.

A beginner cannot start to use the program without a background in crystallog-
raphy, magnetism, diffraction physics, and data analysis. Even an expert in these
fields can experience difficulties for the first time he or she uses the program.

In order to do Rietveld refinement of X-ray diffraction data, we usually use a
pair of programs: PCR Editor and Winplot.

A.1 PCR Editor
This program can be presented as a user-friendly interface for an easier editing of the
*.pcr files that contain the diffraction conditions and crystallographic information
needed by the program.

Figure A.1: The principal window of EdPCR program.
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The principal window of EdPCR has a menu bar and a toolbar, see Figure A.1.
Hovering over an icon for a short time will give you a brief information about it.

A.1.1 General

This button allows you to define general information like the title and type of job:
Rietveld, Profile Matching, Simulating Annealing.

Figure A.2: The general information interface.

• General Title. It allows you to use up to 80 characters to label the printout.

• Calculations. This window allows you to select the appropriate calculation
method either for single crystal work or powder data. If Simulated Annealing
Optimization is selected, then the respective button is activated in order to
introduce parameters according to selected procedure.

• Optimize calculations. Given a particular option related to the job, the
program will optimize the calculations and it will reduce the time needed to
finish it.

A.1.2 Patterns

This window will allow you to present patterns information such as: types of profile,
background, geometry aspects, etc.
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Figure A.3: The patterns information interface.

You can add or remove and control the patterns information through this inter-
face except the refinable parameters.

• Weight. Useful for multipattern option. Is the weight for actual pattern.

• Data file / Peak Shape. Through this interface we can define all information
about data file, format, units, profile functions.

Figure A.4: Profile data information interface (Datafile/format).
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Figure A.5: Profile data information interface (refinement and simulation).

Figure A.6: Profile data information (Pattern calculation/Peak shape).

• Background Type. Which allow us to define the background mode in cal-
culations: points, polynomial, Fourier filter, …

63



APPENDIX A. THE FULLPROF SUITE

Figure A.7: Background file type information interface.

• Exclude regions. This window allows us to specify the number of exclude
regions on the current pattern and their range.

Figure A.8: Excluded regions interface

• Geometry/IRF (Instrumental Resolution File). Here we can specify
parameters related with geometry used in the refinement.
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Figure A.9: Geometry interface.

• User Scatt. Factors. Where we can define particular scatter factors.

Figure A.10: Scattering factors interface.

A.1.3 Phases

In this window we can define phase information like their names, contribution to
patterns and symmetry, etc.
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Figure A.11: Phase information interface.

A.1.4 Refinement
This interface is the access to the most important part of the PCR Editor which is
setting refinement conditions and editing structural with profile parameters . Atom
positions, profile shape parameters, magnetic moments, microstructural parameters,
etc.

Figure A.12: Refinement information interface.

A.1.5 Constraints
This interface provides the ability to set constraints for the refinable parameters.
You can modify, add or delete constraint relations with ease.
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Figure A.13: Constraints interface.

A.1.6 Box/Restraints

On this window we define restraint relations or box limits on refinable parameters.

Figure A.14: Box/Restraints interface.

A.1.7 Output

This interface allows you to control the output files for each phase and pattern:
Fourier, ℎ𝑘𝑙-lists, files for other programs, etc.
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Figure A.15: Output file interface.

A.2 WinPLOTR
WinPLOTR [13] is used to visualize the results to compare the input data with the
refined plot.

We can also use this tool to smooth the raw data to have a better reading for the
peak positions and intensities that we also use it to have phase and crystallographic
information about the sample through comparing these extracted information with
the open data base of crystallography. Eventually we need this information to make
the right *.pcr file for the right refinement of the sample.
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Figure A.16: WinPLOTR’s main interface.
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Refinement requirements

To start the refinement process, we need to prepare a set of files that contain informa-
tion about the simple and the refinable parameters, in most situations we basically
need these input files:

• .PCR

This is the input control file, known as the PCR-file. It must be in the current
directory to run the program. It contains the title and crystallographic data
and must be prepared by the user with the help of a file editor.
There are two different formats for this file: the first one is a free format and
the second is based on keywords and commands. Within the free format type
of the file there are two slightly different ways of writing the PCR-file: the
classical way, adapted to treat only a single pattern, and the new way suitable
for treating multiple pattern refinements.
Note: we can use the .CIF (Crystallographic Information File) file to create a
.pcr file from scratch.

