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Chapter1

General introduction

Cellular damage or oxidative injury induced by reactive oxygen species (ROS)

is a key mechanism implicated in various human neurodegenerative disorders,

autoimmune pathologies, inflammation, diabetes, and digestive system disorders

(Atawodi, 2005). Free radicals are chemical species with high reactivity charac-

terized by the presence of an unpaired electron in their outer shell. Because of

this unpaired electron, free radicals are highly reactive and can participate in a

variety of chemical reactions. Free radicals can be produced by the human’s nor-

mal metabolic processes as well as by being exposed to environmental chemicals

(smoke, radiation, and pollution) and other xenobiotics as well as endogenous

chemicals, especially stress hormones (Cheeseman and Slater, 1993). An increas-

ing number of studies indicate that ROS can be scavenged by using natural an-

tioxidant compounds found in foods and medicinal plants as chemo-prevention

(Cuppett and Hall, 1998; Khalaf et al., 2008; Pietta et al., 1998).

Medicinal plants are “traditions of yesterday and drugs of tomorrow”, have

garnered increased interest in recent years due to their potential in treating chronic

diseases such as cancer, and Alzheimer’s disease, and diabetes (Gurib-Fakim,

2006). They are also known to have fewer side effects and are more sustainable

compared to synthetic drugs. With their natural healing properties and afford-

ability, medicinal plants have proven to be an essential component in traditional

medicine and an exciting area of research for modern medicine (Gurib-Fakim,

2006). These health benefits have been attributed to plant-derived compounds

known as bioactive compounds, which are secondary metabolites present ubiqui-

tously in the plant kingdom and are considered non-nutritional but vital ingredi-

ents for the maintenance of human health (Patil et al., 2009). Many classes of sec-

ondary metabolites such as phenolic compounds (Flavonoids and Non- Flavonoids)

have been identified in several plant families including Asteraceae, and Lamiaceae

(Afonso et al., 2021; Dai et al., 2013; Skendi et al., 2017; Wang et al., 1998; Zi-
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aková and Brandšteterová, 2003). The composition and amount of bioactive com-

pounds in plants are influenced by various factors such as the specific chemo-type

of the plant, the geographical region where it is harvested, the climate condi-

tions. Consequently, there is a growing interest in employing more systematic

and comprehensive approaches for characterizing these compounds. Techniques

such as liquid chromatography combined with mass spectrometry (LC-MS), and

high-performance thin layer chromatography (HPTLC), and gas chromatography

combined with mass spectrometry (GC-MS) among others, have been widely uti-

lized for this purpose (Nayak et al., 2015; Pachura et al., 2022; Reguigui et al.,

2023).

The main challenge while extracting these bioactive compounds is to choose

the appropriate extraction technique. Traditionally, methods such as soxhlet, mac-

eration, decoction, etc., which uses simple and low-cost equipment, high amount of

solvents, and long extraction time, working at atmospheric pressure and at higher

extraction temperatures, and eventually had a negative impact on the environ-

ment (Rodriguez De Luna et al., 2020). Environmentally-friendly extraction meth-

ods, including ultrasound-assisted extraction (UAE), microwave-assisted extrac-

tion (MAE), pressurized liquid extraction, pulsed electric field, enzyme-assisted ex-

traction, and high-voltage electrical discharges, have emerged as non-conventional

approaches. These methods utilize advanced equipment, enabling efficient ex-

traction within shorter timeframes and flexible operating conditions of pressure

and temperature (Berkani et al., 2020; Dahmoune et al., 2015; Darvishzadeh and

Orsat, 2022; Garcia-Vaquero et al., 2020; Rodriguez De Luna et al., 2020). More-

over, it has been reported that different extraction parameters such as the nature

of the solvent, time, solid-to-solvent ratio, temperature, and pressure may affect

significantly the efficiency of these environmentally-friendly methods to extract

bioactive compounds (Dahmoune et al., 2015; Frontuto et al., 2019; Liu et al.,

2013; Tabaraki and Nateghi, 2011).

The utilization ofdesign of experiments (DOE) and artificial intelligence (AI)

can prove beneficial in optimizing and predicting the extraction process of sec-

ondary metabolites from medicinal plants. DOE, as a statistical technique, enables

the rapid optimization of system efficiency by considering known input variables

(Uy and Telford, 2009). Various DOE methodologies, including full and fractional

factorial design, central composite design (CCD), and Box-Behnken design (BBD),

have been widely employed to screen and optimize the MAE and UAE of secondary

metabolites from medicinal plants (Kwon et al., 2003; Uy and Telford, 2009; Xu

et al., 2020). Recently, new statistical designs have been developed such as defini-

tive screening design (DSD) and I -optimal design (Goos and Jones, 2011; Jones
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and Nachtsheim, 2011). DSD allows the simultaneous screening of multiple factors

(qualitative and quantitative) and their interactions while minimizing the number

of experiments required (Jones and Nachtsheim, 2011). On the other hand, I -

optimal designs are particularly useful when resources are limited and the number

of experiments that can be conducted is restricted (Goos and Jones, 2011). The

I -optimal design minimizes the average variance of parameter estimates over the

experimental region, which leads to a more precise and accurate model (Goos and

Jones, 2011). Furthermore, AI can be used to model the extraction of bioactive

compounds from medicinal plants. AI can help to optimize the input variables

by predicting the optimal conditions for maximum yield and quality of output

variables. Support vector machine (SVM), artificial neural network (ANN), and

boosted regression tree (BRT) as supervised machine learning algorithms have

gained more interest, especially in chemistry and biology by accelerating research,

improving drug discovery, and providing new insights into complex biological pro-

cesses (Asgari et al., 2017; Ciric et al., 2020; Elith and Leathwick, 2017; Hua and

Sun, 2001; Suleiman et al., 2016).

The yield and potency of bioactive compounds of medicinal plants can be

influenced by various factors, including the region in which the plants are grown.

However, there are several limitations to the effect of regions on the yield of bioac-

tive compounds. One of the primary limitations is variations in soil quality, and

climate can significantly affect the chemical composition of the plants (Frontuto

et al., 2019; Liu et al., 2013; Tabaraki and Nateghi, 2011). Additionally, the ge-

netic variability of plants within a species can also affect the concentration and

diversity of bioactive compounds. Another limitation is the variability in the ex-

traction and analysis methods used to measure the bioactive compound content.

Extraction methods can vary in terms of cost, time, and environmental impact,

which can yield varying amounts and types of compounds, making it difficult to

compare results across different studies. The stability and solubility of bioactive

compounds can pose challenges during extraction, as they may be prone to degra-

dation or require specific conditions to extract efficiently (Frontuto et al., 2019;

Liu et al., 2013; Tabaraki and Nateghi, 2011).

As far as our knowledge extends, there is a limited amount of research avail-

able about the optimization and prediction of UAE and MAE of secondary metabo-

lites from medicinal plants of the Bouira region using DOE, and supervised learn-

ing models. Therefore, the present study attempts to valorize the medicinal plants

of the Bouira region including Carthamus caeruleus L. and Salvia officinalis L.

by optimizing and modeling UAE and MAE of their secondary metabolites using

new statistical designs and supervised learning model.
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The study is divided into two main parts; a) the first part aimed to optimize

and model the UAE of total phenolic content (TPC) and total saponin content

(TSC) from the rhizome part of Carthamus caeruleus L. using Box-Behnken design

and support vector regression optimized by the dragonfly algorithm (SVR-DA).

The antioxidant activity of the optimal UAE of rhizome extract was evaluated

and compared to the antioxidant activity of leaves extract using different methods

in vitro. The second part (b) aimed to screen and optimize the UAE and MAE

extraction conditions of TPC, Trolox equivalent antioxidant capacity (TEAC)

and total antioxidant capacity (TAC) from Salvia officinalis L. leaves using new

classes of experimental designs such as DSD and I -optimal design. Furthermore, a

differential analysis using ultra-high performance liquid chromatography combined

with high resolution mass spectroscopy (UHPLC-HRMS) between the phenolic

profile of MAE optimal extract and UAE optimal extract of S. officinalis L. leaves

were carried out to evaluate the effect of MAE and UAE on TPC, and antioxidant

activity. This Doctoral Dissertation is structured in three main parts, as explained

below:

• Part I: Literature Review, where

– A comprehensive overview of the current state of knowledge on the

studied plants and their health benefits (Carthamus caeruleus L. and

Salvia officinalis L.) (Chapter 1).

– Review the different types of secondary metabolites found in medicinal

plants. Review the existing research on the extraction of secondary

metabolites from plants and the different techniques used for this pur-

pose (Chapter 2).

• Part II: Materials and Methods, where the materials and methods used

in this study are described, as well as all the detailed information on the

plant species studied are provided. The extraction techniques and analytical

techniques used to extract and identify the secondary metabolites from the

studied plants also are described (Chapter 3).

• Part III: Results and discussion, where the results obtained during this

Ph.D. thesis are presented and discussed in two main Chapters:

– Chapter 4 of this study focuses on two main aspects, namely the

optimization of the UAE process to extract phenolic-saponin content

from the rhizome of C. caeruleus L., and the development of a predictive

model using support vector regression that was optimized using the

dragonfly algorithm
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– Chapter 5 of this study, two design methodologies, namely defini-

tive screening design and I -optimal design, are employed to optimize

the ultrasound and microwave-assisted extraction processes for pheno-

lic content and antioxidant capacity from the leaves of S. officinalis L.

Additionally, each chapter is preceded by an abstract that provides a

concise summary of its contents.

– General Conclusion, where the most relevant findings achieved during

this Ph.D. are summarized. The broader implications of this research

for the field of medicinal plants and the extraction of their secondary

metabolites using unconventional extraction techniques combined with

the design of experiments and artificial intelligence are discussed. Some

future works and perspectives on the topic also are provided (Chapter

6).

• More sections are included at the end of this Dissertation:

– Annexes, and references, where the list of all research works cited rele-

vant to the topic of this Ph.D. dissertation is presented.

– The scientific articles published in Elsevier journals, related to the work,

and Abstract.

5



Part I

Literature review

Chapter 2: Medicinal plants and their Health benefits 7

2.1 Carthamus caeruleus L. . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Salvia officinalis L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 3: Bio-active compounds and extraction technologies 20

3.1 Secondary metabolites from plant matrices and their classification . . . 20

3.2 Extraction aided by ultrasound technology (UAE) . . . . . . . . . . . . 26

3.3 Microwave assisted extraction (MAE) . . . . . . . . . . . . . . . . . . . 39

6



Chapter2

Medicinal plants and their Health

benefits

2.1 Carthamus caeruleus L.

2.1.1 Cytotaxonomy and classification

The family of Asteraceae is the largest angiosperm with 23600 species, widespread

in temperate regions (Ababsa et al., 2018), recent years have seen considerable at-

tention on their biological activities, where the Asteraceae plants have been used

widely as traditional herbals medicine (Albayrak et al., 2010; Brandão et al., 1997;

Passero et al., 2011). The genus of Carthamus belongs to the family of Asteraceae

that comprises of 25 species including Carthamus tinctorius L., Carthamus lana-

tus, Carthamus Oxyacantha, and C. caeruleus L (Toubane et al., 2017).

Figure 2.1: Picture of C. caeruleus L. (herbarium of Gérard de Belair , GdB)
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Several attempts to make cytotaxonomy and classification of C. caeruleus

L. clear, Pomel (1874) classified C. caeruleus into the genus of Lamottea under

the scientific name of Lamottea caerulea (L.) Pomel. on the basis of carpological

characters, after that Quezel et al. (1962) transferred it to Carthamus genus on

the basis of pappus characteristics (Vilatersana et al., 2000). Based on internal

transcribed spacer (ITS) sequences of nuclear ribosomal DNA, Vilatersana et al.

(2000) were in agreement with the classification of Lopez Gonzalez (1989) to moved

C. caeruleus L. back to Lamottea genus McPherson et al. (2004).

Ashri and Knowles (1960), have categorized the species of Carthamus for

many sections based on chromosome numbers, morphology, and ability of hy-

bridization: section I, II, III, and section IV having respectively 12, 10, 22, and 32

pairs of chromosomes. C. caeruleus L., with 2n = 24, was not assigned to sections

because it is not able to hybridize with other species. Within this context, many

Artificial crosses with C. caeruleus L. with other species of Carthamus confirm

that it failed to produce seed except for a single cross with C. leucocaulos, which

offspring produced is a single sterile with low pollen viability (McPherson et al.,

2004).

The botanical classification was given by Quezel et al. (1962):

Kingdom: Plantae
Phylum: Tracheophyta

Subphylum: Angiospermae
Class: Dicotyledones
Order: Asterales
Family: Asteraceae

Sub-family: Tubulifloreae
Tribe: Cynareae
Genus: Carthamus
Species: Carthamus caeruleus L.

Vernacular names: Arabic: Mers’gousse, Kendjar, Gargaa; Kabyle: Amegres;

French: Cardoncelle Bleue, Carthame bleue.

2.1.2 Botanical characteristics and geographical distribu-

tion

Two models of C. caeruleus L. leaves were recognized; radical leaf attenuate, ob-

long, dentate or lyrate-pinnatifid, is growing and situated at the base of the stem

which has hairs long and rigid (hispid); and cauline leaf sessile, amplexicaul and

ovate-lanceolate, dentate-spiny margin are borne and spread out on an aerial stem

(Fig. 2.1) (Battandier, 1888). C. caeruleus L. is a blue-flowered perennial species

8
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with dark anthers, its flowers head are ovoid or globose; Achenes are globular or

subglobular, whitish and glabrous, which are shorter than pappus; involucre with

external bracts ciliates-pectinated and internal bracts have a fimbriate appendix.

Every single flower’s head rises approximately 20-60 cm which is based on as-

cending stems (erect), monocephalic, and usually simple (Fig. 2.1), generally it is

a biennial plant (Battandier, 1888; McDonald and Edwards, 1807; Quezel et al.,

1962).

Bioclimatic zones and the geographical position of Algeria allowed the growing

of many varieties of plants. C. Caeruleus L. is a Mediterranean plant, it is a native

of Barbary is abundantly present in North Africa, southern European countries

like Spain, Greece, and Italy, in Algeria C. Caeruleus L. is widespread in fields and

uncultivated places (McDonald and Edwards, 1807; Quezel et al., 1962; Toubane

et al., 2017).

2.1.3 Major components of Carthamus caeruleus L.

phytochemicals are abundant in various parts of medicinal plants, including C.

Caeruleus L. rhizome, which has been found to be a rich source of primary metabo-

lites such as lipids (8%) and starch (22%), along with secondary metabolites with

a water content of 60% (Hamadi et al., 2014). Moreover, Ten compounds were

characterized from methanol extract of C. Caeruleus L. root, such as sennosides,

flavonoids, anthocyanins, free quinones, tannins, leucoanthocyanins, saponins, gly-

cosides, mucilage, and coumarins (Baghiani et al., 2010; Dahmani et al., 2018), In

addition to compounds mentioned previously, Toubane et al. (2017) were identified

13 compounds such as sesquiterpenes and fatty acids. Moreover, 4 polyunsatu-

rated fatty acids such as linolenic acid and, linoleic acid, palmitic acid, and arachi-

donic acid, and a high quantity of sterols were revealed in the rhizome part, These

compounds have demonstrated their effectiveness in safeguarding and renewing

skin cells. Palmitic acid contributes to preserving the integrity of the skin’s sur-

face, specifically the stratum corneum, while linoleic acid functions as a protective

agent against skin cancer (Hamadi et al., 2014). In addition, sterols are recognized

for their ability to regenerate skin cells (Hamadi et al., 2014). Overall, the pre-

dominance of mucilage, fatty acids, and phenolic compounds in C. Caeruleus L.

rhizome explains its healing properties for irritated tissues and its antimicrobial,

anti-fungal, antioxidant, and anti-inflammatory activities (Baghiani et al., 2010;

Dahmani et al., 2018; Hamadi et al., 2014; Toubane et al., 2017).
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2.1.4 Biological activities of Carthamus caeruleus L.

2.1.4.1 Antimicrobial activity

The emergence of resistance to antimicrobial agents has evolved into a significant

global issue, increasingly prevalent worldwide. In US hospitals, approximately 70%

of cases involve the acquisition of bacterial strains that are resistant to treatment

each year (Cushnie and Lamb, 2005a). Within this context, the antimicrobial

activity of C. Caeruleus L. leaf and root extract were tested in vitro and the

results showed that leaf and root extracts have a positive effect against several

microorganisms including Gram-negative, and Gram-positive bacteria (Staphylo-

coccus aureus, Bacillus cereus, and Acinetobacter bowie) and pathogenic fungus

(Ascochyta rabiei and Fusarium Var coerileum) (Karima et al., 2013). Moreover,

the root extracts are more effective and efficient than leaf extract against the

tested microorganism (Karima et al., 2013).

2.1.4.2 Antioxidant capability

Under physiological conditions, reactive oxygen species (ROS) and antioxidant

defense are in balance, an imbalance of one of them may induce oxidative stress

which is considered an etiological agent for many diseases like cardiovascular and

neurodegenerative diseases, such as cancer, Alzheimer, diabetes, and aging (Rojas

and Buitrago, 2019). More importantly, the prevention of oxidative stress and

those diseases by natural antioxidants has been suggested (Cushnie and Lamb,

2005b).

In their study, Baghiani et al. (2010) assessed the TPC, total flavonoids con-

tent, and antioxidant capacity of four sub-fractions obtained from the root extract

of C. Caeruleus L. The findings revealed that the ethyl acetate extract exhibited

the highest TPC, with a value of 75.710 ± 4.878 mgGAE/g. The chloroform ex-

tract followed closely behind with a TPC of 36.899 ± 1.863 mgGAE/g. However,

the chloroform extract exhibited remarkable antioxidant activity, surpassing other

extracts, with an IC50 value of 53.26 µg mL−1. Notably, its effectiveness even sur-

passed that of the synthetic antioxidant butylated hydroxytoluene (BHT). Addi-

tionally, Toubane et al. (2017) highlighted that the ethanol extract of C. Caeruleus

L. demonstrated the highest antioxidant capacity, with an IC50 value of 1.51

mg mL−1, when compared to the hexane and methanol extracts obtained through

accelerated solvent extraction.
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2.1.4.3 Anti-inflammatory activity

In this case, the root’s anti-inflammatory activity was induced by Carrageenan in

the hind paw of the mice model; the results showed that ethanol extract was better

to reduce the swelling induced in the mice paw than methanol extract, hexane ex-

tract, and even with standard treatment, the anti-inflammatory activity probably

due to inhibition the stimulating the release of inflammatory mediators (Toubane

et al., 2017). Also, Dahmani et al. (2018) confirmed that the methanol extract

has an important diminution in hind paw volume induced similar to positive con-

trols, caused by many bioactive compounds such as flavonoids are known to target

prostaglandins mediator, which is involved in the late phase of acute inflamma-

tion, and palmitic acid as an anti-inflammatory agent has a significant inhibition of

phospholipase A enzyme. According to Dahmani et al. (2018), caryophyllene oxide

and 5-hydroxyméthylfurfural are additional phytochemicals that possess beneficial

biological effects, including analgesic and anti-inflammatory properties, as well as

bacteriostatic action.

2.1.4.4 Wound-healing capacity

In Algeria, a lot of the Asteraceae family including C. Caeruleus L. has been used

for many years in the healing of wounds and burns as an antiseptic agent (Med-

dour and Meddour-Sahar, 2015). According to Dahmani et al. (2018), the root

extract of C. Caeruleus L. has been identified as a beneficial source of palmitic

acid. This compound has demonstrated the ability to induce a wound healing

effect in vivo using an incision wound model, primarily by reducing oxidation and

inflammation. Additionally, the extract has exhibited positive effects in a hair

growth-promoting test by enhancing the distribution of sebaceous glands, capil-

laries around hair follicles, and promoting vasodilation (Dahmani et al., 2018). In

their study, Benhamou and Fazouane (2013) formulated a healing cream utilizing

the rhizome of C. Caeruleus L. and examined its efficacy on an animal model

with second-degree burns and incisional wounds. The histopathological analysis

revealed a notable regeneration of epithelial tissue, indicating the positive healing

properties of the cream.

2.2 Salvia officinalis L.

2.2.1 Taxonomy and distribution

The Lamiaceae family is recognized as one of the most significant families of

medicinal plants, encompassing a diverse range of plant species with extensive bi-
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Figure 2.2: Aerial part of Salvia officinalis L (El-Feky and Aboulthana, 2016).

ological and therapeutic applications. Within this family, the Salvia genus stands

out as the most prominent, comprising an impressive collection of approximately

900 species (Ghorbani and Esmaeilizadeh, 2017; Uritu et al., 2018). Garden sage

or common sage, scientifically known as Salvia officinalis L., is an herbaceous

plant. The name ”Salvia” originates from the Latin term ”salvare,” which trans-

lates to ”healer,” reflecting the plant’s renowned therapeutic properties (Afonso

et al., 2021) (Fig. 2.2). According to (Grdǐsa et al., 2015; Quezel et al., 1962), the

classification of Salvia officinalis L. was given as follows:

Kingdom: Plantae
Phylum: Tracheophyta

Subphylum: Angiospermae
Class: Dicotyledones
Family: Lamiaceae

Sub-family: Nepetoideae
Tribe: Mentheae
Genus: Salvia
Species: Salvia officinalis L

Vernacular names : Arabic: Souaq en nebi, Miramiya, salma; Kabyle: Taz-

zourt, Agourim, Imeksaouen; French: sauge commune, English: Common sage,

Garden sage.

Sage is native to the northern Mediterranean region and the Middle East, it

has been distributed throughout Southern Europe, Southeast Asia, and America

(Jakovljevic et al., 2019). Sage is cultivated in the world as a culinary herb in

the USA, Spain, Italy, Yugoslavia, Greece, Albania, Argentina, Germany, France,

Malta, Turkey, England, and Canada (Sharma et al., 2019).

12



Salvia officinalis L.

2.2.2 Botanical aspects

The common sage, also known as Salvia officinalis L., is a fragrant shrub that

can be an annual or perennial and reaches a height of up to 100 cm (Altindal and

Altindal, 2016). The plant features opposite and simple leaves with a grayish-

green color. These leaves are oblong-lanceolate, measuring approximately 8.5 ×
2.5 cm, and have petioles. They possess an acute apex, finely crenate margins,

and a dense covering of hairs that obscure the glandular punctate glands (Bagchi

and Srivastava, 2003; Jakovljevic et al., 2019). According to Jakovljevic et al.

(2019), the stems of Salvia officinalis L. can either be erect or procumbent and

are characterized by plentiful hairy dark green branches. The flowers, resembling

violets, measure 2 to 4 mm in length and are arranged in pseudoverticillasters.

Each pseudoverticillaster consists of 5 to 10 violet-blue colored flowers, forming

clusters that resemble spurious spikes. The flowering period spans from March to

July (Altindal and Altindal, 2016; Jakovljevic et al., 2019). S. officinalis L. may

contain both male and female organs or only female organs (Altindal and Altindal,

2016).

2.2.3 Major components of Salvia officinalis L.

Using UPLC/ESI-MS, the key bioactive compounds present in the leaves of Salvia

officinalis L. were effectively identified. The analysis revealed a notable pres-

ence of various compounds, including flavan-3-ols, flavonols, hydroxybenzoic acids,

flavones, hydroxycinnamic acids, lignans, and anthocyanins indicating their higher

concentration in the plant (Čulina et al., 2021). In addition, Boufadi et al. (2020)

found that kaempferol, cirsimaritin, quercetin, catechin, acacetin, rosmarinic acid,

and salvianolic acid were the most abundant bioactive compounds in the ethanol-

water extract of sage leaves of the west of Algeria.

Additionally, the sage extract from Croatia exhibits a diverse range of bioac-

tive compound families, including monoterpenes, oxygenated monoterpenes, sesquiter-

penes, oxygenated sesquiterpenes, diterpenes, triterpenes, esters, and waxes. These

compound families were identified using advanced analytical techniques such as

GC-FID and GC-MS (Glisic et al., 2011). The same bioactive compounds were

also found in the sage extract of East of Serbia by Velickovic et al. (2006), which

found that hydro-ethanolic extract exhibited a high concentration of camphene,

cis-thujon, trans-thujone, 1,8-cineol, camphor, α-humulene and α-pinene.

On the other hand, the essential oil of sage leaves exhibited medicinal proper-

ties and is employed in many pharmaceutical and food industries. Radulescu et al.

(2004) identified 35 compounds in the essentiel oil of sage leaves, in which thujone
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(α and β), camphor, 1-octen-3-ol, and 1,8-cineole were found in high concentra-

tion compared to the others compounds. Furthermore, it has been documented

that the composition of the essential oil derived from Salvia species can vary sig-

nificantly due to factors such as genetic variations, seasonal fluctuations, climatic

conditions, and environmental influences (Hamidpour et al., 2014).

2.2.4 Extraction of secondary metabolites from Salvia of-

ficinalis L. leaves

Sage leaves contain numerous bioactive compounds that showcase diverse biolog-

ical activities, making them valuable in various industries. Extracting these com-

pounds is a vital process for isolating and identifying their bioactive constituents.

Table 2.1, highlights that maceration, UAE, and MAE have been utilized to ex-

tract total phenolic content, flavonoids, and phenolic acids from Salvia officinalis

L. Su et al. (2020) optimized aqueous enzymatic extraction of rosmarinic acid

from sage leaves, which found that the optimal parameters for the extraction of

rosmarinic acid were; 4.49% of Cellulase A and Protamex mixture (1:1, w/w)

in distilled water, 1/25.76 g mL−1 of solid to liquid ratio, and 54.3 °C, for two

2 h using maceration as extraction method (Table 2.1). Furthermore, different

preliminary studies were carried out to study the effects of different extraction

parameters of maceration on the extraction of TPC, which found that the ex-

traction solvent, solid-to-solvent ratio, temperature, and extraction time highly

showed significant effects on the extraction of these compounds (Dragovic-Uzelac

et al., 2012; Durling et al., 2007).

Furthermore, the UAE and MAE of phenolic compounds from sage leaves

were also performed as depicted in table 2.1, which showed high extraction effi-

ciencies than maceration by maximizing the recovery of phenolic compounds, and

minimizing the extraction time. Jakovljević et al. (2021) applied the deep eutectic

solvent (DES) as a green solvent for the extraction of carnosic acid and carnosol

from sage leaves, which found that 82.36 min of time, 69.84 °C of temperature,

50/1 mg mL−1 of solid to solvent ratio were the optimal UAE parameters. On

the other hand, optimization of the antioxidant compounds extraction from sage

by-products using ultrasound and microwave was also carried out, which found

that the optimal UAE parameters were 80 min of time, and 75 °C of temperature,

whereas the MAE parameters were 18.7 min of time, and 1/40 g mL−1 of solvent

to solid ratio (Table 2.1).
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Table 2.1: Extraction methods and design of experiments used for the extraction of secondary metabolites from S. officinalis L.

Optimal extraction conditions
Extraction
methods

DOE
Equipement’s
characteristic

Target
compounds

Time Temperature
solid/liquid
ratio (g/mL)

Solvent
concentration

References

UAE

N/A
Ultrasonic probe

output power 400 W
frequency 30 kHz

TPC
RA

11 min N/A 1/20 Ethanol (30%) (Dent, 2015)

BBD
37 Hz
50 W

Carnosic acid
carnosol

82.36 min 69.84 °C 50/1
(mg/mL)

DES-H2O
11.05% of

water addition
(Jakovljević et al., 2021)

N/A
400 W
24 kHz

TPC 10 min 40 °C 1/10 Ethanol (80%) (Dogan et al., 2019)

BBD
42.54 W/L
40 kHz

TPC and TFC 80 min 75 °C 1/20
(fixed)

Ethanol (60%)
(fixed)

(Zeković et al., 2017a)

MAE
N/A

500 W
2450 MHz

TPC 9 min 80°C 1/45
Ethanol (30%)
Acetone (30%)

(Dragovic-Uzelac et al., 2012)

N/A
2450 MHz
100 - 500 W

TPC

RA
10 min 80 °C 1/45

TPC (30% acetone)

RA (30% ethanol)
(Putnik et al., 2016)

BBD 600 W
TPC
TFC

18.7 min N/A 1/40 Etahanol (46.2%) (Zeković et al., 2017a)

Maceration
N/A N/A

RA
CC
EO

3 h 40 °C 1/6
Ethanol

(55 to 75%)
(Durling et al., 2007)

BBD N/A RA 2 h 54.3 °C 1/25.76
cellulase A and
protmex mixture
(1:1 w/w) (4.49%)

(Su et al., 2020)

N/A N/A TPC 30 min 80 °C 1/45
30 % ethanol

and 30% acetone
(Dragovic-Uzelac et al., 2012)

TPC: Total phenolic compounds, RA: Rosmarinic acid, CC: carnosic compounds, EO: Essentiel oil, DES: deep eutectic solvents, BBD: Box-Behnken design,
DOE: design of experiments
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2.2.5 Sage and health benefits

Sage has long been utilized in traditional medicine due to its abundant bioac-

tive compounds. Its medicinal properties have been recognized for decades, with

applications in alleviating labor pain, treating ulcers, relieving coughs and hoarse-

ness, reducing perspiration, managing seizures, addressing gout and rheumatism,

combating inflammation, mitigating dizziness and tremors, relieving paralysis, al-

leviating diarrhea, managing hyperglycemia, and aiding contractions (Altindal and

Altindal, 2016; Ghorbani and Esmaeilizadeh, 2017).

Sage is renowned for its ability to enhance cognitive function, boost mem-

ory, heighten sensory perception, and slow down the decline of cognitive abilities

associated with aging (Lopresti, 2017). Research suggests that rosmarinic acid

present in sage leaves can mitigate various detrimental effects caused by amyloid-

beta peptide, such as the generation of reactive oxygen species, lipid peroxidation,

DNA fragmentation, activation of caspase-3, and hyperphosphorylation of tau

protein. Consequently, sage holds potential as a treatment option for Alzheimer’s

disease (Iuvone et al., 2006). In support of this, a clinical trial demonstrated the

efficacy of extracts derived from Salvia officinalis L. in managing mild to moder-

ate Alzheimer’s disease (Akhondzadeh et al., 2003). Furthermore, sage is rich in

ursolic acid, a type of pentacyclic triterpenoid carboxylic acid. This compound

has been shown to possess notable properties in reducing lipid peroxidation and

effectively reversing learning and memory impairments induced by D-galactose

(Wu et al., 2011). Additionally, various sage extracts from different sources have

been found to possess numerous biological activities, as outlined in Table 2.2.

These extracts exhibit robust antioxidant, antidiarrheal, antispasmodic, antidia-

betic, gastroprotective, anticancer, antiangiogenic, and wound healing properties,

while also enhancing ovarian function 2.2.

Furthermore, the sage extracts have demonstrated effectiveness against leish-

manial infections and antimicrobial activity against bacteria associated with dental

caries and periodontal diseases, as indicated in Table 2.3. Notably, the compound

manool has been identified as the key contributor to the antimicrobial activity

of Salvia officinalis L. (Mendes et al., 2020; Moreira et al., 2013). Moreover,

sage exhibited higher inhibitory activity against gram-positive and gram-negative

pathogenic strains including Micrococcus luteus, Bacillus subtilis, Bacillus cereus,

Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Enterococ-

cus faecalis (Table 2.3). On the other hand, the antiparasitic, and antifungal

activity of sage leaves were also reported (Table 2.3). Based on the available lit-

erature, no adverse side effects have been reported in relation to the use of Salvia
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officinalis L. However, it is crucial to exercise caution when using Salvia offic-

inalis L. due to its high concentration of thujone, which can have detrimental

effects if consumed excessively (Hamidpour et al., 2014). To ensure safe usage of

sage leaves, it is advised to restrict consumption to a range of 1 to 2 grams per

day or 5 milligrams per day per person of thujone. It is important to refrain from

surpassing this recommended amount for a duration exceeding two weeks (EMA,

2009).
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Table 2.2: Biological activities displayed by S. officinalis L. leaves

Origin Biological activity Test used References
Romania (Alba)
Portugal (Viseu)
Algeria

Antioxidant capacity
Phosphomolybdenum assay,
DPPH•, ABTS•, CUPRAC,
NO• and O2−, FRAP assays

(Mocan et al., 2020)
(Pereira et al., 2018)
(Bouteldja et al., 2021)

Romania (Alba) Neuroprotective activity
Acetylcholinesterase (AChE)
and butyrylcholinesterase
(BChE) inhibitory

(Mocan et al., 2020)

Romania (Alba)
Iran (karaj)
Portugal (Viseu)

Antidiabetic activity
α-amylase and α-glucosidase
inhibitory streptozotocin
induced diabetic rats

(Mocan et al., 2020)
(Pereira et al., 2018)
(Eidi and Eidi, 2009)

Portugal (Viseu) Metabolic Enzyme Activity Pancreatic Lipase inhibitory (Pereira et al., 2018)

Brazil Gastroprotective activity
Induction of acute gastric
lesion

(Mayer et al., 2009)

Saudi Arabia
Antidiarrheal and
antispasmodic activities

In Vivo (Khan et al., 2010)

Iran Antiangiogenic activity In Vitro and Ex Vivo (Keshavarz et al., 2010)

Iran (Urmea) Wound healing activity In Vivo (Karimzadeh and Farahpour, 2017)

Slovakia (Bratislava) Protease inhibition assay
Inhibition activity against
trypsin, hrombin, urokinase,
and cathepsin B

(Jedinák et al., 2006)

Slovakia (Bratislava) Anticancer activity In vitro (Jedinák et al., 2006)

Saudi Arabia
Enhancing ovarian
function

In Vivo (Alrezaki et al., 2021)
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Table 2.3: Antimicrobial, antiparasitic, antifungal, anti-leishmanial acitivity of S. officinalis L. leaves

Origin Biological activity Pathogenic strains References
Iran (Tehran)
Moroco
Algeria

Anti-leishmanial activity
Leishmania major
promastigotes
(strain MROH/IR/75/IR)

(Nikmehr et al., 2014)
(Et-Touys et al., 2016)
(Serakta et al., 2013)

Brazil
Antimicrobial activity
against bacteria associated
with dental caries

Streptococcus mutans (Moreira et al., 2013)

Brazil Antibacterial activity Periodontopathogens (Mendes et al., 2020)

Algeria Antibacterial activity

Micrococcus luteus,
Bacillus subtilis,
Bacillus cereus,
Staphylococcus aureus,
Escherichia coli,
Pseudomonas aeruginosa
Enterococcus faecalis

(Bouteldja et al., 2021)

Iran Antiparasitic effect
Syphacia obvelata,
Aspiculoris tetrapetra
Hymenolepis nana parasites

(Amirmohammadi et al., 2014)

Algeria (Annaba) Antifungal activity
Candida albicans,
Candida glabrata,
Candida parapsilosis

(Kerkoub et al., 2018)
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Chapter3

Bio-active compounds and

extraction technologies

3.1 Secondary metabolites from plant matrices

and their classification

Polyphenols, classified as secondary metabolites, are abundantly present in vari-

ous plant species, particularly in fruits and vegetables. These compounds typically

consist of at least two phenyl rings and one or more hydroxyl groups. The plant

kingdom boasts an extensive array of approximately 10,000 distinct phenolic struc-

tures, which can also be found in a wide range of foods (Saparbekova et al., 2023).

Polyphenols can be classified into two main groups, namely flavonoids and non-

flavonoids, based on the number of phenol units, substituent groups, or the type of

linkage between phenol units in their molecular structure. These polyphenols can

be further divided into subclasses such as flavonoids, stilbenoids, phenolic acids

and lignans as mentioned by Singla et al. (2019).

3.1.1 Flavonoids

Flavonoids have a common carbon skeleton of diphenyl propane, consisting of

two aromatic rings (ring A and B) attached to 3C atoms, which form an oxy-

genated heterocycle as shown in figure 3.1 (D’Archivio et al., 2007). Based on the

degree of oxidation of the central pyran ring, flavonoids are classified into six sub-

classes: flavones, flavonols, anthocyanidins, isoflavones, and flavanols (catechins

and proanthocyanidins) (D’Archivio et al., 2007).
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Figure 3.1: Flavonoids’ structure (D’Archivio et al., 2007)

3.1.1.1 Flavonols

Flavonols, a specific subclass of flavonoids, are distinguished by the presence of a

double bond between carbon atoms 2 and 3, as well as a hydroxyl group at the

C3 position of the C ring. Prominent members of this subclass include myricetin,

kaempferol, and quercetin, which are commonly found in various vegetables and

fruits such as leeks, kale, onions, broccoli, apples, and cranberries (Alara et al.,

2018).

3.1.1.2 Flavones

Flavones, a distinct subclass of flavonoids, are identified by the presence of a ketone

at position 4 of the C ring and a double bond between positions 2 and 3 of the C

ring. The arrangement of hydroxyl groups at other positions, particularly position

7 of the A ring or positions 3′ and 4′ of the B ring, may vary depending on the

taxonomic classification of the specific vegetable or fruit. In most flavones found

in vegetables and fruits, it is common to observe the presence of a hydroxyl group

at position 5 of the A ring (Panche et al., 2016). Among the notable flavones are

luteolin and apigenin (as illustrated in Figure 3.3), which are primarily sourced

from sweet bell peppers, celery, and parsley (Alara et al., 2018).

3.1.1.3 Isoflavones

Isoflavonoids constitute a prominent and wide-ranging subclass of flavonoids, pri-

marily sourced from soybeans and other leguminous plants. These compounds are

characterized by their limited occurrence within the plant kingdom (Panche et al.,

2016). Isoflavones, such as daidzein (depicted in Figure 3.4), bear a structural re-
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(a) Myricetin (b) Kaempferol

(c) Quercetin

Figure 3.2: Structure of flavonols (Alara et al., 2018)

semblance to estrogens due to the presence of hydroxyl groups at positions C7 and

C4, similar to the estradiol molecule (D’Archivio et al., 2007). They are classified

as phytoestrogens, as they possess the capability to bind to estrogen receptors

(D’Archivio et al., 2007).

3.1.1.4 Anthocyanidins

Anthocyanidins, which are soluble in water and serve as pigments, contribute

to the blue, red, and purple observed in vegetables, fruits, flowers, and various

other plant tissues (Pérez-Chabela and Hernández-Alcántara, 2018). These an-

thocyanidins naturally occur as glycosides, referred to as anthocyanins, and their

number has surpassed 600 in identification (Tuladhar et al., 2021). The pigments

are derived from six primary anthocyanidins, namely cyanidin (illustrated in Fig-

ure 3.5), pelargonidin, delphinidin, petunidin, peonidin, and malvidin, collectively

responsible for more than 700 reported compounds (Celli et al., 2019).

3.1.1.5 Flavanols (catechins and proanthocyanidins)

Flavanols, also known as flavan-3-ols or catechins, are derivatives of flavanones

with a hydroxyl group at position 3 of the C ring, distinguished by the absence of

a double bond between positions 2 and 3 (Panche et al., 2016). Catechin, which has

22



Secondary metabolites from plant matrices and their classification

(a) (b)

Figure 3.3: Structure of apigenin (A) and luteolin (B) (Panche et al., 2016).

Figure 3.4: Daidzein’s structure (Panche et al., 2016).

Figure 3.5: Structure of cyanidin (D’Archivio et al., 2007).

a trans-configuration, and epicatechin, which has a cis-configuration, are notable

isomers found predominantly in the skins of grapes, apples, and blueberries (as

depicted in Figure 3.6) (Pérez-Chabela and Hernández-Alcántara, 2018). Further-

more, proanthocyanidins, also classified as flavanols, are referred to as condensed

tannins. These compounds, which include dimers, oligomers, and polymers of cat-

echins, contribute to the astringent taste found in fruits, cider, tea, beer, and the

bitterness of chocolate (Pérez-Chabela and Hernández-Alcántara, 2018).

3.1.2 Non-flavonoids

Non-flavonoid compounds, including phenolic acids, lignans, and stilbenes possess

a distinct structural framework compared to flavonoids. Unlike flavonoids, which

feature a carbon skeleton consisting of two aromatic rings, non-flavonoids are

characterized by a single aromatic ring as their fundamental structure (Singla
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Figure 3.6: Structure of catechin (D’Archivio et al., 2007).

et al., 2019)

3.1.2.1 Phenolic acids (PAs)

Phenolic acids, which are widely distributed in the plant kingdom, are significant

organic acids and serve as important secondary metabolites. There are two pri-

mary types of phenolic acids: hydroxybenzoic acids (HBA) and hydroxycinnamic

acids (HCA) (Heleno et al., 2015). The key distinction between HBA and HCA

lies in their chemical structure. HBAs feature a phenol ring with a carboxylic

acid group (-COOH) attached to it (as illustrated in Figure 3.7a). On the other

hand, HCAs possess a phenol ring with an unsaturated three-carbon chain (an

acrylic acid side chain) attached to it (as depicted in Figure 3.7b) (Yusoff et al.,

2022).

(a) (b)

Figure 3.7: Chemical structure of protocatechuic acid (a), and caffeic acid
(b)(Heleno et al., 2015).

3.1.2.2 Stilbenes

Stilbenes possess a distinct C6-C2-C6 structure and exist in two isomeric forms.

They are synthesized in plants as a response to various biotic and abiotic stresses,

including microbial infections, high temperatures, and oxidative conditions. The

primary role of stilbenes in many plants is to serve as phytoalexins, which are

defensive substances produced in response to infections (Teka et al., 2022). Hy-

droxylated stilbenes, including (E)-resveratrol (Fig. 3.8), are present in a variety
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of plant sources, such as grapes, berries, and peanuts. Resveratrol is recognized for

its antioxidant and anti-inflammatory effects, and research has indicated that it

may have a role in reducing inflammation and lowering blood pressure, potentially

aiding in the prevention of heart disease (De Filippis et al., 2017).

Figure 3.8: Chemical structure of resveratrol (De Filippis et al., 2017).

3.1.2.3 Lignans

Lignans, which are polyphenols derived from phenylalanine, are classified as phy-

toestrogens and are naturally present in plants. Plant lignans, including leri-

ciresinol (as shown in Figure 3.9), can undergo metabolism by intestinal bacteria

and exhibit antioxidant properties. Additionally, they have the ability to bind to

estrogen receptors in breast tissue (Higuchi, 2014). Furthermore, lignans such as

enterodiol and enterolactone have been demonstrated to act as cytostatic agents

against colon cancer cell lines (Wcislo and Szarlej-Wcislo, 2014).

Figure 3.9: Chemical structure of lericiresinol (Higuchi, 2014).
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3.2 Extraction aided by ultrasound technology

(UAE)

3.2.1 Ultrasound’s history

The origins of ultrasound can be traced back to Lazzaro Spallanzani (1794), an

Italian physiologist who observed that bats used ultrasound to navigate in the

dark. Spallanzani discovered this by studying bats’ sensory abilities and noted

that even when a bat was blind, it was still able to fly confidently. However, if a

bat was deaf in one ear, it was unable to fly safely. Based on these observations,

Spallanzani proposed that bats used sound rather than vision to navigate (Kane

et al., 2004; Kaproth-Joslin et al., 2015).

For many years, the ”Spallanzani’s bat problem” remained a mystery in the

scientific community until 1938 when two Harvard students, Donald Griffin, and

Robert Galambos, proposed the concept of echolocation. They suggested that

bats generate high-frequency clicks that bounce off objects in their surroundings,

and then use the echoes to locate and navigate their environment with accuracy

(Kane et al., 2004; Kaproth-Joslin et al., 2015).

In 1826: Jean-Daniel Colladon – A Swiss physicist and his assistant, Jacques

Charles-Francois Sturm used a Church Bell (early ultrasound) under water to

calculate the speed of sound through water and prove that sound traveled faster

through water than air (Griffin and Galambos, 1941; Kaproth-Joslin et al., 2015).

Jacques (1856–1941) and Pierre (1859–1906) Curie were the first to discover

piezoelectricity (1880), which is derived from the Greek term piezen, which means

to press or squeeze. They proved that under pressure, crystals of tourmaline,

quartz, topaz, cane sugar, or Rochelle salt can produce electricity (Manbachi and

Cobbold, 2011; Mould, 2007). They also showed that under pressure, these crys-

tals may produce pressure waves when a voltage is applied. These crystals’ ability

to transmit and receive pressure waves at megahertz frequencies permitted the de-

velopment of current transducer technology (Kaproth-Joslin et al., 2015; Manbachi

and Cobbold, 2011).

Following the sinking of the Titanic in 1912, physicist Paul Langevin invented

the hydrophone, which served as the first transducer. This device was designed

to detect icebergs and submarines during World War I. It consisted of quartz

crystals affixed between two steel plates. Over time, this apparatus underwent

improvements, particularly during World War II, leading to the emergence of the

field now known as sonar (short for sound navigation and ranging) (Kaproth-Joslin
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et al., 2015; Zimmerman, 2002).

3.2.2 Fundamental of ultrasonic assisted extraction (UAE)

3.2.2.1 Ultrasonic wave

UAE is crucial for the extraction of plants’ bioactive substances. As shown in

fig 3.10, there are two categories of ultrasound: low-power (high-frequency) ultra-

sound, also known as diagnostic ultrasound, and high-power (low-frequency) ultra-

sound, which has frequencies between 16 and 100 kHz (Lavilla and Bendicho, 2017;

Mason and Peters, 2002). Diagnostic ultrasound or low power ultrasound (LPU)

is frequently utilized in non-destructive analysis for quality assurance and process

control purposes. In contrast, high power ultrasound (HPU)) finds widespread

use in various industrial applications such as cleaning, homogenization, filtering,

drying, defoaming, crystallization, sterilization, degassing, dispersion, oxidation,

depolymerization, aerosol formation, chemical activation, soldering, erosion, and

extraction (Lavilla and Bendicho, 2017; Rutkowska et al., 2017).

Ultrasound is a form of energy that travels through a medium in the form

of pressure waves. These waves undergo cycles of compression and expansion,

which are referred to as rarefaction cycles. When a liquid medium undergoes

sonication, it experiences the presence of an acoustic pressure (Pa) in addition

to the hydrostatic pressure (Ph) within the medium Pa responds to the following

equation :

Pa = PA sin (2πft) (3.1)

PA is maximum amplitude of wave; f is wave frequency (> 16 kHz); t is time

(Lavilla and Bendicho, 2017; Mason and Peters, 2002).

During the compression phase of an ultrasound wave (positive pressure), the

maximum pressure is achieved, while the rarefaction phase (negative pressure)

corresponds to the minimum pressure. As a result, the pressure wave induces os-

cillation of molecules around their average position within a liquid medium (Lavilla

and Bendicho, 2017; Mason and Peters, 2002).

Wave intensity (I) or energy transmitted per second and per cm2 of fluid

responds to the following equation:

I = P 2
A (2ρc) (3.2)

ρ is the density of the medium; c is the sound velocity in the medium (Lavilla

and Bendicho, 2017; Mason and Peters, 2002).
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Ultrasonic waves experience attenuation as they penetrate a liquid medium,

resulting in a reduction in intensity and some heat generation (which depends on

the nature of the medium). This attenuation can be described by the following

equation:

I = I0 e
(−2αd) (3.3)

I0 is the initial intensity; α is the absorption; d is the distance coefficient

(Lavilla and Bendicho, 2017; Mason and Peters, 2002).

Figure 3.10: Sound frequency’s ranges (Lavilla and Bendicho, 2017).

3.2.2.2 Cavitation phenomenon

The cavitation phenomenon, which depends on the formation of vapor bubbles,

is primarily responsible for the effects of ultrasound (Lavilla and Bendicho, 2017;

Rutkowska et al., 2017).

As stated earlier, during the compression phase, the molecules of the medium

are brought closer together under positive pressure. Conversely, during the rar-

efaction phase, the molecules experience a negative pressure that causes them

to separate. The negative pressure can be mathematically described using the

following expressions:

Pc = Pa − Ph (3.4)
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pc = 2σ/R (3.5)

σ is the surface tension; R is the distance between molecules (Lavilla and

Bendicho, 2017; Mason and Peters, 2002).

When ultrasound is applied with enough energy, the negative pressure (Pc)

produced by the rarefaction cycles overcomes the attractive intermolecular forces,

which induces cavities that form in the liquid medium (Lavilla and Bendicho, 2017;

Mason and Peters, 2002; Suslick, 1989). It has been noted that producing enough

negative pressure for pure liquids (those with high hydrostatic pressure) can be

difficult depending on the type and purity of the liquid (Lavilla and Bendicho,

2017; Mason and Peters, 2002; Suslick, 1989). However, the cavitation threshold

can be lowered by the contaminants, primarily gases and small particles (Lavilla

and Bendicho, 2017; Mason and Peters, 2002; Suslick, 1989).