• .DAT

This is the intensity data file. Its format depends on the instrument used.
This corresponds to the profile intensity of a powder diffraction pattern. For
an X-ray powder diffraction pattern the .DAT file contains the intensity values
according to the step size 𝜃.

• .BAC

This is the background file which contain numerical values that the program
uses to calculate the background at each value of the scattering variable to
eliminate unnecessary background noise that is produced by the X-ray instru-
ments. There are two types of formats for this file:

1. The first format is the same as that of FILE.dat for Ins=0:
– First line: 2𝜃/TOF/Energy (initial) step 2𝜃/TOF/Energy (final),

any comment
– Rest of lines: list of intensities in free format.
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2. The second format is adapted to the case where there is no fixed step in
the scattering variable. The first line is a comment and the rest of lines
are pairs of values, scattering variable – intensity, in free format.

After doing a cycle of calculations Fullprof will creat these Output files:

• .OUT
This is the most important output file which contains all control variables and
refined parameters. Its content depends on the user’s values of settings flags.

• .PRF
This contains the observed and calculated profile data, which are usually
used by the visualisation programs. (This file is used automatically by Win-
PLOTR).

• .HKL
Complete list of reflections of each phase.

• .SUM
Parameter list after last cycle: summary of the last parameters, their stan-
dard deviations and reliability factors. An analysis of the goodness of the
refinement is included at the end.

• .FST
This contains space group symbol, atom positions and cell parameters, which
is used by FP studio program to give a 3D graph of the refined structure.
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Refinement procedure

C.1 Making the *.pcr file
To make a *.pcr file we can use two methods, the first is by editing an existing
*.pcr file to match the data we observed which can take too much time to finish,
or we can use the PCR editor included in the Fullprof Suite software.

• Open pcr editor. We can launch it by pressing the icon on the Fullprof suite
interface or we can lunch through the programs tab > EdPCR .

• Make a new file and we set the general variables. We set the desired title
for the *.pcr file and it must match the name for *.dat file, and we set the
calculations to refinement/calculation of a powder diffraction profile.

• Set pattern variables. We create a new pattern, we set path for the observed
data file *.dat.

For the background type we have multiple options, but we prefer to use the
6-polynomial function, unless you have the *.bac file or you have graphically set
manually the background points than you select it to be “background file trans-
formed by 4-coefficient expression” and you set the path for that file.

To set an excluded region to optimize the calculations we just fix the range for
that region under the “excluded region” tab.

• Set phase variables. Setting the general information on phases starts by giving
a name of the phase, then setting the calculations to be “structural model
(Rietveld method)”, after that we set the coefficient to calculate the weight
percentage of the phase.

Under the “contribution to patterns” tab we select X-ray to be the type of
pattern, and we set the pseudo-Voigt function to calculate the peak shape.

Under the “symmetry” tab we set the space group properties automatically ac-
cording to the space group symbol of the element we are working on.

• Save the *.pcr and *.dat files in a separated folder. Saving the *.pcr and
*.dat files in a separate folders is necessary for the software to work correctly,
and the files should have the same name too.
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C.2 Testing the *.pcr file

After we create the .pcr file we open the Fullprof suite software and open the PCR
Editor tool again.

Figure C.1: Editor of PCR files interface.

We open the saved *.pcr file, and we lunch the software without setting any
parameter to refine to make sure that everything is set correctly. If everything is set
correctly then we will get the following results with no error messages:

Figure C.2: Fullprof program interface and results log.
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In order to set parameters to be refined by Rietveld method we simply select
the desired parameters to be refined under the refinement tab, then we start the
Rietveld refinement program.
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Troubleshooting the refinement

During refinement procedure we may encounter many obstacles. The following table
summarises these problems and the refinement parameters that should be considered
for refinement.