There are two main types of cavitation: transient and stable. Stable cavities

are bubbles that undergo oscillations, often in a non-linear manner, around a

certain equilibrium size. These bubbles are relatively long-lasting and can continue

to oscillate for multiple cycles of the acoustic pressure (Neppiras, 1980). According

to Lavilla and Bendicho (2017), stable cavitation generally arises at low intensities.

In contrast, transient bubbles exist for a shorter duration, typically less than one

cycle, during which they rapidly expand to more than double, and often many

times their original size before violently collapsing and frequently breaking into a

cluster of smaller bubbles (Neppiras, 1980). This transient cavitation can occur

at high intensities ((Lavilla and Bendicho, 2017)).

3.2.2.3 UAE of secondary metabolites from plants matrices

During the compression and rarefaction, the cavitation phenomena were generated

leading to the formation of the cavitation bubbles in the liquid medium (Fig. 3.12).

These bubbles collapse during the compression phase, leading to the creation of

hot spots and extreme local conditions. In these regions, temperatures can rise

up to 5000 K, and there can be a significant increase in pressure, reaching up to

1000 atm (Kumar et al., 2021; Rutkowska et al., 2017) (Fig. 3.12). Asymmetrical

micro-jets and shock waves are produced when cavitation bubbles burst close to

solid surfaces due to the release of high pressure and temperature (Kumar et al.,

2021; Rutkowska et al., 2017).

These latter accelerated inter-particle collisions cause the fragmentation in

cellular structure (Fig. 3.12). Rapid fragmentation first allows solvent to enter the

matrix, reducing particle size and improving solvent penetration. It then allows
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Figure 3.11: Generating cavitation phenomena throughout compression and rar-
efaction cycles (Rutkowska et al., 2017).

extracts to be released from the matrix (larger contact surface area between the

solid/liquid phases) (Kumar et al., 2021; Rutkowska et al., 2017) (Fig. 3.12). The

enhanced solubilization of bioactive compounds from plant matrices, resulting in

higher product yields, can be primarily attributed to the benefits of UAE. These

advantages include the reduction of particle size, increased surface area, and high

rates of mass transfer in the boundary layer of the solid matrix (Kumar et al.,

2021; Rutkowska et al., 2017).

3.2.3 Laboratory and industrial ultrasonic extraction

In the laboratory, two ultrasonic devices, namely a cleaning bath and a probe-type

ultrasonic, were utilized to extract bioactive compounds from medicinal plants.

The cleaning bath ultrasound allowed for both direct and indirect extraction meth-

ods, as demonstrated in Fig. 3.13, with multiple ultrasonic transducers positioned

at the bottom and sides of the extraction vessel, as illustrated in Fig. 3.14 (Vina-

toru, 2001). Piezoelectric and electromagnetic transducers were highly used in

UAE, When the transducers are not in direct contact with the sample, there

are large acoustic energy losses to the vessel and surroundings. However, when
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Figure 3.12: The process of ultrasound-assisted extraction for obtaining bioactive
compounds from plant cells involves several stages. (a) Cavitation bubbles form
near the surface of the plant cells. (b) These bubbles collapse, leading to the
release of a micro-jet that applies pressure and temperature to the cell surface.
(c) As a result, the plant cell walls rupture, enabling direct contact between the
bioactive compounds inside the cells and the surrounding solvent. (d) Finally,
the bioactive compounds are released from the plant cells and become accessible
outside (Kumar et al., 2021; Rutkowska et al., 2017).

the transducers are in direct contact with the sample, the extraction efficiency

is enhanced, and at the same time, acoustic energy losses are minimized (Frost,

1979; Tiwari, 2015). The use of sonication on the probes/horn is also widespread

for the extraction of bioactive compounds from medicinal plants (Fig. 3.15), the

ultrasonic probe operates as a direct sonication in which the energy is applied di-

rectly to the sample, and energy losses are minimal, in comparison with ultrasonic

bath, this system provides higher power intensity, approximately 100 times higher

(Nowacka and Dadan, 2022)

For industrial large-scale extraction, the Romanian team designed and built

the first industrial ultrasonic reactor under a EUCOPERNICUS program (1995),

where the reactor with 1m3 capacity (700 to 850 L working capacity) was used

for solvent extraction of herbs as mentioned in fig. 3.16a (Vinatoru, 2001). Fur-

thermore, Valachovic et al. (2001) used an industrial ultrasonic probe operating

at 20 kHz (600 W) supplied by Ultragen Nitra (acoustic horn with 97 cm of height

and 5 cm of diameter) was applied to produce the medicinal tincture from Salvia

officinalis L. and Valeriana officinalis L (Fig. 3.16b). Moreover, many companies
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(a) (b)

Figure 3.13: Ultrasound-assisted extraction types in cleaning bath ultrasound:
(a) Indirect Extraction, (b) Direct extraction with mechanical stirring (Vinatoru,
2001).

(a) (b)

Figure 3.14: Placement schematic of an ultrasonic transducer in bath system:
(a) Bottom placement of ultrasonic transducer, (b) Side placement of ultrasonic
transducer (Tiwari, 2015).

developed large-scale ultrasound (bath and ultrasonic probe) such as Hielscher

(Germany), REUS (France), Euphytos, Giotti, GMC (G. Mariani & C. Spa) com-

pany (Chemat et al., 2017). Paolo and Cravotto (2012) designed and patented a

continuous sono-reactor operating at continuous mode at higher acoustic power

density as depicted in Fig. 3.16c.

3.2.4 Factors contributing to UAE of secondary metabo-

lites

The application of ultrasonic-assisted extraction (UAE) has demonstrated notable

advantages over conventional techniques. However, the effectiveness of UAE relies

on the optimization process, which is vital for reducing material and solvent waste

and obtaining a substantial yield of phenolic compounds with superior quality. To
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Figure 3.15: Illustrative scheme of an Ultrasonic Probe (Tiwari, 2015).

achieve successful extraction of TPC, it is crucial to optimize various parameters

such as extraction time, frequency, power, temperature, and solvent-to-solid ratio,

as they significantly impact the efficiency of the extraction process.

3.2.4.1 Ultrasonic power

The ultrasound power delivered during the extraction process is commonly repre-

sented as an amplitude percentage ranging from 0 to 100%, and as power density

(W mL−1), which is calculated by dividing the power dissipated by the volume of

the extraction medium (Kumar et al., 2021). Studies have shown that the yield of

UAE increases initially with an increase in ultrasonic power and then declines af-

ter reaching a maximum point. This behavior can be attributed to the intensified

effect of the cavitation bubble collapse caused by higher ultrasonic power. There

is a positive correlation between resonant bubble size and ultrasonic power, mean-

ing that as the bubble size increases, the implosion effect also intensifies (Kumar

et al., 2021). However, it has been noted that at high ultrasonic power levels, the

production of hydroxyl radicals (OH•) may occur, which can react with secondary

metabolite and lead to their degradation, particularly when there is a high-water

content present (Dzah et al., 2020).

3.2.4.2 Frequency of ultrasonic

The most often used ultrasonic frequencies for ultrasound-assisted extraction are

between 20 and 100 kHz (1 Hz = 1 cycle per second) (Rutkowska et al., 2017).The

extraction process is notably influenced by the frequency of ultrasound, as it plays
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(a) (b)

(c)

Figure 3.16: Pilot reactor used for industrial-scale extraction, (a): Ultrasonic
bath, (b): Ultrasonic probe, (c): Multi-horn flow reactor (Paolo and Cravotto,
2012; Valachovic et al., 2001; Vinatoru, 2001).

a crucial role in determining the size of microbubbles and affecting mass transfer

resistance. When the frequency of ultrasound is increased, there is a decrease

in the production and intensity of cavitation within the liquid (Esclapez et al.,

2011; Rutkowska et al., 2017). The occurrence of the cavitation phenomenon

becomes challenging at high frequencies, as the compression-rarefaction cycles may

become too short to achieve the necessary size of microbubbles. Consequently,

the duration of the rarefaction phase is inversely proportional to the ultrasound

frequency (Rutkowska et al., 2017). Furthermore, the selection of ultrasound
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frequencies, in combination with the intensity of ultrasound, serves as a means to

control the formation of cavitation bubbles to ensure the desired level of cavitation

is achieved (Tiwari, 2015).

3.2.4.3 Solvent used in ultrasonic extraction

Cellular distribution of secondary metabolites is determined by their solubility,

which is dictated by their polarity. Hydrophilic compounds are predominantly

found in cell vacuoles, whereas hydrophobic substances like lignins, flavonoids,

and water-insoluble polyphenols tend to accumulate in the cell wall through hy-

drophobic interactions with proteins and polysaccharides. Hence, the choice of

extraction solvent is crucial and should be based on the solubility of the specific

compounds targeted in the extraction process (Medina-Torres et al., 2017). Due

to the diverse polarity of secondary metabolites and their compatibility with hu-

man consumption, hydro-alcoholic combinations, specifically ethanol, have been

identified as the most suitable solvent systems for extraction (Berkani et al., 2020;

Chen et al., 2015; Muniz-Marquez et al., 2013).

Furthermore, the cavitation process is notably affected by the physical char-

acteristics of the solvent, including surface tension, viscosity, and vapor pressure

Wen et al. (2018). In general, an increase in vapor pressure and surface ten-

sion of the solvent leads to a decrease in the intensity of cavitation Wen et al.

(2018). Higher vapor pressures enable the volatilized solvent to readily penetrate

cavitation bubbles, thereby cushioning their collapse. This phenomenon suggests

that less expensive solvents, such as water mixtures, might exhibit improved per-

formance compared to volatile pure solvents typically employed in conventional

extraction methods (Esclapez et al., 2011).

3.2.4.4 Liquid to solid ratio

The ratio of solid-to-solvent is an essential parameter in UAE and deserves careful

consideration. When a fixed amount of solid matrix is used, increasing the amount

of solvent leads to a greater concentration gradient between the plant material

and the solvent. Consequently, this concentration gradient facilitates a faster

extraction rate (Esclapez et al., 2011). By employing a higher solvent-to-material

ratio, the mixture density decreases, leading to an increase in the velocity (v) at

which ultrasound waves propagate. Consequently, this reduces the attenuation

of ultrasound power (p) and enhances the transfer of energy (E) over distance

covered (d) per unit of time (t). This relationship can be quantified using the

following equation.:
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p = K(ı/ρ)[(E ∗ v)/d] (3.6)

where ı is material stiffness

Because of the lower mixture density, there is a more effective transfer of

energy, which improves extraction efficiency. Additionally, the decreased mixture

density enhanced the cavitation phenomenon (Dzah et al., 2020).

3.2.4.5 UAE Temperature

Temperature is one of the main extraction parameters involved in the UAE. In

general, a high temperature of solvent during extraction increases the diffusion

rate and helps to break the interaction between the phenolic compounds and

matrix, increase the compound solubility, enhance mass transfer, reduction in

viscosity and tension of the solvent (Medina-Torres et al., 2017). However, higher

extraction temperatures decrease cavitation phenomena because voids are filled

by solvent vapors, resulting in a less violent collapse; whereas, lower temperatures

allow cavitation bubbles to collapse violently because the solvent’s vapor pressure

is low (Tiwari, 2015).

3.2.4.6 Sonication time

For any UAE process, there is an optimum UAE time. Beyond this time, the

extractable phenolic compounds can be degraded (Tiwari, 2015). The extraction

of TPC from plant matrices using ultrasound is followed by two main stages. In

the first step, which is referred to as the ”washing” step, the soluble components on

the matrix’s surfaces are dissolved during the period of 10 to 20 minutes of UAE,

where up to 90% of TPC can then be recovered, demonstrating a significantly fast

extraction rate. During the ”slow extraction” stage, the solute undergoes mass

transfer and osmotic processes as it diffuses from the matrix into the solvent.

This stage typically lasts for a duration of 60 to 100 minutes (Sahin and Samli,

2013).

3.2.5 UAE Optimization of secondary metabolites

As previously discussed, the efficacy of UAE in secondary metabolites is signif-

icantly impacted by several extraction parameters, including power, frequency,

solvent-to-solid ratio, temperature, and time. While these effects have been indi-

vidually discussed, it is crucial to emphasize that they interact with each other

throughout the extraction process. The outcome of this interaction is reflected in
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both the quantity and quality of the extracted phenolic compounds.

The optimization of ultrasound-assisted extraction of bioactive compounds

was performed using several designs of experiments, in which different optimal

extraction conditions were obtained (Table 3.1). Based on the previous works,

hydro-ethanol (30% to 80%) as green solvent was the most employed for the ex-

traction of bioactive compounds including antioxidant activity from different plant

matrices (Table 3.1). Furthermore, sonication time ranged from 15 min to 60 min,

temperature from 30 to 60°C, and solid-to-solvent ratio ranged from 1/20 to 1/50

g mL−1, these variations of extraction parameters depended on the nature of plants

matrices, target compounds, type of ultrasound device (probe or bath), and the

characteristic of ultrasound used in the extraction process (frequency, power) (Ta-

ble 3.1).
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Table 3.1: Optimization of UAE parameters for high yield of bioactive compounds: Experimental Design Approach

Optimal conditions for UAE of secondary metabolites
DOE
used

Characteristic
of material

Target
compounds

Solvent
used

Time Temperature
Ratio solid-
liquid

Concentration
of solvent

References

CCD 35 KHz TPC Ethanol 45 min 60 °C 5 % of plant
concentration

/ (Tekin et al., 2015)

BBD
100 W
40 kHz

TPC Ethanol 29.9 min 60 °C NS 76.8 % (Arteaga-Crespo et al., 2020)

BBD
40 KHz,
IP (500 W),
HP (800 W)

puerarin Ethanol 49.08 min / 21.72 mLg−1 71.35 % (Wu et al., 2012)

BBD
40 KHz,
IP (500 W),
HP (800 W)

TI Ethanol 55 min / 12.81 mLg−1 80 % (Wu et al., 2012)

CCD
150 W,
25 KHz

TPC
yield
flavonones

Ethanol 30 min 40 °C 0.25 gmL−1 80 % (Khan et al., 2010)

BBD
25 KHz,
300 W

TPC Ethanol 40 min ambient 19.21 mLg−1 75.3 % (Wang et al., 2013)

CCD
40 KHz,
250 W

TPC Ethanol 25 min 60 °C 1/20 gmL−1 64 % (Wang et al., 2008)

CCD
25 KHz,
150W

TPC,
TFC

Ethanol 15 min 30 °C 1/50 gmL−1 / (Rodrigues et al., 2008)

BBD 100 W
TPC,
AA

Ethanol 30 min 50 °C (Fixed) 1/40 gmL−1 33 % (Chen et al., 2018)

BBD 400 W
TPC
TA

Ethanol 23.67 min 61.03 °C 21.07 gmL−1 70 % (He et al., 2016)

CCD
250 W,
40 KHz

TPC Ethanol 29.03 min 56.03 °C 1/50 gmL−1 53.15 % (Ghafoor et al., 2009)

BBD
150 W,
50Hz

TPC
AA

Ethanol 60 min 60 °C 1/50 gmL−1 70 % (Dang et al., 2017)

TPC: Total phenolic compounds, TFC: Total flavonoids content, AA: antioxidant activity, TA: Total anthocyanin, TI: Total isoflavone, NS: Not
significant IP: Input power, HP: Heating power
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3.3 Microwave assisted extraction (MAE)

3.3.1 Microwave’s history

Microwave radiation has been employed as a heating method for many years. A

serendipitous finding occurred in 1946 during the laboratory testing of a new vac-

uum tube called a magnetron. Dr. Percy Le Baron Spencer made an accidental

discovery when he observed that a candy bar in his pocket melted upon exposure

to microwave radiation. After initially discovering that microwaves could be used

for heating, Dr. Spencer further developed the idea and eventually demonstrated

its feasibility. Then, in 1947, he designed and produced the first-ever microwave

oven intended for domestic use. In the last few years, the microwave has been

extensively employed for several purposes in analytical laboratories including dry-

ing, moisture measurements, extraction of primary and secondary metabolites

from plant matrices, chromogenic reactions, and nebulization of sample solutions

(Chaturvedi, 2018).

3.3.2 Fundamentals of microwave heating

Microwaves (MW) are a segment of the electromagnetic spectrum that encom-

passes wavelengths ranging from 1 meter to 1 millimeter and frequencies between

300 MHz and 300 GHz. Microwave (MW) energy is within the range of 1.24∗10−6

to 1.24 ∗ 10−3 eV , which is considerably lower than the ionization energies of bio-

logical compounds ((13.6 eV )), bond energies (2 to 5 eV ), and van der Waals inter-

molecular interactions (< 2 eV ). As a result, MW is categorized as non-ionizing

radiation that does not cause any significant impact on the molecular structure

(Alvi et al., 2022; Flórez et al., 2015).

The ability of a material to interact with electromagnetic energy can be mea-

sured by the relative permittivity, a dimensionless value expressed as

ϵ = ϵ
′ − j ϵ

′′

Let j denote the imaginary unit. The dielectric constant ϵ
′

is a parameter that

quantifies the ability of a dielectric material to store electrical energy, specifically

its ability to polarize in response to an electric field. Dielectric compounds with

significant permanent dipole moments tend to exhibit higher dielectric constants.

The dielectric loss or loss factor, denoted as ϵ
′′
, represents the imaginary compo-

nent that reflects the relaxation time or delay between the electric field and the

polarization movement of molecules. This delay results in energy dissipation in the
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Table 3.2: Physical parameters of common solvents used in microwave applications
(Desai et al., 2010; Teo et al., 2013)

Solvents
Dipole moment

at 20 °C (debye)

Dielectric constant

at 20°C

Dissipation factor

at 2.45 GHz
Acetonitrile (ACN) 3.44 37.5 /
Ethyl acetate 1.88 6.02 /
Water 1.84 80.4 0.123
Methanol 1.70 33.7 0.659
Ethanol 1.69 25.7 0.941
1-Butanol 1.66 / 0.571
Acetone / 21.4 /
Diethyl ether / 4.389* /
Chloroform / 4.8 /
Hexane <0.1 1.88 /
*at 18°C.

form of heat (Flórez et al., 2015; Martin and Navarrete, 2018). The effectiveness

of MW heating at a specific frequency and temperature relies on the material’s

capacity to absorb electromagnetic energy and release heat. This characteristic

can be evaluated by:

tan δ = ϵ′/ϵ

Materials can be categorized based on their microwave absorbing capabilities,

determined by the value of the loss tangent (tan δ). High absorbing materials are

characterized by (tan δ > 0.5), medium absorbing materials fall within the range

of (0.5 ≥ tan δ ≥ 0.1), while low absorbing materials exhibit (tan δ < 0.1). (Flórez

et al., 2015; Martin and Navarrete, 2018).

Solvents that possess both a high dielectric constant and dissipation factor

have the ability to effectively distribute heat throughout a given matrix, ultimately

leading to an increase in the extraction yield of solutes. Water, in particular,

stands out as a solvent with a high dielectric constant and low dielectric loss

when compared to other alcoholic solvents (see Table 3.2). This characteristic

results in a higher rate of microwave energy absorption by water, rather than the

dispersion of this energy as heat. In contrast, non-polar solvents, with their low

dielectric constant and dissipation factor, remain transparent to microwaves and

do not experience significant heating during microwave irradiation(Flórez et al.,

2015; Martin and Navarrete, 2018). Table 3.2 shows the common solvents used in

MW application with their dipole moments, dielectric constants, and dissipation

factors.
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3.3.3 Configuration and instrumentation in MAE systems

Most microwave devices typically comprise four main components, namely a mag-

netron which serves as the source of radiation, a waveguide responsible for trans-

mitting the microwave energy from the magnetron to the microwave cavity, an

applicator that houses the sample, and circulators that help to reflect and homog-

enize the microwave radiation (Desai et al., 2010). The operational compartment

of an MAE system is designed to receive the microwave radiation produced by

the magnetron and delivered through the waveguide. The radiation is then uni-

formly distributed to prevent the occurrence of standing waves (Kubrakova and

Toropchenova, 2008). The equipment can be classified into multimode and mon-

mode systems (systems with focused radiation) depending on how MW radiation

is distributed; in a multi-mode system, MW radiation propagates through a large

MW chamber, reflects off the walls, and is homogenized by circulators (Akhtar

et al., 2019).

In laboratory settings, there are generally two primary configurations of mi-

crowave systems utilized for extracting bioactive compounds from medicinal plants.

These are typically either closed extraction vessels or open microwave ovens (Llom-

part et al., 2019). The modern MW system that is enclosed operates using a

feedback mechanism that includes temperature and pressure sensors. This sys-

tem functions by switching off the magnetron when the specified temperature

or pressure level is attained and then turning it back on to maintain the de-

sired temperature or pressure while in continuous operation mode (Kubrakova

and Toropchenova, 2008). Hence, closed-vessel systems offer several advantages.

Firstly, the vessel’s increased pressure enables quick attainment of higher tempera-

tures. Secondly, volatile compounds are not lost into the environment but instead

are retained as part of the extract. Thirdly, closed systems have a lower risk of

contamination. Fourthly, since the solvent is not evaporated during heating, a

minimal amount of solvent is required for the procedure. Finally, procedures such

as acid digestions are made safer since fumes do not escape, making them easier

to handle (Akhtar et al., 2019).

Recently developed multimode MAE systems have the capability to extract

as many as 40 samples simultaneously in just 10 to 15 minutes, as illustrated

in Fig. 3.17. The modern MAE platforms are equipped with two magnetrons,

enabling extraction at up to 2000 W. Additionally, an autosampler is integrated

into these systems to allow for the extraction of sequences samples. This feature

greatly speeds up the method optimization process since each extraction can be

performed under different experimental conditions (Llompart et al., 2019).
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Figure 3.17: A milestone commercial MAE instrument with 40-position carousel
for closed-vessel microwave-assisted extraction (MAE) (Llompart et al., 2019)

In addition, an open MW system comprises a focused microwave source where

the microwave wave-guide acts as the applicator, and the extraction vessels are

placed directly in the cavity and a water condenser. Due to the transparency of

glass to microwaves, the upper portion of the vessel remains cool while only a small

portion of the bottom is exposed to the microwaves (Delazar et al., 2012) (Fig.

3.18). The configuration of this open system offers more safety than the closed

MW systems because they can be operated at atmospheric pressure. Nonetheless,

open systems offer less temperature control than closed systems and cannot carry

out multiple experiments concurrently (Delazar et al., 2012).

Figure 3.18: Illustration of an Open-Vessel Microwave-Assisted Extraction (MAE)
System: Schematic Overview (Delazar et al., 2012)
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3.3.4 Factors affecting MAE of plant matrix

3.3.4.1 Solvent nature and solvent-to-solid ratio

Choosing the most suitable solvent for MAE of secondary metabolites relies on

several considerations. These include the dielectric constant of the solvent, its

capacity to penetrate and interact with the plant matrix, as well as the solubility

of the targeted secondary metabolites. The incorporation of water into the sol-

vent system can enhance the efficacy of Microwave-Assisted Extraction (MAE) by

improving the penetration of the solvent into the plant. This, in turn, enhances

the efficiency of heating during the extraction process. Moreover, the quantity

of solvent to plant matrix is also considered the most significant factor in MAE,

where an optimum solvent-to-solid ratio provides homogeneous and effective heat-

ing (Chan et al., 2011). Many studies have shown that excessive amounts of

solvent in the extraction medium can lead to inadequate microwave heating, as

the solvent absorbs the microwave radiation and necessitates the use of additional

power. Conversely, a low liquid-to-solid ratio creates a mass transfer barrier where

the distribution of secondary metabolites becomes concentrated in specific regions

of the cell plant. This concentration hinders the movement of these compounds

out of the matrix, restricting their extraction (Mandal and Mandal, 2010).

3.3.4.2 Extraction time and cycle

For MAE, heating time is a highly sensitive parameter, where the extraction of

plant’s bioactive compounds can be enhanced with the optimization of extraction

time. It has been reported that the MAE time could increase the yield of extracted

bioactive compounds until the optimum point after that degradation of these

compounds may occur with overheating of the solute/solvent system (Routray and

Orsat, 2011). The dielectric properties of the solvent also impact the irradiation

time, especially when exposed to solvents such as water, ethanol, and methanol

over prolonged periods. Such extended exposure can lead to significant heating,

potentially compromising the stability of thermolabile compounds (Mandal et al.,

2007).

3.3.4.3 Temperature and microwave power

The relationship between microwave power and temperature is significant for MAE

of bioactive compounds from plant matrices. Higher microwave power and tem-

perature can promote the desorption of analyte from the plant matrix, leading to

improved extraction efficiency in the MAE process (Bagade and Patil, 2021). Nev-

ertheless, exceeding the optimal threshold of temperature and microwave power
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can lead to a decrease in extraction yield due to the degradation of thermally

sensitive compounds (Chan et al., 2011).
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Chapter4

Materials and Methods

In order to valorize the medicinal plants of the Bouira region, two species were

selected including C. caeruleus L. (rhizome), and S. officinalis L. (leaves), these

two plants have been frequently used for treating many diseases and pathological

issues such as inflammation, gastric disorders, burns, and wounds. As illustrated

in the flowchart (Fig.4.1), the two plants were cleaned and dried for the extraction

of bioactive compounds and evaluation of their biological activities.

The optimization of TPC and TSC extraction from C. caeruleus L. (rhizome)

was carried out using UAE with the aid of Box-Behnken design (BBD) and re-

sponse surface methodology. The resulting data were then utilized to develop a

predictive support vector regression optimized using dragonfly algorithm (SVR-

DA) model, which serves as an interface for estimating the TPC and TSC levels

in the rhizome extract. The antioxidant activity of the optimized UAE extract

was evaluated using various methods, including DPPH• and ABTS•+ free radical

scavenging activity, TAC, and ferric reducing power (Fig. 4.1). Moreover, the

antioxidant activity of the optimized rhizome extract was compared to that of the

leaf extract of the same plant.

On the other hand, S. officinalis L. leaves also followed the same procedures,

the optimization of UAE and MAE was carried out using new classes of designs of

the experiment. Definitive screening design, and I -optimal design were employed

for screening and optimization of TPC, TEAC, and TAC respectively of both

MAE and UAE extracts. Moreover, Differential analysis using ultra high perfor-

mance liquid chromatography combined with high resolution mass spectrometry

(UHPLC-HRMS) was carried out to study the effect of MAE and UAE on the

phenolic profiles of each extract (Fig. 4.1).

All the steps mentioned above in this work were carried out in the laboratories

of the faculty of Biological sciences and faculty of agronomic sciences of Bouira
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Figure 4.1: Optimization flowchart for UAE and MAE of bioactive compounds
from medicinal plants of Bouira Region.

4.1 Reagents

All the analytical-grade reagents used for the optimization of UAE and MAE of

bioactive compounds from C. caeruleus L. rhizome and S. officinalis L. leaves,

as well as those used for the evaluation of biological activities are listed in table

6.12.

4.2 Preparation of sample

This study focused on two medicinal plants, namely C. caeruleus L. (both rhizome

and leaves) and S. officinalis L. (leaves only). The rhizome and leaves parts of

C. caeruleus L. were gathered from Ain Bessem province in the Bouira region

(latitude 36.381707, longitude 3.711553, altitude 798 m) in February 2019. In

contrast, the fresh leaves of S. Officinalis L. were collected from Ain Bessem

province (latitude 36.325295; longitude 3.674675, altitude 690 m) in the Bouira

region in April 2021.

The rhizome and leaves of the chosen plants were washed with distilled water

to eliminate any impurities. Then, the rhizome was sliced into 1 mm thick pieces
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and both the rhizome slices and leaves were dried using absorbent paper to remove

excess water (Fig. 4.2a, 4.2b, and Fig. 4.3a). The moisture content of all parts of

C. caeruleus L. and S. Officinalis L. were evaluated at 103 ± 2 °C in the venti-

lated oven (MEMMERT, B319.0656, Germany). Once the moisture content was

determined, the rhizomes and leaves were oven-dried (MEMMERT, B319.0656,

Germany) at a temperature of 40 °C until a constant moisture level was achieved.

The resulting dried rhizome slices and leaves were then finely ground using an

electric grinder (High star AR-1045) and sifted through a 0.2 mm diameter sieve

(Fig. 4.2c, and Fig. 4.3b). The dried powders were stored in airtight bags until

use.

(a) Fresh rhizome (b) Slices of rhizome

(c) Dried rhizome powder

Figure 4.2: Ventilated-oven drying procedure of rhizome part of C. caeruleus L.

4.3 Ultrasound-assisted extraction (UAE)

To extract bioactive compounds from the rhizome and leaves of C. caeruleus L.

as well as the leaves of S. Officinalis L., an ultrasound-cleaning bath (J.P. SE-

LECTA, s.a, Spain, SN. 3000865) equipped with two piezo-electric steel-aluminum

transducers, a 120 W power generator, and a 75 W power heater. The cavity di-
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(a) Fresh leaves (b) Dried powder of leaves

Figure 4.3: Ventilated-oven drying procedure of S. Officinalis L. leaves.

mensions of the ultrasound-cleaning bath were 15 × 24 × 14 cm (H/W/D), and

a frequency of 40 kHz was utilized for the extraction process (Fig. 4.4).

The experimental designs were used for the optimization of UAE of bioactive

compounds, where both single factor at one time approach and BBD were em-

ployed for optimizing UAE of TPC and TSC from the rhizome of C. caeruleus L.

Additionally, DSD and I -optimal design were utilized to optimize UAE of TPC

and antioxidant activity from S. Officinalis L. The relevant details can be found

in (Table 6.13, 4.2, 4.6, 4.8).

For the extraction process, 1 g of dried powders was submerged in varying

volumes of extraction solvents (as outlined in Table 4.1 and 4.3). Methanol-water

was utilized to extract TPC and TSC from the rhizome of C. caeruleus L., while

ethanol-water was employed to extract TPC and other antioxidant compounds

from S. officinalis L.

The samples were exposed to the sonication effect at determined time (Table

4.1, and 4.3). The ultrasonic temperature was controlled by a thermostat water

bath and was adjusted using the ultrasound panel to the required temperatures

(Table 4.1, and 4.3). During the sonication process, the samples were poured

into a Beaker placed in front of a flask containing ice cubes to ensure that the

temperature was always maintained at a constant temperature. The extracts from

the rhizome and leaves were obtained by filtration through centrifugation (Sigma

3-16L, 172577, Germany) at 5000 rpm for 10 minutes to remove any insoluble

particles, and then adjusted to the desired final volume. Subsequently, all the
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extracts obtained through ultrasound-assisted extraction (UAE) were stored at a

temperature of 4 °C for subsequent analysis

Figure 4.4: Ultrasound bath (J.P. SELECTA) dimensions employed in the extrac-
tion process.

4.4 Microwave assisted extraction (MAE)

The extraction of TPC and antioxidant compounds from the leaves of S. officinalis

L. was conducted through microwave-assisted extraction (MAE) using a microwave

that was equipped with a time controller and a circulating water-cooling system

(NN-S674MF, Samsung, Malaysia). The microwave employed had a cavity size of

22.5 cm × 37.5 cm × 38.6 cm and operated at a frequency of 2450 kHz. 1 gram of

dried powder obtained from S. officinalis L. leaves was added to a 250-mL vessel.

The samples were then mixed with different concentrations of aqueous ethanol

(ranging from 30 to 80%) at various solvent-to-solid ratios (20 to 50 mL g−1), as

listed in Table 4.4. The other MAE parameters studied were microwave power

(ranging from 200 to 600 W) and extraction time (ranging from 60 to 300 s), as

detailed in Tables 4.4, 4.6, and 4.9. After each MAE, the extract was filtered using

centrifugation (Sigma 3-16L, 172577, Germany) at 5000 rpm for 10 min followed

by filtration through a Whatman No. 4 filter paper, and the supernatant was

stored at 4 °C for further analysis.
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4.5 Optimization and prediction procedures

4.5.1 Optimization of UAE of TPC and TSC from rhi-

zomes of C. caeruleus L.

4.5.1.1 Box-Behnken design (BBD)

Design of experiments, such as the BBD, is a statistical technique that is commonly

utilized to optimize processes while conducting a minimal number of experiments

(Yetilmezsoy et al., 2009). The Box-Behnken design (BBD) belongs to the cate-

gory of rotatable or nearly rotatable second-order designs derived from incomplete

factorial designs with three levels. One distinctive characteristic of the BBD is

that all factors are simultaneously set to their maximum or minimum levels (Fer-

reira et al., 2007) (Fig. 4.5a). The number of design points can increase at the

same rate as the number of polynomial coefficients due to a special arrangement

of BBD levels (Aslan and Cebeci, 2007). For instance, a BBD with three fac-

tors, three blocks of four tests using a complete two-factor factorial design can be

used, with the third factor’s level set at zero (Fig. 4.5b) (Aslan and Cebeci, 2007).

Box–Behnken design requires an experiment number according to N = k2+k+cp,

where (k) is the factor number and (cp) is the replicate number of the central point

(Aslan and Cebeci, 2007; Ferreira et al., 2007).

(a) (b)

Figure 4.5: Box-Behnken design: derivation from a cube (a) and representation
as interlocking 22 factorial experiments (b).

In order to investigate the significant impact of UAE parameters on TPC

and TSC of C. caeruleus L. rhizome, a preliminary single-factor experiment was

conducted. The purpose of this study was to determine the approximate ranges of
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UAE parameters, including the methanol-water mixture (x1), temperature (x2),

time (x3), and solvent to solid ratio (x4) (refer to Table 6.13). Consequently,

all the UAE parameters were chosen for further optimization (see Table 6.13).

Building upon these findings, the Box-Behnken Design (BBD) was subsequently

utilized to identify the optimal combinations of extraction variables for achieving

the highest extraction yields of TPC and TSC (refer to Table 4.1 and 4.2). Three

levels (-1, 0, and 1) of four UAE parameters including methanol-water mixture

(60-90%), time (15-40 min), temperature (50-70 °C), and solvent to solid ratio (10

to 25 mL g−1) were selected as mentioned in Table 4.1.

Table 4.1: Symbolized UAE Variables: Coded and real levels defined for Box-
Behnken design.

Coded Levels
Independent variables -1 0 +1

x1: Methanol-water Mixture (%) 60 75 90
x2: Temperature (°C) 50 60 70

x3: Time (min) 15 27.5 40
x4: Solvent to solid ratio (mL g−1) 10 17.5 25

The BBD matrix contain 27 experiments and three replicates at the cen-

tral point as shown in Table 4.2. The TPC, and TSC were correlated with

the four UAE parameters under the following second-order polynomial equation

(Eq. 4.1):

Y = B0 +
k∑

i=1

Bixi +
k∑

i=1

Biix
2
i +

k−1∑
i=1

k∑
i=1

Bijxixj + e (4.1)

In the equation, Y represents the output variables (TPC, TSC), while B0, Bi,

Bii (where i = 1,2,...,k), and Bij (where i = 1,2,...,k; j = 1,2,...,k) are the regression

coefficients for the mean, linear, quadratic, and interaction terms, respectively.

The variables xi and xj are coded variables as indicated in Table 4.1 and Table

4.2. The error is represented by e. The independent variables were denoted as xi

based on the equation (Eq.,4.2):

xi =
Xi −X0

∆Xi

(4.2)

In the given context, xi represents the dimensionless coded value of the vari-

able Xi, while Xi corresponds to the actual value of the variables. X0 represents

the actual value of xj at the center point, and ∆Xi indicates the step change in

the variable (Dahmoune et al., 2014).
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Table 4.2: Box-Behnken design: 27-Run matrix for optimizing UAE of TPC and
TSC from C. caeruleus L. Rhizome.

UAE extraction conditions

Runs
Methanol-water

mixture (x1)
Temperature

(x2)
Time
(x3)

solvent to
solid ratio (x4)

1 -1 -1 0 0
2 -1 0 -1 0
3 -1 0 0 -1
4 -1 0 0 +1
5 -1 0 +1 0
6 -1 +1 0 0
7 0 -1 -1 0
8 0 -1 0 -1
9 0 -1 0 +1
10 0 -1 +1 0
11 0 0 -1 -1
12 0 0 -1 +1
13 0 0 +1 -1
14 0 0 +1 +1
15 0 +1 -1 0
16 0 +1 0 -1
17 0 +1 0 +1
18 0 +1 +1 0
19 +1 -1 0 0
20 +1 0 -1 0
21 +1 0 0 -1
22 +1 0 0 +1
23 +1 0 +1 0
24 +1 +1 0 0
25 0 0 0 0
26 0 0 0 0
27 0 0 0 0

4.5.1.2 Support vector regression optimized using dragonfly algorithm

for predicting the TPC and TSC from C. caeruleus L. rhi-

zome

As a supervised-learning approach, SVM is a robust technique that effectively

performs nonlinear classification and regression tasks, based on the structural risk

minimization principle from computational learning theory (Ghitescu et al., 2017;

Jafarzadeh et al., 2016). In SVM classification, the initial aim is to establish deci-

sion boundaries in the feature space that can divide the data points into multiple

classes (as shown in Fig. 4.6). This process leads to the creation of an optimal

hyperplane that separates the two classes with maximum margin, thus minimizing

generalization error and increasing classification accuracy (Fig. 4.6) (Deka et al.,
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2014).

Figure 4.6: Maximum separation hyperplane using Support vector machine (SVM)
(Deka et al., 2014)

SVM is a powerful technique for estimating real-value functions, known for

its exceptional generalization capability and high prediction accuracy. This is

achieved through the use of sparse solutions, kernels, control of the margin via

Vapnik-Chervonenkis (VC) theory, and limiting the number of support vectors

(Awad and Khanna, 2015). Moreover, SVM is designed to minimize the expected

error of a learning machine, which reduces the risk of overfitting and improves its

performance on unseen data (Yu et al., 2006). Furthermore, the kernel method

in SVM not only can improve the computational efficiency of SVM training but

also can be a convenient way to help prevent over-fitting classification problems

(Pisner and Schnyer, 2020).

Various meta-heuristic algorithms, including particle swarm optimization (PSO),

dragonfly algorithm (DA), genetic algorithm (GA), and Bat algorithm (BA) have

been employed in optimizing the SVM’s parameters (Xie et al., 2019). DA is a

meta-heuristic algorithm introduced by Mirjalili (2015), which draws inspiration

from the natural swarming behavior of dragonflies, both in static and dynamic

scenarios. The algorithm utilizes these static and dynamic swarm behaviors to

facilitate exploration and exploitation during the optimization process (Josephen

et al., 2021). DA is a widely used meta-heuristic algorithm for solving diverse

optimization problems. Combining the dragonfly algorithm with support vector

machine has been found to strike an effective balance between exploration and

exploitation by increasing the diversity of solutions (Meraihi et al., 2020). DA

has been used to solve different optimization problems of SVM, the values of ker-
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nel and penalty parameters were sent by the DA for training the SVM using the

training data (Benimam et al., 2020; Laidi et al., 2021). Many previous studies

reported that the performance of support vector regression (SVR) was achieved

when the hyper-parameters are optimized using the Dragonfly algorithm (Laidi

et al., 2021).

Due to the exceptional capabilities of SVM and DA in solving regression

problems were chosen to predict TPC and TSC from C. caeruleus L. rhizome

using UAE. The SVR-DA model was constructed using the input and output

variables employed in the Box-Behnken design (BBD). The prediction of TPC

and TSC is performed using the equation Eq. 4.3:

f(x) =
N∑

n=1

(an − a∗n)G(xn, x) + b (4.3)

In Table 6.14, the kernel function G(xn, x) is described. Three kernel func-

tions, namely Gaussian RBF, Linear, and Polynomial, were tested, and the Gaus-

sian RBF kernel, which exhibited the most favorable outcomes, was selected for

constructing the SVM. The dual problem coefficient, denoted as Alpha, is a vector

comprising numeric values. The size of Alpha corresponds to the number of sup-

port vectors (m) present in the trained SVM regression model. For each support

vector, the dual problem involves the introduction of two Lagrange multipliers.

The values of Alpha correspond to the difference between the two estimated La-

grange multipliers for the support vectors (an − a∗n). Additionally, b represents

the bias term.

The methodology and optimization of hyperparameters for SVM can be elu-

cidated by consulting the flowchart illustrated in Fig. 4.7. This visual repre-

sentation serves as a helpful guide for implementing a systematic and effective

approach, thereby enabling the attainment of optimal results (Abdelkader et al.,

2021; Benimam et al., 2020; Hentabli et al., 2021; Mesllem et al., 2021). To en-

hance the optimization and facilitate convergence, the input data matrix (x1, x2,

x3, and x4) was first subjected to normalization, whereby its numerical values were

adjusted. This was achieved through the use of a normalization function, which

is represented by the equation (Eq. 4.4):

xn = x0.1 (4.4)

Where xn is normalized input data-set and x is input data

Next, To avoid overfitting, the entire data-sets of TPC and TSC from C.
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caeruleus L. rhizomes were randomly split into two sets. The split was performed

using the Holdout function, available in the statistical and machine learning tool-

box of Matlab, allocating 80% of the data for training purposes and the remaining

20% for validation. Moreover, the validation dataset served as an independent set

of data specifically employed to evaluate and test the performance of the SVR-DA

model (Laidi et al., 2021; Mesellem et al., 2021). DA begins by randomly provid-

ing the SVR with a combination of hyper-parameters within their specified ranges,

such as the size of insensitive zone (ϵ), the penalty parameter (C), and sigma (δ).

This procedure is iteratively performed five times, where each iteration involves

executing the steps from data partitioning to the creation of the SVR model. In

each iteration, the obtained RMSE values are compared, and the best value is

saved for further analysis, as depicted in Fig. 4.7. Additionally, a DA is employed

to generate a fresh set of hyperparameters for SVR algorithm. The entire process

is then repeated, leading to an improved RMSE outcome. This iterative step is

performed for 100 trials, where the lowest and best RMSE values play a crucial

role in determining the final optimal SVR model (Hentabli et al., 2021; Laidi et al.,

2021). The RMSE and R2 were calculated according to equations illustrated in

Table 6.14 to assess the predictive power of the SVR-DA model.

In this study, a range of evaluation metrics were utilized to evaluate the

goodness of fit and predictive accuracy of the optimized model. These metrics en-

compass the relative standard deviation (RSD), root mean square error (RMSE),

the mean relative percentage error (MRPE), the average absolute relative devi-

ation (AARD), the mean of absolute error (MAE), the determination coefficient

(R2) (refer to Table 6.14).

4.5.2 Optimization of UAE and MAE of phenolic com-

pounds and antioxidant capacity from Salvia offici-

nalis L.

4.5.2.1 Definitive screening design (DSD)

Traditionally, resolution III and IV fractional factorial designs have been popu-

larly used for conducting screening experiments. However, a major drawback of

the resolution III design is that the main effects are entirely confounded with one

or more two-factor interactions, which creates significant ambiguity for the exper-

imenter. To mitigate this ambiguity, additional experiments are required. While

a resolution IV fractional factorial design confound two-factor interactions, if one

is active, it requires more runs to resolve the active effects. Another limitation

of these designs is that they have no capability for capturing curvature due to
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Figure 4.7: Utilization of SVR-DA technique for predicting TPC and TSC from
C. caeruleus L. rhizome (Laidi et al., 2021).

pure-quadratic effects (Jones and Nachtsheim, 2011).

The DSD was created by Jones and Nachtsheim (2011) and has become a pop-

ular method in the field of Design of Experiments (DOE). This three-level design

offers an alternative to fractional factorial designs when screening both continuous

and categorical factors, and it can be used to generate a response surface design

when only three or fewer factors are significant. This property is particularly

useful when sequential experimentation is complex and expensive, making DSD

an attractive and cost-effective solution. The construction of this design requires

one more run than twice the number of factors (2k + 1), where k is the number

of factors, enabling the estimation of main effects and two-way interactions of all

factors Jones and Nachtsheim (2011). The DSD method has been shown to be

an effective tool for identifying the most important factors and their interactions

in a systematic way while minimizing the number of experiments needed. This

approach can significantly enhance efficiency by reducing the amount of time and
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resources required for experimentation (Jones and Nachtsheim, 2011).

In JMP, DSD is created using conference matrice, as proposed by Xiao et al.

(2012). Conference matrices are m x m matrices, where m is an even number.

These matrices have zeros on the diagonal, and the off-diagonal elements can

take the value of either 1 or -1, depending on the specific design requirements.

Additionally, conference matrices need to satisfy the condition CTC = (m–1)Im∗m,

where CT denotes the transpose of C, and Im∗m is the identity matrix of size mxm

(Favre and Neto, 2021; Institute, 2013). The design matrix (D) for DSD can be

constructed as:

D =

 C

−C

0


The DSD has several desirable properties;

• Unlike resolution III designs, the main effects are completely independent of

two-factor interactions, which ensures that estimates of main effects are not

biased by the presence of active two-factor interactions. This is regardless

of whether the interactions are included in the model.

• Two-factor interactions are not completely confounded with other two-factor

interactions, although they may be correlated.

• Unlike resolution III, IV, and V designs with added center points, all quadratic

effects can be estimated in models comprised of any number of linear and

quadratic main-effects terms.

• Quadratic effects are orthogonal to main effects and not completely con-

founded (though correlated) with interaction effects.

• With 6 through (at least) 12 factors, these designs can estimate all possible

full quadratic models involving three or fewer factors with high levels of

statistical efficiency (Jones and Nachtsheim, 2011).

These properties make these designs useful and efficient for studying the ef-

fects of multiple factors in experimental settings, thus, the DSD was used to

identify the UAE and MAE parameters that have the most substantial effects on

the extraction of TPC, TEAC, and TAC from S. Officinalis L. leaves extracts. For

UAE, 4 extraction parameters were selected including x1: ethanol-water mixture,

x2: sonication time, x3: extraction temperature, and x4: solvent to solid ratio were

studied at three levels, low, medium, and high levels as shown in table 4.3. On
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the other hand, for the MAE, x1: ethanol-water mixture, x2: time, x3: microwave

power, x4: solvent to solid ratio were studied as depicted in table 4.4.

Table 4.3: The extraction parameters and levels used for the screening and opti-
mization of UAE.

Coded levels
UAE parameters -1 0 +1

x1: Ethanol-water mixture (%) 30 55 80
x2: Time (min) 10 35 60
x3: Temperature (°C) 30 45 60
x4: Solvent to solid ratio (mL g−1) 10 20 30

Table 4.4: The extraction parameters and levels employed for the screening and
optimization of MAE

Coded levels
MAE parameters -1 0 +1

x1: Ethanol-water mixture (%) 30 55 80
x2: Time (s) 60 180 300
x3: Microwave power (W) 200 400 600
x4: Solvent to solid ratio (mL g−1) 20 35 50

In order to investigate the impact of UAE and MAE on TPC, TEAC, and

TAC, a matrix of 17 experiments (including four additional runs) was designed

for each extraction method (Table 4.6). The DSD matrix for UAE and MAE

parameters were created using JMP software 13.0.0 Pro and had a D-efficiency of

85.61, a G-efficiency of 82.32, and an A-efficiency of 85.36. The average variance

prediction for this design was 0.154 (Table 4.5). Conversely, the DSD matrix for

MAE parameters had a higher G-efficiency compared to the DSD matrix for UAE

parameters, while the other efficiency parameters remained the same as shown in

the table 4.5

Table 4.5: DSD’s Efficiency measures for UAE and MAE.

UAE MAE
D-Efficiency 85.61 85.61
G-Efficiency 82.32 92.39
A-Efficiency 85.36 85.36
Average variance of prediction 0.154 0.154

The color map (Fig. 4.8) displays four terms situated in the upper left corner,

representing the main effects of UAE and MAE. The deep blue color observed in

the map indicates a correlation value of 0, signifying that there are no correlations

between the main effects and other main effects (Fig. 4.8). This implies that all
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Table 4.6: Definitive screening design matrix employed for UAE and MAE of TPC
and antioxidant capacity.

Extraction parameters (UAE/MAE)
Runs x1 x2 x3 x4

1 -1 -1 -1 +1
2 -1 -1 +1 -1
3 -1 -1 +1 +1
4 -1 0 -1 -1
5 -1 +1 -1 +1
6 -1 +1 0 -1
7 -1 +1 +1 0
8 0 -1 -1 -1
9 0 0 0 0
10 0 +1 +1 +1
11 +1 -1 -1 0
12 +1 -1 0 +1
13 +1 -1 +1 -1
14 +1 0 +1 +1
15 +1 +1 -1 -1
16 +1 +1 -1 +1
17 +1 +1 +1 -1

main effects are orthogonal and can be independently estimated. The only red

color present in the Fig. 4.8 is found on the main diagonal, confirming a perfect

correlation of one for each term. This signifies that each term is entirely correlated

with itself. Consequently, none of the main effects are completely confounded with

any two-way interactions. However, it is important to note that the presence of

active two-way interactions may introduce slight bias to the estimates of the main

effects.

The mathematical equations of definitive screening design (Eq. 4.5) show the

relation and the effect of each UAE or MAE parameters on TPC, TEAC, or TAC

(Goos and Jones, 2011; Jones and Nachtsheim, 2011):

yi = B0 +
k∑

j=1

Bjxi,j +
k−1∑
j=1

k∑
k=j+1

Bijkxi,jxi,k +
k∑

j=1

Bjjx
2
i,j + ϵi (4.5)

In the given equation, k represents the number of continuous factors. The

estimated coefficients for linear, interaction, and quadratic effects are denoted as

B0, Bijk, and Bjj respectively. The coded factors, represented by xi,j, xi,k, and

x2
i,j, are associated with the factors of interest. The output variable, denoted as

yi, can take the values of TPC, TEAC, or TAC. Lastly, ϵi represents the error

term in the equation.
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Figure 4.8: Color maps of DSD for absolute correlation between extraction pa-
rameters (UAE parameters or MAE parameters).

4.5.2.2 I -optimal design

The optimization of TPC, TEAC, and TAC from S. Officinalis L. powder using

UAE and MAE was performed based on the I -Optimality criterion. The objective

of I -Optimality is to minimize the average variance of prediction across the de-

sign space, making it a more suitable criterion than D-Optimality for predicting

responses, determining optimal operating conditions, and identifying regions in

the design space where the response falls within an acceptable range (Rodrigues

et al., 2008). The prediction variance relative to the unknown error variance at

a point x in the design space can be calculated using the following Eq.4.6 (Goos,

2012):

var(Ŷ /x) = f(x)
′
(X

′
X)(−1)f(x) (4.6)

Where X is the model matrix.

I -optimal designs minimize the integral I of the prediction variance over the

entire design space, where I is given as follows (Eq.4.7) (Goos, 2012):

I =

∫
R

f(x)
′
(X

′
X)(−1)f(x)(dx) = trace [(X

′
X)(−1)M] (4.7)
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Where M is the moments’ matrix (Eq.4.8),

M =

∫
R

f(x)f(x
′
)dx (4.8)

In order to optimize the I -optimality criterion, the coordinate-exchange algo-

rithm proposed by Meyer and Nachtsheim (1995) was employed. The coordinate-

exchange algorithm was iteratively repeated numerous times until the maximum

value of the optimality criteria was achieved, as illustrated in Fig. 4.9. For the

I -optimal design matrix used for the optimization of three UAE parameters (Ta-

ble 4.8), The D, G, and A- efficiency obtained in this study were 42, 77, and 29,

respectively (Table 4.7). The average variance of prediction for this design was

0.351 (Table 4.7). On the other hand, the optimality criterion obtained for the

I -optimal matrix used for the optimization of four MAE parameters (Table 4.9)

were 42.41, 65.61, 30.63, 0.381 for The D, G, and A- efficiency, and the average

variance of prediction respectively, which were similar to the optimality criterion

of used for the optimization of three UAE parameters (Table 4.7).

Table 4.7: I -optimal design’s Efficiency measures for the optimization of UAE and
MAE.

UAE MAE
D-Efficiency 42.01 42.41
G-Efficiency 77.05 65.61
A-Efficiency 29.20 30.63
Average variance of prediction 0.351 0.381

For the optimization of UAE of TPC, TEAC, and TAC from S. officinalis

L. leaves, three extraction parameters including x1: ethanol-water mixture, x3:

temperature, x4: solvent to solid ratio were selected as a significant factor based

on the results of DSD, where the I -optimal matrix designed has 16 runs, including

the center points as depicted in table 4.8. Whereas the I -optimal matrix used for

the optimization of four MAE parameters (x1: ethanol-water mixture, x2: time,

x3: microwave power, x4: solvent to solid ratio) consist of 21 runs including center

points, which the matrix was used to maximize the TPC, TEAC, and TAC from

S. officinalis L. leaves (Table 4.9).

According to the color map of correlations Fig. 4.10 shows the correlation

between the effects of the UAE parameters (Fig. 4.10a) and the correlation be-

tween the effects of the MAE parameters (Fig. 4.10b). For the UAE, the main

effects are represented by the three terms in the upper left corner of the map. The

deep blue color corresponds to the uncorrelated effects between the main effects

and other main effects. This means that all main effects are orthogonal and can
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Figure 4.9: Optimization of optimality criteria for I-Optimal design through the
coordinate exchange algorithm.

be estimated independently. The red line in Fig. 4.10a is on the main diagonal,

reflecting that each UAE parameter is perfectly correlated with itself. It follows

that no main effect is completely confounded by any two-way interaction. For

the MAE, the four main effects in the upper left corner of the map are perfectly

correlated with itself and each main effect is weakly correlated with other main

effects or two-way interaction as depicted in Fig. 4.10b.

The mathematical equations of I -optimal design (Eq.4.9) show the relation

and the effect of each UAE or MAE parameters on TPC, TEAC, or TAC (Goos

and Jones, 2011; Jones and Nachtsheim, 2011):
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(a) (b)

Figure 4.10: Color maps of I -optimal design for correlation between (a) UAE
parameters, (b) MAE parameters.

Table 4.8: I -optimal design matrix employed for the optimization of UAE of TPC
and antioxidant capacity from S. officinalis L.

UAE parameters
Runs x1 x3 x4

1 -1 +1 +1
2 -1 0 -1
3 0 0 0
4 0 0 +1
5 +1 -1 +1
6 +1 +1 +1
7 0 0 0
8 0 0 0
9 0 +1 0
10 +1 +1 -1
11 -1 -1 +1
12 +1 -1 -1
13 +1 0 0
14 -0.11 -1 -1
15 -1 +1 -1
16 -1 -1 0

yi = B0 +
k∑

j=1

Bjxi,j +
k−1∑
j=1

k∑
k=j+1

Bijkxi,jxi,k +
k∑

j=1

Bjjx
2
i,j + ϵi (4.9)

Where k is the number of continuous factors, and B0,Bijk,Bjj are the esti-
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mated coefficients for linear, interaction, and quadratic effects respectively, xi,j,

xi,k, x2
i,j are the coded factors, yi is the output variable (TPC, TEAC, or TAC),

and ϵi is the error.

Table 4.9: I -Optimal design matrix employed for the optimization of MAE of
TPC, TEAC, and TAC

MAE parameters
Runs x1 x2 x3 x4

1 -1 -1 -1 0
2 -1 -1 0 -1
3 -1 0 -1 +1
4 -1 0 +1 -1
5 -1 +1 -1 -1
6 -1 +1 0 +1
7 -1 +1 +1 0
8 -0.3 -1 +1 +1
9 0 -1 -1 -1
10 0 +1 -1 +1
11 0 +1 +1 -1
12 +1 -1 -1 +1
13 +1 -1 +1 -1
14 +1 0 -1 -1
15 +1 0 0 0
16 +1 +1 -1 0
17 +1 +1 0 -1
18 +1 +1 +1 +1
19 0 0 0 0
20 0 0 0 0
21 0 0 0 0

4.6 Determination of TPC and TSC and evalu-

ation of antioxidant activity of C. caeruleus

L. rhizome

4.6.1 Determination of total phenolic compounds (TPC)

To determine the TPC of UAE extracts obtained from dried rhizomes of C.

caeruleus L., the spectrophotometric method described by Georgé et al. (2005)

was employed. In this method, 125 µL of the various methanol extracts were com-

bined with 625 µL of a diluted Folin-Ciolcateu reagent (at a volume ratio of 1/10)

and allowed to stand at room temperature for 2 minutes. Following this, 500 µL

of a 7.5% Na2CO3 solution was added to the mixture, which was then incubated
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for 15 minutes at 50°C in an unstirred water bath (NÜVE Bath, NB20). Sub-

sequently, the reaction mixture was cooled in a water-ice bath, and the specific

absorbance was measured at 760 nm using a UV–vis Spectrophotometer (Optizen

pop, Korea).

The concentrations of TPC were determined using a Gallic acid standard

curve. Various concentrations of Gallic acid ranging from 0.02 to 0.08 mg/mL

were utilized to generate the standard curve using GraphPad software (Fig. 6.9).

The linear equation obtained was y = 12.089X+0.0034 with an R2 value of 0.999.

The TPC from the rhizome extracts were expressed as mg Gallic acid equivalent

per 100 g of the dry weight of the fine powder of C. caeruleus L. (mgGAE/100 g dw)

according to Eq. 4.10. The analyses were conducted in triplicate, and the mean ±
standard deviation (SD) was calculated.

TPC (mgGAE/100 g dw) =
c (mgGAE/mL) ∗ V (mL) ∗DF

gdw rhizome powder

∗ 100 (4.10)

Where c (mgGAE/mL) represents the concentration of TPC obtained from the

standard curve. V (mL) denotes the volume of solvent used during the extraction

process. DF represents the dilution factor. gdw signifies the dry weight of the

rhizome powder.

4.6.2 Quantitative determination of total saponin content

(TSC)

For optimization purposes, the Vanillin-acid sulfuric method introduced by Hiai

et al. (1976) was employed. This colorimetric assay was utilized to quantify

steroidal sapogenins, triterpenoid sapogenins, sterols, and bile acids, which possess

a hydroxyl (OH) group at their C-3 position and react with the reagents to form

chromogens. The procedure involved combining 125 µL of diluted UAE extracts

(at a volume ratio of 1/5) obtained from the dry weight of C. caeruleus L. rhizome

powder with 125 µL of an 8% (w/V) vanillin solution dissolved in ethanol. Sub-

sequently, 1.25 mL of 72% (V/V) sulfuric acid was added to the mixture. After

thorough shaking, the mixture was incubated at 60 °C for 10 minutes in a water

bath (NÜVE Bath, NB20). Following incubation, the absorbance of the cooled

mixture was measured against a methanol blank, in which the other reagents were

present (resulting in a distinct yellow color). The UV/Vis spectrophotometer

(Optizen pop, Korea) was employed to scan the wavelength, and the maximum

absorbance was determined to be at 515 nm. The analysis was repeated three
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times, and the mean ± standard deviation (SD) was calculated.

4.6.3 Evaluation of antioxidant activity of C. caeruleus L.

rhizome

The optimal rhizome extract and leaves extract from C. caeruleus L. were as-

sessed for their antioxidant capabilities by means of four different assays, including

DPPH•, ABTS•+, reducing power, and phosphomolybdenum assays.

4.6.3.1 Scavenging DPPH• free radical activity

The DPPH• scavenging capacity of C. caeruleus L. rhizome and leaves extracts

was evaluated using a modified version of the method outlined by Dahmoune

et al. (2015). To begin, 1 mL of a methanol solution containing DPPH• (60

µM) was mixed with 100 µL of lyophilized extract at various concentrations. The

mixture was then incubated in the dark at room temperature for 30 minutes.

Following incubation, the absorbance of the solution was measured at 517 nm

using a UV–vis Spectrophotometer (Optizen pop, Korea), with a methanol blank

used as a reference. The antioxidant capacity was calculated as the percentage of

DPPH• scavenging using Eq.4.11:

Free radical inhibition (%) =
A control − ASample

AControl

∗ 100 (4.11)

Where, ASample represents the absorbance of the solution containing the free

radical (DPPH•) and the sample extract at the designated time, ABlank corre-

sponds to the absorbance of the solution containing the free radical (DPPH•) and

the extraction solvent, and AControl denotes the absorbance of the working solu-

tion of the free radical. Additionally, the concentration necessary to inhibit 50%

of the free radical (DPPH•) was determined through analysis of the inhibition

curve.

4.6.3.2 Scavenging ABTS•+ free radical activity

The ABTS assay, following the procedure described by Dahmoune et al. (2014),

was conducted to evaluate the reduction of ABTS•+ free radicals in the presence of

antioxidants. Initially, a stock solution of ABTS•+ was prepared by combining 7

mM ABTS and 2.45 mM potassium persulfate. This stock solution was incubated

in darkness for 16 hours, and then diluted with ethanol to achieve an absorbance of

0.700 ± 0.02 at 734 nm. Subsequently, 75 µL of lyophilized extracts of leaves and

rhizome at various concentrations were added to 1425 µL of the diluted ABTS•+
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solution. The antioxidant capacity was determined as a percentage after 6 minutes

of incubation in the dark at 734 nm.

The antioxidant capacity was quantified as the percentage of scavenging of

ABTS•+ and was calculated using Equation 4.12.

Free radical inhibition (%) =
A control − ASample

AControl

∗ 100 (4.12)

In the equation, A,Sample represents the absorbance of the solution containing

the ABTS•+ free radical and the sample extract at the specified time. ABlank

denotes the absorbance of the solution containing the free radical ABTS•+ and

the extraction solvent. A,Control represents the absorbance of the working solution

of the free radical. Additionally, the concentration required to inhibit 50% of the

free radical ABTS•+ was determined by analyzing the inhibition curve.

4.6.3.3 Total antioxidant capacity (TAC)

For the determination of total antioxidant capacity (TAC), a phosphomolybde-

num reagent was used. Following the method described by Prieto et al. (1999),

200 µL of lyophilized extract from rhizome and leaves were combined with 2 mL

of a test solution containing 0.6 M sulfuric acid, 4 mM ammonium molybdate

tetrahydrate, and 28 mM sodium phosphate. The mixture was then incubated

at 95 °C for 90 minutes. After cooling to room temperature, the absorbance was

measured at 695 nm. To construct the standard curve, various concentrations of

ascorbic acid (ranging from 0.02 to 0.4 mg/mL) were used to evaluate their to-

tal antioxidant activity under the same aforementioned conditions. The standard

curve was plotted as Y = 3.4169x−0.0498, with an R2 value of 0.994 (Figure 6.10).

The TAC results were expressed as (mgAAE/g) of lyophilized extract, calculated

using Equation 4.13:

TAC (mgAAE/g dry extract) =
c (mgAAE/mL)

c (g/mL)
(4.13)

Where c (mgAAE/mL) is the TAC of rhizome and leaves parts calculated from

the standard curve, c (g/mL) is the concentration of lyophilized extract.

4.6.3.4 Ferric reducing antioxidant power

The evaluation of the reducing power of C. caeruleus L. rhizome was performed

following the methods described by Oyaizu (1986). To initiate the assay, 0.2 mL

of various concentrations of the lyophilized extracts from C. caeruleus L. rhizome
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were individually added to a mixture containing 0.5 mL of phosphate buffer (0.2

M, pH 6.6) and 0.5 mL of 1% potassium ferricyanide. The reaction mixture was

then incubated in a water bath at 50°C for 20 minutes. Following the incubation

period, the reaction mixture was cooled to room temperature, and 0.5 mL of 10%

trichloroacetic acid (TCA) was added. The resulting mixture was subsequently

centrifuged at 3000 rpm for 10 minutes. The supernatant (0.5 mL) was collected

and combined with 0.5 mL of distilled water and 0.1 mL of ferric chloride (0.1%).

The absorbance of the resulting solution was directly measured at 700 nm.

4.7 Determination of TPC and evaluation of an-

tioxidant activity of S. officinalis L. leaves

4.7.1 Determination of total phenolic compounds

The total phenolic content (TPC) of the ethanol-water UAE and MAE extracts

obtained from S. officinalis L. leaves was determined using Folin’s assay, as de-

scribed in the previous section (Section 4.6.1). A calibration curve was constructed

using a Gallic acid standard (Figure 6.9), which was used to calculate the TPC

of the UAE and MAE extracts of S. officinalis L., expressed as mgGAE/gdw using

Equation 4.10. All results were reported as means (N = 3) ± standard deviations

(SD).

4.7.2 Total antioxidant capacity (TAC)

TAC of the UAE and MAE extracts of S. officinalis L. leaves was carried out using

a phosphomolybdenum reagent, following the protocol described in the aforemen-

tioned section (Subsubsection 4.6.3.3). A standard curve was constructed using

ascorbic acid (Figure 6.10), which was used to calculate the total antioxidant

capacity. The TAC results were expressed as mgAAE/g dw, based on Equation

4.14:

TAC (mgAAE/g dw) =
c (mgAAE/mL) ∗ V (mL) ∗DF

gdw leaves powder

(4.14)

In the equation, c represents the concentration of TAC in the extracts, mea-

sured in mgAAE/mL. The value of V corresponds to the volume of solvent utilized

during the extraction process, while DF represents the dilution factor. Finally,

gdw denotes the dry weight of the leaves powder.
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4.7.3 Trolox equivalent antioxidant capacity (TEAC)

The methodology is based on the ability of antioxidant molecules present in S.

officinalis L. to reduce the ABTS•+ radical, in comparison to Trolox, which serves

as a water-soluble analog of vitamin E. This approach is described by Babbar

et al. (2011). A stock solution of the blue-green chromophore ABTS•+ was pre-

pared following the procedure outlined in the previous section (Section 4.6.3.2).

Subsequently, 2 mL of diluted ABTS•+ solution was mixed with 20 µL of diluted

ethanol-water extracts obtained through UAE and MAE. The mixture was thor-

oughly mixed, and the absorbance was measured using a UV-visible spectropho-

tometer (Optima, SP-3000nano, 5T5701-143132-00, Japan) after 6 minutes. The

antioxidant capacity was calculated by comparing it to the Trolox standard curve

depicted in Figure 6.15, utilizing Equation 4.15. The results were expressed as

µmol of Trolox equivalent (TE)/gdw of S. officinalis powder. All assays were per-

formed in triplicate, and the results were reported as mean ± standard deviation

(SD).

TEAC (µmolTE/g dw) =
c (µmolTE/mL) ∗ V (mL) ∗DF

gdw leaves powder

(4.15)

In the equation, c represents the concentration of TEAC in the extracts,

measured in µmolTE/mL. The value of V corresponds to the volume of solvent

utilized during the extraction process, while DF represents the dilution factor.

Finally, gdw denotes the dry weight of the leaves powder.

4.7.4 UHPLC-HRMS Characterization of bioactive com-

pounds from S. officinalis leaves extracts

In order to evaluate the composition of bioactive compounds derived from extracts

of Salvia officinalis L. obtained through UAE and MAE, a previously described

method by Kusznierewicz et al. (2021) was employed. This method utilized ultra-

high-performance liquid chromatography and high-resolution mass spectrometry

(Dionex Ultimate 3000, RS Autosampler) to analyze the samples.

Chromatographic separation was performed using a C18 column (LUNA-

OMEGA 1.6 µm Polar C18, 100 A°, 150×2.1 mm). The mobile phase consisted

of 0.1% (v/v) formic acid in water (A) and 0.1% (v/v) formic acid in acetonitrile

(B). The mobile phase was pumped at a flow rate of 0.3 mL min−1 using gradi-

ent elution. The gradient started with 15% B and gradually increased to 40% B

within 15 minutes. Then, it was further increased to 100% B at 16 minutes and

maintained for 7 minutes as a re-equilibration step. For both the UAE and MAE
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extracts, the injection volume was 1 µL.

The UHPLC system was connected to a Dionex Ultimate 3000 RS-DAD and

a Q-Exactive Focus quadrupole-Orbitrap mass spectrometer (Thermo Fisher Sci-

entific, Bremen, Germany) equipped with a heated electrospray ionization source

(HESI II). In negative polarity mode, the HESI parameters were set as follows:

sheath gas flow rate at 35 arb, auxiliary gas flow rate at 15 arb, sweep gas flow

rate at 3 arb, spray voltage at 2.5 kV, capillary temperature at 350°C, S-lens RF

level at 50, and heater temperature at 300 °C. Data acquisition in the negative

mode was performed using full scan at a resolving power of 70,000 FWHM. The

AGC target was set to 1e6 and the maximum IT was set to auto. The scan range

for the compounds of interest was selected as 100 - 1200 m/z. For data-dependent

MS2, the parameters were as follows: resolution of 17500, isolation window of 3.0

m/z, normalized collision energy of 30, AGC target of 1e6, and maximum IT set

to auto. Mass calibration was conducted using a combination of n-butylamine,

caffeine, Met-Arg-Phe-Ala (MRFA), and Ultramark 1621 in both positive and

negative modes.

The bioactive compounds were identified by comparing the accurate mass and

mass fragmentation pattern spectra with MS-MS spectra of known compounds. To

facilitate this process, a customized database comprising various phytochemicals

was constructed using published information on the Salvia species and integrated

into the CD software. The data obtained from six experimental replicates of

Salvia extracts obtained through MAE, UAE, and the extraction solvent (blank)

were analyzed using a workflow described in the report by Kusznierewicz et al.

(2021).

4.8 Statistical analysis

The software JMP Pro 13.0.0 (SAS Institute Inc.) was utilized on a Microsoft

Windows 10 Professional (10.0.15063.0) operating system to construct the BBD,

DSD, and I -optimal design, as well as to analyze the optimization results. The

software was used to plot three-dimensional response surfaces based on the fitted

model, while holding one independent variable constant at level-coded zero. The

accuracy and adequacy of the BBD, DSD, and I -optimal models were evaluated

using statistical methods such as anlaysis of variance (ANOVA), lack of fit (LoF),

and determination coefficient R2. The significance of these models and the esti-

mated coefficients of UAE parameters were established at a threshold of p < 0.05.

Furthermore, the desirability function and optimal extraction conditions for mul-

tiple responses, including TPC, TSC, TEAC, and TAC, were investigated using
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JMP Pro 13.0.0 software.

The construction and analysis of SVR-DA involved various procedures and

metrics, as described in Table 6.14. These tasks were performed using MATLAB

R2019 (b) software (Mathworks, Natick, MA, USA) on a Microsoft Windows 10 op-

erating system, utilizing a high-performance system with 6 GB of Random Access

Memory and a 500 GB Hard Drive. The statistical and machine-learning toolbox

within MATLAB was employed to build the SVR model, while the optimiza-

tion method was implemented using the DA toolbox provided by Mirjalili (2015).

GraphPad Prism 8.0.2 (263) software was utilized to generate standard curves

and graphs for the antioxidant activity. All experimental results were reported as

mean values (n = 3), along with their corresponding standard deviations.
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Abstract

Chemometric techniques, namely BBD and SVR-DA, were utilized to optimize and

predict the levels of TPC and TSC in C. caeruleus L. rhizome through the ap-

plication of UAE. Additionally, a comparative analysis was conducted to evaluate

the antioxidant activity of rhizomes and leaves. Various assays such as ABTS•+

and DPPH• scavenging activity, FRAP, and phosphomolybdenum assays were em-

ployed. The findings confirmed the successful implementation of BBD, determin-

ing the ideal conditions for achieving maximum recovery of TPC and TSC. These

optimal conditions included a methanol concentration of 78.66%, a temperature

of 50 °C, and a sonication time of 26 minutes.The SVR-DA model, successfully

established, demonstrated exceptional predictive capabilities for extracting TPC

and TSC from C. caeruleus L. rhizome, yielding a high coefficient of determination

(R2 = 0.99) and minimal error. To facilitate its practical application in the phar-

maceutical field, a user-friendly Matlab graphical interface was developed for the

optimized SVR-DA model, enabling the prediction of TPC and TSC. Moreover,

the optimized extracts obtained from the rhizome and leaves exhibited substantial

antioxidant capacity, highlighting the potential of C. caeruleus L. as a promising

candidate for utilization in the cosmetic and pharmaceutical industries.



Box-Behnken model Fitting

5.1 Box-Behnken model Fitting

The adequacy of the Box-Behnken model for TPC and TSC extraction was eval-

uated using ANOVA and LOF, along with measures such as R-squared (R2), ad-

justed R-squared (R2
Adj), and coefficient of variation (C.V). Table 5.1 presents the

BBD and its corresponding output variables. The RSM analysis yielded favorable

results, as evidenced by the high R-squared values of 0.96 and 0.97 for TPC and

TSC, respectively. These values indicate that 96% and 97% of the data points align

with the regression model, demonstrating a robust fit. Additionally, the coefficient

of variance (CV) for all responses remained below 10%, ensuring a reliable and

consistent outcome (see Table 5.2). Furthermore, the adjusted R-square (R2
Adj)

values, reaching 92% and 93% for TPC and TSC, respectively (see Table 5.2),

demonstrate that a significant portion of the observed variation in TPC and TSC

extraction can be attributed to the independent variables considered in the study.

Regarding the ANOVA analysis (see table 5.2), it was observed that the model

exhibited significance, as indicated by a higher F-value and a p− value < 0.0001.

Additionally, the lack of fit for each response (TPC and TSC) was found to be

non-significant, reflected by a smaller F-value and a p− value > 0.05. These find-

ings suggest a meaningful relationship between the predictors and the observed

values of the responses. Therefore, the implemented BBD model proved to be

suitable and capable of explaining a portion of the variations observed in the

responses.

It is important to note that the obtained second-order polynomial equations

were employed to predict the responses at different levels of each factor. These

equations hold value in determining the impact of the independent variables by

examining the estimated coefficients. The regression model for TPC and TSC can

be seen in equations 5.1, and 5.2 respectively.

TPC (mgGAE/100 g dw) = 349.652− 24.730x1 + 8.904x2 + 14.993x3 + 73.155x4

−72.940x2
1−12.063x2

2−33.260x2
3−53.380x2

4−36.879x1x2−32.743x1x3+9.047x1x4

+ 28.349x2x3 + 28.349x2x4 + 0.948x3x4 (5.1)
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TSC (Abs) = 0.279−0.004x1−0.0014x2+0.003x3+0.051x4−0.035x2
1+0.014x2

2

− 0.019x2
3 − 0.038x2

4 − 0.023x1x2 − 0.027x1x3 + 0.005x1x4−

0.010x2x3 − 0.015x2x4 − 0.011x3x4 (5.2)

Table 5.1: Measured values of TPC, and TSC obtained using Box-Behnken design.

Extraction conditions Experimental results
Runs x1 x2 x3 x4 TPC (mgGAE/100gdw) TSC (Abs)

1 -1 -1 0 0 267.737 ± 2.602 0.263 ± 0.006
2 -1 0 -1 0 223.274 ± 2.152 0.200 ± 0.004
3 -1 0 0 -1 187.085 ± 5.204 0.155 ± 0.004
4 -1 0 0 +1 301.169 ± 4.179 0.255 ± 0.003
5 -1 0 +1 0 310.130 ± 4.775 0.250 ± 0.003
6 -1 +1 0 0 321.849 ± 4.662 0.286 ± 0.004
7 0 -1 -1 0 302.892 ± 4.775 0.284 ± 0.005
8 0 -1 0 -1 192.255 ± 2.984 0.203 ± 0.006
9 0 -1 0 +1 323.572 ± 2.152 0.328 ± 0.002
10 0 -1 +1 0 294.276 ± 7.237 0.309 ± 0.004
11 0 0 -1 -1 170.196 ± 1.034 0.145 ± 0.0006
12 0 0 -1 +1 326.330 ± 1.790 0.275 ± 0.004
13 0 0 +1 -1 188.808 ± 2.067 0.19 ± 0.005
14 0 0 +1 +1 348.733 ± 0.600 0.273 ± 0.002
15 0 +1 -1 0 266.703 ± 6.728 0.272 ± 0.003
16 0 +1 0 -1 227.411 ± 2.602 0.208 ± 0.009
17 0 +1 0 +1 393.540 ± 5.757 0.271± 0.003
18 0 +1 +1 0 371.481 ± 1.580 0.255 ± 0.009
19 +1 -1 0 0 272.217 ± 0.598 0.275 ± 0.002
20 +1 0 -1 0 242.231 ± 4.304 0.248 ± 0.002
21 +1 0 0 -1 136.419 ± 6.059 0.159 ± 0.004
22 +1 0 0 +1 286.693 ± 1.579 0.279 ± 0.003
23 +1 0 +1 0 198.114 ± 4.738 0.190 ± 0.002
24 +1 +1 0 0 178.813 ± 1.579 0.207 ± 0.001
25 0 0 0 0 342.874 ± 5.167 0.280 ± 0.005
26 0 0 0 0 348.388 ± 9.827 0.288 ± 0.01
27 0 0 0 0 357.694 ± 9.325 0.271 ± 0.003

The values are expressed as means ± SD (n=3),mgGAE/100gdw: mg Gallic
acid equivalent per 100 g dry weight of rhizome powder, Abs; Absorbance.

5.2 Temperature influence on TPC and TSC

The results presented in Table 5.2 and Eq. 5.1 indicate that the linear effect of

temperature (x2) within the range of 50 to 70 °C did not demonstrate statistical
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significance (p > 0.05) on the extraction of TPC when ultrasound was employed.

However, there was a significant negative impact (p < 0.05) on TPC extraction

observed from the interaction between methanol concentration and temperature

(x1x2), as evidenced by the significant estimated coefficient. Moreover, the in-

teraction between temperature and sonication time (x2x3) exhibited a positive

and statistically significant impact (p < 0.05) on the UAE (Ultrasound-Assisted

Extraction) of TPC. This finding indicates that the influence of temperature is

dependent on the combined effects of methanol concentration (x1) and sonication

time (x3).

Regarding the impact of UAE temperature on TSC extraction, the findings

presented in Table 5.2 and Eq. 5.2 reveal that the effect of temperature on TSC is

significantly negative (p < 0.05) in both linear and interaction terms (x1x2, x2x4).

Figure 5.1a, and Figure 5.1d illustrate the response plots of TPC and TSC, re-

spectively, for C. caeruleus L. rhizome. These plots demonstrate the influence of

temperature on TPC and TSC while considering the interaction with methanol

concentration, with the remaining variables held constant at zero levels. The

impact of temperature was examined in two distinct aspects, revealing a nega-

tive correlation when the methanol concentration was below 75%. Notably, the

extraction yields of TPC and TSC exhibited a significant increase when the tem-

perature was elevated from 50 °C to 70 °C. This parallel behavior between TPC

and TSC can be attributed to the fact that higher extraction temperatures en-

hance the solubility of and the diffusion coefficient of both TPC and TSC (Jang

et al., 2017; Pham et al., 2017). Furthermore, according to Teh and Birch (2014),

increasing the heating temperature enhances the cavitation phenomenon of ultra-

sound, aiding in the breakdown of the cell wall during the extraction of TPC and

TSC. In the second aspect, when the methanol concentration exceeded 75%, both

TPC and TSC exhibited a significant decrease at higher temperature levels. This

phenomenon can be attributed to the higher quantity of methanol in the extrac-

tion solvent, which lowers the boiling point of the solvent mixture. Consequently,

at elevated extraction temperatures, methanol readily vaporizes during the ex-

traction process, leading to a reduction in the yields of both TPC and TSC. In

summary, the optimal yield of TPC was achieved at higher temperatures with a

lower methanol concentration. On the other hand, for TSC, the highest yield was

obtained with a higher methanol concentration and a lower temperature.

To further investigate the relationship between extraction temperature and

other parameters, Figure 5.1c demonstrates that when the sonication time ex-

ceeded 25 min, there was a noticeable increase in the yield of TPC with higher

extraction temperatures. Conversely, when the sonication time was below 25 min,
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the TPC yield decreased as the temperature increased. These findings indicate

that a higher TPC yield can be obtained with both high temperatures and long

sonication times. Furthermore, for TSC, it was observed that the yield was high-

est at lower temperatures (around 50 °C) when the solvent-to-solid ratio exceeded

17.5 mL g−1. However, the TSC yield significantly decreased when the temper-

ature was increased to 70 °C (Figure 5.1f). According to Ali et al. (2018), the

decrease in TPC at high temperatures exceeding 52 °C can be attributed to the

thermal degradation of TPC. Although higher extraction temperatures facilitate

solvent solubility within the plant cell by reducing medium viscosity, it can also

lead to the degradation of TPC compounds. In conclusion, the recovery of TPC

and TSC from C. caeruleus L. rhizome was notably affected by the extraction

temperature, where the extraction temperature in UAE demonstrated a strong

correlation with the other independent parameters, highlighting its significance in

the overall extraction process.

5.3 Methanol concentration effect on TPC and

TSC

The linear effect of methanol concentration on TPC was found to be significantly

negative (p < 0.05), whereas its effect on TSC was not significant (p > 0.05).

However, in the case of interaction terms (x1x2, , x1x3), methanol concentration’s

influence was significantly negative for both responses (TPC and TSC). These

findings are presented in Table 5.2 and Eqs. 5.1 and 5.2.

Fig. 5.1a and 5.1b depict the influence of the interaction between methanol

concentration and temperature (x1x2) and between methanol concentration and

time (x1x3) on TPC from C. caeruleus L. rhizome, respectively. The temperature

and time were fixed at zero levels. The figures show that the yield of TPC in-

creased to its maximum value at approximately 65% methanol concentration and

decreased significantly with an increase in methanol concentration above 65%.

The study conducted by Cheok et al. (2012) also reported similar results where

an increase in methanol concentration from 70% to 80% led to a decrease in TPC

yield, and the highest TPC yield was obtained at 69.77% of methanol concen-

tration. These findings align with the ”like dissolves like” concept (Anslyn and

Dougherty, 2006) which states that adding water to methanol increases the po-

larity of the solvent, thereby improving the yield of TPC. The results presented

above suggest that the phenolic compounds present in the rhizome of C. caeruleus

are hydrophilic in nature, as determined by the polarity of the optimal extraction

solvent.
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Figure 5.1: Three-Dimensional Plots Illustrating the Influence of UAE Factors on
the Recovery of TPC in C. caeruleus L. Rhizome (a, b, and c) and TSC (d, e, and
f).

As the methanol concentration in the aqueous solution increased from 60-

90%, there was a significant increase in TSC. The response plots in Fig. 5.1d
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and 5.1e demonstrate that the highest yield of TSC was achieved at a methanol

concentration between 75-90%. The finding is consistent with the study conducted

by Pham et al. (2017), which demonstrated that the maximum TSC was observed

in extracts prepared using either absolute methanol or 75% methanol. In addition,

the work of Sarvin et al. (2018) supported this finding by confirming that steroidal

saponin compounds from T. terrestris L. can be easily dissolved by low-polarity

organic solvents such as ethanol and methanol, with varying degrees of water. It

was noted that methanol-water mixtures showed extended structures in solution,

which may have an effect on the solubility and diffusivity of large hydrocarbon

molecules of saponin (Shrestha and Baik, 2012). Based on the theory of similarity

and intermiscibility, when the polarity of the solvent and solute is similar, the

solute dissolves easily from the cells (Hadidi et al., 2020).

5.4 Time effect on TPC and TSC

Based on Table 5.2, Eq. 5.1, and Eq. 5.2, it was observed that the sonication time

range from 15 to 40 min had a significant effect only on the linear terms of TPC.

However, in interaction terms, sonication time was found to be a significant factor

for TPC (x1x3, x2x3) and TSC (x1x3). These findings were consistent with the

results of Zhang et al. (2019), who reported that a higher concentration of phenolic

compounds was obtained at extended sonication time and a higher solvent-to-solid

ratio. The interaction between sonication time and methanol concentration (x1x3)

had a significantly negative impact, as revealed in the results. Specifically, when

the concentration of methanol was lower (between 60-75%), longer sonication time

led to higher TPC and TSC. Conversely, at higher methanol concentrations and

longer sonication times, a lower yield of all responses was obtained (Fig. 5.1b, and

5.1e).

Based on the above results, it can be concluded that sonication time is a cru-

cial parameter for the UAE of phenolic and saponin compounds from C. caeruleus

L. rhizome and is directly related to other independent parameters. Numerous

studies have suggested that a sonication time ranging from 20 to 35 min is the

optimal range for achieving effective extraction of TPC and TSC (Pham et al.,

2017; Shao et al., 2013; Shrestha and Baik, 2012; Teh and Birch, 2014). By pro-

longing the sonication time, the plant’s cell wall becomes more susceptible to

ultrasound acoustic cavitation, thereby enhancing the extraction yields of bioac-

tive compounds. However, it is worth noting that Dong et al. (2010) reported that

extending the sonication time beyond the point of maximum extraction yields can

result in decreased permeability of the solvent into the plant cells. This decrease
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in permeability can lead to a decline in the yield of bioactive compounds due to

the suspension of impurities such as insoluble molecules, cytosol, and lipids in the

extraction liquid. Additionally, there is a possibility of re-absorption of released

molecules onto the larger fragmented plant particles.

Table 5.2: Standards regression and significance analysis of input variables on
TPC and TSC of C. caeruleus L. Rhizome.

TPC (mgGAE/100gdw) TSC (Abs)

Parameters EC p-value EC p-value

Estimated
parameters

Intercept 349.652 <0.0001a 0.279 <0.0001a

Linear
effects
x1 -24.730 0.0009a -0.004 0.3101b

x2 8.904 0.1402b -0.014 0.0041a

x3 14.993 0.0208a 0.003 0.3858b

x4 73.155 <0.0001a 0.051 <0.0001a

Quadratic
effects
x2
1 -72.940 <0.0001a -0.035 <0.0001a

x2
2 -12.063 0.1792a 0.014 0.0257a

x2
3 -33.260 0.0020a -0.019 0.0061a

x2
4 -53.380 <0.0001a -0.038 <0.0001a

Interaction
effects
x1x2 -36.879 0.0026a -0.023 0.0051a

x1x3 -32.743 0.0057a -0.027 0.0016a

x1x4 9.047 0.3723b 0.005 0.4580b

x2x3 28.349 0.0132a -0.010 0.1420b

x2x4 8.703 0.3902b -0.015 0.0384a

x3x4 0.948 0.9243b -0.011 0.0995b

Regression
results

R2 0.96 0.97
R2

Adj 0.92 0.93

RMSE 19.53a 0.013b

C.V (%) 7.14 5.3
ANOVA (Model) <0.0001a <0.0001a

Lack of fit 0.116b 0.288b

TPC; Total phenolic compounds, TSC; Total saponin content, EC; Estimated
coefficient, RMSE; Root Mean Square Error, C.V; Coefficient of variance,
p− valuea; statistically significant, p− valueb: statistically not significant;
RMSEa of TPC is expressed in GAE/100gdw; RMSEb of TSC is expressed
in (Abs)

5.5 Solvent to solid ratio effect on TPC and TSC

Based on the results presented in Table 5.2, Eq.5.1, and Eq.5.2, the solvent-to-

solid ratio was identified as the most significant factor affecting the extraction of

TPC and TSC from C. caeruleus L. rhizome. The impact of solvent-to-solid ratio

on both responses was highly significant in linear terms and interaction terms,

including x2x4 for TSC.
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Firstly, the solvent-to-solid ratio was found to be a highly significant factor

in the extraction of total phenolic compounds, as shown in Table 5.2. An increase

in the solvent-to-solid ratio led to a corresponding increase in the content of TPC.

The high TPC values observed can be attributed to the improved solubility of

phenolic compounds with an increase in the solvent-to-solid ratio until the point

of solvent saturation. On the other hand, several studies have reported that in-

creasing the sample-to-solvent ratios can increase the suspension density of the

solution, which may negatively impact the solvation of bioactive compounds that

are released during extraction (Pham et al., 2017).

The impact of the interaction solvent-to-solid ratio andtemperature on the

variation of TSC from the rhizome of C. caeruleus L. is demonstrated in Fig.

5.1f. The figure indicates that an increase in the solvent-to-solid ratio from 10

to 25 mL g−1 led to an increase in TSC, and the maximum yield was obtained

at a higher solvent-to-solid ratio and a lower temperature. The methanol-water

mixture creates a concentration gradient in the medium, which in turn enhances

the mass transfer phenomena of the system and improves the recovery of TSC. In

a study conducted by Tian et al. (2020) on the optimization of microwave-assisted

extraction (MAE) of saponin from Aralia elata (Miq.) Seem fruits and rachises,

it was found that a solvent-to-solid ratio of 20 and 30 mL g−1 was optimal for

the extraction of saponin. According to Ali et al. (2018), increasing the solvent-

to-solid ratio may lead to the dissolution of more protein and polysaccharides in

the solution, which may interfere with the dissolution of saponin. Additionally,

excessive solvent ratios are not cost-effective and may not necessarily result in

higher bioactive compound yields (Sarvin et al., 2018; Tian et al., 2020).

5.6 UAE optimization and model validation

A maximum desirability function was utilized to determine the optimal combina-

tion of factors that would result in the highest extraction of TPC and TSC from

the rhizome of C. caeruleus L. The optimal condition for the maximum extrac-

tion of TPC and TSC from C. caeruleus L. rhizome was determined using BBD,

with a methanol concentration of 78.66%, a solvent to solid ratio of 23 mL g−1, a

temperature of 50°C, and an extraction time of 26 min. The predicted values of

TPC and TSC were 349.209 mgGAE/100gdw and 0.339 (Abs), respectively, with

confidence intervals of [321.826 - 377.494] and [0.320 - 0.358]. The experimental

outcomes yielded a precise extraction yield of TPC, measuring 363.209 ± 11.284

mgGAE/100gdw, and a value of 0.325 ± 0.005 (Abs).

These results illustrate the high accuracy and reliability of the BBD method.
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Furthermore, the obtained results fell within the 95% prediction intervals deter-

mined by the second-order models, confirming their consistency with the predicted

values. Additionally, the overall desirability, which represents the geometric mean

of the desirability functions for individual responses, was evaluated according to

the approach proposed by Derringer and Suich (1980) and Obermiller (2000). The

desirability function utilized in this study yielded an overall score of 0.88, indi-

cating the successful attainment of all targeted responses. The strong correlation

observed between the predicted and observed responses signifies the high reliabil-

ity of the developed models in accurately predicting the extraction of TPC and

TSC from C. caeruleus L. rhizome using UAE.

5.7 Predicted SVR-DA model for TPC and TSC

extraction from C. caeruleus L. rhizome

In this study, SVR-DA was employed to predict the extraction yield of TPC and

TSC from C. caeruleus L. rhizome using UAE. Following the optimization of SVR-

DA, the values of the penalty parameter (C), size of the insensitive zone (δ), sigma

(σ), and 40 support vectors were determined and are listed in Table 5.3. Various

kernel functions were tested, and the results in Table 6.14 demonstrate that the

Gaussian RBF kernel yielded highly satisfactory outcomes, as confirmed by the

results presented in Table 5.3.The dataset was divided into two groups, namely

a training set consisting of 80% of the data and a validation set comprising the

remaining 20%. This division was accomplished using the HOLDOUT method, as

described Laidi et al. (2021); Mesellem et al. (2021); Soekarno et al. (2014). With

the optimized hyper-parameters (C = 900, σ = 2.47, δ = 2.46 ∗ 10−4), Fig. 5.2

illustrates the correlation between the measured and predicted TPC values. The

training and validation sets achieved R2 values of 0.99, and the RMSE for TPC

was calculated to be 6.190 mgGAE/100 g dw, as indicated in Table 5.3. Similarly,

for TSC, the training and validation sets yielded R2 values of 0.99 and 0.96,

respectively, as depicted in Fig. 5.3. The RMSE for TSC was determined to be

0.0027 (Abs), as presented in Table 5.3.

Table 5.4 presents various metrics, including RMSE, R2, AARD, MRPE,

MAE, and RSD, to evaluate the prediction accuracy of the SVR-DA model. The

values indicate that the optimized SVR-DA model has a high predictive R2 of

0.9951 and a low RMSE of 4.2702. The AARD, MRPE, RSD, and MAE were also

calculated and found to be 0.6460%, 5.9748%, 1.6881%, and 1.6165, respectively,

indicating the good performance of SVR-DA in predicting the values of TPC and

TSC. The results indicated that the optimized SVR-DA model is more suitable
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Table 5.3: Optimal parameter values of support vector regression model optimized
by the dragonfly algorithm.

Optimal parameters
Penalty

parameters
(C )

Sigma (σ)
Size of

the insensitive
zone (ϵ)

Kernel
Function

Amount of
support vectors

900 2.47 2.46 ∗ 10−4 Gaussian 40

Output
TPC TSC

RMSE Training
(80%)

0.2039a 0.000162b

RMSE Validation
(20%)

11.0150a 0.0068b

RMSE All 6.1900a 0.0027b

RMSEa of TPC is expressed in mgGAE/100gdw; RMSEb

for modeling with limited experimental data and exhibits higher prediction ac-

curacy. Furthermore, the marginal loss between the R2 values for the training

and validation of the optimized SVR-DA model is insignificant, indicating its high

generalization performance in terms of R2. These findings are consistent with

the results of the previous results of Benimam et al. (2020) and Mesellem et al.

(2021).

Table 5.4: SVR-DA performance for prediction of TPC and TSC from rhizome of
C. caeruleus L.

Training data Validation data All
RMSE 0.1829 9.5415 4.2702
R2 1.0000 0.9722 0.9951
R 1.0000 0.9933 0.9978
b 0.2245 -12.9697 -1.6218

slop 0.9991 1.0716 1.0101
AARD (%) 0.0593 2.9927 0.6460
MRPE (%) 0.1087 5.9748 5.9748

MAE 0.1570 7.4548 1.6165
RSD (%) 0.0720 4.0517 1.6881

Additionally, a Matlab graphical user interface was developed based on the

optimized SVR-DA model to facilitate the prediction of TPC and TSC from C.

caeruleus L. rhizome (Fig. 5.4). This interface provides an efficient tool to cal-

culate the output variables (TPC, TSC) by selecting the desired values of the

extraction conditions, such as solvent concentration (%), temperature (°C), time

(min), and solvent to solid ratio (mL g−1). The user can obtain the predicted

results quickly and easily, making this tool a practical and valuable resource for
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researchers and industry professionals.

Figure 5.2: Scatter plot of experimental and predicted TPC obtained by SVR-DA.

Figure 5.3: Scatter plot of measured and predicted total saponin content by SVR-
DA model
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Figure 5.4: Matlab interface to predict TPC and TSC from C. caeruleus L. rhi-
zome

5.8 Antioxidant capacity of C. caeruleus L.

For many years, C. caeruleus L. has been utilized for its therapeutic benefits. In

this study, the extract from the rhizome of the plant was optimized under specific

extraction parameters determined by BBD design: a methanol concentration of

78.66%, 23 mL g−1, a temperature of 50 °C, and 26 min of sonication time. This

optimized extract was then evaluated for its antioxidant activity using various an-

tioxidant assays that utilize different mechanisms, including the DPPH•, ABTS•+,

reducing power, and phosphomolybdenum assays. Furthermore, the antioxidant

activity of C. caeruleus L. leaves extract under the same optimal conditions was

also evaluated. The results obtained are illustrated in Fig. 6.11, 6.12, 6.13, and

6.14. The results of the DPPH• scavenging activity showed that the leaves had

a higher free radical scavenging activity than the rhizome, with an IC50 value of

157 ± 3 µg mL−1 of lyophilized powder for the leaves, and an IC50 value of 1606

± 50 µg mL−1 of lyophilized powder for the rhizome (Fig. 6.11). A similar trend

was observed in the decolorization of the ABTS•+ radical with the use of different

parts of the plant. The IC50 of leaves was found to be 191 ± 3 µg mL−1, while the

IC50 of rhizome was 950 ± 22 µg mL−1, as shown in Figure 6.12. These results

confirmed that the leaves part of C. caeruleus L. showed the highest antioxidant
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capacity than the rhizome part, although, the rhizome and leaves the part of

C. caeruleus L. exhibited a higher capacity for scavenging free radicals than the

rhizome extract of the same medicinal plant extracted using accelerated solvent

extraction (Toubane et al., 2017). On the other hand, C. caeruleus L. also showed

higher capacity than Carthamus tinctorius L. seed (Yu et al., 2013).

The TAC of rhizome and leaves of C. caeruleus L. was also measured using

phosphomolybdenum assay, the leaves extract showed higher TAC than rhizome,

at 1 mg mL−1 of lyophilized extract, the TAC was 90.917 ± 1.628 mgAAE/g, and

33.551 ± 0.735 mgAAE/g for leaves and rhizome respectively (Fig. 6.13). Fur-

thermore, both parts of the plant demonstrated a significant capacity for reducing

ferric (Fe3+) ions to ferrous (Fe2+) ions in the reducing power test. The leaves

part displayed the highest absorbance value of 1.698 ± 0.007 at a concentration

of 1 mg mL−1 of lyophilized extract, whereas the rhizome part exhibited an ab-

sorbance of 0.206 ± 0.013 in the same concentration. However, ascorbic acid was

found to be more effective in reducing power compared to C. caeruleus L., as

shown in Fig. 6.14. The higher and lower antioxidant activity of leaves and rhi-

zome of C. caeruleus L. may be explained by the fact that the leaves produce

bioactive molecules that display a higher donating capacity of hydrogen ions than

the molecules produced by the rhizome part. According to Silva et al. (2005), the

antioxidant activity of bioactive molecules depends on their structure, whether

they are planar or spatial. The molecules that are derived from the shikimate

pathway were found to have more antioxidant potential than those derived from

the acetate pathway. This is significant as it can help prevent oxidative damage

to cell membranes.