Effect in diffraction pattern Origin in crystal structure model
Wrong peak positions Unit cell dimensions Sample height dis-

placement Zero-shift
Wrong absolute intensities Weight fraction (scaling)
Wrong relative intensities Preferred orientation Grainy sample

Atomic species / Substitutions / Vacan-
cies Atomic coordinates Site occupan-
cies Thermal displacement parameters

Wrong peak width Crystallite size Micro-strain Surface
roughness Transparency
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Abstract

معالم استخلاصَ التقنيةُ هذه ل Ȗُسهِّ إذ المواد، علم ʏࢭ ا مُهِمًّ مقامًا ة» يɴِيَّ السِّ ةِ الأشعَّ «حُيُود تقنيةُ
ُ
أ تȘََبَوَّ

طور ʄعڴ تحتوي العينة ɠانت إذا أي مجهولة، المادة أطوارُ ɠانت إذا لكنْ أطوارها. وتحديدَ ورʈة البلَّ ةِ اݍݵليَّ
اشْڈرتْ الصعوȋة هذه ولتفادي .ʏالهيكڴ التحديد عملية بُ يُصعِّ هذا فإنّ البيانات، قاعدة ʏࢭ موجود غ؈ف

المساحيق. حيود مجال ʏࢭ وخاصة عام Ȋشɢل المواد علم ʏࢭ «رʈِتْفِيلد» طرʈقةُ
وأوامره «فُول؄ْفُوف» ب؄ِفنامجِ وʉُعرِّفُ «رʈِتْفِيلد»، لطرʈقة النظرʈة التفاصيل Ȋعض البحث هذا يݏݵّص
مܦݰوق من واحد طور ذات عيّنة تحض؈ف تم حيث ة، خاصَّ أمثلةً ثلاثة دراسة ʄإڲ يتطرق ثم اݝݵتلفة،
عيّنة فهو الثالث المثال أمّا ،ZnO--Al2O3 -- CaF2 ثلاثة بأطوار مܦݰوق أيضًا هو الثاɲي والمثال ،Y2O3

برُوتُو». و«هِيماتʋِت «هِيماتʋِت» من رقيق غشاء من

X-ray diffraction occupies an important place in materials science. Through this
technique, it is easy to extract the cell parameters and identification of phases that
exist in a crystalline sample. Nevertheless, when the phase is unknown, or in other
words, if the sample contains a phase which does not exist in [kkk the] database then
this makes the process of structural determination more difficult. It is due to this
difficulty that the Rietveld method has gained fame in materials science in general
and especially in the powder diffraction field.

This work highlights, in some detail, the theoretical aspect of the Reitveld
method. Also, the Fullprof program with its different commands is presented here.
This investigation showcases special examples: a sample with a single phase of Y2O3
was prepared as powder, the second example is also a powder with triplet phases
ZnO–Al2O3 –CaF2, and the third example is hematite and hematite-proto as a thin
film sample.

La diffraction des rayons-X occupe une place importante dans la science des
matériaux. Grâce à cette technique, il est facile d’extraire les paramètres cellulaires
et d’identifier les phases qui existent dans un échantillon cristallin. Néanmoins,
lorsque la phase est inconnue, ou en d’autres termes, si l’échantillon contient une
phase qui n’existe pas dans la base de données, cela rend le processus de détermi-
nation structurelle plus difficile. Cependant, à partir de cette difficulté, la méthode
Rietveld a pris sa position célèbre dans la science des matériaux en général et en
particulier dans le domaine de la diffraction des poudres.

Ce travail met en évidence en quelques détails l’aspect théorique de la méthode
Reitveld aussi le programme Fullprof avec leurs différentes commandes sont représen-
tés ici. De plus, cette enquête prouve des exemples particuliers: un échantillon à
phase unique de Y2O3 a été préparé sous forme de poudre, le deuxième exemple
est également une poudre à phases triplet ZnO–Al2O3 –CaF2. Enfin, le troisième
exemple est l’hématite et l’hématite-proto en tant qu’échantillon de film mince.
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