5.9 Conclusion

The study successfully optimized the UAE of phenolic-saponin fraction from C.

caeruleus L. rhizome using response surface methodology based on BBD. The

concentration of solvent, sonication time, temperature, and solvent-to-solid ratio

were found to be the most significant UAE parameters. The optimal extraction

conditions were achieved using 78.66% methanol concentration, 23 23 mL g−1 ratio

of solvent-to-solid, 50°C temperature, and 26 min of extraction time. The study

also demonstrated the high accuracy of SVR-DA in predicting TPC and TSC of C.

caeruleus L., with a good correlation (R2 = 0.99) and low RMSE. Furthermore,

the researchers designed a graphical user interface using Matlab for predicting

TPC and TSC from C. caeruleus L. rhizome.

The rhizome and leaves extracts demonstrated a high potential for scaveng-

88



Conclusion

ing free radicals, with an IC50 of 0.951 ± 0.022 mg mL−1 and 0.196 ± 0.0029

mg mL−1 for ABTS•+ assay, and an IC50 of 0.157 ± 0.003 mg mL−1 and 1.606 ±
0.05 mg mL−1 of lyophilized powder for DPPH• assay, respectively. Furthermore,

both the leaves and rhizomes exhibited a higher antioxidant capacity for reducing

power and phosphomolybdenum assay. The rhizome of C. caeruleus L. has been

traditionally used in folk medicine for treating burns and wounds. Saponin and

phenolic compounds are believed to be the major bioactive compounds involved

in the healing process. Thus, our study presents a useful tool in the form of a

Matlab interface that can accurately predict the levels of TPC and TSC. This tool

can be applied in the pharmaceutical industry for the development of products

that utilize the healing properties of C. caeruleus L.
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Chapter6

DSD and I -optimal design for

optimization of UAE and MAE of

TPC and antioxidant capacity

from S. officinalis L. leaves
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Abstract

To screen and optimize the extraction of total phenolic content (TPC) and antiox-

idant capacities (TEAC and TAC) from Salvia officinalis L. leaves, DSD and I -

optimal design were employed for both ultrasound-assisted extraction (UAE) and

microwave-assisted extraction (MAE). The optimal UAE conditions for achieving

maximum TPC, TEAC, and TAC were determined as follows: a 52% ethanol-

water mixture, and a UAE time of 10 min, a temperature of 60 °C, and ethanol-

water mixture to solid ratio of 30 mL g−1. Furthermore, the optimal conditions for

microwave-assisted extraction (MAE) were determined as follows: a concentration

of 60% ethanol-water mixture, an extraction time of 4.75 min, a power level of 600

W, and a liquid-to-solid ratio of 50 mL g−1. At these optimal conditions obtained

by MAE and UAE, the optimal MAE extract of common sage exhibited high TPC

(46.12 ± 0.08 mgGAE/gdw and TEAC (268.39 ± 1.28 µmolTE/gdw) than optimal

extract obtained by UAE, where TPC and TEAC were 31.84 ± 0.248 mgGAE/gdw,

237.95 ± 0.771 µmolTE/gdw, respectively. However, the UAE extract showed high

TAC (38.928 ± 0.548 mgAAE/gdw) than the MAE extract with a TAC of 38.928

± 0.548 mgAAE/gdw. Furthermore, Based on the UHPLC-MS analysis result,

the quantitatively dominating compounds were rosmarinic acid, carnosol, carnosic

acid, and methyl carnosate. Moreover, the MAE yielded a higher concentration

of 181 bioactive compounds, while the UAE yielded a higher concentration of 87

compounds. In conclusion, this study provides valuable information for selecting

the appropriate extraction technique for specific phenolic compounds.
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6.1 Optimization of UAE and MAE using DSD

and I -optimal

6.1.1 Optimization of Ultrasound assisted extraction of

TPC, TEAC, and TAC

6.1.1.1 DSD fitting

In order to assess the impact of the ethanol-water mixture, extraction temperature,

sonication time, and solvent-to-solid ratio on the extraction of TPC, TEAC, and

TAC, the DSD approach was employed for screening purposes. Table 6.1 displays

the data obtained from DSD along with the corresponding responses. The analysis

of variance (ANOVA) and lack of fit results for the model are presented in Table

6.2.

The model exhibited high significance (p-value <0.0001) with no significant

lack of fit. These findings indicate that the model performed well in predicting

the relevant responses. Moreover, the high correlation coefficients (R2 ≥ 0.97)

and adjusted R-squared values (R2
Adj ≥ 0.94) for all responses (TPC, TEAC, and

TAC) demonstrate the strong fit of the DSD model. Moreover, the coefficient

of variation (CV) provides insights into the dispersion of the data, with a value

below 10% typically considered desirable (Koocheki et al., 2009). In our study,

the calculated CVs for TPC, TEAC, and TAC were 9.7%, 4.3%, and 7.6%, respec-

tively. These results indicate that the suggested model exhibited high precision

and reproducibility. The mathematical equations (Eqs.6.1, Eq.6.2, and Eq.6.3) of

DSD describe the relationships between TPC, TEAC, TAC, and the UAE factors

as follows:

TPC (mgGAE/gdw) = 28.698 + 2.959x1 + 1.997x3 + 7.676x4 − 6.662x2
1 (6.1)

TEAC (µmolTE/g dw) = 234.609 + 10.309x1 + 15.107x3 + 47.685x4 − 31.866x2
1

− 45.571x2
4 − 7.397x1x4 (6.2)
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TAC (mgAAE/gdw) = 35.308 + 4.123x1 + 2.335x3 + 7.176x4 − 7.649x2
1 (6.3)

Table 6.1: DSD’s Matrix containing four UAE parameters and three responses.

Runs x1 x2 x3 x4
TPCa

experimental
TPCa

predict
TEACb

experimental
TEACb

predict
TACc

experimental
TACc

predict
1 -1 -1 -1 +1 21.15 ± 0.46 20.99 186.32 ± 2.72 185.98 25.40 ± 0.26 26.12
2 -1 -1 +1 -1 8.99 ± 0.20 10.58 109.32 ± 1.48 111.79 13.67 ± 0.53 16.63
3 -1 -1 +1 +1 27.82 ± 0.19 25.99 223.31 ± 1.84 221.95 34.90 ± 0.22 33.21
4 -1 0 -1 -1 7.64 ± 0.33 5.788 71.27 ± 1.45 73.79 11.46 ± 0.13 9.04
5 -1 +1 -1 +1 19.48 ± 0.17 21.40 181.16 ± 2.55 181.93 23.47 ± 0.24 25.10
6 -1 +1 0 -1 7.20 ± 0.02 8.49 85.73 ± 0.29 89.75 11.20 ± 0.16 12.07
7 -1 +1 +1 0 22.72 ± 0.55 21.78 216.47 ± 2.63 208.39 28.63 ± 0.26 26.56
8 0 -1 -1 -1 16.77 ± 0.20 15.73 138.37 ± 1.48 128.27 24.55 ± 0.21 23.64
9 0 0 0 0 28.81 ± 0.45 28.69 234.25 ± 0.29 234.60 34.95 ± 0.11 35.30
10 0 +1 +1 +1 34.34 ± 0.24 35.49 240.06 ± 2.96 249.80 41.09 ± 0.15 41.64
11 +1 -1 -1 0 22.23 ± 0.42 23.29 195.12 ± 4.39 202.84 29.45 ± 0.12 31.16
12 +1 -1 0 +1 27.22 ± 0.13 29.35 207.72 ± 3.06 209.79 37.48 ± 0.22 35.69
13 +1 -1 +1 -1 16.02 ± 0.15 15.55 141.79 ± 2.66 141.45 25.01 ± 0.24 24.69
14 +1 0 +1 +1 31.64 ± 1.24 31.05 223.14 ± 3.63 220.00 35.60 ± 0.11 36.31
15 +1 +1 -1 -1 11.94 ± 0.44 12.97 108.98 ± 0.88 112.93 21.73 ± 0.05 21.41
16 +1 +1 -1 +1 30.88 ± 0.29 28.26 201.26 ± 1.84 193.51 33.67 ± 0.11 33.54
17 +1 +1 +1 -1 16.50 ± 0.24 15.96 139.91 ± 0.59 137.39 23.53 ± 0.13 23.67
TPCa: mgGAE/gdw (mg Gallic acid equivalent per g of dry weight), TEACb: µmolTE/gdw (µmol
Trolox equivalent per g of dry weight), TACC :mgAAE/gdw (mg Ascorbic acid equivalent per g of
dry weight), TPC: Total phenolic compounds, TEAC: Trolox equivalent antioxidant capacity,
TAC: Total antioxidant capacity

Table 6.2: Regression results and estimated coefficient of DSD for screening UAE
parameters.

TPC (mgGAE/gdw) TEAC (µmolTE/g dw) TAC (mgAAE/gdw)
EC p-value EC p-value EC p-value

Estimated
parameters

Intercept 28.698 <0.0001a 234.609 <0.0001a 35.308 <0.0001a

Linear effects
x1 2.959 0.0006a 10.309 0.0009a 4.123 <0.0001a

x3 1.997 0.0059a 15.107 <0.0001a 2.335 0.0028a

x4 7.676 <0.0001a 47.685 <0.0001a 7.176 <0.0001a

x2 0.204 0.7317b -2.0267 0.3414b -0.509 0.3811b

Quadratic effects
x2
1 -6.662 0.0001a -31.866 0.0002a -7.649 0.0004a

x2
4 -3.082 0.0602b -45.571 <0.0001a -2.662 0.1019b

Interaction effects
x1x4 -0.028 0.9625b -7.397 0.0099a -1.112 0.1026b

x1x3 -0.502 0.4524b -2.877 0.2599b -1.207 0.1007b

Regression
results

R2 0.97 0.99 0.97
R2

Adj 0.94 0.98 0.94
RMSE 2.0120 7.497 2.057

C.V (%) 9.7 4.3 7.6
ANOVA (Model) <0.0001a <0.0001a <0.0001a

Lack of fit / / /
EC; Estimated coefficient, RMSE; Root Mean Square Error, C.V; Coefficient of variance, p− valuea; statistically
significant, p− valueb; statistically not significant

The findings from the DSD analysis revealed a significant impact of various

UAE parameters, such as the ethanol-water mixture, temperature, and solvent-to-

solid solvent ratio, on the levels of TPC, TEAC, and TAC (p < 0.05). However,
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it was observed that the extraction time had no significant effect on TPC and

antioxidant activity, as indicated by a p-value obtained in Table 6.2.

In addition to examining UAE linear effects, the quadratic effects of the UAE

factors on TPC, TEAC, and TAC were also taken into consideration. Among these

factors, only the ethanol-water mixture exhibited high significance on TPC and

TCA (p < 0.01). Regarding the quadratic effects of both ethanol-water mixture

and solvent-to-solid ratio demonstrated a strong influence on TEAC (Table 6.2).

Additionally, a noteworthy interaction effect between the ethanol-water mixture

and solvent-to-solid ratio was observed, significantly impacting TEAC with a low

p-value (p < 0.01), as illustrated in Table 6.2.

6.1.1.2 I -optimal design fitting

The DSD findings revealed that the extraction of TPC, TEAC, and TAC from S.

officinalis L. leaves is influenced by three key factors: the ethanol-water mixture,

temperature, and solvent-to-solid ratio. These factors were identified as significant

based on the results presented in Tables 6.1 and 6.2. Consequently, for the opti-

mization process outlined in Table 6.3, these factors were chosen. The analysis of

variance and estimated parameters for the I -optimal design are presented in Table

6.4. In this study, the factors x1, x3, and x4 were taken into consideration. The

I -optimal models for TPC, TEAC, and TAC were derived and are represented by

Eq. 6.4, Eq. 6.5, and Eq. 6.6, respectively.

TPC (mgGAE/gdw) = 24.998+1.054x3+8.013x4−4.697x2
1−1.952x2

4−1.340x3x4

(6.4)

TEAC (µmolTE/gdw) = 214.925 + 12.820x1 + 49.113x4 − 32.106x2
1 − 16.127x1x4

(6.5)

TAC (mgAAE/gdw) = 34.174 + 3.355x1 + 1.182x3 + 7.766x4 − 5.495x2
1 (6.6)

The ANOVA results revealed that the model exhibited a significantly low P−
value (< 0.01) for TPC, TAC, and TEAC. These findings indicate that the models

developed for all the tested responses were statistically significant. Additionally,

the lack of fit was found to be insignificant for all the responses, which further
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Table 6.3: I -Optimal design matrix with the three UAE parameters and three
output variables (TPC, TEAC, and TAC)

Runs x1 x3 x4
TPCa

experimental
TPCa

predict
TEACb

experimental
TEACb

predict
TACc

experimental
TAC c
predict

1 -1 +1 +1 29.42 ± 0.25 29.31 228.35 ± 1.27 221.22 35.34 ± 0.15 34.26
2 -1 0 -1 9.79 ± 0.15 11.17 89.69 ± 2.78 84.50 14.70 ± 0.48 14.17
3 0 0 0 24.61 ± 0.40 24.99 216.88 ± 3.49 214.92 34.95 ± 0.11 34.17
4 0 0 +1 31.94 ± 0.13 31.05 240.35 ± 10.98 243.78 39.63 ± 0.62 39.80
5 +1 -1 +1 30.17 ± 0.11 30.48 218.93 ± 6.87 209.27 36.70 ± 0.64 35.50
6 +1 +1 +1 28.88 ± 0.22 28.84 191.60 ± 6.72 192.88 36.79 ± 0.07 37.30
7 0 0 0 25.39 ± 0.24 24.99 216.55 ± 3.22 214.92 34.54 ± 0.11 34.17
8 0 0 0 25.20 ± 0.07 24.99 227.05 ± 7.45 214.92 33.95 ± 0.13 34.17
9 0 +1 0 27.60 ± 0.07 29.05 210.48 ± 1.50 217.87 34.57 ± 0.06 35.34
10 +1 +1 -1 14.62 ± 0.60 14.35 152.70 ± 5.42 142.05 25.01 ± 0.69 23.65
11 -1 -1 +1 28.08 ± 0.10 28.81 182.08 ± 4.04 194.16 28.51 ± 0.59 30.11
12 +1 -1 -1 10.38 ± 0.25 10.64 126.38 ± 5.10 128.16 22.31 ± 0.38 23.08
13 +1 0 0 20.31 ± 0.46 20.03 178.14 ± 9.22 195.63 30.75 ± 0.43 32.03
14 -0.11 -1 -1 15.96 ± 0.30 15.61 110.73 ± 1.16 115.69 22.77 ± 0.63 22.74
15 -1 +1 -1 18.12 ± 15.96 17.10 96.76 ± 4.04 105.87 14.48 ± 0.46 15.62
16 -1 -1 0 22.92 ± 0.24 21.98 150.78 ± 6.58 141.61 24.67 ± 0.26 23.54

confirms the good performance of the models in predicting the relevant responses

(see Table 6.4). In addition, the adjusted coefficients (R2
Adj) for TPC, TEAC, and

TAC were found to be in close proximity to the determination coefficients (R2),

as shown in Table 6.4.

Significance was observed in both the linear interaction and quadratic effects

(P < 0.05). It is noteworthy that all the linear effects (x1, x3, and x4), quadratic

effects (x2
1, x

2
3, and x2

4), and interaction effects (x1x4 and x3x4) exhibited a signif-

icant influence on the extraction of TPC, TEAC, and TAC, as indicated in Table

6.4.

6.1.1.3 UAE factors effects on TPC and antioxidant activity

To optimize the extraction process of TPC and the antioxidant activity of S.

officinalis L. leaves, the I -optimal design was employed. The experimental design

and the outcomes of TPC, TEAC, and TAC assays are presented in Table 6.3. The

analysis of variance for the model and the estimated coefficient of each extraction

parameter on TPC, TEAC, and TAC can be found in Table 6.4.

Figure 6.1a illustrates the interaction effect of ethanol-water concentration

and temperature while keeping the third variable at a constant level. The com-

bined influence of these two variables had a positive impact on the yield of TPC,

resulting in a range of 16 to 31 mgGAE/gdw. The maximum TPC value of 31

mgGAE/gdw was achieved at an ethanol-water concentration of 50% and a UAE

temperature of 60 °C (see fig. 6.1a).
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Table 6.4: Regression results of I -optimal design and the estimated coefficients of
UAE parameters for the TPC, TEAC, and TAC.

TPC (mgGAE/gdw) TEAC (µmolTE/g dw) TAC (mgAAE/gdw)
EC p-value EC p-value EC p-value

Estimated
parameters

Intercept 24.998 <0.0001a 214.925 <0.0001a 34.174 <0.0001a

Linear effects
x1 -0.268 0.4933b 12.820 0.0270a 3.355 0.0004a

x3 1.054 0.0059a 10.236 0.0593b 1.182 0.0493a

x4 8.013 <0.0001a 49.113 <0.0001a 7.766 <0.0001a

Quadratic effects
x1x1 -4.697 0.0007a −32.106 0.0107a -5.495 0.0012a

x4x4 -1.952 0.0371a -20.258 0.0602b 0.956 0.0669b

x3x3 3.001 0.0064a -7.287 0.4376b -0.011 0.9912b

Interaction effects
x1x3 -0.537 0.2540b -10.859 0.0773b -0.587 0.3320b

x1x4 0.569 0.2294b -16.127 0.0195a -1.247 0.0663b

x3x4 -1.340 0.0201a -7.569 0.1893b 0.308 0.6005b

Regression
results

R2 0.99 0.97 0.99
R2

Adj 0.97 0.92 0.96
RMSE 1.15 13.86 1.51

C.V (%) 5.09 7.82 5.15
ANOVA (Model) <0.0001a 0.0007a <0.0001a

Lack of fit 0.0806b 0.1199b 0.0713b

The obtained TPC value of the S. officinalis leaf extract in this study was

found to be close to the TPC value (27.05 mgGAE/gdw) reported by Maleš et al.

(2022), and higher than the TPC value (25.58 mgGAE/gdw) of the hydro-methanolic

extract reported by Doymaz and Karasu (2018). Furthermore, the TPC of the

optimized S. officinalis extract exceeded the TPC value of 9.15 mgGAE/gdw in the

supercritical fluid sage leaf extract, as well as the TPC value of 17.1 mgGAE/gdw

in the sage methanol-acetone extract reported by Pavic et al. (2019) and Francik

et al. (2020) respectively.

Similar effects of ethanol-water concentration and temperature on TEAC and

TAC were observed, as shown in Fig.6.2a and Fig.6.2d. Both antioxidant activity

assays exhibited an increase with higher ethanol concentration and temperature.

The highest TEAC value of 220 µmolTE/g dw) and TAC value of 36 mgAAE/gdw

were observed at a temperature of 60 °C and an ethanol-water mixture of 50%. In

contrast, a decline in both TPC and antioxidant activity was observed when the

ethanol concentration was increased from 50% to 90% (Figs. 6.2a and Fig. 6.2d).

A study by Savic and Savic Gajic (2020) reported the optimal conditions for UAE

of TPC in Triticum aestivum L. to be 56% (v/v) ethanol and a temperature of 59

°C, resulting in a TPC range of 105 to 155 mgGAE/gdw. Moreover, the optimal UAE

parameters determined in this study align with the findings of Berkani et al. (2020),

who reported that an ethanol concentration of 50.16% resulted in a high TPC value

of 23.83 ± 0.87 mgGAE/gdw from Zizyphus lotus fruits. In terms of antioxidant
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Figure 6.1: Three-dimensional plots of S. officinalis L. leaves showing the influ-
ence of UAE factors on the recovery of TPC

capacity, Chew et al. (2011) demonstrated that an extraction temperature of 60 °C
resulted in a higher antioxidant capacity (7.65 µmolTE/g) in the extract obtained

from Orthosiphon stamineus.

The influence of ethanol concentration can be attributed to the principle of

similarity and intermiscibility. When the ethanol-water mixture reached a con-

centration of 50%, its polarity became more comparable to that of the antioxidant

compounds present in S. officinalis L. leaves, resulting in a significant enhance-

ment of the antioxidant activity. Numerous studies have indicated that TPC and

TFC exhibit high solubility in hydroalcoholic solutions, while compounds with an-

tioxidant capacity tend to be more hydrophilic (Arteaga-Crespo et al., 2020; Palma

et al., 2021). Furthermore, an increase in ethanol concentration has been found to

enhance the solubility of antioxidant compounds by expanding the interface area

between the extraction solvent and solutes (Ali et al., 2018).

In order to gain further insight into the impact of temperature, figures 6.1c,
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6.2c, and 6.2e depicted the interaction effect of temperature with the solvent-to-

solid ratio on TPC, TEAC, and TAC, respectively. The temperature effect was

examined at two distinct levels, namely high and low amounts of solvent-to-solid

ratios. The levels of TPC, TEAC, and TAC exhibited a gradual increase as the

extraction temperature increased, particularly when the solvent-to-solid ratio was

at low values. Conversely, the extraction of TPC displayed a slight decrease as the

temperature rose from 30 °C to 45 °C. However, the TPC levels resumed a gradual

increase with further temperature elevation from 45 °C to 60 °C, particularly when

the solvent-to-solid ratio was at high values (Fig. 6.1c).

Moreover, when the solvent-to-solid ratio was high, the effect of temperature

on TEAC was found to be insignificant. However, TAC exhibited a gradual in-

crease with rising temperatures from 30 °C to 60 °C. Consequently, the highest lev-

els of TPC (35 mgGAE/gdw), TEAC (250 µmolTE/gdw), and TAC (42 mgAAE/gdw)

were achieved near the upper limits of both temperature (60 °C) and solvent-to-

solid ratio (30 mL g−1).

Similar findings were reported by Ismail et al. (2019) and Pandey et al. (2018),

who identified a solvent-to-solid ratio of 30 mL g−1 as an optimal UAE parameter

for maximizing phenolic and antioxidant compounds extraction from plant ex-

tracts. Higher temperatures have been shown to enhance the extraction of TPC

and antioxidant activity in medicinal plants by increasing vapor pressure and re-

ducing surface tension within the medium. This leads to an increased presence of

solvent vapors within the bubble cavity and the generation of numerous cavita-

tion bubbles (Chemat et al., 2017). Furthermore, elevated temperatures promote

mass transfer phenomena by providing additional energy to analyte molecules, en-

abling them to overcome energy barriers associated with their interaction within

the matrix (Capelo-Mart́ınez, 2009).

Moreover, the impact of the solvent-to-solid ratio on TPC, TEAC, and TAC

was observed to be positive. As illustrated in Figs. 6.1b, 6.1c, 6.2b, 6.2c, 6.2e,

and 6.2f, all the tested responses exhibited exponential growth when the solvent-

to-solid ratio was increased, reaching its peak at 30 mL g−1.

According to the findings reported by Vural et al. (2018), an extraction pro-

cess using a solvent-to-solid ratio of 30 mL g−1 was identified as the optimal pa-

rameter. This specific extraction condition resulted in a notable increase in both

TPC and antioxidant activity of grape seed extract, with values recorded as 25.87

± 0.92 mgGAE/g and 92.33% ± 0.47, respectively.

As indicated in prior research conducted by Ngamkhae et al. (2022), it has

been established that augmenting the solvent quantity results in a larger sur-

98



Optimization of UAE and MAE using DSD and I -optimal

Figure 6.2: Three-dimensional plots of S. officinalis L. leaves showing the influence
of UAE factors on TEAC (a, b, c) and TAC (d, e, f) respectively
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face area for the formation of cavitation bubbles by the acoustic wave. This

phenomenon subsequently enhances the mass transfer between the solvent and

the sample. Furthermore, an elevated solvent-to-solid ratio leads to an increased

suspension density within the solution, negatively affecting the solvation of liber-

ated cellular compounds, as mentioned by Pham et al. (2017). Conversely, a low

solvent-to-solid ratio results in a higher viscosity of the solution, posing challenges

to the cavitation effect. In such cases, the negative pressure generated during the

rarefaction cycle must overcome a stronger cohesive force due to the high viscosity,

as highlighted by (Kumar et al., 2021).

6.1.1.4 Optimal UAE conditions for high TPC and antioxidant activ-

ity

The main objective of optimizing the parameters for UAE was to simultaneously

enhance the three responses of interest - TPC, TEAC, and TAC, due to the in-

terrelationship between the phenolic compounds and their antioxidant properties.

Upon obtaining the optimized conditions, the verification of the obtained results

was carried out using the DSD and the I -optimal design. These validation tests

were conducted under the optimal conditions.

The optimum conditions determined by both models corresponded to a tem-

perature of 60 °C and a solvent-to-solid ratio of 30 mL g−1. The DSD model pre-

dicted that the ethanol-water mixture would constitute approximately 57% of the

solvent, while the I -optimal model predicted a slightly lower value of 52%. The

predicted values of TPC, TEAC, and TAC aligned well with the expected values,

falling within the 95% prediction intervals generated by the DSD model. These

results are summarized in Table 6.5. The obtained outcomes provided conclusive

evidence regarding the precision and suitability of both the DSD and I -optimal

models in effectively screening and optimizing the ultrasound-assisted extraction

process for extracting TPC and antioxidant activity from the leaves of S. offici-

nalis L. These findings validate the reliability and usefulness of these models for

UAE procedure.

6.1.2 Optimization of microwave-assisted extraction of TPC,

TEAC, and TAC

6.1.2.1 DSD fitting

For the evaluation of the impacts and interactions of four MAE parameters on

the levels of TPC, TEAC, and TAC in S. officinalis L. leaves, a 17-run DSD was

employed. The DSD experimental design consisted of three levels for each of the
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Table 6.5: Predicted, obtained values and confidence intervals of optimal extract
from S. officinalis L. leaves, generated by definitive screening design and I -optimal
design

Response
Predicted
response

95%
PI low

Observed
response a

95%
PI high

DSD

TPC
(mgGAE/g dw)

35.27 31.70 32.77 ± 0.35 38.83

TEAC
(µmolTE/g dw)

253.48 240.20 241.33 ± 1.26 266.76

TAC
(mgAAE/gdw)

42.77 32.12 38.76 ± 0.23 46.41

I-optimal
design

TPC
(mgGAE/gdw)

33.64 31.38 31.84 ± 0.24 35.90

TEAC
(µmolTE/g dw )

240.60 213.51 237.94 ± 0.77 267.70

TAC
(mgAAE/gdw)

40.96 38.01 38.92 ± 0.54 43.92

PI: Predicted interval, superscripta: Values are expressed as mean ± standard
deviation (n = 3).

four MAE parameters. The obtained results from the DSD experiments, show-

casing the outcomes of these assessments, are presented in Table 6.6. Table 6.7

presents the outcomes of the second-order polynomial regression analysis and the

statistical analysis of variance (ANOVA). The relationships between TPC, TEAC,

and TAC with the MAE parameters are described by Equation 6.7, Equation 6.8,

and Equation 6.9, respectively. These equations establish the mathematical ex-

pressions that capture the associations between the response variables and the

MAE parameters.

TPC (mgGAE/gdw) = 32.50 + 0.20x1 − 0.21x2 + 7.14E−10 x3 + 6.29x4 − 0.97x2
1

− 0.28x2
2 + 1.39x2

4 − 0.19x1x3 − 0.19x2x4 (6.7)

TEAC (µmolTE/g dw) = 245.06+3.01x1−12.33x2−0.01x3+25.60x4−20.50x2
1

− 14.63x2
2 − 15.15x2

4 − 5.21x1x3 − 11.24x2x4 (6.8)

TAC (mgAAE/gdw) = 33.14+2.01x1−2.60x2−1.43x3+2.62x4−6.27x2
1−0.30x2

2

− 2.16x2
4 + 1.10x1x3 − 0.18x2x4 (6.9)
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Table 6.6: DSD matrix to screen four MAE parameters that could have an impact
on TPC, TEAC and TAC

Runs x1 x2 x3 x4

TPCa

experimental

TPCa

predict

TEACb

experimental

TEACb

predict

TACC

experimental

TACC

predict

1 -1 -1 -1 +1 37.79 ± 0.20 39.16 203.03 ± 0.24 195.81 26.54 ± 0.5 25.76

2 -1 -1 +1 -1 25.58 ± 0.55 25.86 170.05 ± 1.12 175.40 15.43 ± 0.04 15.05

3 -1 -1 +1 +1 39.70 ± 0.19 39.31 183.85 ± 0.42 195.81 20.11 ± 0.05 20.67

4 -1 0 -1 -1 26.98 ± 0.29 26.31 184.00 ± 0.25 195.19 23.01 ± 0.02 22.61

5 -1 +1 -1 +1 40.01 ± 0.08 38.97 250.98 ± 1.85 249.93 29.95 ± 0.34 30.59

6 -1 +1 0 -1 24.75 ± 0.82 26.22 155.52 ± 0.48 169.29 21.47 ± 0.29 23.17

7 -1 +1 +1 0 31.34 ± 0.81 30.30 213.39 ± 0.23 222.55 26.60 ± 0.50 25.23

8 0 -1 -1 -1 27.98 ± 0.23 26.98 185.70 ± 0.49 175.40 28.13 ± 0.29 27.30

9 0 0 0 0 32.72 ± 0.64 33.12 246.93 ± 0.41 233.39 32.80 ± 0.47 33.14

10 0 +1 +1 +1 38.54 ± 0.76 39.13 265.48 ± 0.78 249.93 34.41 ± 0.39 34.89

11 +1 -1 -1 0 30.51 ± 0.92 31.15 194.16 ± 1.15 198.54 25.90 ± 0.28 26.92

12 +1 -1 0 +1 41.18 ± 1.60 39.65 200.55 ± 1.75 195.81 27.64 ± 0.56 27.23

13 +1 -1 +1 -1 26.60 ± 0.49 27.23 170.15 ± 1.03 175.40 20.47 ± 0.49 21.28

14 +1 0 +1 +1 39.03 ± 0.81 39.31 243.36 ± 1.90 245.72 28.97 ± 0.39 29.01

15 +1 +1 -1 -1 26.90 ± 0.12 26.71 176.01 ± 1.03 169.29 27.45 ± 0.23 27.51

16 +1 +1 -1 +1 37.71 ± 0.41 38.43 235.70 ± 1.23 249.93 32.94 ± 0.35 32.39

17 +1 +1 +1 -1 27.09 ± 0.28 26.56 183.13 ± 1.12 169.29 27.83 ± 0.20 26.85

TPCa: mgGAE/gdw (mg Gallic acid equivalent per g of dry weight), TEACb: µmolTE/gdw (µmol Trolox equi-

valent per g of dry weight), TACC :mgAAE/gdw (mg Ascorbic acid equivalent per g of dry weight), TPC: Total

phenolic compounds, TEAC: Trolox equivalent antioxidant capacity, TAC: Total antioxidant capacity

The analysis of variance and goodness-of-fit of the DSD are summarized in

Table 6.7. The statistical significance of the models for TPC, TEAC, and TAC is

demonstrated by their considerably low p-value (< 0.0001). To assess the quality

of the DSD models, various metrics such as the determination coefficient (R2),

adjusted determination coefficient (R2
adj), and coefficient of variance (C.V) are

considered. These metrics play a crucial role in evaluating the goodness-of-fit of

the DSD models.

The determination coefficient (R2) values for TPC, TEAC, and TAC exceeded

0.97, while the adjusted determination coefficient (R2
adj) values were greater than

0.93. Additionally, the coefficient of variance (C.V) for all the response variables

was below 5% (Table 6.7). These results indicate that the DSD model effectively

captures a significant portion of the variation in the data with high precision and

reliability. The high R2 and R2
adj values, along with the low C.V, validate the

robustness and accuracy of the DSD model in explaining the observed variations

in the responses.

Based on the significance level of the p-value, it can be concluded that only

the linear coefficient (x4) had a significant effect on TPC. On the other hand, for

TEAC, the linear coefficient (x4), quadratic coefficients (x2
1 and x2

4), and inter-

action term coefficients (x2x4) were all found to be significant (p-value < 0.05).
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Moreover, TAC was influenced by all the linear coefficients (x1, x2, x3, and x4),

quadratic coefficients (x2
1 and x2

4), as well as the interaction term coefficient (x1x4).

These findings indicate which specific coefficients had statistically significant im-

pacts on each of the response variables.

Table 6.7: DSD’s regression results and the estimated MAE parameters for TPC,
TEAC, and TAC

TPC (mgAAE/gdw) TEAC (µmolTE/gdw) TAC (mgAAE/gdw)

MAE parameters EC p-value EC p-value EC p-value

Estimated

parameters

Intercept 32.503 <0.0001a 245.065 <0.0001a 33.147 <0.0001a

Linear effects

x1 0.206 0.604b 3.016 0.215b 2.007 0.0005a

x3 7.143 ∗ E−10 1.000b -0.011 0.995b -1.436 0.0032a

x4 6.290 <0.0001a 25.601 <0.0001a 2.626 <0.0001a

x2 -0.214 0.7317b 12.337 0.0008b 2.601 <0.0001a

Quadratic effects

x2
1 -0.978 0.365b -20.508 0.0102a -6.270 0.0002a

x2
2 -0.282 0.798b -14.630 0.0503b 0.309 0.745b

x2
4 1.399 0.230b -15.150 0.0445a -2.169 0.0499a

Interaction effects

x1x3 -0.199 0.365b 5.212 0.188b 1.107 0.0380a

x2x4 -0.240 0.594b 11.247 0.0034a -0.186 0.6420b

Regression

results

R2 0.97 0.99 0.97

R2
adj 0.94 0.93 0.94

RMSE 1.42 8.29 1.22

C.V 4.35 4.07 4.60

ANOVA (Model) <0.0001a 0.0001a <0.0001a

Lack of fit / / /

EC; Estimated coefficient, RMSE; Root Mean Square Error, C.V; Coefficient of variance, p− valuea;

statistically significant, p− valueb; statistically not significant

6.1.2.2 I -optimal design fitting

Based on the analysis of the DSD results (Tables 6.6 and 6.7), it was observed

that the MAE parameters, namely the ethanol-water mixture (x1), time (x2),

microwave power (x3), and solvent-to-solid ratio (x4), had a substantial influence

on the levels of TPC, TEAC, and TAC. Due to their significant impact, all of

these MAE parameters were considered for the subsequent optimization process

using the I -optimal design. The selection of these parameters for optimization

was based on their demonstrated influence on the responses of interest.

To thoroughly investigate the interactive influence of the MAE parameters

on TPC, TEAC, and TAC, an I -optimal design was employed. This design al-

lowed for the exploration of various combinations of the MAE parameters, and

the corresponding experimental and predicted values are presented in Table 6.8.
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The accuracy of the I -optimal design was assessed by conducting several tests, in-

cluding analysis of variance, lack of fit, and model summary statistics, as outlined

in Table 6.9. These tests were based on the experimental data, providing valuable

insights into the precision and reliability of the I -optimal design.

The model exhibited the highest values of R2 and (R2
adj) and demonstrated

a low coefficient of variation (C.V.) of less than 6% for all the response variables.

The I -optimal design, characterized by significantly lower p-values (< 0.0001),

and a lack of significant lack-of-fit, was identified as the most appropriate model

for the extraction of TPC, TEAC, and TAC from S. officinalis L. This indicates

that the quadratic model, implemented through the I -optimal design, effectively

captures the relationship between the MAE parameters and the response variables,

providing a reliable and accurate framework for the extraction process.

The empirical relationship between the response variables (TPC, TEAC, and

TAC) and the MAE parameters in terms of coded values was established through

the generation of second-order polynomial equations. These equations, denoted

as Eq. 6.10, Eq. 6.11, and Eq. 6.12, provide predictive models that describe

the interaction between the response variables and the MAE parameters. These

equations offer a mathematical representation of the relationships for predicting

the responses based on the coded values of the MAE parameters.

Table 6.8: I -Optimal design matrix with MAE conditions for maximizing TPC,
TEAC, and TAC

Runs x1 x2 x3 x4

TPCa

experimental

TPCa

predict

TEACb

experimental

TEACb

predict

TACC

experimental

TACC

predict

1 -1 -1 -1 0 33.96 ± 0.87 34.19 214.47 ± 4.18 214.51 26.52 ± 0.21 26.43

2 -1 -1 0 -1 26.85 ± 0.21 26.73 183.21 ± 0.71 183.24 22.25 ± 0.22 22.39

3 -1 0 -1 +1 38.59 ± 0.08 38.37 224.36 ± 1.24 224.30 29.05 ± 0.13 29.13

4 -1 0 +1 -1 29.27 ± 0.26 29.40 179.13 ± 1.24 179.08 22.31 ± 0.04 22.16

5 -1 +1 -1 -1 27.42 ± 0.43 27.43 197.19 ± 0.71 197.17 22.90 ± 0.29 22.88

6 -1 +1 0 +1 37.46 ± 0.26 37.51 234.89 ± 3.80 230.93 28.16 ± 0.36 29.08

7 -1 +1 +1 0 36.06 ± 0.33 36.01 213.06 ± 1.24 216.99 27.08 ± 0.11 26.15

8 -0.3 -1 +1 +1 39.92 ± 0.16 39.74 269.91 ± 5.19 270.40 33.82 ± 0.14 34.11

9 0 -1 -1 -1 37.85 ± 0.08 37.50 220.91 ± 3.56 221.50 28.72 ± 0.11 29.06

10 0 +1 -1 +1 44.24 ± 0.59 44.18 252.5 ± 4.49 257.20 35.66 ± 0.41 35.06

11 0 +1 +1 -1 36.47 ± 0.70 36.15 226.55 ± 1.88 223.33 26.63 ± 0.32 28.10

12 +1 -1 -1 +1 38.76 ± 0.36 38.96 241.17 ± 3.74 240.59 28.88 ±0.06 28.54

13 +1 -1 +1 -1 32.47 ± 0.21 32.68 218.78 ± 2.56 218.21 25.98 ±0.11 25.64

14 +1 0 -1 -1 36.88 ± 0.25 37.12 207.90 ± 0.97 207.62 26.47 ±0.42 26.31

15 +1 0 0 0 38.54 ± 0.33 37.50 235.73 ± 1.86 238.62 28.29 ±0.24 30.01

16 +1 +1 -1 0 39.67 ± 0.92 39.62 237.90 ± 7.83 233.53 28.82 ±0.11 29.61

17 +1 +1 0 -1 32.88 ± 0.70 33.09 210.0 ± 3.98 213.61 26.88 ±0.20 25.58

18 +1 +1 +1 +1 45.65 ± 1.02 45.86 273.65 ± 10.28 273.08 30.06 ±0.09 29.72

19 0 0 0 0 39.64 ± 0.2 38.85 253.84 ± 3.39 247.74 35.81 ±0.28 34.27

20 0 0 0 0 37.82 ± 0.33 38.85 254.22 ± 1.94 247.74 35.78 ±0.38 34.27

21 0 0 0 0 38.21 ± 1.29 38.85 237.67 ± 4.06 247.74 32.71 ±0.20 34.27
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TPC (mgGAE/gdw) = 38.58 + 2.42x1 − 1.24x2 − 0.01x3 + 3.86x4 − 3.78x2
1

− 1.17x2
2 + 2.49x2

3 − 0.62x2
4 + 0.50x1x2 − 0.18x1x3 − 0.79x1x4 + 1.14x2x3

+ 1.27x2x4 + 0.62x3x4 (6.10)

TEAC (µmolTE/g dw) = 247.74+13.09x1+1.15x2+4.97x3+21.88x4−22.21x2
1

+ 2.10x2
2 + 1.92x2

3 − 6.755x2
4 − 0.57x1x2 + 5.46x1x3 − 0.23x1x4 − 0.72x2x3

− 0.70x2x4 + 5.91x3x4 (6.11)

TAC (mgAAE/gdw) = 34.27 + 1.12x1 + 0.10x2 − 0.11x3 + 2.69x4 − 5.39x2
1

− 0.68x2
2 − 0.30x2

3 − 0.14x2
4 − 0.01x1x2 + 0.12x1x3 − 0.56x1x4 − 0.48x2x3

+ 0.19x2x4 + 0.27x3x4 (6.12)
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Table 6.9: Regression results of I -optimal design and the estimated parameters
for the TPC, TEAC, and TAC

TPC (mgGAE/gdw) TEAC (mgAAE/gdw) TAC (µmolTE/gdw)

MAE parameters EC p-value EC p-value EC p-value

Esitmated

parameters

Intercept 38.858 <0.0001a 247.748 <0.0001a 34.278 <0.0001a

Linear effects

x1 2.428 <0.0001a 13.093 0.0005a 1.121 0.0564b

x2 1.240 0.0014a 1.158 0.569b 0.103 0.833b

x3 -0.013 0.953b 4.974 0.0415a -0.113 0.817b

x4 3.867 <0.0001a 21.885 <0.0001a 2.690 <0.0013a

Quadratic effects

x2
1 -3.784 <0.0001a -22.214 0.0006a -5.391 0.0006a

x2
2 -1.175 0.033a 2.109 0.588b -0.682 0.479b

x2
3 2.491 0.0011a 1.929 0.619b -0.304 0.747b

x2
4 -0.623 0.193b -6.755 0.117b -1.532 0.141b

Interaction effects

x1x2 0.506 0.109b -0.571 0.814b -0.012 0.983b

x1x3 -0.189 0.508b 5.466 0.0578b 0.120 0.839b

x1x4 -0.792 0.026a -0.231 0.924b -0.560 0.364b

x2x3 1.143 0.0039a -0.722 0.751b -0.482 0.405b

x2x4 1.278 0.0023a -0.701 0.758b 0.192 0.731b

x3x4 0.623 0.0478a 5.918 0.0349a 0.277 0.622b

Regression

results

R2 0.99 0.97 0.94

R2
adj 0.97 0.92 0.83

RMSE 0.79 6.90 1.69

C.V 2.15 3.02 5.88

ANOVA (Model) <0.0001a 0.0008a <0.0088a

Lack of fit 0.732b 0.859b 0.602b

6.1.2.3 MAE parameters effect on TPC

The impact of the MAE parameters, including the ethanol-water mixture (x1),

time (x2), microwave power (x3), and solvent-to-solid ratio (x4), on the MAE of

TPC from S. officinalis L. was investigated using a three-level I -optimal design.

By implementing this design, the interactive effects of the MAE parameters on

TPC were explored through the construction of a three-dimensional response sur-

face. This surface allowed for the visualization of how varying two extraction

parameters while keeping the other parameter constant influenced the TPC lev-

els. The response surface analysis enabled a comprehensive understanding of the

relationships and interactions among the MAE parameters and their impact on

TPC.
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Figure 6.3: Three-dimensional response surface plot showing the effects of MAE
parameters on TPC from S. officinalis L. a: effect of ethanol-water mixture and
time, b: effect of ethanol-water mixture and power, c: effect of ethanol-water
mixture and solvent to solid ratio, d: effect of time and power, e: effect of time
and solvent to solid ratio, f : effect of power and solvent to solid ratio
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The conducted experiments resulted in high levels of TPC extraction, rang-

ing from 20 to 48 mgGAE/gdw. Analysis of the estimated coefficients (Table 6.9)

revealed that the ethanol-water mixture had both positive and negative effects

on TPC for the linear and quadratic terms, respectively. The influence of the

ethanol-water mixture on TPC was particularly prominent, as depicted in Fig.

6.3a-b. When the ethanol-water mixture increased from 30 to 58%, there was a

significant increase in TPC. However, beyond 58%, there was a substantial decline

in TPC. This trend was consistently observed when considering the interaction be-

tween the ethanol-water mixture and other MAE parameters (Fig. 6.3a-b). In a

study conducted by Darvishzadeh and Orsat (2022), it was observed that the use

of ethanol-water mixtures at concentrations of 59% and 66% resulted in higher

extraction of TPC from Russian olive leaves and flowers. Ethanol is known to be

a favorable solvent for microwave-assisted extraction due to its ability to absorb

microwaves effectively. Additionally, the presence of water in the solvent system

enhances the penetration of the solvent into the sample matrix, thereby improving

the efficiency of heating during extraction (Chan et al., 2011).

The MAE time was found to have a significant impact on TPC, as indicated

by both the linear and quadratic terms in Table 6.9. The linear term had a pos-

itive effect, while the quadratic term had a negative effect on TPC. Fig. 6.3a

demonstrates the interaction between the MAE time and the ethanol-water mix-

ture, showing a slight positive effect on TPC. When the MAE time increased from

50 to 267 seconds, the TPC also increased from 20 to 30 mgGAE/gdw. However,

when the time was extended beyond 267 s, a negative effect on TPC was observed.

This trend was evident when the MAE time interacted with microwave power (Fig.

6.3d) and solvent to solid ratio (Fig. 6.3e). Similar findings have been reported

in previous studies, where microwave durations of 5 to 6 min were found to yield

higher TPC (Karami et al., 2015; Teng and Choi, 2013).

The solvent-to-solid ratio was another important parameter investigated in

the MAE of TPC. The estimated coefficient confirmed that the solvent-to-solid

ratio had a positive and highly significant effect on TPC, as indicated in Table

6.9. Increasing the solvent-to-solid ratio resulted in higher TPC values in the

extract. The 3D surface plots (Fig. 6.3c, 6.3e, and Fig. 6.3f) showed that high

TPC was achieved at a solvent-to-solid ratio of 50 mL g−1, which aligns with the

principles of mass transfer. These findings are consistent with the results reported

by Sánchez-Camargo et al. (2021).

Moreover, the linear effect of microwave power did not show a significant

impact on TPC, whereas the quadratic effect demonstrated a highly significant

influence on TPC, as indicated by the estimated coefficient results presented in
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Table 6.9.

Based on the three-dimensional response surface plots (Fig. 6.3b, 6.3d, and

Fig. 6.3f), a slight decrease in TPC was observed in the range of 200 to 300

W for microwave power. However, a significant increase in TPC was observed

at high microwave power (600 W), and this effect was particularly noticeable in

interaction with other MAE parameters. In a study by Nana et al. (2021), it was

found that 600 W of microwave power was identified as the optimal MAE condition

for the extraction of total limonoid and antioxidant capacity from Trichilia roka.

Similarly, Berkani et al. (2020) reported that high microwave power (600 W) and

an extended MAE time were determined as the optimal operational parameters

for the extraction of polysaccharides from Algerian Jujube. The optimal level

of microwave power (600 W) can be explained by the high solvent-to-solid ratio

(50 mL g−1), as a larger amount of solvent requires more absorption of microwave

energy to effectively heat the medium (Mandal and Mandal, 2010).

6.1.2.4 MAE parameters effect on TEAC and TAC

The range of TEAC and TAC in extracts of S. officinalis L. varied from 160

to 279 µmolTE/gdw and 20 to 35 mgAAE/gdw, respectively. These variations are

illustrated in Figure 6.4 and Figure 6.5. Based on the analysis of regression coef-

ficients’ p-values (see Table 6.9), it was found that the linear effects of x1, x3, and

x4 had significant impacts on TEAC. However, only the linear effect of x4 showed

a significant effect on TAC. Moreover, it was observed that only the quadratic

effect (x2
1) had a negative impact on both TEAC and TAC. When considering the

interaction effect terms, the interaction between x3 and x4 exhibited a positive

effect on TEAC. However, the remaining interactions did not show a significant

impact on either TEAC or TAC.

Based on the response surface methodology analysis presented in Figure 6.4

and Figure 6.5, it was determined that the lowest values for TEAC and TAC

were achieved when using a lower ethanol concentration (30%), shorter extrac-

tion time (60 s), lower microwave power (200 W), and a lower solvent-to-solid

ratio (20 mL g−1). On the other hand, the highest TEAC values were obtained

when employing a moderate ethanol concentration (58%), longer extraction time

(300 s), higher microwave power (600 W), and a higher solvent-to-solid ratio

(50 mL g−1).

The TAC exhibited higher values when using an ethanol concentration of

58%, an extraction time of 267 s, a microwave power of 600 W, and a solvent-

to-solid ratio of 50 mL g−1. Similar observations were made for TEAC and TAC,
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where increasing the ethanol-water mixture from 30% to 58% resulted in an in-

crease in both TEAC and TAC. However, the two responses showed a significant

decline when the ethanol-water mixture was further increased from 58% to 80%.

These trends can be visualized in Figure 6.4 and Figure 6.5. Consistent findings

have been reported in the literature, indicating that a high antioxidant activity in

medicinal plants is achieved when using an ethanol-water mixture ranging from

49% to 58% (Luo et al., 2021; Shang et al., 2020; Song et al., 2011; Wen et al.,

2015). The variations in antioxidant activity observed in the leaves of S. officinalis

L. can be attributed to the distinct dielectric properties of the solvents used. For

instance, at a frequency of 2.450 MHz and room temperature, the loss tangent

(tan δ) of methanol and water is 0.94 and 9.88, respectively. A higher value of the

loss tangent indicates better heating of the material under microwave irradiation

(Chemat and Cravotto, 2012).

Another important parameter investigated for the extraction of antioxidants

from S. officinalis L. using MAE is the extraction time. The impact of time on

TEAC and TAC, when considered in interaction with the ethanol-water mixture

and the solvent-to-solid ratio, was determined to be relatively less significant (as

depicted in Figure 6.4a, 6.4e, 6.5a, and Figure 6.5e). With increasing extraction

time, there was a slight improvement in the extraction efficiency of antioxidants.

Moreover, the interaction between extraction time and microwave power had a

more pronounced effect on TEAC and TAC (as shown in Figure 6.4d and Figure

6.5d). At lower levels of microwave power, there was a significant increase in TEAC

and TAC with longer extraction times. However, at higher levels of microwave

power, a significant decrease in TEAC was observed when the extraction time

was extended from 60 to 150 s. Subsequently, TEAC increased again when the

extraction time exceeded 150 s (Fig. 6.4d). Furthermore, when considering high

levels of microwave power, there was a slight increase in TAC when the extraction

time was extended from 60 to 150 s. However, a significant decrease in TEAC was

observed when the extraction time was further extended from 150 to 300 s (Figure

6.5d). In previous studies by Wen et al. (2015) and Lovrić et al. (2017), it was

found that an extraction time of 4 minutes for blackberry flowers and 5 minutes

for blackthorn flowers was adequate for the extraction and recovery of phenolic

and antioxidant compounds.

Furthermore, the microwave power was identified as a significant factor af-

fecting the antioxidant capacity of S. officinalis L. leaves. It exhibited a positive

impact on TEAC, specifically through the factors x3 and x3x4, while showing

a non-significant effect on TAC as indicated in Table 6.9. Increasing the mi-

crowave power from 200 to 600 W significantly enhanced the antioxidant capacity,
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Figure 6.4: Three dimensional response surface plot showing the effects of MAE
parameters on TEAC from S. officinalis L. a: effect of ethanol-water mixture and
time, b: effect of ethanol-water mixture and power, c: effect of ethanol-water
mixture and solvent to solid ratio, d: effect of time and power, e: effect of time
and solvent to solid ratio, f : effect of power and solvent to solid ratio
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as demonstrated in Figure 6.4b, 6.4d, and 6.5d. These findings regarding the

influence of microwave power on the antioxidant activity of S. officinalis L. leaf

extracts are consistent with previous studies by Liu et al. (2010) and Xueling et al.

(2011).

Based on the results presented in Table 6.9, Figure 6.4, and Figure 6.5, the

solvent-to-solid ratio emerged as the most influential parameter in MAE, positively

enhancing both TEAC and TAC of S. officinalis L. leaves. The solvent-to-solid

ratio exhibited a highly significant positive effect (with a p-value > 0.001).

The response surface plots depicted in Figure 6.4c, 6.4e, 6.4f, 6.5c, 6.5e, and

6.5f exhibit consistent patterns concerning antioxidant capacity. The increasing

solvent-to-solid ratio is correlated with an increase in both TEAC and TAC,

thereby enhancing the extraction efficiency of antioxidant compounds from S.

officinalis L. leaves. Consequently, the optimal solvent-to-solid ratio for achiev-

ing a high antioxidant capacity was determined to be 50 mL g−1. These findings

align with the results reported by Zeković et al. (2017b), Bhuyan et al. (2015),

and Kaderides et al. (2019). These studies demonstrated that employing a higher

solvent-to-solid ratio ranging from 40 to 60 mL g−1 resulted in a greater recovery

of polyphenols from by-products of Salvia officinalis L.

6.1.2.5 Optimization of MAE conditions

The DSD and I -optimal designs were used for screening and optimization of the

MAE parameters respectively. Based on the desirability function, the optimal

MAE conditions for the maximum of TPC, and TEAC, and TAC given by DSD

were: ethanol concentration of 55%, microwave power of 200 W, MAE time of

4.35 min, solid–to-liquid ratio of 50 mL g−1. Under these optimal MAE condi-

tions, the desirability value was 0.90. While the optimal MAE conditions for the

maximum of TPC, and TEAC, and TAC given by I -optimal design were: ethanol

concentration of 60%, microwave power of 600 W, MAE time of 4.79 min, solid–to-

liquid ratio of 50 mL g−1. Under these optimal MAE conditions, the desirability

value was 0.92, where the maximum of TPC, TEAC, and TAC obtained in this

study were illustrated in table 6.10.

For the validation of the optimum MAE conditions for both DSD and I -

optimal design, triplicate confirmatory experiments were established under the

optimized conditions, and the average of TPC, TEAC, and TAC were compared

to the predicted values given by the employed models as mentioned in table 6.10.

The results are closely related to the data obtained from the optimization process,

indicating that DSD and I -optimal design could be effectively used to screen and
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optimize the MAE for a maximum phenolic and antioxidant capacity from Salvia

officinalis L.

Table 6.10: Predicted, obtained values and confidence intervals of optimal extract
from S. officinalis L. leaves, generated by DSD and I -optimal design

Response
Predicted
response

95%
PI low

Observed
response a

95%
PI high

DSD

TPC
(mgGAE/g dw)

39.68 37.03 39.37 ± 1.58 42.28

TEAC
(µmolTE/g dw)

264.99 249.84 266.05 ± 1.54 280.15

TAC
(mgAAE/gdw)

37.03 34.79 35.85 ± 0.72 39.27

I -optimal
design

TPC
(mgGAE/gdw)

47.60 45.96 46.12 ± 0.08 49.24

TEAC
(µmolTE/g dw )

278.79 264.59 268.39 ± 1.28 292.99

TAC
(mgAAE/gdw)

34.67 31.19 36.79 ± 0.20 38.15

PI: Predicted interval, superscripta: Values are expressed as mean ± standard
deviation (n = 3).

6.2 Differential UHPLC-HRMS analysis of MAE

and UAE extracts

To evaluate the efficiency of extraction techniques, the optimal MAE extract ob-

tained in this study was compared to the optimal UAE extract. The optimal MAE

extract of common sage exhibited high TPC (46.12 ± 0.08 mgGAE/gdw) and TEAC

(268.39 ± 1.28 µmolTE/gdw) than optimal extract obtained by UAE, where TPC

and TEAC were 31.84 ± 0.248 mgGAE/gdw , 237.95 ± 0.771 µmolTE/g dw , respec-

tively. However, the UAE extract showed high TAC (38.928 ± 0.548 mgAAE/gdw)

than the MAE extract with a TAC of 36.79 ± 0.20 mgAAE/gdw. These results

could be explained by the ability of microwave energy to enter the cell matrix,

interact with polar molecules, and heat the biomaterial in volume, which in turn

raises the pressure inside the plant cell. As the pressure increases, cell walls break

down and phenolic compounds are released (Nayak et al., 2015).

To study deeply the quality and quantity of phenolic compounds of common

sage leaves present in MAE and UAE optimal extracts, UHPLC-HRMS was ap-

plied to identify the major phenolic compounds present in both extracts. As most

phenolic compounds present one or more hydroxyl, carboxylic acid groups, or

both, MS data were obtained in the negative ionization mode (Irakli et al., 2018).

Total ion chromatograms of MAE and UAE extracts of common sage are shown in

fig. 6.6 and fig. 6.7, while the major peaks identified by UHPLC-HRMS analysis
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are presented in Table 6.11. Each identification was confirmed by comparing the

observed compounds’ MS spectra to those described in the literature. UHPLC-

MS analysis of common sage leaves extracts allowed us to identify more than

80 different phenolic compounds presented in both MAE and UAE extracts. As

mentioned in Table 6.11, different types of bioactive compounds were assigned in-

cluding hydroxycoumarins, diterpene phenols, flavonol derivatives, flavones deriva-

tives, flavanones derivatives, isoflavones, polymethoxy flavones, methoxycinnamic

acid, 6-hydroxyflavones, 2-arylbenzofuran flavones, hydroxybenzoic acid, pheno-

lic aldehyde, rosmarinic acid derivatives, carnosic acid derivatives, triterpenoids,

lignin, organic acid, organic sugar, and sugar acid. Furthermore, the identified

compounds have been already identified in the Lamiaceae family, especially in

Salvia species (Castañeta et al., 2022; Irakli et al., 2018; Rahmani Samani et al.,

2021; Shah et al., 2012; Sharma et al., 2020; Sulniute et al., 2017; Taamalli et al.,

2015; Velamuri et al., 2020; Wojciechowska et al., 2020; Zhang et al., 2016, 2012;

Ziani et al., 2019).

Figure 6.6: Total ion chromatogram of S. officinalis L. MAE extract detected by
LC-Q-Orbitrap in negative mode (A) set with chromatogram registered by UV-
Vis detector at 270 nm (B)

The volcano plot of UHPLC-HRMS analysis generated by Compound Dis-

coverer software (Fig. 6.8) provides an effective tool for visualizing the direction,
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magnitude, and significance of changes in the concentration of bioactive com-

pounds present in both MAE and UAE extracts. Each point on the Volcano plot

represents a bioactive compound. The log 2-fold differences between MAE/UAE

are plotted on the x-axis and the -log10 p-value differences are plotted on the

y-axis. The horizontal dashed line represents the significance threshold (p-value

< 0.05). A total of 268 compounds were statistically significant lying above a

horizontal threshold (Fig. 6.8). A closer log 2-fold change to one indicates less

change while moving away from one in either direction indicates more change in

concentration of bioactive compounds, of which 181 compounds were found in

higher concentration in MAE extract (right of zero on the x-axis) including caffeic

acid galactoside, caffeic acid glucoside, caffeoyl-hexosyl-hexose, 6-hydroxyluteolin-

7-O-glucoside, 6-hydroxyluteolin 7-O-rhamnoside, Luteolin, Hydroxyursolic acid,

quercetin-3-O-malonylglucoside,

Figure 6.7: Total ion chromatogram of S. officinalis L. UAE extract detected by
LC-Q-Orbitrap in negative mode (A) set with chromatogram registered by UV-
Vis detector at 270 nm (B)

luteolin-7-O-glucoside, micromeric acid, ursolic acid, genistin, luteolin O-

malonyl hexoside, isorhamnetin-O-hexose, nepitrin, homoplantaginin, trihexoside,

dihexoside (Fig. 6.8, Table A.1). On the other hand, 87 compounds were found

to be higher in UAE (left of zero on the x-axis) including 3,5-Dimethoxycinnamic

acid, p-coumaric acid/m-coumaric acid, rosmadial, epirosmanol, salvianolic acid
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B, epiisorosmanol, apigenin (Fig. 6.8, Table A.1). To conclude, the results confirm

that hydrocinnamic acids, triterpenoids, and organic sugars were more abundant

in MAE extract, which could be explained by the microwave heating provided by

microwave power that acts as a driving force for MAE to destroy the cell wall of

plant matrix (Chan et al., 2011). Similar results were obtained by (Dahmoune

et al., 2014; Nayak et al., 2015; ŞÜMnÜ et al., 2013). However, MAE causes

poor extraction of diterpenes phenols due to their sensitivity to microwave heat-

ing which confirm that ultrasound is more suitable for delicate or fragile bioactive

compounds that require gentle extraction, while the microwave is more suitable

for robust or resistant compounds that require rapid extraction.

Figure 6.8: Differential content visualization of identified and unidentified MAE
and UAE bioactive compounds with Volcano plot (Log2 Fold change =1)
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Figure 6.5: Three dimensional response surface plot showing the effects of MAE
parameters on TAC from S. officinalis L. a: effect of ethanol-water mixture and
time, b: effect of ethanol-water mixture and microwave power, c: effect of ethanol-
water mixture and solvent to solid ratio, d: effect of time and microwave power, e:
effect of time and solvent to solid ratio, f : effect of microwave power and solvent
to solid ratio
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Table 6.11: Compounds from Salvia officinalis L. extracts tentatively identified by using LC-Q-Orbitrap-HRMS in negative mode

N° Tentative
Identification

Formulas
Calculated
MW

Experimental
MW

∆ mass
[ppm]

RT
[min]

Adduct
mass [M-H]-

MS/MS Class References

1 Trihexoside C19H34O18 550.1745 550.1747 -0.33 1.42 549.1674 / OS (Ibrahim et al.,
2022)

2 Dihexose C12H22O11 342.1162 342.1163 -0.45 1.48 341.1089 59.012 ; 89.022;
71.012 ; 101.023

OS (Ibrahim et al.,
2022; Rah-
mani Samani
et al., 2021)

3 Gluconic acid C6H12O7 196.0583 196.0576 3.31 1.53 195.0503 75.007; 59.012 ;
87.007 ; 72.991

SA (Ibrahim et al.,
2022; Zhu et al.,
2022)

4 L-Threonic acid C4H8O5 136.0371 136.0364 5.40 1.51 135.0286 75.007 ; 72.991 ;
71.012 ; 59.012

SA (Zhu et al., 2022)

5 Quinic acid C7H12O6 192.0633 192.0627 3.22 1.53 191.0553 85.028 ; 93.033 ;
59.012 ; 87.007

OA (Borras Linares
et al., 2011)

6 Hexose C6H12O6 180.0633 180.0625 4.55 1.56 179.0552 59.012 ; 87.007 ;
71.012 ; 75.007

OS (Ibrahim et al.,
2022)

7 α,α-Trehalose C12H22O11 342.1162 342.1162 -0.10 1.56 341.1089 59.012 ; 89.022 ;
71.012 ; 101.023

OS (Zhu et al., 2022)

8 Caffeoylquinic acid C16H18O9 354.0950 354.0970 -5.52 1.57 353.0897 75.007 ; 191.036 ;
353.089 ; 165.039

HCA (Celano et al.,
2017)

9 Citric acid C6H8O7 192.0270 192.0263 3.51 2.00 191.0190 87.007 ; 111.007 ;
85.028 ; 57.033

OA (Rahmani Samani
et al., 2021; Zhu
et al., 2022)

10 Protocatechuic acid 4-O-
glucoside

C13H16O9 316.07943 316.0799 -1.56 2.28 315.0726 123.043 ; 153.054 ;
108.020 ; 152.010

HBA (Ali et al., 2021)

11 Danshensu C9H10O5 198.05282 198.0522 3.10 2.50 197.0448 72.991 ; 123.043 ;
135.044 ; 61.986

HCA (Celano et al.,
2017; Sulniute
et al., 2017)

12 Unknown C20H26O13 474.1373 474.1376 -0.66 2.89 473.1302 161.023 ; 179.034 ;
89.023 ; 162.026

/ /

Continued on next page
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N° Tentative
Identification

Formulas
Calculated
MW

Experimental
MW

∆ mass
[ppm]

RT
[min]

Adduct
mass [M-H]-

MS/MS Class References

13 Unknown C15H20O10 360.1056 360.1059 -0.86 2.89 359.0986 59.012 ; 89.023 ;
71.012 ; 197.044

/ /

14 Unknown C20H28O13 476.1529 476.1532 -0.45 2.97 475.1459 135.043 ; 89.022 ;
161.023 ; 136.047

/ /

15 Caffeoyl-hexosyl-hexose C21H28O14 504.1479 504.1484 -1.07 3.22 503.1411 161.023 ; 179.034 ;
281.066 ; 323.077

HCA (Celano et al., 2017;
Rahmani Samani
et al., 2021)

16 Caffeic acid galactoside C15H18O9 342.0950 342.0953 -0.68 3.27 341.0880 161.023 ; 135.043 ;
179.034 ; 177.054

HCA (Kiselova-Kaneva
et al., 2022)

17 Salicylic acid glucoside C13H16O8 300.0845 300.0847 -0.63 3.32 299.0774 93.033 ; 137.023 ;
94.036 ; 138.026

PG

18 Caffeic acid glucoside C15H18O9 342.0950 342.0953 -0.68 3.71 341.0880 135.043 ; 179.034 ;
161.023 ; 177.054

HCA (Ali et al., 2021;
Kiselova-Kaneva
et al., 2022)

19 p-Coumaric acid-4-O-
glucoside

C15H18O8 326.1001 326.1003 -0.64 3.90 325.0931 119.048 ; 163.039 ;
120.052 ; 164.042

HCA (Ali et al., 2021)

20 Protocatechuic aldehyde C7H6O3 138.0316 138.0305 8.36 4.64 137.0232 108.020 ; 136.015 ;
91.017 ; 137.023

PAL (MSBNK-BS-
BS003265)

21
Apigenin 8-C-rhamnosyl-
6-C-glucoside

C27H30O15 594.1584 594.1588 -0.68 5.35 593.1515 593.151 ; 473.109 ;
594.155 ; 353.066

Fon (Rahmani Samani
et al., 2021; Taa-
malli et al., 2015)

22 Esculetin C9H6O4 178.026 178.0257 4.71 5.65 177.0185 89.038 ; 105.033 ;
133.028 ; 93.033

HC (Ali et al., 2021)

23 Caffeic acid C9H8O4 180.0422 180.0414 4.72 5.79 179.0341 135.044 ; 134.0361 ;
89.038 ; 136.047

HCA (Hossain et al.,
2010; Velamuri
et al., 2020)

24 p-Coumaric acid/m-
Coumaric acid

C9H8O3 164.0473 164.0468 3.32 5.90 163.0391 119.048 ; 93.033 ;
120.052 ; 117.033

HCA (Ali et al., 2021;
Hossain et al.,
2010)

Continued on next page
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Formulas
Calculated
MW
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MW

∆ mass
[ppm]

RT
[min]

Adduct
mass [M-H]-

MS/MS Class References

25 Unknown C16H20O9 356.1107 356.1110 -0.99 6.11 355.1038 175.039 ; 134.036 ;
193.050 ; 191.070

/ /

26 Unknown C9H10O5 198.0528 198.0522 3.10 6.50 197.0449 123.007 ; 89.001 ;
61.986 ; 95.012

/ /

27 6-Hydroxyluteolin -7-O-
glucuronide

C21H18O13 478.0747 478.0750 -0.57 7.53 477.0676 301.035 ; 302.038 ;
113.023 ; 85.028

Fan (Ali et al., 2021;
Sharma et al.,
2020)

28 6-Hydroxyluteolin-7-O-
glucoside

C21H20O12 464.0954 464.0960 -1.18 7.58 463.0887 301.035 ; 300.027 ;
302.038 ; 463.088

Fan (Sharma et al.,
2020)

29 Lithospermic acid A iso-
mer

C27H22O12 538.1111 538.1115 -0.79 8.98 537.1043 295.061 ; 109.028 ;
296.064 ; 203.034

Aryl-
flav

(Ziani et al., 2019)

30 Luteolin-7-O-glucoside C21H20O11 448.1005 448.1008 -0.59 9.19 447.0935 285.040 ; 284.032 ;
447.093 ; 286.043

Fon (Rahmani Samani
et al., 2021; Vela-
muri et al., 2020)

31 Quercetin 3-O-
malonylglucoside

C24H22O15 550.0958 550.0961 -0.48 9.30 549.0888 301.035 ; 505.099 ;
300.027 ; 302.038

Fol

32 Scutellarin C21H18O12 462.0798 462.08005 -0.47 9.31 461.0729 285.040 ; 286.043 ;
113.023 ; 85.028

Fon (Velamuri et al.,
2020)

33 Nepitrin C22H22O12 478.1111 478.1114 -0.71 9.71 477.1042 315.049 ; 299.019 ;
300.026 ; 477.104

Fon (Celano et al.,
2017)

34 Isorhamnetin-O-hexose C22H20O13 492.0903 492.0907 -0.72 9.79 491.0834 315.051 ; 300.027 ;
316.054 ; 301.0309

Fol (Mena et al., 2016)

35 Apigenin-7-O-rutinoside C27H30O14 578.1635 578.1640 -0.83 10.03 577.1567 269.045 ; 270.048 ;
311.056 ; 577.155

Fon (Li et al., 2017)

36 Diosmin C28H32O15 608.1741 608.1743 -0.32 10.61 607.1668 299.056 ; 300.059 ;
284.032 ; 307.066

Fon (Celano et al.,
2017; Taamalli
et al., 2015)

37 Genistin C21H20O10 432.1056 432.1059 -0.67 10.90 431.0985 268.037 ; 269.044 ;
431.098 ; 432.101

Iso-
Fon

Continued on next page
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MS/MS Class References

38 Salvianolic acid B C36H30O16 718.1533 718.1539 -0.71 10.98 717.1465 295.061 ; 493.114 ;
519.093 ; 339.050

HCA (Avula et al., 2022;
Taamalli et al.,
2015; Velamuri
et al., 2020)

39 Unknown C15H10O7 302.0426 302.0428 -0.58 10.99 301.0355 133.028 ; 301.035 ;
137.023 ; 135.043

/ /

40 Apigenin-glucuronide C21H18O11 446.0849 446.0851 -0.58 11.14 445.0779 269.045 ; 270.048 ;
113.023 ; 85.028

Fon (Rahmani Samani
et al., 2021; Vela-
muri et al., 2020)

41 Luteolin O-malonyl hex-
oside

C24H22O14 534.1009 534.1011 -0.41 11.20 533.0938 285.040 ; 489.104 ;
490.107 ; 286.043

Fon (Celano et al.,
2017)

42 Homoplantaginin C22H22O11 462.1162 462.1165 -0.81 11.29 461.1093 283.024 ; 461.109 ;
298.047 ; 446.085

Fon (Rahmani Samani
et al., 2021)

43 Hispidulin-glucuronide C22H20O12 476.0954 476.0956 -0.44 11.40 475.0884 299.056 ; 284.032 ;
113.023 ; 85.028

Fon (Velamuri et al.,
2020)

44 Salvianolic acid A C26H22O10 494.1213 494.1215 -0.40 11.46 493.1144 161.023 ; 135.043 ;
197.044 ; 179.034

HCA (Sulniute et al.,
2017)

45 Salvianolic acid K C27H24O13 556.1216 556.1218 -0.31 11.47 555.1146 161.023 ; 135.043 ;
197.044 ; 179.034

HCA (Celano et al.,
2017; Velamuri
et al., 2020)

46 Rosmarinic acid C18H16O8 360.0845 360.0846 -0.38 11.57 359.0774 161.023 ; 72.991 ;
179.034 ; 135.043

HCA (Avula et al., 2022)

47 6-Hydroxyluteolin 7-O-
rhamnoside

C21H20O11 448.1005 448.1009 -0.74 11.75 447.0936 285.040 ; 286.044 ;
284.032 ; 135.043

Fon (Chen et al., 2021)

48 Hispidulin C16H12O6 300.0633 300.0636 -0.73 13.10 299.0563 284.032 ; 136.986 ;
285.036 ; 165.989

Fon (Sharma et al.,
2020)

49 Unknown C28H36O12 564.2206 564.2210 -0.62 13.57 563.2136 387.166 ; 175.039 ;
388.169 ; 563.213

/ /

50 Abscisic acid C15H20O4 264.1361 264.1362 -0.30 13.61 263.1289 203.107 ; 204.114 ;
136.051 ; 122.036

OA (MSBNK Wash-
ington State Univ
BML00514)
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51
Isorinic acid
(caffeoyl-4-hydroxyphenyl-
lactic acid)

C18H16O7 344.0896 344.0898 -0.68 13.76 343.0826 161.023 ; 181.049 ;
135.043 ; 163.039

PA (Wojciechowska
et al., 2020)

52
Rosmarinic acid -
methyl ester

C19H18O8 374.1001 374.1004 -0.74 14.13 373.0931 135.043 ; 175.039 ;
72.991 ; 160.015

RAD (Zhang et al., 2016)

53 Unknown C20H28O5 348.1936 348.1940 -1.04 14.36 347.1867 283.170 ; 284.173 ;
301.180 ; 329.175

/ /

54 3,5-Dimethoxycinnamic
acid

C11H12O4 208.0735 208.0730 2.25 15.07 207.0657 133.028 ; 135.043 ;
134.036 ; 161.023

Meth-
CA

(Ali et al., 2021;
Prothmann et al.,
2017)

55 Luteolin C15H10O6 286.0477 286.0479 -0.55 15.22 285.0406 133.028 ; 285.040 ;
151.002 ; 149.023

Fon (Velamuri et al.,
2020)

56 Isorhamnetin C16H12O7 316.0583 316.0585 -0.83 15.35 315.0513 300.027 ; 136.986 ;
301.030 ; 228.042

Fol (Hossain et al.,
2012; Velamuri
et al., 2020)

57 Unknown C19H32O9 404.2046 404.2047 -0.38 15.97 403.1975 112.984 ; 59.012 ;
77.448 ; 204.289

/ /

58 Unknown C17H32O9 380.2046 380.2049 -0.85 16.09 379.1976 174.955 ; 146.960 ;
358.361 ; 206.236

/ /

59 9, 12,13-Trihode (10,15) C18H32O5 328.2249 328.2251 -0.54 16.65 327.2177 211.133 ; 171.101 ;
229.144 ; 183.138

FA (Ibrahim et al.,
2022; Rah-
mani Samani
et al., 2021)

60 Apigenin C15H10O5 270.0528 270.0529 -0.62 18.02 269.0457 117.033 ; 151.002 ;
149.023 ; 107.012

Fon (Ibrahim et al.,
2022; Rah-
mani Samani
et al., 2021)

61 9, 12,13-Trihome (10) C18H34O5 330.2406 330.2407 -0.42 18.05 329.2333 211.133 ; 229.144 ;
183.138 ; 171.101

FA (Rahmani Samani
et al., 2021)
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62 Diosmetin C16H12O6 300.0633 300.0634 -0.23 18.13 299.0562 284.032 ; 136.986 ;
65.001 ; 285.036

Fon (Sharma et al.,
2020)

63 Jaceosidin C17H14O7 330.0739 330.0741 -0.56 18.34 329.0668 299.019 ; 313.035 ;
300.023 ; 314.041

Fon

64 Jaceosidin C17H14O7 330.0739 330.0741 -0.49 18.42 329.0668 299.019 ; 313.035 ;
300.023 ; 314.041

Fon

65 Rosmanol C20H26O5 346.1780 346.1780 -0.20 18.97 345.1705 301.180 ; 283.170 ;
258.126 ; 227.107

DT (Sharma et al.,
2020)

66 Pectolinarigenin C17H14O6 314.0790 314.0792 -0.60 19.07 313.0719 283.024 ; 284.028 ;
297.040 ; 255.029

Fon (Sharma et al.,
2020)

67 Unknown C21H30O5 362.2093 362.2093 -0.04 19.06 361.2019 302.188 ; 303.192 ;
317.211 ; 284.177

/ /

68 Epirosmanol C20H26O5 346.1780 346.1780 0.04 19.09 345.1705 283.170 ; 345.170 ;
301.180 ; 268.146

DT (Sharma et al.,
2020)

69 Eupatorin C18H16O7 344.0896 344.0897 -0.55 19.16 343.0825 313.035 ; 299.165 ;
298.011 ; 328.058

Fon (Avula et al., 2022)

70 Cirsimaritin C17H14O6 314.0790 314.0791 -0.35 19.18 313.0718 283.024 ; 284.028 ;
297.040 ; 255.029

Fon (Velamuri et al.,
2020)

71 Epiisorosmanol C20H26O5 346.1780 346.1780 -0.11 19.22 345.1707 283.170 ; 345.170 ;
284.173 ; 346.174

DT (Sharma et al.,
2020)

72 Unknown C19H24O6 348.1572 348.1573 -0.17 19.30 347.1501 259.170 ; 260.173 ;
284.173 ; 190.099

/ /

73 Unknown C19H20O4 312.1361 312.136 -0.76 19.31 311.1292 311.129 ; 283.133 ;
223.169 ; 296.105

/ /

74 Octadecenedioic acid C18H32O4 312.2300 312.2302 -0.64 19.33 311.2229 223.169 ; 87.043 ;
311.129 ; 57.033

FA (Ibrahim et al.,
2022)

75
Genkwanin
(Flavone)

C16H12O5 284.0684 284.0685 -0.38 19.33 283.0613 268.037 ; 269.041 ;
240.042 ; 117.033

Fon (Avula et al., 2022;
Velamuri et al.,
2020)
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76 Asiatic acid C30H48O5 488.3501 488.3503 -0.34 19.36 487.3430 487.343 ; 488.346 ;
116.927 ; 112.984

TT (Velamuri et al.,
2020)

77 16-Hydroxy-20-
deoxocarnosol

C20H28O4 332.1987 332.1989 -0.42 19.37 331.1916 313.181 ; 285.185 ;
303.196 ; 331.191

DT (Castañeta et al.,
2022)

78 Royleanone C20H28O3 316.2038 316.2038 0 19.51 315.1965 285.185 ; 286.189 ;
315.196 ; 283.170

DT (Rahmani Samani
et al., 2021)

79 Unknown C22H30O5 374.2093 374.2095 -0.52 19.56 373.2021 283.170 ; 327.160 ;
299.165 ; 301.180

/ /

80 Rosmadial C20H24O5 344.1623 344.1623 0.11 19.63 343.1550 299.165 ; 343.154 ;
300.168 ; 344.158

DT (Sharma et al.,
2020)

81 Unknown C19H22O4 314.1518 314.1519 -0.35 19.66 313.1445 285.149 ; 313.144 ;
242.094 ; 286.152

/ /

82 Unknown C19H24O3 300.1725 300.1724 0.24 19.66 299.1651 299.165 ; 284.141 ;
297.149 ; 298.156

/ /

83 Unknown C19H22O3 298.1568 298.1569 -0.31 19.66 297.1497 299.165 ; 284.141 ;
297.149 ; 298.156

/ /

84 Unknown C19H26O4 318.1831 318.1831 -0.21 19.44 317.1760 317.175 ; 179.070 ;
318.179 ; 271.170

/ /

85
Epirosmanol-
methyl ether

C21H28O5 360.1936 360.1936 0.12 19.72 359.1864 300.173 ; 301.176 ;
315.195 ; 229.086

CAD (Borras Linares
et al., 2011)

86 Carnosol C20H26O4 330.1831 330.1831 -0.15 19.76 329.1758 285.185 ; 201.091 ;
214.099 ; 269.153

DT (Velamuri et al.,
2020)

87 Hydroxyepirosmanol C20H26O6 362.1729 362.1731 -0.44 19.85 361.1658 317.175 ; 318.179 ;
301.176 ; 316.200

DT (Avula et al., 2022)

88 Unknown C19H26O4 318.1831 318.1832 -0.34 19.85 317.1760 317.175 ; 273.186 ;
318.179 ; 179.070

/ /

89 Unknown C42H56O9 704.3924 704.3926 -0.27 19.87 703.3853 285.185 ; 329.175 ;
373.202 ; 286.189

/ /

90 Rosmadial isomer C20H24O5 344.1623 344.1623 0.11 19.87 343.1549 299.165 ; 343.155 ;
315.160 ; 300.168

DT (Sharma et al.,
2020)

Continued on next page

124



Table 6.11 – Continued from previous page

N° Tentative
Identification

Formulas
Calculated
MW

Experimental
MW

∆ mass
[ppm]

RT
[min]

Adduct
mass [M-H]-

MS/MS Class References

91 Unknown C19H26O2 286.1932 286.1932 0 19.87 285.1860 285.185 ; 286.189 ;
201.091 ; 229.123

/ /

92 Unknown C22H30O5 374.2093 374.2092 0.10 19.88 373.2020 283.170 ; 329.175 ;
227.107 ; 268.146

/ /

93 Lariciresinol C20H24O6 360.1572 360.1574 -0.33 19.90 359.1500 315.160 ; 232.073 ;
316.163 ; 359.150

Ln

94 Carnosic acid quinone C20H26O4 330.1831 330.1831 -0.03 19.92 329.1758 285.186 ; 286.189 ;
201.091 ; 270.161

DT (Zhang et al., 2012)

95 Unknown C19H24O4 316.1674 316.1678 -1.26 19.98 315.1612 285.186 ; 315.196 ;
286.189 ; 316.199

/ /

96 Unknown C19H22O3 298.1568 298.157 -0.35 19.98 297.1497 297.149 ; 282.125 ;
298.153 ; 281.118

/ /

97 Rosmaridiphenol C20H28O3 316.2038 316.2038 -0.18 20.02 315.1965 285.185 ; 315.196 ;
286.189 ; 316.199

DT (Sharma et al.,
2020)

98 Unknown C19H26O3 302.1881 302.1883 -0.41 20.02 301.1809 301.180 ; 283.170 ;
302.184 ; 284.173

/ /

99 Rosmanol isomer C20H26O5 346.1780 346.1780 -0.05 20.02 345.1707 301.180 ; 302.184 ;
258.125 ; 283.169

PT (Castañeta et al.,
2022)

100 Carnosic acid (salvin) C20H28O4 332.1987 332.1988 -0.30 20.11 331.1915 287.201 ; 288.204 ;
244.146 ; 245.150

DT (Velamuri et al.,
2020)

101 Unknown C20H26O3 314.1881 314.1884 -0.74 20.22 313.1810 285.185 ; 313.181 ;
286.189 ; 314.184

/ /

102 Methyl carnosate C21H30O4 346.2144 346.2144 -0.14 20.31 345.2071 286.193 ; 287.197 ;
301.216 ; 302.220

DT (Hossain et al.,
2010; Velamuri
et al., 2020)

103 Pisiferol C20H30O2 302.2245 302.2246 -0.13 20.33 301.2172 286.193 ; 287.197 ;
271.170 ; 285.185

DT (Rahmani Samani
et al., 2021)

104 Steviol C20H30O3 318.2195 318.2194 0.06 20.40 317.2122 179.106 ; 317.212 ;
318.215 ; 299.201

DT (Shah et al., 2012)

105 Unknown C20H30O2 302.2245 302.2248 -0.76 20.33 301.2172 286.193; 287.197;
271.170; 285.185

/ /

Continued on next page
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Table 6.11 – Continued from previous page

N° Tentative
Identification

Formulas
Calculated
MW

Experimental
MW

∆ mass
[ppm]

RT
[min]

Adduct
mass [M-H]-

MS/MS Class References

106 Micromeric acid C30H46O3 454.3446 454.3448 -0.38 21.21 453.3376 453.337; 454.341;
116.927; 180.889

TT (Velamuri et al.,
2020)

107 Betulinic acid C30H48O3 456.3603 456.3607 -0.84 21.43 455.3534 455.353; 456.356;
454.340; 397.225

TT (Velamuri et al.,
2020)

108 Ursolic acid C30H48O3 456.3603 456.3607 -0.88 21.59 455.3534 455.353; 456.356;
264.851; 91.507

TT (Velamuri et al.,
2020)

109 Unknown C35H52O5 552.3814 552.3818 -0.69 22.72 551.3746 551.374 ; 507.384 ;
552.378 ; 287.201

/ /

110 Hydroxyursolic acid C30H48O4 472.3552 472.3555 -0.50 22.81 471.3481 / TT (Avula et al., 2022;
Li et al., 2017; Ve-
lamuri et al., 2020)

HC : hydroxycoumarins, DT : diterpenes phenols, Fol : flavonol deratives, HBA :hydroxybenzoic acid, PAL : phenolic aldehydes, OA: organic acid,
SA: sugar acid, OS: organic sugar, Fon: flavones derivatives, Fva: flavanone derivatives, DRA: derivative of rosmarinic acid, TT: triterpenoids,

IsoFon: isoflavones, Ln: lignin, DCA: derivative of carnosic acid, meth-CA: methoxy-cinnamic acid,
aryl-flav: 2-arylbenzofuran flavonoids, PG: phenolic glucoside
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Conclusion

6.3 Conclusion

This study employed novel statistical methodologies, namely DSD and I -optimal

design, to optimize the parameters of UAE and MAE for extracting TPC and

antioxidant activity from leaves of Salvia officinalis L. Through the utilization

of DSD and I -optimal design, the optimization process identified the following

optimal conditions: for UAE, a 52% ethanol-water mixture, a solvent to solid ra-

tio of 30 mL g−1, a temperature of 60 °C, and an extraction time of 10 min; and

for MAE, a 60% ethanol-water concentration, a time of 4.79 min, a microwave

power of 600 W, and a solvent-to-solid ratio of 50 mL g−1. Furthermore, the

MAE optimal extract showed higher TPC (46.12 ± 0.08 mgGAE/gdw) and TEAC

(268.39 ± 1.28 µmolTE/gdw) than the UAE optimal extract (TPC:31.84 ± 0.24

mgGAE/gdw, TEAC: 237.94 ± 0.77 µmolTE/g dw). However, this later exhibited

higher TAC (38.92 ± 0.54 mgAAE/gdw) than MAE optimal extract. The quali-

tative analysis using UHPLC-HRMS confirmed that Salvia officinalis L. extract

is a potential source of bioactive compounds including phenolic acid and aldehy-

des, flavonoids, phenolic diterpenes etc. where rosmarinic acid, carnosol, methyl

carnosate, carnosic acid were the main phenolic compounds. The relative content

analysis of the Salvia officinalis L. bioactive compounds revealed that MAE was

better than UAE.
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General conclusion

The optimization of UAE and MAE of secondary metabolites from Salvia offic-

inalis L. and Carthamus caeruleus L. of Bouira region through the use of new

statistical designs such as DSD and I -optimal design, as well as machine learning

including support vectors machine optimized using dragonfly algorithm (SVR-DA)

is a promising approach to enhance the efficiency of the extraction process. This

not only improves the quality and quantity of the secondary metabolites but also

reduces the time and cost of the extraction process.

The optimization of UAE of TPC and TSC using BBD from the rhizome part

of C. caeruleus L. confirmed that all the independent variables affect the UAE,

where the the optimal conditions for extraction were determined as follows: a

methanol concentration of 78.66%, a solvent to solid ratio of 23 mL g−1, an extrac-

tion temperature of 50 °C, and an extraction time of 26 minutes. At these optimal

conditions, higher TPC, and TSC were obtained, thus higher antioxidant activity

was achieved. In contrast, the SVR-DA model, a supervised learning approach,

offers the capability to establish an interface for simultaneous determination of

TPC and TSC from C. caeruleus L. rhizome. This model allows users to select

desired values for various UAE conditions. Consequently, the SVR-DA model pro-

vides a direct and convenient means to assess TPC and TSC levels in the rhizome

part of C. caeruleus L.

Moreover, DSD and I -optimal design presents notable benefits in experimen-

tal design. These approaches offer efficient and effective methods for identifying

crucial factors related to UAE and MAE that influence TPC and antioxidant ca-

pacity from S. officinalis L. Importantly, these designs enable accurate results

to be obtained while minimizing the number of experimental runs needed. The

optimization of UAE revealed that the best optimal conditions were a 52% ethanol-

water mixture, a temperature of 60 °C, a solvent to solid ratio of 30 mL g−1, and

an extraction time of 10 minutes. Conversely, the optimization of MAE confirmed

that the optimal conditions for higher TPC, TEAC, and TAC were a 60% ethanol
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General Conclusion

concentration, 600 W microwave power, a MAE time of 4.79 minutes, and a liquid

to solid ratio of 50 mL g−1. The comparative study of phenolic profile between

UAE and MAE extracts using UHPLC-HRMS revealed that the MAE extract

yielded high TPC than UAE extracts, thus the MAE as extraction technique is

more efficient than UAE.

This study may have a significant impact on the pharmaceutical, food, and

cosmetic industries by providing new strategies for the optimization of natural

and sustainable source of bioactive compounds from medicinal plants. In addition,

this study valorize the medicinal plants of Bouira region that could be a promising

avenue for the development of novel and effective therapeutics.

The results obtained open several perspectives to complete our work such

as;

• The identification of bioactive compounds present in C. caeruleus utiliz-

ing the ultra-high-performance liquid chromatography-mass spectrometry

(UHPLC-MS) technique.

• The investigation of biological activities of these compounds both in vitro

and in vivo, focusing on their potential anti-inflammatory, anti-cancer, and

wound healing properties

• The use artificial intelligence to predict the properties of bioactive com-

pounds, including their efficacy and toxicity, and to design new drugs based

on this information.

• The formulation of medicinal plant extracts can play a crucial role in their

bio-availability. The use of different techniques such as nanotechnology, solid

lipid nanoparticles, liposomes, spray drying and micro-emulsions to optimize

the formulation of plant extracts and improve their bio-availability.

• Co-delivery of plant extracts with other compounds such as phospholipids,

surfactants, and other bio-enhancers to improve their bio-availability.

• Make preclinical evaluation of plant extracts to provide important insights

into their safety and efficacy, where various animal models should be used

to evaluate the pharmacokinetics, pharmacodynamics, and toxicity of plant

extracts.
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Appendix

Figure 6.9: The standard curve of Gallic acid used for the estimation of TPC from
the rhizome of C. caeruleus L.
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Appendix

Figure 6.10: The standard curve of Ascorbic acid employed for the evaluation of
total antioxidant activity from the rhizome of C. caeruleus L.

Figure 6.11: Comparative study of scavenging properties of C. caeruleus L. leaves
and rhizome using DPPH assay
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Appendix

Figure 6.12: Comparative study of scavenging properties of C. caeruleus L. leaves
and rhizome using decolorization of ABTS* test

Figure 6.13: Evaluation of total antioxidant of C. caeruleus L. leaves and rhizome
using phosphomolybdenum assay
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Appendix

Figure 6.14: Evaluation of antioxidant potential of C. caeruleus L. leaves and
rhizome using reducing power

Figure 6.15: Standard curve of Trolox at 734 nm used for Trolox equivalent an-
tioxidant capacity (TEAC)
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Appendix

Figure 6.16: Standard curve of FeSO4 at 593 nm used for reducing power

Table 6.12: Chemical reagents employed for the extraction of secondary metabo-
lites from C. caeruleus L. rhizome and S. officinalis L. leaves and evaluation of
their antioxidant activities

Application
Reagents and

microbiological
mediums

Chemical formulas
(linear)

Molar mass
(g/mol )

Provider

Extraction
Methanol CH3OH 32.04

Merck
Ethanol CH3CH2OH 46.07

Determination
of total phenolic

content

Folin-Ciocalteu C10H5NaO5S 260.20 VWR CHEMICALS
Sodium carbonate Na2CO3 105.98

Merck
Gallic acid C6H2(OH)3COOH 170.12

Determination
of total saponin

content

Vanillin C8H8O3 152.15
Merck

Sulfuric acid H2SO4 98.07

Trolox equivalent
antioxidant capacity

ABTS C18H18N4O6S4 514.62
MerckPotassium persulfate K2S2O8 270.322

Trolox C14H18O4 250.29

Total antioxidant
capacity

Ammonium molybdate
tetrahydrate

(NH4)6Mo7O24 ·4 H2O 1235.86 VWR CHEMICALS

Ascorbic acid C6H8O6 176.12 Merck
Free radicals

scavenging activity
DPPH C18H12N5O6 394.32 Merck

Reducing Power

Potassium ferricyanide K3Fe(CN)6 329.24
Merck

Trichloroacetic acid C2HCl3O2 163.38
Sodium phosphate

monobasic
NaH2PO4 ·H2O 137.99

VWR CHEMICALS
Sodium phosphate dibasic

dibasic dodecahydrate
Na2HPO4 ·12 H2O 358.14

Ferric chloride FeCl3 162.2
Iron(II) sulfate FeSO4 151.90

134



Appendix

Table 6.13: UAE parameters effect on TPC and TSC from rhizome of C. caeruleus
L. using single-factor design

Extraction conditions Level
TPC

(mgGAE/100gdw)
TSC
(Abs)

Temperature (°C)

40 243.692 ± 6.460d 0.125 ± 0.004c

50 291.879 ± 4.555bc 0.135 ± 0.002bc

60 274.574 ± 1.263c 0.142 ± 0.001b

70 310.971 ± 3.343a 0.192 ± 0.002a

Methanol
concentration (%)

10 297.184 ± 11.620a 0.348 ± 0.004b

20 228.527 ± 0.477f 0.355 ± 0.005b

30 226.597 ± 3.443fg 0.306 ± 0.009cd

40 219.703 ± 2.188g 0.281 ± 0.010e

50 236.523 ± 0.955e 0.297 ± 0.008d

60 286.431 ± 4.703ab 0.311 ± 0.003c

70 264.372 ± 2.481d 0.312 ± 0.004c

80 274.574 ± 2.081c 0.317 ± 0.006c

90 276.229 ± 2.081c 0.372 ± 0.002a

Sonication
time (min)

5 244.244 ± 4.244b 0.235 ± 0.005bc

10 256.652 ± 3.730a 0.205 ± 0.013de

15 239.280 ± 4.080b 0.279 ± 0.004a

20 243.416 ± 0.477b 0.218 ± 0.008cd

30 220.531 ± 7.163c 0.194 ± 0.013e

40 263.545 ± 10.063a 0.251 ± 0.011b

50 262.442 ± 4.244a 0.217 ± 0.007d

Solvent to
solid ratio (mL.g-1)

10 86.828 ± 1.041c 0.172 ± 0.007c

15 268.798 ± 5.896a 0.238 ± 0.003b

20 244.244 ± 7.131b 0.259 ± 0.008a

25 260.843 ± 4.178a 0.240 ± 0.006b

The levels are not sharing the same superscript letters (a-d) are significantly
different at (p < 0.05) (student test)
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Table 6.14: Metrics and kernel functions employed for SVR-DA to predict TPC and TSC from C. caeruleus L. rhizome

Name of function Equations

Metrics for
evaluation
of SVR-DA

model

Standard deviation SD =
√

(
∑

(yexp−ycal)2)

n

Relative Standard deviation RSD =

√
(
∑

(yexp−ycal)
2)

n

mean(yexp)
∗ 100

Mean absolute error MAE =
∑

|yexp−ycal|
n

Mean relative percentage error MRPE = 100 ∗ max( |yexp−yca|
yexp

)

Average absolute relative deviation AARD = 100 ∗
∑

(
|yexp−yca|

yexp
)

n

Root mean square error RMSE =
√∑n

i=1(yexp−ycal)2

n

Coefficient of determination R2 = 1 − SSres

SStot
= 1 −

∑n
i=1(yexp−ycal)

2∑n
i=1(yexp−ymoy)2

Kernel
functions

Linear (dot product) G(xj, xk) = x
′
jxk

Gaussian G(xj, xk) = exp(−∥xj − xk∥2)
polynomial G(xj, xk) = (1 + x

′
jxk)q, where q is in the set 2,3,..

yexp and ycal are the actual values and predicted values of model respectively; and n represents
the total number of experiments, SSres and SStot are the sums of square of residuals and total
of TPC and TSC respectively
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Table 6.15: Equations employed to compute the efficiency parameters of DSD and
I-optimal design

Efficiency Parameter Equations References

D- efficiency 100 ( 1
n
|X′

X|1/p) (Rodŕıguez et al., 2017)
(Jones et al., 2020)
(Goos, 2012)
(Goos and Jones, 2011)

A-efficiency 100 p/(n trace (X
′
X)−1)

G- efficiency maxxϵD f
′
(x)(X

′
X)−1f (x)

Average variance

of prediction 1∫
D dx

∗ trace [(X
′
X)−1M]

X is the model matrix, X
′

is transpose matrix, x is a vector of factor

levels that corresponds to one of the runs of the design, then f
′
(x) is

the corresponding row of the matrix X, f (x) is a function that takes
a vector of factor settings and expands that vector to its corresponding
model terms. D denotes the experimental region, n is the number of runs
in the design, p is the number of terms including the intercept, M is
called the moments matrix
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Georgé, S., Brat, P., Alter, P., and Amiot, M. J. (2005). Rapid determination of

polyphenols and vitamin c in plant-derived products. Journal of Agricultural

and food chemistry, 53(5):1370–1373.

Ghafoor, K., Choi, Y. H., Jeon, J. Y., and Jo, I. H. (2009). Optimization of

ultrasound-assisted extraction of phenolic compounds, antioxidants, and antho-

cyanins from grape (vitis vinifera) seeds. J Agric Food Chem, 57(11):4988–94.

Ghafoor, Kashif Choi, Yong Hee Jeon, Ju Yeong Jo, In Hee J Agric Food Chem.

2009 Jun 10;57(11):4988-94. doi: 10.1021/jf9001439.

Ghitescu, R.-E., Curteanu, S., Mihailescu, C., Volf, I., Leon, F., Gilca, A. I., and

Popa, V. I. (2017). Support vector machine combined with genetic algorithm for

optimization of microwave-assisted extraction of polyphenols from spruce wood

bark. Cellulose Chem Technol, 51(3-4):203–213.

Ghorbani, A. and Esmaeilizadeh, M. (2017). Pharmacological properties of salvia

officinalis and its components. J Tradit Complement Med, 7(4):433–440. Ghor-

bani, Ahmad Esmaeilizadeh, Mahdi Netherlands J Tradit Complement Med.

146



References

2017 Jan 13;7(4):433-440. doi: 10.1016/j.jtcme.2016.12.014. eCollection 2017

Oct.

Glisic, S. B., Ristic, M., and Skala, D. U. (2011). The combined extraction

of sage (salvia officinalis l.): ultrasound followed by supercritical co2 extrac-

tion. Ultrason Sonochem, 18(1):318–26. Glisic, Sandra B Ristic, Mihajlo

Skala, Dejan U Netherlands Ultrason Sonochem. 2011 Jan;18(1):318-26. doi:

10.1016/j.ultsonch.2010.06.011. Epub 2010 Jul 1.

Goos, P. (2012). The optimal design of blocked and split-plot experiments, volume

164. Springer Science & Business Media.

Goos, P. and Jones, B. (2011). Optimal design of experiments: a case study

approach. John Wiley & Sons.
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Rutkowska, M., Namieśnik, J., and Konieczka, P. (2017). pages 301–324.

Sahin, S. and Samli, R. (2013). Optimization of olive leaf extract obtained

by ultrasound-assisted extraction with response surface methodology. Ultra-

son Sonochem, 20(1):595–602. Sahin, Selin Samli, Ruya Netherlands Ultrason

Sonochem. 2013 Jan;20(1):595-602. doi: 10.1016/j.ultsonch.2012.07.029. Epub

2012 Aug 11.

Saparbekova, A. A., Kantureyeva, G. O., Kudasova, D. E., Konarbayeva, Z. K.,

and Latif, A. S. (2023). Potential of phenolic compounds from pomegranate

(punica granatum l.) by-product with significant antioxidant and therapeutic

effects: A narrative review. Saudi J Biol Sci, 30(2):103553. Saparbekova, A A

Kantureyeva, G O Kudasova, D E Konarbayeva, Z K Latif, A S Saudi Arabia

Saudi J Biol Sci. 2023 Feb;30(2):103553. doi: 10.1016/j.sjbs.2022.103553. Epub

2022 Dec 28.

Sarvin, B., Stekolshchikova, E., Rodin, I., Stavrianidi, A., and Shpigun, O. (2018).

Optimization and comparison of different techniques for complete extraction

of saponins from t. terrestris. Journal of Applied Research on Medicinal and

Aromatic Plants, 8:75–82.

Savic, I. M. and Savic Gajic, I. M. (2020). Optimization of ultrasound-assisted

extraction of polyphenols from wheatgrass (triticum aestivum l.). J Food Sci

Technol, 57(8):2809–2818.

159



References

Serakta, M., Djerrou, Z., Mansour-Djaalab, H., Kahlouche-Riachi, F., Hamimed,

S., Trifa, W., Belkhiri, A., Edikra, N., and Pacha, Y. H. (2013). Antileishmanial

activity of some plants growing in algeria: Juglans regia, lawsonia inermis and

salvia officinalis. African Journal of Traditional, Complementary and Alterna-

tive Medicines, 10(3):427–430.

Shah, R., De Jager, L. S., and Begley, T. H. (2012). Simultaneous determination

of steviol and steviol glycosides by liquid chromatography-mass spectrometry.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 29(12):1861–

71. Shah, Romina De Jager, Lowri S Begley, Timothy H England Food Addit

Contam Part A Chem Anal Control Expo Risk Assess. 2012;29(12):1861-71. doi:

10.1080/19440049.2012.725946. Epub 2012 Oct 10.

Shang, A., Luo, M., Gan, R. Y., Xu, X. Y., Xia, Y., Guo, H., Liu, Y., and Li,

H. B. (2020). Effects of microwave-assisted extraction conditions on antioxidant

capacity of sweet tea (lithocarpus polystachyus rehd.). Antioxidants (Basel),

9(8):678.

Shao, Z. Y., Fu, J. X., Qi, Y. X., Zhao, Q. C., and Li, Z. B. (2013). Optimization of

ultrasonic-assisted extraction of total saponins from ophiopholis mirabilis using

response surface methodology. Advanced Materials Research, 781-784:687–693.

Sharma, Y., Fagan, J., and Schaefer, J. (2019). Ethnobotany, phytochemistry,

cultivation and medicinal properties of garden sage (salvia officinalis l.). Journal

of Pharmacognosy and Phytochemistry, 8(3):3139–3148.

Sharma, Y., Velamuri, R., Fagan, J., Schaefer, J., Streicher, C., and Stimson, J.

(2020). Identification and characterization of polyphenols and volatile terpenoid

compounds in different extracts of garden sage (salvia officinalis l.). Pharma-

cognosy Research, 12(2):149.

Shrestha, B. L. and Baik, O. D. (2012). Methanol-water extraction of saponins

from seeds ofsaponaria vaccaria l.— calibration equation, extraction condition

analysis, and modeling. Separation Science and Technology, 47(13):1977–1984.

Silva, C. G., Herdeiro, R. S., Mathias, C. J., Panek, A. D., Silveira, C. S., Ro-

drigues, V. P., Renno, M. N., Falcao, D. Q., Cerqueira, D. M., Minto, A. B.,

Nogueira, F. L., Quaresma, C. H., Silva, J. F., Menezes, F. S., and Eleutherio,

E. C. (2005). Evaluation of antioxidant activity of brazilian plants. Pharmacol

Res, 52(3):229–33.

Singla, R. K., Dubey, A. K., Garg, A., Sharma, R. K., Fiorino, M., Ameen,

S. M., Haddad, M. A., and Al-Hiary, M. (2019). Natural polyphenols:

Chemical classification, definition of classes, subcategories, and structures.

160



References

J AOAC Int, 102(5):1397–1400. Singla, Rajeev K Dubey, Ashok K Garg,

Arun Sharma, Ramesh K Fiorino, Marco Ameen, Sara M Haddad, Moawiya

A Al-Hiary, Masnat England J AOAC Int. 2019 Sep 1;102(5):1397-1400. doi:

10.5740/jaoacint.19-0133. Epub 2019 Jun 14.

Skendi, A., Irakli, M., and Chatzopoulou, P. (2017). Analysis of phenolic com-

pounds in greek plants of lamiaceae family by hplc. Journal of applied research

on medicinal and aromatic plants, 6:62–69.

Soekarno, I., Hadihardaja, I. K., Cahyono, M., et al. (2014). A study of hold-out

and k-fold cross validation for accuracy of groundwater modeling in tidal low-

land reclamation using extreme learning machine. In 2014 2nd International

Conference on Technology, Informatics, Management, Engineering & Environ-

ment, pages 228–233. IEEE.

Song, J., Li, D., Liu, C., and Zhang, Y. (2011). Optimized microwave-assisted ex-

traction of total phenolics (tp) from ipomoea batatas leaves and its antioxidant

activity. Innovative Food Science & Emerging Technologies, 12(3):282–287.

Su, C. H., Pham, T. T. T., and Cheng, H. H. (2020). Aqueous enzymatic extrac-

tion of rosmarinic acid from salvia officinalis: optimisation using response sur-

face methodology. Phytochem Anal, 31(5):575–582. Su, Chia-Hung Pham, Thi

Thanh Truc Cheng, Hsien-Hao England Phytochem Anal. 2020 Sep;31(5):575-

582. doi: 10.1002/pca.2922. Epub 2020 Jan 29.

Suleiman, A., Tight, M., and Quinn, A. (2016). Hybrid neural networks and

boosted regression tree models for predicting roadside particulate matter. En-

vironmental Modeling & Assessment, 21:731–750.

Sulniute, V., Pukalskas, A., and Venskutonis, P. R. (2017). Phytochemical compo-

sition of fractions isolated from ten salvia species by supercritical carbon dioxide

and pressurized liquid extraction methods. Food Chem, 224:37–47. Sulniute,

Vaida Pukalskas, Audrius Venskutonis, Petras Rimantas England Food Chem.

2017 Jun 1;224:37-47. doi: 10.1016/j.foodchem.2016.12.047. Epub 2016 Dec 18.

Suslick, K. S. (1989). The chemical effects of ultrasound. Scientific American,

260(2):80–87.

Sánchez-Camargo, A. d. P., Ballesteros-Vivas, D., Buelvas-Puello, L. M.,

Martinez-Correa, H. A., Parada-Alfonso, F., Cifuentes, A., Ferreira, S. R. S.,

and Gutiérrez, L.-F. (2021). Microwave-assisted extraction of phenolic com-

pounds with antioxidant and anti-proliferative activities from supercritical co2

pre-extracted mango peel as valorization strategy. Lwt, 137:110414.

161



References

Taamalli, A., Arraez-Roman, D., Abaza, L., Iswaldi, I., Fernandez-Gutierrez, A.,

Zarrouk, M., and Segura-Carretero, A. (2015). Lc-ms-based metabolite pro-

filing of methanolic extracts from the medicinal and aromatic species men-

tha pulegium and origanum majorana. Phytochem Anal, 26(5):320–30. Taa-

malli, Amani Arraez-Roman, David Abaza, Leila Iswaldi, Ihsan Fernandez-

Gutierrez, Alberto Zarrouk, Mokhtar Segura-Carretero, Antonio England Phy-

tochem Anal. 2015 Sep-Oct;26(5):320-30. doi: 10.1002/pca.2566. Epub 2015

May 15.

Tabaraki, R. and Nateghi, A. (2011). Optimization of ultrasonic-assisted extrac-

tion of natural antioxidants from rice bran using response surface methodology.

Ultrasonics sonochemistry, 18(6):1279–1286.

Teh, S. S. and Birch, E. J. (2014). Effect of ultrasonic treatment on the polyphenol

content and antioxidant capacity of extract from defatted hemp, flax and canola

seed cakes. Ultrason Sonochem, 21(1):346–53.

Teka, T., Zhang, L., Ge, X., Li, Y., Han, L., and Yan, X. (2022). Stil-

benes: Source plants, chemistry, biosynthesis, pharmacology, application and

problems related to their clinical application-a comprehensive review. Phy-

tochemistry, 197:113128. Teka, Tekleab Zhang, Lele Ge, Xiaoyan Li, Yanjie

Han, Lifeng Yan, Xiaohui England Phytochemistry. 2022 May;197:113128. doi:

10.1016/j.phytochem.2022.113128. Epub 2022 Feb 17.
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A B S T R A C T

Box-Behnken design and support vector regression optimized using dragonfly algorithm as chemometrics tech-
niques were employed to optimize and predict total phenolic (TPC) and saponin content (TSC) from Carthamus
caeruleus L. rhizome using ultrasound-assisted extraction. Moreover, the comparative study of the antioxidant
activity of rhizomes and leaves parts was also performed using different assays including scavenging free radical
(ABTS�, DPPH�) activity, FRAP, and phosphomolybdenum assays. The results confirmed that the Box-Behnken
design was achieved and the optimal conditions for the recovery of maximum TPC and TSC were obtained
with 87.66 % methanol concentration, a solvent to solid ratio of 23 mL:g�1, a temperature of 50 �C, and 26 min
sonication time. The established SVR-DA model has been successfully predicted the extraction of TPC and TSC
from C. caeruleus L. rhizome with a higher R2 ¼ 0.99 and low error. Matlab graphical user interface of optimized
SVR-DA model was developed to predict TPC and TSC that could be used in pharmaceutical purposes. Further-
more, the optimal extract of rhizome and leaves extract showed high capacity of antioxidants, thus the C. caeruleus
L. can be a promising candidate for the cosmetic and pharmaceutical industry.

1. Introduction

In recent years, chemometrics tools have been frequently employed to
the optimization of analytical methods [1], and optimization of the
extraction conditions of bioactive compounds [2–4], considering their
advantages for the reduction of time, economical costs, and environ-
mental impacts. Design of experiment (DoE) and machine learning
technique (ML) becomemore attractive as chemometrics techniques. The
DoE as full factorial design, Box-Behnken, and central composite design,
etc., are multivariate optimization designs, in which the levels of all the
variables are changed simultaneously [5]. Furthermore, the DoE offers
the global optimal conditions while, the univariate approaches take
many experiments and give local optimal conditions, which may fail
when the effect of one variable is dependent on the level of the other
variables involved in the optimization process [5,6]. The DoE experiment
such as a Box-Behnken design is a statistical tool highly used for solving

optimization problems by studying the effects of several input variables
that affect the output variables by performing a low number of experi-
ments [7]. The BBD has an advantage, in which all factors are simulta-
neously at their highest or lowest levels, thus the BBD is useful in
avoiding experiments performed under extreme conditions [8]. As well
as the efficiency of BBD was also reported by Ferreira, Bruns, Ferreira,
Matos, David, Brandao, da Silva, Portugal, dos Reis, Souza and dos Santos
[5], where the efficiency of the design is defined as the number of co-
efficients in the estimated model divided by the number of experiments.
The BBD in the last decade taken a significant place as a tool for the
optimization process where it has already been used to optimize
microwave-assisted extraction of phenolic compounds from Pistacia len-
tiscus leaves [8], as well as the design was used as statistical modeling for
ultrasound-assisted extraction of corn silk polysaccharide [9]. The BBD
was also employed to optimize Pb (II) removal from aqueous solution by
Pistacia vera L [7].

* Corresponding author. GVRNAQ Laboratory, Bouira University, Rue Drissi Yahia, Bouira, 10000, Algeria.
E-mail address: h.moussa@univ-bouira.dz (H. Moussa).

Contents lists available at ScienceDirect

Chemometrics and Intelligent Laboratory Systems

journal homepage: www.elsevier.com/locate/chemometrics

https://doi.org/10.1016/j.chemolab.2022.104493
Received 4 October 2021; Received in revised form 5 January 2022; Accepted 6 January 2022
Available online 13 January 2022
0169-7439/© 2022 Elsevier B.V. All rights reserved.

Chemometrics and Intelligent Laboratory Systems 222 (2022) 104493



The Support vector machine is a kernel-based machine learning
model that solves big data classification problems or performing function
estimation in regression problems [10–12]. Recently, SVMs have been
attracted the chemometrics community, which they have been adopted
widely for the analysis of chemical data. Many scientific papers have
been focused on the comparison of SVMs with more traditional chemo-
metrics approaches [13,14]. In addition, SVMs have been used in several
applications in forecasting soil water, soil moisture prediction, estima-
tion of soil hydraulic parameters, modeling soil diffuse reflectance
spectra, and soil type classification [15–17]. More than that, the SVM is
employed to predict the correct diagnosis for cancer [18], as well as the
prediction of the critical micelle concentration (CMC) of diverse Gemini
surfactants from their structure characteristics [19]. Moreover, the SVM
was used for the optimization of microwave-assisted extraction of poly-
phenols from spruce wood bark [20].

Carthamus caeruleus L., its rhizomes are used traditionally in the North
African region (Algeria) for the treatment of burns and wounds [21]. The
rhizomes parts are a good source for many bioactive compounds such as
tannins, flavonoids, anthocyanins, leucoanthocyanins, sennosides, free
quinones, saponins, glycosides, mucilage, and coumarins, these bioactive
molecules possess several biological activities which include antimicro-
bial, anti-inflammatory, antioxidant activity, and wound-healing and
hair-growth promoting capacity [21–23].

Tounderstand thebiological activitiesdisplayedby the rhizomepart of
C. caeruleus L., the phenolic and saponin compounds were investigated.
Total saponin content, their name is derived from their ability to form
stable foams in aqueous solutions because of asymmetric distribution of
their hydrophobic (aglycone) and hydrophilic (sugar)moieties, they are a
chemically complex group of compounds which distributed naturally in
plants [24,25]. According to Furuya [26], saponin compounds generally
were classified according to aglycone part for threemain types; triterpene
glycosides, steroidal glycosides, and steroidal alkaloid glycosides. The
saponin compounds are showed several biological activities including;
burn-wound healing capacity of red Ginseng roots by increasing angio-
genesis phenomena during skin wound repair via the stimulation of the
growth factor's production as explained by Kimura, Sumiyoshi, Kawahira
and Sakanaka [27]. Moreover, the antioxidant and anticancer capacity of
papaya leaves' saponin extracts were suggested by Vuong, Hirun, Chuen,
Goldsmith, Murchie, Bowyer, Phillips and Scarlett [28], In addition to the
biological capacity of saponin, the phenolic compounds are secondary
metabolites with one or more aromatic rings, at least one hydroxyl group,
and could contain a distinctive additional functional group [29]. These
compounds have received the most attention in several fields in the last
decades; in food applications, they are used as an ingredient for the
development of functional foods, aswell as they can provide physiological
benefits such as health-promoting properties or disease prevention [30].
In human health, the phenolic compounds play a beneficial role in the
prevention of cardiovascular diseases, cancer, and osteoporosis, and
support their contribution to the prevention of neurodegenerative dis-
eases such as Parkinson's and Alzheimer's disease [31].

The extraction of natural products is the crucial step for the recovery,
and identification, and utilization of their bioactive molecules. The
conventional extraction methods such as hydrodistillation, soxhlet,
maceration, etc. were performed traditionally where a large amount of
solvent had been used with longer extraction time, which they are not
enough efficiently for recovering acceptable yields of specific compounds
from natural sources [32,33]. Recent trends in extraction technologies
have focused on intensification of the extraction process, which could
provide higher extraction yield and higher purity and quality of the
product by decreasing extraction time, energy consumption, and quantity
of solvents and decreasing in many unit operations [33]. Among the
advanced green extraction, ultrasound-assisted extraction is the most
widely used in the extraction of bioactive compounds due to its fitting to
these requirements.

Unfortunately, there is a paucity of investigations regarding the
optimization and prediction of phenolic and saponin content from

Carthamus caeruleus L. rhizome using ultrasound-assisted extraction
based on chemometrics strategies such as Box-Behnken design (response
surface methodology) and support vector machine optimized by drag-
onfly algorithm.

The present investigation attempts firstly to optimize the ultrasound-
assisted extraction of saponin and phenolic compounds from the rhizome
part of C. caeruleus L. using the Box-Behnken design. Secondly, the input
and output variables employed in the optimization process were used to
establish a predictive model based on support vector regression opti-
mized by the dragonfly algorithm. Moreover, the antioxidant capacity of
the optimal extract of rhizome and leaves extract were also evaluated
using different methods in vitro.

2. Materials and methods

2.1. Materials and reagents

Methanol, ethanol, chloroform, and sulfuric acid were purchased
from SIGMA-ALDRICH, sodium carbonate ðNa2CO3Þ, Vanillin, and DPPH
ð2;2-Diphenyl-1-picrylhydrazylÞ, Gallic acid, Ascorbic acid, ABTS
ð2;20

-azino-bisð3-ethylbenzothiazoline-6-sulfonic acidÞ Þ, potassium
persulfate ðK2S2O8Þ, potassium ferricyanide ðK3FeðCNÞ6Þ, trichloroacetic
acid ðC2HCl3O2Þ, ferric chloride ðFeCl3Þ were purchased from SIGMA-
ALDRICH. Folin-Ciocalteu's reagent, ammonium molybdate tetrahy-
drate ððNH4Þ6Mo7O24 �4H2OÞ, sodium phosphate monobasic
ðNaH2PO4 �H2OÞ, and sodium phosphate dibasic ðNa2HPO4 �12H2OÞ
were purchased from VWR CHEMICALS. All the reagents were analytical
grade.

2.2. Ultrasound-assisted extraction of phenolic-saponin content

The rhizome part and leaves of C. caeruleus L. were collected from
Bouira region (latitude 36.381707; longitude 3.711553, altitude 798 m)
in February 2019. The rhizome and leaves parts were cleaned by distilled
water the large impurities and cut into small parts with 1 mm of thickness
and dehumidified at 40 �C in a ventilated oven (Venticell) until constant
weight. The dried rhizome and leaves were milled using an electric
grinder (High star AR-1045) to obtain a fine powder with a diameter of
200 μm. The powders were stored in airtight containers until use, where
the rhizome powder was only used for the optimization and prediction of
TPC and TSC, while the leaves powder was used for a comparative study
of antioxidant capacity between the parts of plants.

The phenolic-saponin extract of rhizome was extracted using a soni-
cation water bath (J.P. SELECTA, s. a, Spain, 40 kHz, Power generator
120 W, Power heater 75 W, SN. 3000865, and internal dimensions: 15 �
24 � 14 cm) under the designed conditions. The working ultrasound's
frequency and power were fixed at 40 kHz and 120 W respectively. The
extractions were performed when the temperature changed (50–70 �C)
and methanol concentration (60–90%), solvent to solid ratio (10–25
mL:g�1), and sonication time varied (15–40 min) as mentioned in
Table 1, A.1. At the end of an extraction cycle, the obtained methanolic
extracts with different volumes were filtrated from the residual plant
material, and then the liquid extracts were equilibrated to the final vol-
ume and stored at 4 �C until use for optimization and prediction purposes
(Table 1, A.1).

Table 1
Coded and real levels of symbolized input variables defined for Box-Behnken
design.

Coded levels

Independent variables �1 0 þ1

x1: Concentration of solvent (%) 60 75 90
x2: Temperature (�C) 50 60 70
x3 : Time (min) 15 27.5 40
x4: Sample to solvent ratio (mL g¡1) 10 17.5 25
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To study the antioxidant capacity of rhizome and leaves of
C. caeruleus L., the two parts of the plant were extracted under the
optimal conditions obtained from the Box-Behnken design, using the
same procedure mentioned above where the extracts were lyophilized
and stored until use.

2.3. Optimization and prediction procedures

2.3.1. Box-Behnken design
To investigate the critical influence of the UAE factors on the

extraction of TPC and TSC from C. caeruleus L. rhizome by UAE, a single-
factor experiment as a preliminary study was used to determine
approximate ranges of independent variables including the concentration
of methanol (x1), temperature (x2), time (x3), and solvent to solid ratio
(x4) (Table 1, A.1). As a result, all the independent variables were
selected for subsequent modeling (Table 1, A.1). Based on these results,
the BBD was then adopted to determine the best combinations of
extraction variables for the extraction of TPC and TSC (Tables 1 and 2).
Three levels (�1, 0, and þ1) of four variables including methanol con-
centration (60–90%), temperature (50–70 �C), time (15–40 min), and
solvent to solid ratio (10–25 mL:g�1) were selected as depicted in
Table 1. The BBD matrix consists of 27 experiments and three replicates
at the central point as depicted in Table 2.

The total phenolic, total saponin compounds were correlated with the
four independent variables under the following second-order polynomial
equation (Eq. (1)):

Y ¼B0 þ
XK

i¼1

Bixi þ
XK

i¼1

Biix2i þ
XK�1

i¼1

XK

j¼2

Bijxixj þ e (1)

where; Y is the output variables (TPC, and TSC), and B0, Bi,
Biiði¼ 1;2; :::; kÞ; Bijði¼ 1; 2; :::; k; j¼ 1;2; :::; kÞ are the regression

coefficients for the mean, linear, quadratic, and interaction terms
respectively, xi and xj are the coded variables as described in Table 2, e is
the error. The independent variables were labeled as xi, based on the
following equation (Eq. (2)):

xi ¼Xi � X0

ΔXi
(2)

where xi is the (dimensionless) coded value of the variable Xi; Xi is the
actual value of variable; X0 is the actual value of xj at the center point and
ΔXi is the step change [8].

2.3.2. Support vector regression optimized using dragonfly algorithm (DA)
for predicting the TPC and TSC from C. caeruleus L. Rhizome

As a supervised-learning approach, SVM is a powerful tool for
nonlinear classification, time series prediction, and regression, based
on the structural risk minimization principle from computational
learning theory [16,20]. The support vector machine (SVM) is an
effective tool in real-value function estimation with excellent gener-
alization capability and high prediction accuracy by using the sparse
solution, kernels, Vapnik-Chervonenkis (VC) control of the margin,
and the number of support vectors [34]. In recent years, the SVM's
parameters have been optimized using different meta-heuristic algo-
rithms, such as particle swarm optimization (PSO), the dragonfly al-
gorithm (DA), genetic algorithm (GA), and bat algorithm (BA) [18].
Dragonfly algorithm (DA) is meta-heuristic algorithms proposed by
Mirjalili [35] that is inspired by the natural behavior of static and
dynamic swarming of dragonfly, these static and dynamic swarming
are served as exploration and exploitation behavior of the dragonfly
algorithm [36]. DA is used to solve a large variety of optimization
problems, which several variants of standard DA including Binary
dragonfly algorithm, Fuzzy-based dragonfly algorithm, chaotic and
adaptive dragonfly algorithm, and dragonfly algorithm with support
vector machine have been suggested to provide a good balance be-
tween exploration and exploitation by increasing the diversity of the
solutions [37]. DA has been used to solve different optimization
problems of SVM, the values of kernel and penalty parameters were
sent by the DA for training the SVM using the training data [19,38].
Many previous studies reported that the performance of SVR was
achieved when the hyper-parameters are optimized using the Drag-
onfly algorithm [19]. The support vector machine (SVM), theoretically
minimizes the expected error of a learning machine and so reduces the
problem of overfitting [39]. Furthermore, the kernel method in SVM
not only can improve the computational efficiency of SVM training but
also can be a convenient way to help prevent overfitting classification
problems [40].

Due to the power of support vector regression and Dragonfly algo-
rithm for solving regression problems were chosen to predict and opti-
mize the total phenolic and saponin content from C. caeruleus L. rhizome
using ultrasound-assisted extraction. The SVR-DA model was developed
based on input and output variables used in the Box-Behnken design,
which had the goal of predicting and optimizing the TPC and TSC. The
function used to predict TPC and TSC is expressed using the equation (Eq.
(3)):

f ðxÞ¼
XN

n¼1

�
an � a*n

�
G ðxn; xÞ þ b (3)

where G ðxn; xÞ a kernel function as is mentioned in Table A2, which
three kernel functions including Gaussian RBF, Linear, and Polynomial
were tested, and the Gaussian RBF kernel that gave the best results was
employed for the construction of the model. Alpha is the dual problem
coefficient specified as a vector of numeric values. Alpha contains m el-
ements, where m is the number of support vectors in the trained SVM
regression model. The dual problem introduces two Lagrange multipliers

Table 2
Dataset for Box-Behnken design: matrix with 27 runs, and measured values of
output variables (TPC, TSC) are given in table.

Runs Extraction conditions Experimental results

x1 x2 x3 x4 TPC (mg GAE/100 gdw) TSC (Abs)

1 -1 -1 0 0 267.737 � 2.602 0.263 � 0.006
2 -1 0 -1 0 223.274 � 2.152 0.200 � 0.004
3 -1 0 0 -1 187.085 � 5.204 0.155 � 0.004
4 -1 0 0 þ1 301.169 � 4.179 0.255 � 0.003
5 -1 0 þ1 0 310.130 � 4.775 0.250 � 0.003
6 -1 þ1 0 0 321.849 � 4.662 0.286 � 0.004
7 0 -1 -1 0 302.892 � 4.775 0.284 � 0.005
8 0 -1 0 -1 192.255 � 2.984 0.203 � 0.006
9 0 -1 0 þ1 323.572 � 2.152 0.328 � 0.002
10 0 -1 þ1 0 294.276 � 7.237 0.309 � 0.004
11 0 0 -1 -1 170.196 � 1.034 0.145 � 0.0006
12 0 0 -1 þ1 326.330 � 1.790 0.275 � 0.004
13 0 0 þ1 -1 188.808 � 2.067 0.19 � 0.005
14 0 0 þ1 þ1 348.733 � 0.600 0.273 � 0.002
15 0 þ1 -1 0 266.703 � 6.728 0.272 � 0.003
16 0 þ1 0 -1 227.411 � 2.602 0.208 � 0.009
17 0 þ1 0 þ1 393.540 � 5.757 0.271� 0.003
18 0 þ1 þ1 0 371.481 � 1.580 0.255 � 0.009
19 þ1 -1 0 0 272.217 � 0.598 0.275 � 0.002
20 þ1 0 -1 0 242.231 � 4.304 0.248 � 0.002
21 þ1 0 0 -1 136.419 � 6.059 0.159 � 0.004
22 þ1 0 0 þ1 286.693 � 1.579 0.279 � 0.003
23 þ1 0 þ1 0 198.114 � 4.738 0.190 � 0.002
24 þ1 þ1 0 0 1780.813 � 1.579 0.207 � 0.001
25 0 0 0 0 342.874 � 5.167 0.280 � 0.005
26 0 0 0 0 348.388 � 9.827 0.288 � 0.01
27 0 0 0 0 357.694 � 9.325 0.271 � 0.003

The values are expressed as means þ standard deviations (n¼3), mg GAE/100:
mg Gallic acid equivalent per 100 g dry weight of rhizome powder, Abs;
Absorbance.
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for each support vector. The values of Alpha are the differences between
the two estimated Lagrange multipliers for the support vectors ðan � a*nÞ,
and b is bias term.

The applied methodology and optimization of hyper-parameters can
be drawn following the flowchart in Fig. 1 [38,41–43]. Firstly, The
numeric values of the input data matrix (x1, x2, x3, and x4) have been
normalized to improve the optimization and speed convergence. The
normalization function is expressed by the equation (Eq. (4)):

xn ¼ x0:1 (4)

where xn is normalized input dataset and x is input data.
Secondly, the total datasets of TPC and TSC from C. caeruleus L.

rhizome were divided randomly to avoid the overfitting into 80%, 20%
for training, and validation data sets respectively, using the Holdout
function included in the statistical and machine learning toolbox of
Matlab. Furthermore, the validation data set was an independent data set
used to test the SVM-DAmodel [19,44]. DA initially feeds the SVMwith a
random combination of hyper-parameters in their pre-defined ranges
including the penalty parameter (C), size of the insensitive zone (ε), and
sigma (σ). In five iterations, the steps established with the data division
and up to the development of the SVR model are repeated and the lower
RMSE obtained is saving the best value. In addition, the DA make a new
population of hyper-parameters for the SVR algorithm, and the same set
of steps is repeated to obtain the new best RMSE, and this step is
implemented for 100 trials, in which the lower and best RMSE corre-
sponds to the resulting optimal DA-SVM model [19,42]. The RMSE and

R2 were calculated according to equations illustrated in Table A2 to
assess the predictive power of the SVR-DA model.

The relative standard deviation (RSD) or the coefficient of variance,
the mean absolute error (MAE), the mean relative percentage error
(MRPE), the Average absolute relative deviation (AARD), the root mean
square error (RMSE), the determination coefficient (R2) were used in this
study to evaluate the goodness of adjustment of the models as well as the
prediction precision of the optimized model.

2.4. Determination of total phenolic compounds

The total phenolic compounds of the UAE extracts of C. caeruleus L.
dried rhizome were determined using a spectrophotometric method as
described by Georg�e, Brat, Alter and Amiot [45]. A 625 μL diluted
Folin-Ciolcateu reagent (1/10 V/V) was added to the different methanol
extracts (125 μL). The mixture was left for 2 min at room temperature,
and then 500 μL of Na2CO3 solution (7.5% w/V) was added. The mixture
was incubated for 15min at 50 �C in an unstirred water bath (NÜVE Bath,
NB20), the reactional mixture was finally cooled in a water-ice bath. The
specific absorbance was measured at 760 nm using a UV–vis Spectro-
photometer (Optizen pop, Korea).

The concentrations were calculated using the Gallic acid standard
curve, where different concentrations of Gallic acid ranged from 0.02 to
0.08 mg/mL were used to plot the standard curve using GraphPad soft-
ware (Fig. A1). The linear equation was obtained (y ¼ 12:089X þ 0:0034
, R2 ¼ 0.999) and the TPC from the rhizome were expressed as mg Gallic
acid equivalent per 100 g of dry weight of the fine powder of C. caeruleus

Fig. 1. SVR-DA technique used for predicting TPC and TSC from C. caeruleus L. rhizome (Laidi, Abdallah et al. 2020).
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L. (mg GAE=100 gdw) according to the equation (Eq. (5)). The analyses
were carried out in triplicate and the mean � SD was calculated.

TPCðmg GAE=100 gdwÞ ¼
c � V � DF
gdw rhizome powder

� 100 (5)

where cðmg=mLÞ is the concentration of TPC from the standard curve of
Gallic acid, V (mL) is the volume of solvent used in the extraction, DF is
the factor of dilution, and gdw is the dry weight of rhizome powder.

2.5. Quantitative determination of total saponin content

The Vanillin-acid sulfuric method of Hiai, Oura and Nakajima [46]
was used for optimization purposes, the colorimetric assay was applied
for the determination of steroidal sapogenins, triterpenoid sapogenins,
sterols, and bile acids, which have an OH group at their C-3 position, gave
chromogens with the reagents. Consistently, 125 μL of diluted extracts
(1=5 V=VÞ of dry weight of rhizome powder were added to 125 μL of 8%
(w/V) vanillin solution (dissolved in ethanol) and then sulfuric acid 72%
(V/V) was added (1.25 mL), the final mixture was shaken and incubated
in a water bath (NÜVE Bath, NB20) at 60 �C for 10 min. The absorbance
of the cold mixture was recorded against methanol blank with the other
reagents (strong yellow color). The wavelength was scanned by using a
UV/Vis spectrophotometer (Optizen pop, Korea), and the results showed
that the maximum adsorption was at 515 nm. The analyses were carried
out in triplicate and the mean � SD was calculated.

2.6. Evaluation of free radical scavenging activity of phenolic-saponin
extract from C. caeruleus L

The antioxidant potential of lyophilized optimal extract of rhizome
and leaves extract from C. caeruleus L. was evaluated using scavenging
free radicals (DPPH�, ABTS�) activity, reducing power and phosphomo-
lybdenum assays were selected in this study.

The DPPH free radical scavenging capacity of the rhizome and leaves
parts of C. caeruleus L. extracts were analyzed using the method described

by Dahmoune, Remini, Dairi, Aoun, Moussi, Bouaoudia-Madi, Adjeroud,
Kadri, Lefsih, Boughani, Mouni, Nayak and Madani [47] with slight
modification. Concisely, 1 mL of DPPH solution in methanol (60 μM) was
mixed with 100 μL of different concentrations of lyophilized extract and
the mixture was incubated for 30 min in the dark at room temperature,
the absorbance of the mixture was determined at 517 nm against
methanol as blanc using a UV–vis Spectrophotometer.

The ABTS assay was performed according to Dahmoune, Spigno,
Moussi, Remini, Cherbal and Madani [8], the assay was based on the
decolorization of ABTS free radical in the presence of antioxidants.
Briefly, a stock solution of ABTS was prepared using 7 mM ABTS and
2.45 mM potassium persulfate. After 16 h of incubation in the dark, the
stock solution was diluted by ethanol to final absorbance of 0.700� 0.02
at 734 nm, then 75 μL of different centration of lyophilized extracts of
leaves and rhizome were added to 1425 μL of diluted ABTS solution. The
antioxidant capacity (%) was measured after 6 min of incubation in the
dark at 734 nm.

The antioxidant capacity was expressed as a percentage of scavenging
of free radical (DPPH� and ABTS�) and was calculated according to
equation (Eq. (6)):

Free radical inhibition ð%Þ¼Ablanc � ASample

A Control
*100 (6)

A Sample is the absorbance of free radical solution (ABTS� or DPPH�) þ
sample extract at the required time, Ablanc is the absorbance of free radical
solution (ABTS� or DPPH�)þ extraction solvent, A Control is the absorbance
of the working free radical solution. The concentration required for in-
hibition of 50% of free radical (DPPH� and ABTS�) was also calculated
from the inhibition curve.

The total antioxidant assay was also performed using a phosphomo-
lybdenum reagent. According to Prieto, Pineda and Aguilar [48], 200 μL
of different concentrations of the lyophilized extract of rhizome, and
leaves were mixed with 2 mL of test solution consisting of 0.6 M sulfuric
acid, 4 mM ammonium molybdate tetrahydrate, and 28 mM sodium
phosphate. The mixture was incubated for 90 min at 95 �C. After cooling
at room temperature, the absorbance was measured at 695 nm. Different

Table 3
Standards regression and significance of input variables on TPC, TSC of C. caeruleus L. rhizome.

TPC (mg GAE/100 gdw) TSC (Abs)

Parameters Estimated coefficient ρ-value Estimated coefficient ρ-value

Intercept 349.652 <0.0001a 0.279 <0.0001a

Linear effects
x1 �24.730 0.0009a �0.004 0.3101b

x2 8.904 0.1402b �0.014 0.0041a
x3 14.993 0.0208a 0.003 0.3858b

x4 73.155 <0.0001a 0.051 <0.0001a

Quadratic effects
x21 �72.940 <0.0001a �0.035 <0.0001a

Estimated parameters x22 �12.063 0.1792b 0.014 0.0257a

x23 �33.260 0,0020a �0.019 0.0061a

x24 �53.380 <0.0001a �0.038 <0.0001a

Interaction effects
x1* x2 �36.879 0.0026a �0.023 0.0051a

x1* x3 �32.743 0.0057a �0.027 0.0016a

x1* x4 9.047 0.3723b 0.005 0.4580b

x2* x3 28.349 0.0132a �0.010 0.1420b

x2* x4 8.703 0.3902b �0.015 0.0384a

x3* x4 0.948 0.9243b �0.011 0.0995b

R2 0.96 0.97

R2
Adj 0.92 0.93

RMSE 19.53a 0.013b

Regression results C.V (%) 7.14 5.3
ANOVA (Model) <0.0001a <0.0001a

Lack of fit 0.116b 0,288b

TPC; Total phenolic compounds, TSC; Total saponin content, EC; Estimated coefficient, RMSE; Root Mean Square Error, C.V; Coefficient of variance, ρ-value a; sta-
tistically significant, ρ-value b; statistically not significant; RMSEa of TPC is expressed in mg GAE/100 gdw; RMSEb of TSC is expressed in (Abs).
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concentrations of Ascorbic were used (0.02–0.4 mg/mL) to plot the
standard curve (y¼ 3:4169 x�0:0498; R2 ¼ 0:994Þ by evaluating its
total antioxidant activity under the same conditions mentioned above
(Fig. A2). The results of TAA were expressed as mg AAE/g of lyophilized
extract based on Eq. (7):

TAA
�
mg AAE

�
gdry extract

�¼ cðmg AAE=mLÞ
cðg=mLÞ (7)

where c ðmg AAE =mLÞ is the TAA of rhizome and leaves parts calculated
from the standard curve, cðg =mLÞ is the concentration of lyophilized
extract.

The reducing power of C. caeruleus L. was evaluated using previously
published methods of Oyaizu [49], 0.2 mL of various concentrations of
the leaves and rhizome extracts were added separately to 0.5 mL of
phosphate buffer (0.2 M, pH 6.6) and 0.5 mL of 1% potassium ferricya-
nide. The reaction was incubated in a water bath at 50 �C for 20 min.
After cooling at room temperature, 0.5 mL of 10% TCA was added to the
reactional mixture, and then centrifuged at 3000 rpm for 10 min. The
supernatant (0.5 mL) was collected and mixed with 0.5 mL of distilled
water and 0.1 mL of Ferric chloride (0.1%) and the absorbance was
measured directly at 700 nm.

2.7. Hardware and software

The JMP® Pro 13.0.0 (64-bit) software under Microsoft Windows 10
Professionnel (10.0.15063.0) operating system was used to construct the
BBD and to analyze all the results. All procedures and the metrics
(Table A2) used for construction and analyze SVR-DAwere carried out by
means of MATLAB R2019 (b) software (Mathworks, Natick, MA, USA)
under Microsoft Windows 10 operating system using a high-performance
(Random Access Memory 6 G, Hard Drive 500 G). The statistical and
machine-learning toolbox was used to build the SVM model and the
dragonfly algorithm toolbox added by Mirjalili [35] was used for the
optimizationmethod. The GraphPad prism 8.0.2 (263) software was used
to plot all the standard curves and graphs of antioxidant activity.

3. Results and discussion

3.1. Fitting the response surface model

Fitting the Box-Behnken model (Table 2) for TPC and TSC was
assessed, using analysis of variance (ANOVA) and lack of fit (LOF), R-
square (R2), adjusted R-square (R2

AdjÞ; and the coefficient of variation
(CV).

In the RSM, a good adjustment was obtained with R-squared values of
0.96, 0.97, for TPC, TSC respectively, this high R2 values of TPC and TSC
revealed that 96% and 97% of the data fit the regression model, with a
coefficient of variance (CV) less than 10% for all responses (Table 3).
Also, a higher adjusted R-square (R2

AdjÞ indicated that 92%, 93% of the
variation is explained by only those independent variables that affected
the TPC, TSC extraction (Table 3). Concerning the ANOVA (Table 3), the
significant model (higher F-value, p-value < 0.0001) with lack of fit not
significant (smaller F-value, p-value > 0.05) of each response (TPC, TSC)
indicated that there was a relationship between the observed values of
the responses and any predictors. Therefore, the BBD model was suitable
and will explain at least some of the variations in the responses.

It is important to note that the second-order polynomial equations
found were used to predict the responses for several levels of each factor
considered. A polynomial equation is useful for identifying the influence
of the independent variables by comparing the estimated coefficients.
The regression model for total phenolic content, total saponin content
were shown in Eqs. (8) and (9):

TPC ðmg GAE=100 gdwÞ ¼ 349:652� 24:730x1 þ 8:904x2 þ 14:993x3

þ 73:155x4 � 72:940x21 � 12:063x22 � 33:260x23
� 53:380x24 � 36:879x1x2 � 32:743x1x3

þ 9:047x1x4 þ 28:349 x2x3 þ 8:703x2x4

þ 0:948x3x4
(8)

TSC ðAbsÞ¼ 0:279� 0:004x1 � 0:0014x2 þ 0:003x3 þ 0:051x4 � 0:035x21
þ 0:014x22 � 0:019x23 � 0:038x24 � 0:023x1x2 � 0:027x1x3 þ 0:005x1x4

� 0:010x2x3 � 0:015x2x4 � 0:011x3x4
(9)

3.2. Influence of temperature on dependent variables

From Table 3 and Eq. (8), the linear effect of temperature (50–70 �C)
was statistically not significant on TPC extraction using ultrasound, even
though the interaction between the methanol concentration and tem-
perature (x1x2) was significantly negative on the extraction of TPC with
an important estimated coefficient. In addition to the interaction terms
(x1x2), the interaction between temperature and sonication time (x2x3)
also showed a significantly positive effect on TPC extraction, which in-
dicates that the temperature effect depends on the effects of methanol
concentration (x1) and sonication time (x2).

As regards the effect of UAE temperature on saponin extraction,
Table 3, and Eq. (9), show that the effect of temperature on TSC was
significantly negative in linear and interaction terms (x1x2, x2x4).

Fig. 2a and 2d shows the response plots of total phenolic compounds,
total saponin content of rhizome of C. caeruleus L. by varying two vari-
ables at the same time, while the third and fourth variable constant at
zero levels, these plots illustrate the temperature effect on TPC, TSC in
interaction with the methanol concentration. The temperature effect was
studied in two parts, which was noticed that there was an inverse cor-
relation, when the methanol concentration was below 75%, the yield of
TPC and TSC reached their higher values when the temperature
increased from 50 �C to 70 �C. This similar trend of total phenolic and
saponin content is explained by the fact that, increasing in extraction
temperature, enhance the solubility of solute and diffusion coefficient of
TPC and TSC [50,51], Moreover, Teh and Birch [52] confirmed that
heating temperature increase cavitation phenomena of ultrasound by
helping in cell wall breaking for TPC and TSC extraction.

In the second part, when the methanol concentration was above 75%,
the TPC and TSC decreased significantly at higher temperature degrees. It
can be considered that a higher amount of methanol in the extraction
solvent leads to a decrease of a boiling point in the mixture solvent, so at
higher extraction temperature, it can be easily vaporized during extrac-
tion thereby decreasing in TPC and TSC.

In brief, the higher values of TPC yield were obtained at higher
temperatures with a lower methanol concentration although, TSC yield
was obtained at a higher concentration of solvent with lower tempera-
ture. To understand more the interactive effect of extraction temperature
with the other parameters, Fig. 2c confirms that when sonication time
was above 25 min, the TPC yield raised significantly with the increase in
the temperature of extraction. Inversely the TPC yield decreased when
temperature increased when sonication time was below 25 min, and this
allows us to conclude that a higher yield of total phenolic compounds
yield was found at a higher temperature and higher sonication time.
Furthermore, the total saponin content was found a higher value of yield
at lower temperatures around 50 �C when the solvent to solid ratio was
upper than 17.5 mL. g�1 and then decreased significantly when the
temperature enhanced to 70 �C (Fig. 5f). Ali, Lim, Chong, Mah and Chua
[53] suggested that, even though extraction temperature enhances the
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solubility of the solvent into the plant cell by reducing the viscosity of the
medium, the thermal degradation of the phenolic compounds was the
reason behind the decrease of TPC at high temperatures upper than 52
�C.

In conclusion, the effect of the extraction temperature on recovery of
TPC, and saponin content from the rhizome of C. caeruleus L. was asso-
ciated with the type and different bounds forms of the phenolic com-
pounds and saponin that are presented in the plant, also the extraction
temperature of UAE was strongly correlated to the other independent
parameters.

3.3. Influence of methanol concentration on TPC and TSC

The influence of methanol concentration was significantly negative
(p < 0.05) in linear terms for total phenolic content but not significant (p
> 0.05) for total saponin content, despite the influence of methanol
concentration was significantly negative for all responses (TPC, TSC) in
interaction terms (x1x2, and x1x3) (Table 3, Eq. (8) and (9)).

Fig. 2a and 2b, illustrates the effect of the interaction of methanol
concentration and temperature (x1x2), methanol concentration and time
(x1x3) on total phenolic compounds yield from the rhizome of
C. caeruleus L. respectively. Temperature and time were fixed at zero
levels, the yield of TPC raised to their maximum values when the
methanol concentration was approximately 65% then TPC decreased
significantly with an increase in the methanol concentration upper than
65%. These similar findings were observed by Cheok, Chin, Yusof, Talib
and Law [54], which found that the TPC yield was decreased as methanol
concentration increased from 70% to 80%, and higher TPC was obtained
at 69.77% of methanol concentration. Moreover, the results of this study
were in agreement with the “like dissolve like” approach [55], where, the
adding of water into the methanol increase the polarity of the mixture,
hence increasing the yield of polyphenolic compounds. From the results
outlined above based on the polarity of optimal extraction solvent,
C. caeruleus' rhizome possesses hydrophilic phenolic compounds.

On the other hand, increasing methanol concentration from 60 to
90%, the total saponin content was increased significantly, where the
highest of TSC was obtained at a higher concentration of methanol in
aqueous methanol (75–90%) (Fig. 2d and 2e), this result was supported
by Pham, Vuong, Bowyer and Scarlett [51], which confirmed that the
highest saponin yield was observed in either absolute methanol or 75%
methanol extracts. Furthermore, Sarvin, Stekolshchikova, Rodin, Stav-
rianidi and Shpigun [56] also confirmed that Steroidal saponin com-
pounds from T. terrestris L. are easily dissolved by low-polar organic
solvent solutions such as ethanol and methanol, with different levels of
water. Methanol-water mixture exhibited extended structures in solu-
tion, this characteristic might have an impact on the solubility and
diffusivity of large hydrocarbon molecules of Saponin [57]. According to
the similarity and intermiscibility theory, when the polarity of solute and
solvent is similar, the solutes dissolve from the cells [58].

3.4. Influence of sonication time on TPC and TSC

According to Table 3 and Eq. (8), and Eq. (9), sonication time range
from 15 to 40 min was found as a significant factor only for TPC in linear
terms, but in interaction terms, the sonication time was a significant
factor for TPC (x1x3, x2x3), TSC (x1x3). These results were supported by
Zhang, Birch, Xie, Yang and El-Din Bekhit [59], which confirmed that a
high concentration of phenolic compounds was noticed at extended
sonication time and a higher amount of solvent to solid ratio simulta-
neously. However, the sonication time factor showed a significantly
negative influence in interaction with methanol concentration (x1x3),
where higher TPC and TSCwere observed at longer sonication time when
the concentration of methanol was lower between 60 and 75%, and
lower yield of all responses was obtained at longer sonication time and a
higher concentration of methanol (Fig. 2b and 2e). From the findings
mentioned above, the sonication time was found as an important

parameter in ultrasound-assisted extraction of phenolic and saponin
compounds from the rhizome of C. caeruleus L. and was directly corre-
lated with the other independent parameters. Many findings were found
a sonication time range from 20 to 35 min is the suitable range for
effective extraction of phenolic and saponin compounds [51,52,57,60].
Increasing in sonication time continuously, the cell wall of the plant will
be more exposed to ultrasound acoustic cavitation thereby increasing the
yields of bioactive compounds. Although Dong, Liu, Liang andWang [61]
reported that the extended time after the maximum extraction yields lead
to the lower permeability of the solvent into the cell plant and decreasing
bioactive compounds yield by suspending the impurities including
insoluble molecules, cytosol, and lipids in the liquid extraction, also the
re-absorbing of released molecules on the large smashed plant particles.

3.5. Influence of solvent to solid ratio on TPC and TSC

According to the results of this study, solvent to solid ratio was
considered as the most significant factor, which affected positively TPC
and TSC extraction from the rhizome of C. caeruleus L. The effect of
solvent to solid ratio was highly significant on TPC and TSC in linear
terms, as well as the following interaction terms: x2x4 for TSC and, x3x4
for antioxidant activity was significant (Table 3, Eqs. (8) and (9)).

Firstly, the influence of solvent to solid ratio was highly significant for
the extraction of total phenolic compounds, in which the content of TPC
increased with an increase in the solvent to solid ratio (Table 3). The
higher total phenolic compounds can be explained by the fact that the
solubility of phenolic compounds improved with increase in the solvent
to solid ratio until reached the saturation of solvent. In contrast, many
trends confirmed that higher sample-to-solvent ratios increase the sus-
pension density of the solution, which negatively affected the solvation of
released bioactive compounds [51].

On the other hand, Fig. 2f illustrates the effect of the combination of
temperature and solvent to solid ratio on the variation of TSC from the
rhizome of C. caeruleus L. Increasing in the solvent to solid ratio from 10
to 25 (mL:g�1), the TSC increased and reached a maximum yield at a
higher solvent to solid ratio and lower temperature. The presencemore of
methanol-water mixture create a gradient of concentration in the me-
dium, which improved the mass transfer phenomena of the system
thereby enhancing the recovery of saponin content, Tian, Zhao, Zhang,
Zhang, Liu and Gao [62] were working on optimization of the
microwave-assisted extraction of saponin from Aralia elata (Miq.) Seem
fruits and rachises and were found that 20 and 30 (mL:g�1) of solvent to
solid ratio were the best ratios for the extraction of saponin. Besides Ali,
Lim, Chong, Mah and Chua [53] mentioned that increasing solvent to
solid ratio continuously, more protein and polysaccharides were dis-
solved in solution, interfering with the dissolution of saponin. Further-
more, an excessive ratio of solvent is not cost-effective and did not always
lead to a higher yield of bioactive compounds, which may be due to the
larger amount of solvent that causing excessive swelling of raw materials
and increasing the absorption of target compounds [56,62].

3.6. Box-Behnken optimization and model validation

A maximum desirability function was carried out to identify the best
possible combination that can achieve maximum extraction yield of TPC
and TSC from C. caeruleus L. rhizome. The optimized condition was
determined at 78.66% Methanol concentration with a ratio of 23
(mL: g�1) at a temperature of 50 �C and 26 min of extraction time. The
predicted value of TPC was 349.209 mg GAE=100 gdw with Confidence
interval [321.826–377.494], and TSC was 0.339 (Abs) with Confidence
interval [0.320–0.358]. The experimental results produced an extraction
yield of TPC of 363.209 � 11.284 mg GAE=100 gdw, and 0.325 �
0.005 (Abs) respectively, which indicates the high accuracy of the
response surface model. The results were fitted the prediction values in
the range of 95% prediction intervals that were obtained from second-
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order models. In addition, the overall desirability for all responses is
defined as the geometric mean of the desirability functions for the

individual responses [63,64]. In this study, the overall desirability was
0.88, which indicates that all the responses were achieved. A good

Table 5
Optimum parameter values of SVR model optimized by dragonfly algorithm.

Penalty parameter
C

Sigma σ Size of the insensitive
zone (ε)

Kernel function Amount of support vectors Output RMSE
Training 80%

RMSE
Validation 20%

RMSE
ALL

900 2.47 2.46 *10�4 Gaussian 40 TPC 0.2039a 11.0150a 6.1900a

TSC 0.000162b 0.0068b 0.0027b

RMSEa of TPC is expressed in mg GAE/100 gdw; RMSEb of TSC is expressed in (Abs).

Fig. 2. Three-dimensional plots of C. caeruleus L. rhizome showing the influence UAE factors on recovery of TPC (a, b, c), Total saponin content (d, e, f).

H. Moussa et al. Chemometrics and Intelligent Laboratory Systems 222 (2022) 104493

8



correlation between the predicted and observed responses confirmed
that the models obtained could perfectly predict the ultrasound-assisted
extraction of phenolic, saponin compounds from C. caeruleus L. rhizome.

3.7. SVR-DA for predicting the TPC and TSC from C. caeruleus L. Rhizome

In this work, the prediction of TPC and TSC from C. caeruleus L.
rhizome using UAE was established by the support vector regression
model optimized by the dragonfly algorithm. After optimizing process,
the values of the penalty parameter (C), size of the insensitive zone (ε),

sigma (σ), and 40 support vectors were obtained as mentioned in Table 5,
some of the kernel functions were tested as depicted in Table A2,
Gaussian RBF kernel gave very satisfactory results as shown in Table 5.
The dataset was randomly divided into two groups: training, and vali-
dation set, composed of 80%, 20% respectively by the HOLDOUTmethod
[19,44,65]. Based on the optimized hyper-parameters (C ¼ 900, σ ¼
2.47, ε¼ 2.46 *10�4), Fig. 3 shows the correlation between the measured
and predicted TPC, the R2 of training and validation set are 0.99, where
the RMSE of TPC is 6.190 mg GAE=100 gdw (Table 5). Regarding the
total saponin content, the R2 of the training and validation set are 0.99

Fig. 3. Scatter plot of measured and predicted total phenolic compounds obtained by SVR-DA model.

Fig. 4. Scatter plot of measured and predicted total saponin content obtained by SVR-DA model.
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and 0.96 respectively (Fig. 4), where the RMSE of TSC is 0.0027 (Abs)
(Table 5).

To evaluate the prediction accuracy of the SVR-DA model, different
metrics including the RMSE, R2, AARD, MRPE, MAE, RSD are calculated
and their values are shown in Table 6, where the optimized SVR-DA
model presents the predictive R2 ¼ 0.9951, RMSE ¼ 4.2702, and
AARD, MRPE, RSD, MAE were 0.6460%, 5.9748%, 1.6881%, 1.6165
respectively. These results confirmed that the optimized model is more
suitable for modeling using limited experimental data and exhibited
higher prediction accuracy. In addition, the marginal loss between the R2

for training and validation of an optimal SVR-DA model is insignificant
which indicated its high generalization performance in terms of R2. These
findings were in agreement with the results of Benimam, Moussa, Hen-
tabli, Hanini and Laidi [38] and Mesellem, Hadj, Laidi, Hanini and
Hentabli [44]. Moreover, to provide an easy way to predict the total
phenolic and saponin content, from C. caeruleus L. rhizome a Matlab
graphical user interface was designed for executing the optimized
SVR-DA model (Fig. 5). It is a powerful tool with direct utilization to
calculate the output variables (TPC, TSC) at the same time by selecting
the desired values of the extraction conditions including concentration of
solvent (%), temperature (�C), time (min), solvent to solid ratio (mL.g�1).

3.8. Antioxidant activity of C. caeruleus L

C. caeruleus L. was used for therapeutic benefit for many years, in this
study, The optimal rhizome's extract under the optimal extraction pa-
rameters including a methanol concentration of 78.66%, a solvent to
solid ratio of 23 mL:g�1, a temperature of 50 �C and 26 min sonication
time obtained by BBD design was used to evaluate its antioxidant activity
using different antioxidant assays including DPPH�, ABTS�, reducing
power, and phosphomolybdenum assays, which are based on different
mechanisms. Furthermore, the antioxidant activity of C. caeruleus L.
leaves extract under the same optimal conditions was also studied. The
results obtained are illustrated in figures A.3 - A.6. From DPPH�

scavenging activity's results, the leaves part exhibited higher scavenging
free radical activity with an IC50 of 0.157 � 0.003 mg/mL of lyophilized
powder, which the IC50 of rhizome was 1.606 � 0.05 mg/mL of lyoph-
ilized powder (Fig. A3). The same tendency was observed in the decol-
orization of ABTS� radical with the antioxidant of different parts of the
plant, where the IC50 of leaves was 0.191� 0.003 mg/mL and the IC50 of
rhizome was 0.950 � 0.022 mg/mL (Fig. A4). These results confirmed
that the leaves part of C. caeruleus L. showed the highest antioxidant
capacity than the rhizome part, although, the rhizome and leaves the part
of C. caeruleus L. exhibited the higher capacity of scavenging free radical
than the rhizome extract of the same medicinal plant extracted using
accelerated solvent extraction [66]. On other hand, C. caeruleus L. also
showed higher capacity than Carthamus tinctorius L. seed [67].

The total antioxidant activity of different parts of C. caeruleus L. was
also measured using phosphomolybdenum assay, the leaves part showed
higher TAC than rhizome, at 1 mg/mL of lyophilized extract the TAC
were 90.917 � 1.628 mg EAA/g, and 33,551 � 0,735 mg EAA/g for
leaves and rhizome respectively (Fig. A5). In addition, in the reducing
power test, the two parts of the plant showed a great capacity of reduc-
tion of ferric (Fe3þ) iron to the ferrous (Fe2þ) molecules, where the
highest value was observed for the leaves part with 1698 � 0.007 of
absorbance. While, the absorbance of the rhizome part was 0,206 �
0,013 at a concentration of 1 mg/mL of lyophilized extract, but in this
case, the ascorbic acid was more effective for reducing power than
C. caeruleus L. (Fig. A6). The higher and lower antioxidant activity of
leaves and rhizome of C. caeruleus L. may be explained by the fact that the
leaves produce bioactive molecules that display a higher donating ca-
pacity of hydrogen ions than the molecules produced by the rhizome
part. Silva, Herdeiro, Mathias, Panek, Silveira, Rodrigues, Renno, Falcao,
Cerqueira, Minto, Nogueira, Quaresma, Silva, Menezes and Eleutherio
[68] reported that the structure of bioactive molecules of both planar and
spatial it is important for the antioxidant activity, and the molecules
derived from the shikimate pathway displayed more antioxidant poten-
tial than derived from the acetate pathway, which can avoid oxidative
damage of cell membranes.

4. Conclusion

To summarize, the optimization of ultrasonic-assisted extraction of
phenolic-saponin fraction from the rhizome of Carthamus caeruleus L.
using Box-Behnken design based on response surface methodology is
successfully achieved. The independent factors including time, temper-
ature, solvent to solid ratio, the concentration of solvent are the most
important parameter that affected the UAE method, which the optimum
extraction conditions were 78.66% methanol concentration with a sol-
vent to solid ratio of 23 mL g�1 at a temperature of 50 �C and 26 min of
extraction time.

The support vector regression optimizedwith the dragonfly algorithm
shows high accuracy to predict the TPC and TSC from C. caeruleus L.
rhizome with good correlative (R2 ¼ 0.99, and low RMSE). In addition,
Matlab graphical user interface was designed for predicting the TPC and
TSC from C. caeruleus L. rhizome.

The optimal extract of rhizome and leaves extract exhibit a high po-
tential of scavenging free radicals with IC50 0.951 � 0.022 and 0.196 �
0.0029 mg/mL and IC50 of 0.106 � 0.001 and 1.637 � 0.025 mg/mL of
lyophilized powder for ABTS and DPPH assay respectively. As well as the
leaves and rhizome show higher antioxidant capacity for reducing power
and phosphomolybdenum assay. In folk medicine, the rhizome of

Fig. 5. Matlab interface for predicting TPC and TSC from C. caeruleus
L. rhizome.

Table 6
Prediction performance of SVR-DA to predict TPC and TSC from rhizome of C. caeruleus L.

RMSE R2 R b slop AARD (%) MRPE (%) MAE RSD (%)

Training 0.1829 1.0000 1.0000 0.2245 0.9991 0.0593 0.1087 0.1570 0.0720
Validation 9.5415 0.9722 0,9933 -12.9697 1.0716 2.9927 5.9748 7.4548 4.0517
All 4.2702 0.9951 0,9978 -1.6218 1.0101 0.6460 5.9748 1.6165 1.6881
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C. caeruleus L. was used for healing burns and wounds, where, saponin
and phenolic compounds are considered as major bioactive compounds
that are involved in the healing process, therefore, our study provides a
powerful tool using the Matlab interface to predict TPC and TSC that can
be employed in the pharmaceutical industry.
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des Sciences de la Terre, Université de Bouira, 10000, Bouira, Algeria 
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A B S T R A C T   

A definitive screening design and an I-optimal design were carried out for the screening and 
optimization of ultrasound’s extraction conditions of total phenolic compounds (TPC) and anti
oxidant capacities (TEAC and TAC) from S. officinalis L. leaves. The optimal conditions for 
maximum TPC, TEAC, and TAC were 52% ethanol-water, 60 ◦C temperature, 30 mL g− 1 solvent to 
solid ratio, and 10 min of extraction time. The optimal extract showed higher TPC, TEAC, and 
TAC with 31.84 ± 0.248 mgGAE/gdw, 237.95 ± 0.771 μmolTE/gdw, and 38.928 ± 0.548 mgAAE/

gdw respectively. Furthermore, the optimal extract obtained exhibited a higher scavenging ac
tivity against DPPH•, NO• free radicals, and β-carotene/linoleic acid bleaching activity with IC50 
of 0.276 ± 0.001 mg/mL, and 0.069 ± 0.0005 mg/mL, and 0.159 ± 0.008 mg/mL respectively. 
The reducing power of the optimal extract at 0.3 mg/mL of lyophilized powder was approxi
mately 2 mmol Fe+2 equivalent/g. Thus, S. officinalis L. leaves are expected to be an excellent 
source for pharmaceutical and cosmetic industries for developing potential drugs.   

1. Introduction 

The common sage (Salvia officinalis L.) belongs to the Lamiaceae family, which is a perennial plant with woody stems and grayish 
leaves (Mitić and Tošić, 2019). The sage is native to the Mediterranean region and is cultivated worldwide (Dent 2015), which is a 
valuable medicinal plant used traditionally as an herbal tea, spice, and food flavoring agent (Zekovic and Pintac, 2017). Sage has been 
used industrially in the production of several pharmaceutic formulations or food preservation owing to its wide range of biological 
activities, including antimicrobial, preservative, immunomodulatory, antioxidant, and anticancer proprieties (Glisic and Ristic, 2011; 
Zekovic and Pintac, 2017). These biological activities have been attributed to the phenolic compounds present in S. officinalis L. 
including carnosolic acid, carnosol, rosmarinic acid, rosmanol, epirosmanol, and isorosmanol (Dent 2015; Pavlić and Vidović, 2016). 
However, sage also contains several volatile compounds such as thujone, which possesses a certain toxicity, and the allowed 
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concentration in food products is 0.5 mg/kg (Mocan and Babota, 2020). Furthermore, it has been reported that the chemical 
composition and relative variability of S. officinalis L. are correlated to several factors such as environmental, physiological factors 
including genotypes, environmental stress, agronomic procedures, climatic change, and culture site (Mocan and Babota, 2020). 

For better extractability of bioactive compounds from medicinal plants, various novel extraction techniques have been developed, 
where ultrasound-assisted extraction (UAE) has been the most popular method in recent years due to its advantage of minimizing time, 
extraction solvent, and energy consumption (Ghafoor and Choi, 2009; Hossain and Brunton, 2012; Shivamathi and Moorthy, 2019; Liu 
and Liu, 2021). In this context, the extraction parameters used in ultrasound, such as concentration of the solvent, time, temperature, 
and solid to solvent ratio, are important and should be optimized using experimental designs and predictive models to enhance the 
quality and quantity of bioactive compounds. Box-Behnken and central composite design as experimental design were the most used in 
the optimization process (Shivamathi and Moorthy, 2019; Liu and Liu, 2021; Moussa and Dahmoune, 2022). 

Definitive screening design (DSD) is a new class of three-level design for definitive screening of quantitative and qualitative 
variables. The DSD was proposed by Jones and Nachtsheim (2011). DSD has several desirable advantages, including that the number of 
runs required for DSD construction is one more than twice the number of factors (Jones and Nachtsheim 2011). Contrary to fractional 
factorial design, the main effects are completely independent of two-factor interactions, and two-factor interactions are not completely 
aliased with other two-factor interactions (Jones and Nachtsheim 2011). Furthermore, a DSD could estimate all quadratic effects by 
adding center points where the quadratic effects are orthogonal to the main effect and not completely aliased (Jones and Nachtsheim 
2011). The DSD with six through twelve independent variables shows the capability of estimating full quadratic models including two 
or three factors (Jones and Nachtsheim 2011). DSD was employed as a chemometric method to optimize mass spectrometry 
(UPLC-MS/MS) parameters using standard glycans (Hecht and McCord, 2015). In addition, the DSD was applied to investigate the 
electrochemical decolorization of the reactive violet azo dye Reactive Violet 5 (RV5) that is used in textile dyeing, where its poor 
fixation to the fiber leads to a negative impact on the environment and human health, due to the toxicity and potential carcinogenicity 
(Fidaleo and Lavecchia, 2016). DSD was also used to investigate the effects of temperature, time and solvent concentration on direct 
biodiesel production from wet microalgae (Felix and Ubando, 2019). 

Moreover, the optimal design (custom design) is a flexible special design that was employed for both screening and optimization 
processes using the I-optimality and D-optimality criteria. The optimal design creates the optimal set of experiments based on the 
coordinate-exchange algorithm proposed by Meyer and Nachtsheim (1995), The optimal design provides maximum accuracy in 
estimating regression coefficients because it was the best combination of experimental runs that were selected. (Haji and Qavamnia, 
2018). In addition, it has been reported that the optimal design is generally applied for cost analysis and product formulation in the 
food and pharmaceutical industries (Cigeroglu and Aras, 2018). The optimal design produces a very flat fraction of the design space 
curves for most of the design space (Oladipo and Betiku 2019), which makes the optimal design more suitable for predicting the 
maximum of oleuropein from olive leaves using an ultrasonic probe (Vural et al., 2021). The optimal design was also employed for the 
optimization of both quantitative and qualitative variables used for the ultrasound-assisted extraction of bioactive compounds from 
medicinal plants (Cigeroglu and Aras, 2018; Turker and Isleroglu 2021). 

The effect of UAE conditions on the extraction of phenolic compounds from medicinal plants using classical experimental designs 
such as full factorial design, Box-Behnken, central composite design, etc., have been extensively investigated (Pavlić and Vidović, 
2016; Su and Pham, 2020; Brahmi and Blando, 2022; Carrasco-Sandoval and Falcó, 2022). To the best of our knowledge, there is a 
paucity of studies regarding the effects of UAE conditions on the extraction of phenolic compounds and antioxidant capacity of 
S. officinalis L. leaves using new classes of experimental designs such as DSD and I-optimal design. 

The current study aimed to screen the UAE extraction conditions of phenolic compounds (TPC) and antioxidant capacity, including 
Trolox equivalent antioxidant capacity (TEAC) and total antioxidant capacity (TAC) from S. officinalis L. using a new class of exper
imental design, including DSD. After the screening process, the I-optimal design was carried out to optimize the effect of UAE 
extraction parameters for enhancing the TPC, TEAC, and TAC from S. officinalis L. Furthermore, the optimal extract was evaluated 
using several assays, including DPPH•, NO• scavenging activity, β-carotene/linoleic acid bleaching activity, and reducing power. 

2. Materials and methods 

2.1. Materials 

Methanol, ethanol, and chloroform were purchased from SIGMA-ALDRICH, sodium carbonate (Na2CO3), and DPPH (2,2 −

Diphenyl − 1 − picrylhydrazyl), ABTS (2,2′

− azino − bis ​ (3 − ethylbenzothiazoline − 6 − sulfonic ​ acid)), potassium persulfate 
(K2S2O8), TPTZ (2,4,6-tripyridyl-s-triazine), β-carotene, linoleic acid, trichloroacetic acid (C2HCl3O2), ferric chloride (FeCl3), Gallic 
acid, Trolox, ascorbic acid, Phosphoric acid, Dimethyl sulfoxide ((CH3)2SO), Folin-Ciocalteu’s reagent, ammonium molybdate tet
rahydrate ((NH4)6Mo7O24 ·4H2O), sodium phosphate monobasic (NaH2PO4 ·H2O), and sodium phosphate dibasic 
(Na2HPO4 · 12H2O) were purchased from VWR CHEMICALS. Sodium nitroprusside (Na2[Fe(CN)5NO]2H2O), Sulfanilamide 
(C6H8N2O2S), naphthyl-ethylenediamine dichloride (C12H14N2.2HCl) were provided from Alfa Aesar. 

2.2. Ultrasound-assisted extraction (UAE) 

Fresh leaves of S. Officinalis L. were harvested from Ain Bessem (latitude 36.325295; longitude 3.674675, altitude 690 m) province 
of Bouira (Algeria) in April 2021. S. officinalis L. leaves were washed using distilled water to remove the impurities, and then they were 
oven-dried in a ventilated oven (MEMMERT, B319.0656, Germany) at 40 ◦C until the moisture level was constant. After the drying 
process, the leaves were milled using an electrical grinder (Moulinex, AR110510 French) and passed through a sieve with a diameter of 
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0.2 mm. 
The phenolic compounds of Salvia officinalis L. leaves were extracted using an ultrasound-cleaning bath at 40 kHz (J.P. SELECTA, s. 

a, Spain, SN. 3000865, Power generator 120 W, Power heater 75 W) with cavity dimensions of 15 × 24 × 14 cm (H/W/D). This system 
includes two piezo-electric steel-aluminum transducers located at the bottom of the ultrasound bath. The UAE of phenolic compounds 
was carried out according to DSD and I-optimal design, where 1 g of powder of S. officinalis L. leaves was immersed in different volumes 
(10, 20, and 30 mL) of ethanol-water mixture (30%, 55%, and 80%). The samples were exposed to the sonication effect at different 
times (10, 35, and 60 min). The ultrasonic temperature were controlled by thermostat water bath and was adjusted using the ultra
sound panel to 30, 45, and 60 ◦C. During the sonication process, the samples were poured into a 250-mL flat-bottom flask coupled with 
condenser placed in front of flask contain ice cubes to ensure that the temperature was always maintained constant. The ethanolic- 
water extracts were recovered by filtration using centrifugation (Sigma 3–16 L, 172577, Germany) at 5000 rpm for 10 min to elim
inate insoluble matters and equilibrated to the final volume. S. officinalis L. extracts were stored at 4 ◦C for further analysis. 

2.3. Optimization and prediction procedures 

2.3.1. Definitive screening design 
A DSD was used for screening the continuous factors to avoid confounding between the linear factors and interaction factors as well 

as to identify factors that have a nonlinear effect on the response. In this study, the DSD was used to identify the continuous factors that 
have the most substantial effects on the extraction of phenolic compounds and their bioactivities from S. officinalis L. leaves extracts. 
All the factors including x1: ethanol-water mixture, x2: sonication time, x3: extraction temperature, x4: solvent to solid ratio were 
studied at three levels, low, medium, and high level as shown in Table 1. The DSD’s matrix of selected factors was constructed by JMP 
software 13.0.0 Pro, with high D-efficiency (85.61), G-efficiency (82.32), and A-efficiency (85.36). The average variance prediction of 
this design was 0.154, as depicted in Tables 4 and 5. To screen the effect of UAE factors on TPC, TEAC, and TAC, a matrix of 17 
experiments including four extra runs was designed (Table 2). Moreover, the upper left corner of the color map of correlation from 
Fig. 1 confirms that the continuous main effects are uncorrelated with two-factor interaction effects; this means that any two-factor 
interactions will not bias several main effects. 

2.3.2. I-Optimal design 
The I-Optimality was established to optimize the phenolic compounds extracted from S. officinalis L. powder and their bioactivities 

against the TEAC and TAC assays. The I-optimal designs minimize the average variance of prediction over the design space (Rodríguez 
and Jones, 2017), Thus, the I-optimality criterion is more appropriate than D-optimality to predict a response, determine optimum 
operating conditions, and determine regions in the design space where the response falls within an acceptable range (Rodríguez and 
Jones, 2017). The prediction variance relative to the unknown error variance at a point x in the design space can be calculated using 
the following Eq. (1) (Goos 2012): 

var (Ŷ / x)= f (x)
′

(X′X)
− 1f (x) (1)  

where X is the model matrix. 
I-optimal designs minimize the integral I of the prediction variance over the entire design space, where I is given as follows(Eq. (2)) 

(Goos 2012): 

I =
∫

R

f (x)
′

(X′ X)
− 1f (x)dx= trace

[
(X′ X)

− 1M
]

(2)  

where M is the moments’ matrix (Eq. (3)), 

M=

∫

R

f (x)f (x)
′

dx (3) 

To optimize I-optimality criteria, the coordinate-exchange algorithm of Meyer and Nachtsheim (1995) was used. The 
coordinate-exchange algorithm is repeated a large number of times with more than 40000 random starts until the maximum of the 
optimality criterion is achieved, as mentioned in Tables 4 and 5 The D, G, and A-efficiency obtained in this study were 42, 77, and 29, 
respectively. The average variance of prediction for this design was 0.351. 

For three continuous factors and three responses, including TPC, TEAC, and TAC, the I-optimal matrix designed has 16 runs, 

Tables 1 
The input variables and their levels employed for the screening and optimization process.   

Levels 

Independent variables − 1 0 +1 

x1: Ethanol-water mixture (%) 30 55 80 
x2: Time (min) 10 35 60 
x3 : Temperature (◦C) 30 45 60 
x4: solvent to solid ratio (mL.g− 1) 10 20 30  
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Table 2 
Definitive screening design Matrix with the four input and three output variables; TPC, TEAC and TAC.  

Runs x1 x2 x3 x4 TPC a experimental TPC a 

Predict 
TEAC b experimental TEAC b 

Predict 
TAC C experimental TAC C predict 

1 − 1 − 1 − 1 +1 21.15 ± 0.46 20.99 186.32 ± 2.72 185.98 25.40 ± 0.26 26.12 
2 − 1 − 1 +1 − 1 8.99 ± 0.20 10.58 109.32 ± 1.48 111.79 13.67 ± 0.53 16.63 
3 − 1 − 1 +1 +1 27.82 ± 0.19 25.99 223.31 ± 1.84 221.95 34.90 ± 0.22 33.21 
4 − 1 0 − 1 − 1 7.64 ± 0.33 5.788 71.27 ± 1.45 73.79 11.46 ± 0.13 9.04 
5 − 1 +1 − 1 +1 19.48 ± 0.17 21.40 181.16 ± 2.55 181.93 23.47 ± 0.24 25.10 
6 − 1 +1 0 − 1 7.20 ± 0.02 8.49 85.73 ± 0.29 89.75 11.20 ± 0.16 12.07 
7 − 1 +1 +1 0 22.72 ± 0.55 21.78 216.47 ± 2.63 208.39 28.63 ± 0.26 26.56 
8 0 − 1 − 1 − 1 16.77 ± 0.20 15.73 138.37 ± 1.48 128.27 24.55 ± 0.21 23.64 
9 0 0 0 0 28.81 ± 0.45 28.69 234.25 ± 0.29 234.60 34.95 ± 0.11 35.30 
10 0 +1 +1 +1 34.34 ± 0.24 35.49 240.06 ± 2.96 249.80 41.09 ± 0.15 41.64 
11 +1 − 1 − 1 0 22.23 ± 0.42 23.29 195.12 ± 4.39 202.84 29.45 ± 0.12 31.16 
12 +1 − 1 0 +1 27.22 ± 0.13 29.35 207.72 ± 3.06 209.79 37.48 ± 0.22 35.69 
13 +1 − 1 +1 − 1 16.02 ± 0.15 15.55 141.79 ± 2.66 141.45 25.01 ± 0.24 24.69 
14 +1 0 +1 +1 31.64 ± 1.24 31.05 223.14 ± 3.63 220.00 35.60 ± 0.11 36.31 
15 +1 +1 − 1 − 1 11.94 ± 0.44 12.97 108.98 ± 0.88 112.93 21.73 ± 0.05 21.41 
16 +1 +1 − 1 +1 30.88 ± 0.29 28.26 201.26 ± 1.84 193.51 33.67 ± 0.11 33.54 
17 +1 +1 +1 − 1 16.50 ± 0.24 15.96 139.91 ± 0.59 137.39 23.53 ± 0.13 23.67 

TPC a: mgGAE/gdw (mg Gallic acid equivalent per g of dry weight), TEAC b: μmolTE/gdw (μmole Trolox equivalent per g of dry weight), TAC C: mgAAE/ gdw (mg Ascorbic 
acid equivalent per g of dry weight), TPC: Total phenolic compounds, TEAC: Trolox equivalent antioxidant capacity, TAC: Total antioxidant capacity.  

Table 3 
I-Optimal design matrix with the three input variables and three output variables (TPC, TEAC, and TAC).  

Runs x1 x3 x4 TPC a experimental TPC a 

Predict 
TEAC b experimental TEAC b 

Predict 
TAC C experimental TAC C predict 

1 − 1 +1 +1 29.42 ± 0.25 29.31 228.35 ± 1.27 221.22 35.34 ± 0.15 34.26 
2 − 1 0 − 1 9.79 ± 0.15 11.17 89.69 ± 2.78 84.50 14.70 ± 0.48 14.17 
3 0 0 0 24.61 ± 0.40 24.99 216.88 ± 3.49 214.92 34.95 ± 0.11 34.17 
4 0 0 +1 31.94 ± 0.13 31.05 240.35 ± 10.98 243.78 39.63 ± 0.62 39.80 
5 +1 − 1 +1 30.17 ± 0.11 30.48 218.93 ± 6.87 209.27 36.70 ± 0.64 35.50 
6 +1 +1 +1 28.88 ± 0.22 28.84 191.60 ± 6.72 192.88 36.79 ± 0.07 37.30 
7 0 0 0 25.39 ± 0.24 24.99 216.55 ± 3.22 214.92 34.54 ± 0.11 34.17 
8 0 0 0 25.20 ± 0.07 24.99 227.05 ± 7.45 214.92 33.95 ± 0.13 34.17 
9 0 +1 0 27.60 ± 0.07 29.05 210.48 ± 1.50 217.87 34.57 ± 0.06 35.34 
10 +1 +1 − 1 14.62 ± 0.60 14.35 152.70 ± 5.42 142.05 25.01 ± 0.69 23.65 
11 − 1 − 1 +1 28.08 ± 0.10 28.81 182.08 ± 4.04 194.16 28.51 ± 0.59 30.11 
12 +1 − 1 − 1 10.38 ± 0.25 10.64 126.38 ± 5.10 128.16 22.31 ± 0.38 23.08 
13 +1 0 0 20.31 ± 0.46 20.03 178.14 ± 9.22 195.63 30.75 ± 0.43 32.03 
14 − 0.11 − 1 − 1 15.96 ± 0.30 15.61 110.73 ± 1.16 115.69 22.77 ± 0.63 22.74 
15 − 1 +1 − 1 18.12 ± 15.96 17.10 96.76 ± 4.04 105.87 14.48 ± 0.46 15.62 
16 − 1 − 1 0 22.92 ± 0.24 21.98 150.78 ± 6.58 141.61 24.67 ± 0.26 23.54 

TPC a: mgGAE/gdw (mg Gallic acid equivalent per g of dry weight), TEAC b: μmolTE/gdw (μmole Trolox equivalent per g of dry weight), TAC C: mgAAE/ gdw (mg Ascorbic 
acid equivalent per g of dry weight), TPC: Total phenolic compounds, TEAC: Trolox equivalent antioxidant capacity, TAC: Total antioxidant capacity.  

Table 4 
Equations used for the calculation of the efficiency parameters of DSD and optimal design.  

Efficiency Parameter Equations References 

D- efficiency 
100

(1
n
|X′ X|

1/p
)

(Rodríguez and Jones, 2017) 

A-efficiency 100 p/(nTrace(X′ X)
− 1

) (Jones and Allen-Moyer, 2020) 
G- efficiency max

x ∈ D
f ′

(x)(X′ X)
− 1f(x) Goos (2012) 

Average variance of prediction 1
∫

Dd x
*trace [(X′ X)

− 1M] Goos and Jones (2011) 

X is the model matrix, X′ is transpose matrix, x is a vector of factor levels that corresponds to one of the runs of the design, then f ′

(x) is the corresponding row of the 
matrix X, f(x) is a function that takes a vector of factor settings and expands that vector to its corresponding model terms. D denotes the experimental region, n is the 
number of runs in the design, p is the number of terms including the intercept, M is called the moments matrix.  
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Table 5 
Efficiency measures of definitive screening design and I-optimal design.   

DSD Optimal Design 

Optimality Criteria / I-Optimality 
D-Efficiency 85.61 42.01 
G-Efficiency 82.32 77.05 
A-Efficiency 85.36 29.20 
Average variance of prediction 0.154 0.3518  

Fig. 1. Color maps of the definitive screening design for absolute correlations between UAE extraction parameters using an intensity scale. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 2. Correlations maps of UAE extraction parameters using an intensity scale for I-optimal design.  
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including the center points (Table 3). The color map on correlations shows the correlation between the effects of the UAE extraction 
parameters (Fig. 2). The main effects are represented by the 4 terms in the upper left corner of the map. The deep blue color corre
sponds to the uncorrelated effects between the main effects and other main effects. This means that all main effects are orthogonal and 
can be estimated independently. The red line in Fig. 1b is on the main diagonal, reflecting that each extraction parameter is perfectly 
correlated with itself. It follows that no main effect is completely confounded by any two-way interaction. 

The mathematical equations of DSD and I-optimal design (Eq. (4)) show the relation and the effect of each UAE factor on TPC, 
TEAC, or TAC (Goos and Jones 2011; Jones and Nachtsheim 2017). 

yi =B0 +
∑k

j=1
Bjxi,j +

∑k− 1

j=1

∑k

k=j+1
Bijkxi,jxi,k +

∑k

j=1
Bjjx2

i,j + εi (4)  

where k is the number of continuous factors, and B0,Bijk, Bjj are the estimated coefficients for linear, interaction, and quadratic effects 
respectively, xi,j, xi,k, x2

i,j are the coded factors, yi is the output variable (TPC, TEAC, or TAC), and εi is the error. 

2.4. Total phenolic compounds 

The TPC of ethanol-water extracts of S. officinalis L. was determined by Folin’s assay as reported in previous work (Moussa and 
Dahmoune, 2022). A Gallic acid standard was used for the calibration curve to calculate the total phenolic compounds of S. officinalis L. 
as mgGAE/gdw, where all results were expressed as means (N = 3) ± standard deviations (SD). 

2.5. Total antioxidant capacity 

The total antioxidant capacity of UAE extracts was evaluated using the phosphomolybdenum assay used in previous work (Moussa 
and Dahmoune, 2022). Total antioxidant activity was expressed as mg of ascorbic acid equivalent (AAE)/gdw using the calibration 
curve (Moussa and Dahmoune, 2022). All the assays were performed in triplicate and the results were expressed as mean ± SD. 

2.6. Trolox equivalent antioxidant capacity 

The method is based on the ability of antioxidant molecules of S. officinalis L. to reduce ABTS radical, compared with Trolox, which 
is a water-soluble vitamin E analog as described by Babbar and Oberoi (2011). A blue-green chromophore stock solution of ABTS was 
prepared by the reaction of a 7 mmol/L aqueous solution of ABTS with 2.45 mmol/L potassium persulfate and allowing the mixture to 
stand in the dark at room temperature for 16 h before use. The ABTS working solution was obtained by the dilution of the stock solution 
in ethanol to an absorbance of 0.70 ± 0.02 AU at 734 nm. 2 ml diluted ABTS solution was added to 20 μL of diluted S. officinalis’ 
ethanol-water extract. The contents were mixed well, and absorbance was read after 6 min using a UV–visible spectrophotometer 
(Optima, SP-3000nano, 5T5701-143132-00, Japan). The antioxidant capacity was calculated against the Trolox standard curve as 
depicted in fig. A1 (Appendix A. supplementary data), and the results were expressed as μmol Trolox equivalent (TE)/gdw of 
S. officinalis powder. All the assays were performed in triplicate and the results were expressed as mean ± SD. 

2.7. Biological activity of the optimal extract from S. officinalis L 

2.7.1. Scavenging DPPH• free radical activity 
The antioxidant activity of the optimal extracts of S. officinalis L. leaves using scavenging of DPPH• free radical activity was studied 

as reported in our previous work (Moussa and Dahmoune, 2022). The antioxidant activity was expressed as an inhibition percentage, 
where all analyses were performed in triplicates. 

2.7.2. Ferric reducing power 
The Ferric reducing capacity of the optimal extract of S. officinalis L. was determined based on the reduction of Fe3+-TPTZ to a blue- 

colored Fe2+-TPTZ as described by Abeysiri and Dharmadasa (2013). A volume of 200 μL of the optimal extract was mixed with 1.8 mL 
of freshly prepared FRAP reagent at pH 3.6 containing 2.5 mL of 10 mmol/L of 2,4,6-Tripyridyl-s-Triazine (TPTZ) solution in 40 
mmol/L of HCl, 2.5 ml of 20 mmol/L of FeCl3, and 25 mL of 0.3 mol/L of acetate buffer. The absorbance of the reaction was measured 
at 593 nm using the spectrophotometer (Optima, SP-3000nano, 5T5701-143132-00, Japan) after incubating for 4 min. For the cali
bration curve, different concentrations of FeSO4 from 0.2 to 0.6 mM of FeSO4 were prepared as shown in fig. A2 (Appendix A. sup
plementary data). The results were expressed as mmol Fe2+ equivalents per gram of lyophilized extract from S. officinalis leaves, where 
all the results were expressed as mean ± SD. 

2.7.3. Beta-carotene/linoleic acid bleaching activity 
The antioxidant evaluation of S. officinalis L. extract using the β-carotene/linoleic acid system according to Moreira and de Carvalho 

(2019). A solution of β-carotene in chloroform (2 mg/mL) was mixed with 40 mg of linoleic acid and 400 mg of Tween 80. The solvent 
was evaporated from the mixture, which was then diluted with oxygenated distilled water to 0.8–0.7 of absorbance. A 2.5 mL aliquot of 
the emulsion was added to different concentrations of lyophilized extracts of S. officinalis (0.07–0.7 mg/mL) and the absorbance was 
measured at 470 nm with an immediate reading and 240 min. All of the reaction mixtures were incubated in a 50 ◦C water bath. The 
control was prepared with 2.5 mL of the oxidizing medium and 100 μL of 55% ethanol. All analyses were carried out in triplicates. The 
antioxidant activity was expressed as an inhibition percentage relative to the control using Eq. (5): 
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Antioxidant ​ activity ​ (%)=

(
DRc − DRs

DRC

)

*100 (5)  

where DRc is the degradation rate of β-carotene in the control sample, which was calculated by the following equation, {[ln(ac /bc)] /t}, 
DRs is the degradation rate of β-carotene in the presence of sample extract = {[ln(as /bs)] /t}, where, a is the absorbance at time =
0 (min), b = absorbance at 240 min, t = time (min). The IC50 of the extract needed to reduce the percent of the oxidation of linoleic acid 
by 50% was calculated using an inhibition curve. All the assays were performed in triplicate and the results were expressed as mean ±
SD. 
2.7.3.1. Nitric oxide scavenging activity. Nitric oxide (NO•) is generated in biological tissues by nitric oxide synthases, which is a key 
signaling molecule in various physiological processes; On the other hand, excessive and unregulated NO synthesis has been implicated 
in many pathophysiological conditions, including cancer (Korde Choudhari, Chaudhary, 2013). Under aerobic conditions, 2 mL of 10 
mM sodium nitroprusside dissolved in 0.5 mL of phosphate buffer saline (pH 7.4) were mixed with 0.5 mL of sample at various 
concentrations (0.05–1 mg/mL). The mixture is then incubated at 25 ◦C. After 150 min of incubation in front of the polychromatic light 
source (25 W tungsten lamp), 0.5 mL of the incubated solution was mixed with 0.5 mL of Griess reagent (1% sulfanilic acid reagent, 
0.1% naphthyl-ethylenediamine dichloride, 2% phosphoric acid) (Alam and Bristi, 2013). The mixture’s color was measured at 546 nm 
using a UV–visible spectrophotometer (Optima, SP-3000nano, 5T5701-143132-00, Japan) after 30 min of incubation at room tem
perature. The antioxidant capacity against the NO• free radical was calculated using Eq. (6). 

AA (%)=
AB − AS

AC
*100 (6)  

where AS is the absorbance of the free radical solution + sample extract at the required time, AB is the absorbance of the free radical 
solution + extraction solvent at the required time, AC is the absorbance of the working free radical solution at (t = 0 min). The 
concentration required for inhibition of 50% of free radicals was also calculated from the inhibition curve. All the results were 
expressed as mean (N = 3) ± SD. 

2.8. Statistical analysis 

All experimental results were reported as mean values (n = 3) with their corresponding standard deviations. JMP® Pro 13.0.0 
software (SAS Institute Inc.) was used for the screening and optimization process. Three-dimensional response surfaces were plotted 
according to the fitted model using JMP® Pro 13.0.0 software, by keeping one of the three independent variables constant at level- 
coded zero. The adequacy and accuracy of DSD and I-optimal models were evaluated using analysis of variance (ANOVA), lack of 
fit (LOF), and determination coefficient of R2 obtained. Statistical significance of both DSD and I-optimal models and estimated co
efficients of UAE parameters were established at p < 0.05. The desirability function and the optimal extraction conditions for multiple 
responses (TPC, TEAC, TAC) were investigated by using JMP® Pro 13.0.0 software. 

In order to evaluate the goodness of fitting and prediction accuracy of DSD and I-optimal designs, statistical parameters such as 
mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE), absolute average deviation (AAD), standard 
error of prediction (SEP), and relative percent deviation (RPD) were carried out between experimental and predicted data. In addition 
to the statistical parameters including adequate precision (AP), correlation coefficients (R2), and adjusted determination coefficient 

Table 6 
Regression results of the definitive screening design and the estimated parameters of the TPC, TEAC, and TAC.    

TPC (mgGAE/gdw) TEAC (μmolTE/gdw) TAC (mgAAE/gdw)  

Parameters EC ρ-value EC ρ-value EC ρ-value 

Estimated parameters Intercept 28.698 <0.0001a 234.609 <0.0001a 35.308 <0.0001a 

Linear effects       
x1 2.959 0.0006a 10.309 0.0009a 4.123 <0.0001a 

x3 1.997 0.0059a 15.107 <0.0001a 2.335 0.0028a 

x4 7.676 <0.0001a 47.685 <0.0001a 7.176 <0.0001a 

x2 0.204 0.7317b − 2.0267 0.3414b − 0.509 0.3811b 

Quadratic effects       
x1x1 − 6.662 0.0001a − 31.866 0.0002a − 7.649 0.0004a 

x4x4 − 3.082 0.0602b − 45.571 <0.0001a − 2.662 0.1019b 

Regression results Interaction effects       
x1x4 − 0.028 0.9625b − 7.397 0.0099a − 1.112 0.1026b 

x1x3 − 0.502 0.4524b − 2.877 0.2599b − 1.207 0.1007b 

R2 0.97 0.99 0.97 
R2

Adj 0.94 0.98 0.94 
RMSE 2.0120 7.497 2.057 
C.V (%) 9.7 4.3 7.6 
ANOVA (Model) <0.0001a <0.0001a <0.0001a 

Lack of fit / / / 

TPC; Total phenolic compounds, TEAC; Trolox equivalent antioxidant capacity, TAC; Total antioxidant capacity EC; Estimated coefficient, RMSE; Root Mean Square 
Error, C.V; Coefficient of variance, ρ-value a; statistically significant, ρ-value b; statistically not significant. 
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(R2
Adj) were also employed in this study. The formulas used are shown in Table 9 (Rafigh and Yazdi, 2014; Dahmoune and Remini, 

2015; Sarve and Sonawane, 2015). 

3. Results and discussion 

3.1. Optimization process 

3.1.1. Definitive screening design 
The DSD was conducted to screen the effects of the ethanol-water mixture, extraction temperature, sonication time, and solvent to 

solid ratio on the extraction of TPC, TEAC, and TAC. Table 2 presents the DSD and corresponding response data. The analysis of 
variance (ANOVA) and lack of fit results of the model are illustrated in Table 6. The model was highly significant (p-value < 0.0001) 
with an insignificant lack of fit. The results reflect a good model performance for predicting the relevant responses as well as high 
correlation coefficients R2 ≥ 0.97, and R2

Adj ≥ 0.94 for all responses (TPC, TEA, and TAC) that indicate a good fitness of the selected 
model. All these results point to the higher accuracy of the DSD model, confirmed by a good correlation between experimental and 
predicted responses. Furthermore, the variation coefficient (CV) describes the degree to which the data were dispersed; a CV of less 
than 10% is generally desired (Koocheki and Taherian, 2009). Our results confirmed that the CVs were 9.7, 4.3, and 7.6% for TPC, 
TEAC, and TAC, respectively; therefore, the suggested model was reproducible with high precision. 

The mathematical equations (Eqs. (7)–(9)) of DSD represent the relationship between TPC, TEAC, TAC, and the extraction factors as 
follows: 

TPC (mgGAE / gdw)= 28.698+ 2.959x1 + 1.997x3 + 7.676x4 − 6.662x2
1 (7)  

TEAC (μmolTE / gdw)= 234.609+ 10.309 x1 + 15.107 x3 + 47.685 x4 − 31.866 x2
1 − 45.571 x2

4 − 7.397 x1x4 (8)  

TAC ​ (mgAAE / gdw)= 35.308+ 4.123 x1 + 2.335 x3 + 7.176 x4 − 7.649 x2
1 (9) 

According to the results obtained from DSD, the continuous factors, including ethanol-water mixture, temperature, and solvent to 
solid solvent ratio, exhibited a high effect on TPC, TEAC, and TAC (p < 0.05). While the extraction time showed no effect on phenolic 
extraction compounds and antioxidant activities with a p-value of 0.05 (Table 6). Regarding the quadratic effects of UAE factors on 
TPC, TEAC, and TAC, they were also considered, where only the ethanol-water mixture was the highly significant factor on the TPC and 
TCA (p < 0.01). Concerning the quadratic effects the ethanol-water mixture, and solvent to solid ratio showed a high impact on the 
TEAC (Table 6). Furthermore, the significant synergic effect of the ethanol-water mixture and solvent to solid ratio on TEAC was 
observed with a small p-value (p < 0.01) as depicted in Table 6. 

3.1.2. I-optimal design 
According to the results of the DSD, three factors, including the ethanol-water mixture, temperature, and solvent to solid ratio, were 

identified as significant factors in TPC extraction, TEAC, and TAC from S. officinalis L. leaves (Tables 2 and 6), hence, these factors were 
selected for the optimization process as mentioned in Table 3. Table 7 showed the analysis of variance and the estimated parameters of 
the optimal design. The experiment data were analyzed by ANOVA and multiple regression analysis. The factors x1, x3, and x4 were 

Table 7 
Regression results of I-optimal design and the estimated parameters of the TPC, TEAC, and TAC.    

TPC (mgGAE/gdw) TEAC (μmoleTE/gdw) TAC (mgAAE/gdw) 

Parameters EC ρ-value EC ρ-value EC ρ-value 

Estimated parameters Intercept 24.998 <0.0001a 214.925 <0.0001a 34.174 <0.0001a 

Linear effects       
x1 − 0.268 0.4933b 12.820 0.0270a 3.355 0.0004a 

x3 1.054 0.0059a 10.236 0.0593b 1.182 0.0493a 

x4 8.013 <0.0001a 49.113 <0.0001a 7.766 <0.0001a 

Quadratic effects       
x1x1 − 4.697 0.0007a − 32.106 0.0107a − 5.495 0.0012a 

x4x4 − 1.952 0.0371a − 20.258 0.0602b 0.956 0.0669b 

Regression results x3x3 3.001 0.0064a − 7.287 0.4376b − 0.011 0.9912b 

Interaction effects       
x1x3 − 0.537 0.2540b − 10.859 0.0773b − 0.587 0.3320b 

x1x4 0.569 0.2294b − 16.127 0.0195a − 1.247 0.0663b 

x3x4 − 1.340 0.0201a − 7.569 0.1893b 0.308 0.6005b 

R2 0.99 0.97 0.99 
R2

Adj 0.97 0.92 0.96 
RMSE 1.15 13.86 1.51 
C.V (%) 5.09 7.82 5.15 
ANOVA (Model) <0.0001a 0.0007a <0.0001a 

Lack of fit 0.0806 0.1199 0.0713 

TPC; Total phenolic compounds, TEAC; Trolox equivalent antioxidant capacity, TAC; Total antioxidant capacity EC; Estimated coefficient, RMSE; Root Mean Square 
Error, C.V; Coefficient of variance, ρ-value a; statistically significant, ρ-value b; statistically not significant. 
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taken into consideration, and the I-optimal model for TPC, TEAC, and TAC were obtained as shown in Eq. (10), Eq. (11), and Eq. (12) 
respectively. 

TPC ​ (mgGAE/gdw) = 24.998 + 1.054 x3 + 8.013 x4 − 4.697 x2
1 + 3.001 x2

3 − 1.952 x2
4 − 1.340 x3x4 (10)  

TEAC ​ (μmolTE/gdw)214.925 + 12.820 x1 + 49.113 x4 − 32.106 x2
1 − 16.127 x1x4 (11)  

TAC ​ (mgAAE / gdw)= 34.174 + 3.355 x1 + 1.182 x3 + 7.766 x4 − 5.495 x2
1 (12) 

A summary ANOVA for the UAE optimization parameters using the optimal design is given in Table 7. ANOVA showed that the 
model showed a lower P-value (<0.01) for TPC, TAC, and TEAC. Based on these results, the models for all tested responses were 
significant, with an insignificant lack of fit for all responses, which indicates good model performance for predicting the relevant 
response (Table 7). Moreover, the calculated adjusted coefficients (R2

Adj) (TPC, TEAC, and TAC) were close to the determination co
efficients (R2) (Table 7). Regarding linear interaction, and quadratic effects, they were identified as significant (P < 0.05). It could be 
observed that all the linear effects (x1, x3, x4), quadratic effects (x2

1, x2
3, x2

4), and interaction effects (x1x4, x3x4) exhibited a significant 
effect on the extraction of TPC, TEAC, and TAC (Table 7). 
3.1.2.1. The effects of UAE factors on TPC, TEAC, and TAC. The I-optimal design was carried out to optimize the extraction of TPC and 
the antioxidant activities of S. officinalis L. leaves using TEAC and TAC assays. The experimental design and the results of TPC, TEAC, 
and TAC are illustrated in Table 3. The analysis of variance of the model and the estimated coefficient of each extraction parameter on 
TPC, TAEC, and TAC are depicted in Table 7. 

Fig. 3a showed the interaction effect of ethanol-water and temperature while the third variable was kept at a constant level. The 
two variables affected positively the TPC yield from 16 to 31 mgGAE/gdw, where the maximum of phenolic content was reached at 50% 
of the ethanol-water mixture and 60 ◦C, of UAE temperature with TPC value of 31 mgGAE/gdw (Fig. 3a). TPC of S. officinalis leaf extract 
obtained in this study was closer to the TPC (27.05 mgGAE/gdw) reported by Maleš and Dragović-Uzelac (2022), and high than TPC 

Fig. 3. Three-dimensional plots of S. officinalis L. leaves showing the influence of UAE factors on the recovery of TPC.  
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(25.58 mgGAE/gdw) of hydro-methanolic extract reported by Doymaz and Karasu (2018). In addition, the TPC of optimal S. officinalis 
extract was higher than the 9.15 mgGAE/gdw in supercritical fluid sage leaf extract, and higher than 17.1 mg mgGAE/gdw in sage 
methanol-acetone extract reported by Pavic and Jakovljevic (2019) and Francik and Francik (2020) respectively. 

The same effect of ethanol-water and temperature on TEAC and TAC was also noticed as depicted in Fig. 4a and d, where the 
antioxidant activities for both assays increased with an increase in ethanol concentration and temperature, where the highest TEAC 
(220 μmolTE/gdw) and TAC (36 mg AAE/gdw) were observed at 60 ◦C and a 50% ethanol-water mixture. However, a downward trend in 
phenolic compounds and antioxidant activities was observed when the ethanol concentration was increased from 50% to 90% (Fig. 4a 
and d). Savic and Savic Gajic (2020) reported that the optimal conditions for UAE of total phenolic compounds Triticum aestivum L were 
56% (v/v) ethanol, temperature of 59 ◦C, where the TPC varied from 105 to 155 mg GAE/gdw. Furthermore, the optimal UAE pa
rameters obtained in this study was in accordance with the results obtained by Berkani and Serralheiro (2020), which found that the 
ethanol concentration with 50.16% exhibited high total phenolic content of 23.83 ± 0.87 mg GAE/gdw from Zizyphus lotus fruits. 
Regarding the antioxidant activity, Chew and Khoo (2011) showed that 60 ◦C of extraction temperature exhibited higher antioxidant 
capacity (7.65 μmolTE/g) from Orthosiphon stamineus extract. 

The effect of ethanol concentration could be explained based on the similarity and intermiscibility principle. When the ethanol- 
water mixture reached 50%, its polarity was closer to the polarity of antioxidant compounds, thus the antioxidant activity of 

Fig. 4. Three-dimensional plots of S. officinalis L. leaves showing the influence of UAE factors on TEAC (a, b, c) and TAC (d, e, f) respectively.  
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S. officinalis L. leaves enhanced significantly. Several studies have reported that TPC and TFC are highly soluble in hydroalcoholic 
solutions, whereas compounds with antioxidant capacity are more hydrophilic (Arteaga-Crespo and Radice, 2020; Palma and Diaz, 
2021). Moreover, the increase in ethanol concentration could enhance the solubility of antioxidant compounds by enhancing the area 
between the extraction solvent and solutes (Ali and Lim, 2018). 

To understand more about the effect of temperature, the Figs. 3c, 4c and 4e showed the interaction effect of temperature with 
solvent to solid ratio on TPC, TEAC, and TAC, respectively, where the temperature effect was studied at two different levels (high and 
low amount of solvent to solid ratios). According to Figs. 3c, 4c and 4e, the TPC, TEAC, and TAC were increased gradually with an 
increase in extraction temperature when the solvent to solid ratio was at low values. On the other hand, the extraction of TPC was 
slightly decreased when the temperature was increased from 30 ◦C to 45 ◦C, and then the TPC increased gradually again with an 
increase in temperature from 45 ◦C to 60 ◦C when the solvent to solid ratio was at high values (Fig. 3c). Furthermore, the insignificant 
effect of temperature on TEAC was obtained at a high solvent to solid ratio, while TAC was increased gradually with an increase in 
temperature from 30 ◦C to 60 ◦C. As a result, the highest levels of TPC (35 mg GAE/gdw), TEAC (250 μmol TE/gdw), and TAC (42 mg AAE/ 
gdw) were obtained near the upper limits of both temperature (60 ◦C) and solvent to solid ratio (30 mL.g-1). 

The same tendency was obtained by Ismail and Guo (2019) and Pandey and Belwal (2018) which found that 30 mL/g solvent to 
solid ratio as optimal UAE parameter for maximum of phenolic and antioxidant compounds from plant extracts. The higher tem
perature could improve the extraction of TPC and antioxidant activity of medicinal plants by increasing vapor pressure and decreasing 
the surface tension of the medium. Consequently, more solvent vapors could fill the bubble cavity and numerous cavitation bubbles 
could be produced (Chemat and Rombaut, 2017). Moreover, the elevation in temperature enhances the mass transfer phenomena by 
providing energy to the analyte molecules to overcome the energy barriers that bind them to the matrix (Capelo-Martínez 2009). 

Furthermore, the solvent to solid ratio factor showed a positive effect on TPC, TEAC, and TAC, where all tested responses were 
increased exponentially with an increase in the solvent to solid ratio up to 30 mL g− 1 (Fig. 3b, c, 4b, 4c, 4e, and 4f). Vural et al. (2018) 
mentioned that a solvent to solid ratio of 30 mL/g as optimal extraction parameters exhibited high TPC, and antioxidant activity of 
25.87 ± 0.92 mg GAE/g and 92.33% ± 0.47 respectively from grape seeds extract. As stated in previous work, increasing the amount 
of solvent provides more surface area for the acoustic wave to form cavitation bubbles, which increases mass transfer between the 
solvent and sample (Ngamkhae and Monthakantirat, 2022). In addition, a high solvent to solid ratio increases the suspension density of 
the solution, which adversely impacts the solvation of liberated cellular compounds (Pham and Vuong, 2017). On the other hand, the 
high viscosity of the solution at a low solvent to solid ratio poses more difficulty in the cavitation effect, where the negative pressure in 
the rarefaction cycle has to overcome a stronger cohesive force in the high viscous solution (Kumar and Srivastav, 2021). 

3.1.3. Optimization of extraction parameters 
The optimization of UAE parameters was performed with the aim of maximizing the three responses simultaneously (TPC, TEAC, 

and TAC) due to the relationship between the phenolic compounds and their antioxidant activities. The validation of the DSD and the I- 
optimal design was performed at their optimal conditions. The optimal conditions obtained by both models were 60 ◦C of temperature 
and 30 mL.g-1 of solvent to solid ratio, where 57% and 52% of the ethanol-water mixture were obtained by the DSD and I-optimal 
models, respectively. The predicted TPC, TEAC, and TAC have fitted the predicted values in the range of 95% of prediction intervals 
generated from the DSD model as depicted in Table 8. These results confirmed the accuracy and adequacy of the DSD and I-optimal 
models for screening and optimization of the ultrasound-assisted extraction of TPC and antioxidant activity from S. officinalis L. leaves. 

A comparative evaluation of DSD and I-optimal design for predicting TPC, TEAC, and TAC was also carried out, and the results are 
shown in Table 9. However, the overall predictive capability of the model is usually determined by the coefficient of determination 
(R2). The efficiency of a model may not be explained by R2 alone (Rafigh and Yazdi, 2014), which could be explained by other sta
tistical parameters such as R2

Adj, MAE, MSE, RMSE, AAD, SEP, RPD, and AP. In terms of R2 and R2
Adj, the I-optimal design showed higher 

values for both TPC (R2 = 0.99, R2
Adj = 0.97) and TAC (R2 = 0.99, R2

Adj = 0.96), while DSD model exhibited higher prediction accuracy 
for TEAC (R2 = 0.99, R2

Adj = 0.98). In addition, for a good model, the prediction error values must be as small as possible. In this 
context, the I-optimal design showed a smaller prediction error for TPC (RMSE = 1.16, AAD = 2.99, SEP = 5.10, MAE = 0.56, RPD =
2.98) and TAC (RMSE = 1.51, AAD = 3.07, SEP = 5.15, MAE = 0.80, RPD = 3.06) than the DSD model for the prediction of TPC and 
TAC as depicted in Table 9. For the TEAC, the DSD model exhibited lower prediction error than the I-optimal design with RMSE = 7.49, 
AAD = 2.50, SEP = 4.38, MAE = 3.95, and RPD = 2.52 (Table 9). Furthermore, AP compares the range of the predicted values at the 
design points with the average prediction error, indicating adequate model discrimination when values are greater than 4.0 (Gon
zalez-Centeno and Knoerzer, 2014). In this study, all the values of AP presented in Table 9 were more than 4.0, which indicates the 

Table 8 
Predicted, obtained values and confidence intervals of optimal extract from S. officinalis L. leaves, generated by definitive screening design and I-optimal design.   

Response Predicted response 95% PI low Observed response a 95% PI high 

DSD TPC (mgGAE/gdw) 35.27 31.70 32.77 ± 0.35 38.83 
TEAC (μmolTE/gdw) 253.48 240.20 241.33 ± 1.26 266.76 
TAC (mg AAE/g dw) 42.77 32.12 38.76 ± 0.23 46.41 

I-Optimal design TPC (mgGAE/gdw) 33.64 31.38 31.84 ± 0.24 35.90 
TEAC (μmolTE/gdw) 240.60 213.51 237.94 ± 0.77 267.70 
TAC (mgAAE/gdw) 40.96 38.01 38.92 ± 0.54 43.92 

PI: Predicted interval, superscript a Values are expressed as mean ± standard deviation (n = 3). 

H. Moussa et al.                                                                                                                                                                                                        



Sustainable Chemistry and Pharmacy 29 (2022) 100820

12

adequacy and accuracy of both models. However, I-optimal design showed high AP values for both TPC and TAC, and a higher AP value 
was obtained using the DSD model for predicting TEAC (Table 9). From all the results obtained, the I-optimal design has shown a 
significantly higher predictive capacity of TPC and TAC than the DSD model, while the DSD model exhibited a higher predictive 
capacity of TEAC. 

3.2. Antioxidant activity 

The oxidative stress plays a key role in the development of several pathophysiological conditions, such as neurodegenerative and 
cardiovascular diseases, cancer, and diabetes (Almada-Taylor and Diaz-Rubio, 2018). The mechanisms of action of antioxidant 
compounds derived from herbal medicines have been extensively studied, and as a result, many in vitro methods for evaluating 
antioxidant capacity were used to gain a better understanding of how different phenolic compounds or complexes can act as modu
lators of oxidative processes. (Babota and Frumuzachi, 2022). In this context, the antioxidant activity of the S. officinalis L. optimal 
extract was carried out using the DPPH• scavenging assay, ferric reducing power, β-carotene/linoleic acid bleaching activity, and NO•

scavenging activity. As shown in Fig. 4, the antioxidant activities using different assays increased proportionally with an increase in the 
extract concentration, where at 0.6 mg/mL, the antioxidant activity using DPPH• radical scavenging, and β-carotene/linoleic acid 
bleaching, and NO• scavenging radical were 90%, 90%, and 70%, respectively (Fig. 5). According to the half-maximal inhibitory 
concentrations (IC50) obtained from each assay, S. officinalis L. extract showed a substantially higher antioxidant with an IC50 of 0.069 
± 0.0005 mg/mL against the NO• free radicals (Fig. 5). The IC50 value of NO• scavenging capacity obtained in this work was higher 
than the value reported by Pereira and Catarino (2018) for S. officinalis L. extract (IC50 = 0.118 ± 0.16 mg/mL). Furthermore, Mervic, 
Bival Stefan, (2022) reported that at concentration of 100 μg/mL, the extract of all the extracts of investigated salvia species exhibited 
higher NO• scavenging activity than 50%. 

In the β-carotene/linoleic acid model system, a rapid discoloration of β-carotene could occur in the absence of an antioxidant 
compounds (Hamrouni-Sellami and Rahali, 2012). Based on the obtained results, the optimal extract reduced the extent of β-carotene 
bleaching by scavenging the linoleate acid free radical with an IC50 of 0.159 ± 0.008 mg/mL (Fig. 5). The IC50 of optimal extract was 
low than the IC50 of S. Nemorosa, S. Pratenis, S. Sclarea, and S. Verticillata with values ranged from 116.83 μg/mL to 327.23 μg/mL 
obtained by Mervic, Bival Stefan, (2022), therefore the optimal extract showed higher potential scavenging than the salvia species. 

Furthermore, as a stable free radical, DPPH• is probably the most widely used free radical for in vitro evaluation of antioxidant 
capacity. The optimal S. officinalis L. extract scavenged strongly DPPH-free radicals in a dose-dependent manner, yielding a good 
antioxidant activity with an IC50 of 0.276 ± 0.001 mg/mL (Fig. 5), where this result obtained was in agreement with the IC50 of 
methanolic extract of S. officinalis L (0.233 mg/mL) obtained by Aghaei Jeshvaghani, Rahimmalek, (2015). In addition, the optimal 
extract from S. officinalis L. leaves also exhibited high reducing power to reduce TPTZ–Fe (III) complex to TPTZ–Fe (II) complex, where 
at 0.3 mg/mL of lyophilized powder, the reducing power was approximately 2 mmol Fe+2 equivalent/g as depicted in Fig. 6. Pereira 
and Catarino (2018) and Lu and Foo (2001) reported that the superior antioxidant activities in salvia species were strongly correlated 
to caffeic acid, rosmarinic acid, salvianolic acid K, salvianolic acid I, sagecoumarin, and sagerinic acid. 

Table 9 
Comparison of the performance of the definitive screening design and the I-optimal design.   

Performance equations 
Definitive screening design I-optimal design 

TPC TEAC TAC TPC TEAC TAC 

R2 =

∑n
i=1(Xi − Yi)

2

∑n
i=1(Yi − Yi)

2 

0.97 0.99 0.97 0.99 0.97 0.99 

R2
Adj = 1 −

[
(1 − R2) *

N − 1
N − K − 1

]
0.94 0.98 0.94 0.97 0.92 0.96 

SEP =
RMSE

Ye
*100 9.73 4.38 7.67 5.10 7.81 5.15 

MAE =
1
n
∑n

i=1
(
⃒
⃒Yiexp − Yipred

⃒
⃒)

1.19 3.95 1.13 0.56 7.19 0.80 

AAD =

(
1
n
∑n

i=1

(⃒⃒Yiexp − Yipred
⃒
⃒

Yiexp

))

*100 
7.60 2.50 5.60 2.99 4.40 3.07 

AP =
YiMax

pred − Yimin
pred

̅̅̅̅̅̅̅̅̅̅̅̅
P* σ2

n

√ > 4 
20.99 36.59 29.22 26.67 20.55 30.29 

RPD =
100
n

∑n

i=1

⃒
⃒(Yipred − Yiexp)

⃒
⃒

Yiexp 

7.58 2.52 5.57 2.98 4.42 3.06 

MSE =

∑n
i=1(Yiexp − Yipred)

2

n − p − 1 
4.05 56.20 4.23 1.34 192.22 2.29 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1(Yiexp − Yipred)

2

n − p − 1

√ 2.01 7.49 2.05 1.16 13.86 1.51 

n is the numbers of experiment, p is the number of terms other than the intercept in the model, Ye is the mean value of experimental data. P is the is the number of 
significant terms of the mathematical model including the model constant, and σ2 is the MS residual value from the ANOVA analysis, N is the total number of ob
servations, K is the number of input variables.  

H. Moussa et al.                                                                                                                                                                                                        



Sustainable Chemistry and Pharmacy 29 (2022) 100820

13

4. Conclusion 

In this study, two modeling approaches, DSD and optimal design, were used to optimize UAE parameters for the extraction of total 
phenolic compounds and for the antioxidant activity of S. officinalis L. leaves. After the optimization process, the DSD and optimal 
design demonstrated higher R2 and lower RMSE values, which indicate the performance of both models with fewer experimental runs. 
Based on the results obtained by DSD, only three extraction parameters showed a significant effect on TPC extraction, TEAC, and TAC. 
Optimization of the UAE process by the I-optimal design indicated that maximum values of TPC, TEAC, and TAC were 31.843 ± 0.248 
mgGAE/gdw, 237.946 ± 0.771 μmolTE/gdw, and 38.928 ± 0.548 mgAAE/gdw under the optimum conditions of 52% of the ethanol-water 
mixture, 60% of the temperature, 30 mL.g-1 of solvent to solid ratio, and 10 min of extraction time. Based on the statistical parameters 
employed to evaluate the predictive efficiency of both models, the I-optimal design showed more predictive capability for TPC and 
TAC, while the DSD model exhibited more efficiency in predicting the TEAC. 

Furthermore, the current research findings for UAE optimization could be used as an efficient and eco-friendly alternative to 
conventional extraction in extracting the phenolic compounds from plant matrices. The optimal extract from S. officinalis L. leaves 
exhibited higher antioxidant activity using DPPH• and NO• scavenging activity, β-carotene/linoleic acid bleaching activity, and 
reducing power. The IC50 values for DPPH• and NO• scavenging, as well as -carotene/linoleic acid bleaching, were 0.276 ± 0.001 mg/ 
mL, 0.069 ± 0.0005 mg/mL, and 0.159 ± 0.008 mg/mL, respectively. The reducing power of the optimal extract was 0.3 mg/mL of 
lyophilized powder. The reducing power was approximately 2 mmol Fe+2 equivalent/g, which could be an effective medicinal plant 
used for treating and healing many diseases. 
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Fig. 5. Evaluation of antioxidant activity of the optimal extract from S. officinilis L. using DPPH• scavenging activity, Beta carotene bleaching assay, and nitric oxide 
scavenging activity. 

Fig. 6. Evaluation of antioxidant activity of the optimal extract from S. officinilis L. using ferric reducing power.  
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Vural, N., Algan Cavuldak, Ö., et al., 2018. Multi response optimisation of polyphenol extraction conditions from grape seeds by using ultrasound assisted extraction 
(UAE). Separ. Sci. Technol. 53 (10), 1540–1551. 
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A B S T R A C T   

The study aims to optimize MAE of total phenolic compounds (TPC) and antioxidant capacity 
from Salvia officinalis L. leaves using a definitive screening design (DSD) and I-optimal design. 
UHPLC-HRMS analysis was used to identify and compare the composition of MAE and UAE 
optimal extracts. The results showed that DSD and I-optimal design were successfully applied for 
the optimization of MAE targeting phenolics and other antioxidants from S. officinalis L. with the 
following optimum conditions: 60% ethanolic solvent, time of 4.75 min, power of 600 W, and L/S 
ratio of 50 mL g− 1. The UHPLC-MS analysis results allowed the identification of more than 80 
compounds, and the differential analysis indicated that the MAE yielded a higher level of 181 
substance peaks, while the UAE yielded a higher level of 87 substance peaks. This study provides 
valuable information for selecting the appropriate extraction technique when targeting specific 
compounds.   

1. Introduction 

Salvia officinalis L. (Lamiaceae), known as common sage is a culinary herb and medicinal plant widely spread around the world, 
which has been used in food as a spice, appetizer, or garnish (Pachura et al., 2022). Moreover, common sage has been used to treat 
dementia, ameliorate memory, speed up sensory responses, thinking, and behavior as well as treat depression, digestive and circu
latory disorders and reduce sweating (Sulniute et al., 2017). Many bioactive compounds have been identified in S. officinals L. such as 
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flavonoids (luteolin 7-glucoside, apigenin, hispidulin, kaempferol, and quercetin), phenolic acids (rosmarinic, caffeic, and salvianolic 
acids), diterpenes (tanshinones, carnosic acid, and carnosol), triterpenes (ursolic acid and oleanolic acid) (Reguigui et al., 2023; Sabry 
et al., 2022). The quality and quantity of these bioactive compounds are dependent on the plant chemotype, drying, and extraction 
techniques, thus, the interest in a more systematic and comprehensive characterization using LC-MS, GC-MS, and HPTLC have been 
employed (Nayak et al., 2015; Pachura et al., 2022; Reguigui et al., 2023). 

The extraction technique is an essential step used to obtain bioactive compounds that have therapeutic potential. These bioactive 
compounds can be used to formulate drugs, dietary supplements, cosmetics, and other health products. The ultrasound-assisted 
extraction (UAE), microwave-assisted extraction (MAE), ultrasound-microwave-assisted extraction (UMAE) and supercritical fluid 
extraction (SFE) are more advanced and effective technologies used for the extraction of bioactive compounds from plant matrices 
(Berkani et al., 2020; Dahmoune et al., 2015b; Darvishzadeh and Orsat, 2022; Moussa et al., 2022). The heat and pressure generated by 
using these technologies are significantly accelerate the extraction process (Eskilsson and Björklund, 2000). MAE has various ad
vantages compared to traditional procedures, including less solvent usage, less waste released into the environment, rapid extraction, 
and energy savings because microwaves effectively heat the sample (Tomasi et al., 2023). Different extraction parameters such as the 
nature of extraction solvent, microwave power, time, solvent-to-solid ratio, temperature, pressure, and on the characteristics of plant 
matrices could affect significantly the efficiency of MAE (Tomasi et al., 2022), thus several reports were established to optimize these 
extraction parameters (Khajeh and Ghanbari, 2011; Pan et al., 2001). 

Many statistical designs were applied to enhance the MAE of bioactive compounds from plant materials. In recent years, Box- 
Behnken (Xu et al., 2020), central composite (Kwon et al., 2003), and Plackett-Burman design (Chen et al., 2023) have been used 
extensively for the optimization process. However, one notable drawback of the Plackett-Burman design is the occurrence of aliasing 
among factors interactions (Beres and Hawkins, 2001). This limitation becomes critical as interactions between factors often play a 
crucial role in various processes, and the absence of interaction information can significantly compromise the accuracy of the resulting 
model (Beres and Hawkins, 2001). On the other hand, both the Box-Behnken and central composite designs require a relatively large 
number of experimental runs compared to newer statistical designs like the definitive screening design (DSD) and I-optimal design. The 
need for a higher number of experimental runs can pose resource challenges, particularly when the studied process is time-consuming 
or expensive (Ferreira et al., 2007; Rakić et al., 2014). 

DSD and I-optimal design are new statistical designs have been created by Jones and Nachtsheim (2011), and Goos and Jones 
(2011). The DSD with a few of experimental runs is an excellent screening design that could be attributed to its proprieties namely the 
main effects are not aliased with two-factor interactions, as well as the DSD could estimate all quadratic effects, where quadratic terms 
in the model are orthogonal to the main effect and not completely aliased (Jones and Nachtsheim, 2011). On the other hand, the 
I-optimal design is a custom design that was used for the optimization process. The experimental matrix of I-optimal is generated using 
the coordinate-exchange algorithm of Meyer and Nachtsheim (1995), which provides high accuracy for the prediction of output 
variables (Moussa et al., 2022). 

According to the authors’ best knowledge, no optimization studies were conducted on MAE of total phenolic compounds and 
antioxidant capacity from S. officinalis L. leaves using DSD and I-optimal design. Also, there is a paucity of investigation about the 
influence of MAE and UAE on the bioactive compounds of S. officinalis L. Therefore, the present work aims to optimize MAE of total 
phenolic content, and antioxidant capacities including Trolox equivalent antioxidant capacity (TEAC), and total antioxidant capacity 
(TAC) from S. officinalis L. using I-optimal design as response surface methodology. As a first step to optimizing the MAE, an initial 
screening of extraction parameters was carried out using DSD. Furthermore, a differential analysis using UHPLC-HRMS between 
phenolics profile of MAE optimal extract and UAE optimal extract obtained in our previous work (Moussa et al., 2022) were carried out 
to evaluate the effect of MAE and UAE on TPC, TEAC, and TAC. 

2. Materials and methods 

2.1. Reagents 

Methanol and ethanol were purchased from SIGMA-ALDRICH (Co.,3050 Spruce, St. Louis, MO 63103 USA 314-771-5765, Product 
of Denmark), sodium carbonate (Na2CO3), ABTS (2,2′

− azino − bis (3 − ethylbenzothiazoline − 6 − sulfonic acid), potassium persul
fate (K2S2O8), gallic acid, Trolox, and ascorbic acid were purchased from SIGMA-ALDRICH (Co.,3050 Spruce, St. Louis, MO 63103 
USA 314-771-5765, Product of Denmark). Folin-Ciocalteu’s reagent, ammonium molybdate tetrahydrate ((NH4)6Mo7O24 • 4H2O), 
sodium phosphate monobasic (NaH2PO4 • H2O), and sodium phosphate dibasic (Na2HPO4 • 12H2O) were purchased from VWR 
CHEMICALS (VWR International S.A.S. 201 Rue Carnot - F-94126 Fontenay-sous-Bois France, Product of France). 

Table 1 
The input variables and their levels employed for the screening and optimization of MAE.  

Independent variables Levels 

-1 0 +1 

x1: Ethanol-water mixture (%) 30 55 80 
x2: Time (s) 60 180 300 
x3: Microwave power (W) 200 400 600 
x4: Solvent to solid ratio (mL.g-1) 20 35 50  
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2.2. Microwave-assisted extraction 

The microwave-assisted extraction of phenolic and antioxidant compounds from S. officinalis L. leaves was carried out using a 
microwave equipped with a time controller and a circulating water-cooling system (NN S674MF, Samsung, Malaysia); with a cavity 
size of 22.5 cm × 37.5 cm × 38.6 cm, and frequency of 2450 kHz. A total of 1 g of dried S. officinalis L. leaves, which were finely ground 
into a powder, were placed in a 250 mL vessel. Samples were mixed into different concentrations of aqueous ethanol (30 to 80%), at the 
various solvent-to-solid ratios (20 to 50 mL g-1). The vessel was placed into the microwave cavity for extraction. Furthermore, the other 
MAE parameters studied were microwave power (200-600 W), and extraction time (60 to 300 s), and the experiments were performed 
as presented in Table 1, Table A.1, and Table A.2. After each MAE, the extract was centrifugated (Sigma 3-16L, 172577, Germany) at 
5000 rpm for 10 min followed by filtration through a Whatman No. 4 filter paper, and the supernatant was stored at 4 ◦C for further 
analysis. 

2.3. Optimization and prediction procedure 

To screen and optimize MAE parameters for maximizing the TPC and antioxidant compounds from S. officinalis L. leaves, an 
ethanol-water mixture (x1), time (x2), microwave power (x3) and solvent to solid ratio (x4) were evaluated using DSD and I-optimal 
design, respectively. 

2.3.1. Definitive screening design 
DSD was employed to screen and investigate the simultaneous effect of MAE parameters on TPC and antioxidant activity of 

S. officinalis L. leaves extract. The experimental design, regression analysis, and model building have been studied using JMP® Pro 
13.0.0 software Pro (SAS Institute Inc, Cary, North of Carolina, US). A DSD design was carried out with three levels (maximum, 
minimum, and central) of each variable to determine the response pattern and establish a model. The MAE parameters with their units 
and notation are given in Table 1. The matrix of DSD with 17 experimental combinations (Table A.1) for MAE parameters (x1, x2, x3 
and x4) showed high D-efficiency (85.61), G-efficiency (92.32), A-efficiency (85.36), and the average variance prediction of this design 
was 0.154. Moreover, according to Fig. A.1, the main effects of MAE parameters are uncorrelated with two-factor interaction effects. 

2.3.2. I-optimal design 
The results of DSD revealed the significant effect of MAE parameters, namely ethanol-water mixture (x1), time (x2), microwave 

power (x3) and solvent to solid ratio (x4) on TPC, TEAC, and TAC. Hence, the optimization of these MAE parameters to maximize the 
TPC, TEAC, and TAC was carried out using an I-optimal design. The actual and coded levels of the studied parameters are depicted in 
Table 1. A three-level (1, 0, and +1) factor design comprising 21 experimental runs including 3 replicates at the center point was 
employed (Table A.2). The I-optimal design was constructed using JMP® Pro 13.0.0 software, where D, G, and A-efficiency were 42.41, 
65.61, and 30.63, respectively. As well as the average variance prediction was 0.358. According to Fig. A.2, all the linear effects are 
orthogonal and can be estimated independently. 

For each response (TPC, TEAC, or TAC) the empiric polynomial model of DSD and I-optimal design is shown in Eq. (1): 

Table 2 
DSD’s regression results and the estimated MAE parameters of the TPC, TEAC, and TAC.  

Parameters TPC (mgGAE/gdw) TEAC (μmolTE/gdw) TAC (mgAAE/gdw) 

EC ρ-value EC ρ-value EC ρ-value 

Estimated parameters Intercept 32.503 < 0.0001a 245.065 < 0.0001a 33.147 < 0.0001a 

Linear effects       
x1 0.206 0.604b 3.016 0.215b 2.007 0.0005a 

x3 7.143 × E− 10 1.000b -0.011 0.995b -1.436 0.0032a 

x4 6.290 <0.0001a 25.601 <0.0001a 2.626 < 0.0001a 

x2 -0.214 0.7317b 12.337 0.0008b 2.601 < 0.0001a 

Quadratic effects       
x1x1 -0.978 0.365b -20.508 0.0102a -6.270 0.0002a 

x2x2 -0.282 0.798b -14.630 0.0503b 0.309 0.745b 

x4x4 1.399 0.230b -15.150 0.0445a -2.169 0.0499a 

Interaction effects       
x1x3 -0.199 0.365b 5.212 0.188b 1.107 0.0380a 

x2x4 -0.240 0.594b 11.247 0.0034a -0.186 0.6420b 

Regression results R2 0.97 0.99 0.97 
R2

Adj 0.94 0.93 0.94 
RMSE 1.42 8.29 1.22 
C.V (%) 4.35 4.07 4.60 
ANOVA (Model) < 0.0001a 0.0001a < 0.0001a 

Lack of fit / / / 

TPC; Total phenolic compounds, TEAC; Trolox equivalent antioxidant capacity, TAC; Total antioxidant capacity EC; Estimated coefficient, RMSE; Root Mean Square 
Error, C.V; Coefficient of variance, ρ-value a; statistically significant, ρ-value b; statistically not significant. 
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∑k
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i,j + εi (1) 

Fig. 1. Three dimensional response surface plot showing the effects of MAE parameters on TPC from S. officinalis L. a: effect of ethanol-water mixture and time, b: 
effect of ethanol-water mixture and microwave power, c: effect of ethanol-water mixture and solvent to solid ratio, d: effect of time and microwave power, e: effect of 
time and solvent to solid ratio, f: effect of microwave power and solvent to solid ratio. 
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where k is the number of MAE parameters, and B0,Bijk,Bjj are the estimated regression coefficients for linear, interaction, and 
quadratic effects, respectively, xi,j, xi,k, x2

i,j are the coded MAE factors, yi is the responses (TPC, TEAC, or TAC), and εi is the error. 

2.4. Determination of TPC and antioxidant capacity of S. officinalis L 

The TPC of MAE extracts of S. officinalis L. was determined by Folin’s assay as mentioned in previous work (Moussa et al., 2022). A 
standard curve of Gallic acid was used to calculate the TPC from S. officinalis L. as mgGAE/gdw, where all results were expressed as means 

± standard deviations (SD). 
The TAC of MAE extracts obtained according to DSD and I-optimal design was estimated according to the assays described in our 

previous work (Moussa et al., 2022). TAC was expressed as mg of ascorbic acid equivalent (AAE)/gdw using the calibration curve’s 
equation (Moussa et al., 2022). All the assays were performed in triplicate and the results were expressed as mean ± SD. The Trolox 
equivalent antioxidant capacity of MAE extracts were estimated using the protocol used for the evaluation of UAE extracts of 
S. officinalis L. leaves (Moussa et al., 2022). The TEAC was determined using the Trolox standard curve’s equation and given as μmol 
Trolox equivalent (TE)/gdw of S. officinalis L. powder. All experiments were carried out in triplicate, and the findings were presented as 
mean standard deviation. 

2.5. UHPLC-MS Characterization of bioactive compounds from common sage leaves extracts 

To evaluate the bioactive compounds profiles of S. officinalis L. obtained by MAE, and ultrasound-assisted extraction (UAE), the 
high-resolution tandem liquid chromatography-mass spectrometry (UHPLC-HRMS, Dionex Ultimate 3000, RS Autosampler) was 
employed as reported in the previous work of Kusznierewicz et al. (2021). Chromatographic separation was carried out with a C18 
column (LUNA OMEGA 1.6 μm Polar C18, 100 A◦, 150 × 2.1 mm). In this case, the mobile phase consisting of 0.1% (v/v) formic acid in 
water (A) and 0.1% (v/v) formic acid in acetonitrile (B) was pumped at a flow rate of 0.3 mL min-1 with gradient elution: 0 min, 15% B; 
15 min, 40% B; 16 min, 100% B; 24 min, 100% B and finally, the initial conditions were held for 7 min as a re-equilibration step. The 
injection volume was 1 μL for both UAE and MAE extracts. 

The UHPLC was coupled to a Dionex Ultimate 3000 RS-DAD and Q-Exactive™ Focus quadrupole-Orbitrap mass spectrometer 
(Thermo Fisher Scientific, Bremen, Germany) with a heated electrospray ionization source (HESI II). The HESI parameters in negative 
polarity included: sheath gas flow rate, 35 arb; auxiliary gas flow rate, 15 arb; sweep gas flow rate, 3 arb; spray voltage, 2.5 kV; 
capillary temperature, 350 ◦C; S-lens RF level, 50; heater temperature, 300 ◦C. Full scan data in the negative mode was acquired at a 
resolving power of 70.000 FWHM; AGC target, 1e6; max IT, auto. A scan range of 100 –1200 m/z was selected for the compounds of 

Fig. 2. Total ion chromatogram of S. officinalis MAE extract detected by LC-Q-Orbitrap in negative mode (A) set with chromatogram registered by UV-Vis detector at 
270 nm (B). 
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interest. The parameters of data-dependent MS2 were as follows: resolution, 17,500; isolation window, 3.0 m/z; normalized collision 
energy, 30; AGC target, 1e6; max IT, auto. Mass calibration was carried out using a combination of n-butylamine, caffeine, Met-Arg- 
Phe-Ala (MRFA), and Ultramark 1621 in both positive and negative modes. 

Compound Discoverer (CD) software (v. 2.1, Thermo, Waltham, USA) was used to interpret the information contained in the raw 
UPLC-HRMS data. Accurate mass and fragmentation patterns were used to identify the components of the extracts. These compounds 
were identified based on the customized database of various classes of phytochemicals that was built from available literature data on 
the Salvia species and implemented in the CD software. Raw data of six experimental replicates from MAE, UAE Salvia’s extracts, and 
extraction solvent (blank) were processed using a workflow based on the template for Food Research w Statistics Unknown ID w Online 
and Local Database Searches. 

2.6. Statistical analysis 

JMP® Pro 13.0.0 software was used to create the experimental data. The analysis of variance (ANOVA) was used to investigate the 
fitness of the DSD and I-optimal models, as well as the significance of MAE parameters. The 3D response surface plots were used to 
assess the influence of each MAE parameter and its interactions on the responses (TPC, TEAC, and TAC). The differential analysis of MS 
data was performed with Compound Discoverer 2.1 software. 

3. Results and discussion 

3.1. Definitive screening design 

3.1.1. Model fitting 
A 17-run DSD with four MAE parameters and three levels was employed to assess the effects of MAE parameters and their inter

action on TPC, TEAC, and TAC from S. officinalis L. leaves, where, the DSD results were presented in Table A.1. The second-order 
polynomial regression analysis and statistical analysis of variance (ANOVA) were presented in Table 2. The relationship between 
the TPC, TEAC, and TAC and MAE parameters was described in Eq. (2), Eq. (3), and Eq. (4), respectively: 

TPC
(
mgGAE / gdw)= 32.50+ 0.20 x1 − 0.21 x2 + 7.14 ∗ E− 10x3 + 6.29 x4 − 0.97 x2

1 − 0.28 x2
2 + 1.39 x2

4 − 0.19 x1x3 − 0.24 x2x4 (2)  

TEAC
(
μmolTE / gdw)= 245.06+ 3.01 x1 − 12.33 x2 − 0.01 x3 + 25.60 x4 − 20.50 x2

1 − 14.63 x2
2 − 15.15 x2

4 − 5.21 x1x3 − 11.24 x2x4

(3)  

TAC
(
mgAAE / gdw)= 33.14+ 2.01 x1 − 2.60 x2 − 1.43 x3 + 2.62 x4 − 6.27 x2

1 − 0.30 x2
2 − 2.16 x2

4 + 1.10 x1x3 − 0.18 x2x4 (4)  

Table 2 summarizes the analysis of variance and goodness-of-fit of the DSD model. TPC, TEAC, and TAC’s high model significance were 

Table 3 
Regression results of I-optimal design and the estimated parameters of the TPC, TEAC, and TAC.  

Parameters TPC (mgGAE/gdw) TEAC (μmolTE/gdw) TAC (mgAAE/gdw) 

EC ρ-value EC ρ-value EC ρ-value 

Estimated parameters Intercept 38.858 < 0.0001a 247.748 < 0.0001a 34.278 < 0.0001a 

Linear effects       
x1 2.428 < 0.0001a 13.093 0.0005a 1.121 0.0564b 

x2 1.240 0.0014 a 1.158 0.569b 0.103 0.833b 

x3 -0.013 0.953b 4.974 0.0415a -0.113 0.817b 

x4 3.867 <0.0001a 21.885 <0.0001a 2.690 < 0.0013a 

Quadratic effects       
x1x1 -3.784 < 0.0001a -22.214 0.0006a -5.391 0.0006a 

x2x2 -1.175 0.033a 2.109 0.588b -0.682 0.479b 

x3x3 2.491 0.0011a 1.929 0.619b -0.304 0.747b 

x4x4 -0.623 0.193b -6.755 0.117b -1.532 0.141b 

Interaction effects       
x1x2 0.506 0.109b -0.571 0.814b -0.012 0.983b 

x1x3 -0.189 0.508b 5.466 0.0578b 0.120 0.839b 

x1x4 -0.792 0.026a -0.231 0.924b -0.560 0.364b 

x2x3 1.143 0.0039a -0.722 0.751b -0.482 0.405b 

x2x4 1.278 0.0023a -0.701 0.758b 0.192 0.731b 

x3x4 0.623 0.0478a 5.918 0.0349a 0.277 0.622b 

R2 0.99 0.97 0.94 
R2

Adj 0.97 0.92 0.83 
RMSE 0.79 6.90 1.69 

Regression results C.V (%) 2.15 3.02 5.88 
ANOVA (Model) < 0.0001a 0.0008a < 0.0088a 

Lack of fit 0.732b 0.859b 0.602b 

TPC; Total phenolic compounds, TEAC ; Trolox equivalent antioxidant capacity, TAC; Total antioxidant capacity EC; Estimated coefficient, RMSE; Root Mean Square 
Error, C.V; Coefficient of variance, ρ-value a; statistically significant, ρ-value b; statistically not significant. 
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validated by their lower p-value (<0.0001). The determination coefficient (R2), adjusted determination coefficient (R2
adj) and coeffi

cient of variance (C.V.) are all used to determine the goodness-of-fit of the DSD model. For TPC, TEAC, and TAC, the R2 values were 
more than 0.97, and R2

adj higher than 0.93. The C.V. for all responses was lower than 5% (Table 2). The high values of R2, and R2
adj and 

low value of C.V. confirmed that the DSD model could explain the most variation with high precision and reliability. According to the 
level of p-value, it can be concluded that only the linear coefficients (x4), was significant for TPC, whereas the linear coefficients (x4), 
quadratic coefficients (x2

1, and x2
4), and interaction term coefficients (x2x4) were all significant (p < 0.05) for TEAC. Furthermore, TAC 

was affected by all the linear coefficients (x1, x2, x3, and x4), quadratic coefficients (x2
1, and x2

4), and interaction term coefficients 
(x1x4). 

3.2. I-optimal design 

3.2.1. Model fitting 
Based on the DSD model (Table A.1, and Table 2), the MAE parameters including ethanol-water mixture (x1), time (x2), microwave 

power (x3) and solvent to solid ratio (x4) exhibited a higher influence on TPC, TEAC, and TAC, hence all the MAE parameters were 
selected for the optimization using I-optimal design. 

To study deeply the combined effect of MAE parameters on TPC, TEAC, and TAC, an I-optimal design was performed with different 
combinations of MAE parameters and the results are shown in Table A.2, which includes the experimental and predicted values. The I- 
optimal design’s accuracy was estimated based on the experimental data using different tests including the analysis of variance, lack of 
fit, and model summary statistics as mentioned in Table 3. The quadratic model for all responses was found to have maximum R2, and 
R2

adj and showed a low C.V. (<6%). The I-optimal design with lower p-values (<0.0001) and non-significant lack of fit was found to be 
the most suitable model for the extraction of TPC, TEAC, and TAC from S. officinalis L. The second-order polynomial equation was 
generated to describe the empirical relationship between the response (TPC, TEAC, and TAC) and MAE parameters in terms of coded 
values, following the predictive Eq. (5), Eq. (6), and Eq. (7): 

TPC
(
mgGAE / gdw)= 38.85+ 2.42 x1 − 1.24 x2 − 0.01 x3 + 3.86 x4 − 3.78 x2

1 − 1.17 x2
2 + 2.49 x2

3 − 0.62 x2
4 + 0.50 x1x2 − 0.18 x1x3 

− 0.79 x1x4 + 1.14 x2x3 + 1.27 x2x4 + 0.62 x3x4 (5)  

TEAC
(
μmolTE / gdw)= 247.74+ 13.09 x1 + 1.15 x2 + 4.97 x3 + 21.88 x4 − 22.21 x2

1 + 2.10 x2
2 + 1.92 x2

3 − 6.755 x2
4 − 0.57 x1x2 

+ 5.46 x1x3 − 0.23 x1x4 − 0.72 x2x3 − 0.70 x2x4 + 5.91 x3x4 (6)  

TAC
(
mgAAE / gdw)= 34.27+ 1.12 x1 + 0.10 x2 − 0.11 x3 + 2.69 x4 − 5.39 x2

1 − 0.68 x2
2 − 0.30 x2

3 − 0.14 x2
4 − 0.01 x1x2 + 0.12 x1x3 

− 0.56 x1x4 − 0.48 x2x3 + 0.19 x2x4 + 0.27 x3x4 (7)  

3.2.2. Effect of MAE parameters on TPC 
Three levels of I-optimal design were carried out to investigate the effect of MAE parameters such as ethanol-water mixture (x1), 

time (x2), microwave power (x3) and solvent to solid ratio (x4) on the MAE of TPC from S. officinalis L. From the I-optimal design, the 
three-dimensional response surface was constructed to demonstrate the interactive effects of MAE parameters on a TPC, by varying two 
extraction parameters while keeping the other extraction parameter constant. 

High TPC extraction yield (varying from 20 to 48 mgGAE/gdw) was obtained under the conditions studied. Based on estimated 
coefficients (Table 3), the ethanol-water mixture exhibited a positive and negative effect on TPC for linear and quadratic effects, 
respectively. As shown in Fig. 1a-b, TPC was mainly influenced by the effect of the ethanol-water mixture. When this extraction 
parameter increased from 30 to 58%, the TPC increased significantly, this rise can be attributed to the enhanced extraction efficiency 
facilitated by the ethanol-water mixture within this range. The dissipation factor plays a crucial role in assessing the effectiveness of a 
solvent in MAE (Ašperger et al., 2022). A higher dissipation factor signifies a superior capacity to convert microwave energy into heat. 
Among various solvents, ethanol and its aqueous solutions exhibit notably higher dissipation factors, thereby enabling more efficient 
translation of microwave energy into heat. This, in turn, leads to a local temperature increase that positively impacts the denaturation 
and degradation of cell walls (Ašperger et al., 2022). Consequently, the extraction of bioactive compounds from plant matrices using 
aqueous ethanol becomes easier due to these effects (Ašperger et al., 2022). Moreover, the presence of water in solvent system would 
increase the penetration of solvent into sample matrix, improving the heating efficiency (Chan et al., 2011). However, beyond the 58% 
threshold of the ethanol-water mixture, we observed a remarkable decline in TPC. This decline indicates that there is an upper limit to 
the optimal composition of the ethanol-water mixture for TPC extraction. It is important to note that this observed trend was consistent 
across all MAE parameters tested, as depicted in Fig. 1a-b. This suggests that the interaction between the ethanol-water mixture and the 
MAE parameters is significant and must be taken into account when optimizing the extraction process. These results could be explained 
by the fact that a high concentration of ethanol can cause protein denaturation, preventing the dissolution of polyphenols and then 
influencing the extraction rate (Dahmoune et al., 2015a). Furthermore, the findings reported by Darvishzadeh and Orsat (2022) 
provide additional support for our results. They reported that ethanol-water mixtures of 59% and 66% showed higher extraction of 
TPC from Russian olive leaves and flowers. 

Regarding the MAE time, the linear and quadratic terms had a significant effect on TPC. Which linear term showed a positive effect, 
while the quadratic term exhibited a negative effect (Table 3). According to Fig. 1a, the MAE time showed a slight positive effect on 
TPC in interaction with the ethanol-water mixture, the TPC increased from 20 to 30 mgGAE/gdw when the MAE time extended from 50 
to 300 s. This trend was observed when the time was in interaction with microwave power and solvent to solid ratio as depicted in 
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Fig. 1d and Fig. 1e, respectively. The shorter duration of exposure to microwave radiation resulted in a higher yield of TPC, and this it 
could be due to the efficient breakdown of cell structures and release of TPC from the solid matrix within a short time period. 
Additionally, irradiation time can enhance the mass transfer between the solid matrix and the solvent, leading to the increase in the 
extraction efficiency of TPC and antioxidant capacity. Similar reports were carried out and showed that 5 to 6 min in microwave 
exhibited high TPC extraction (Karami et al., 2015; Teng and Choi, 2013). 

Another important parameter examined in the MAE of TPC is the solvent-to-solid ratio. The estimated coefficient confirmed that the 
solvent-to-solid ratio showed a positive and highly significant effect on TPC (Table 3). The TPC values of the extract increased with the 
increase in the solvent-to-solid ratio, and high TPC was obtained at 50 mL/g of solvent to solid ratio, which the results obtained from 
3D surface plots (Fig. 1c, 1e, and Fig. 1f) are compatible with the mass transfer principles. These results were in agreement with the 
results obtained by Sánchez-Camargo et al. (2021). 

Furthermore, the linear effect of microwave power displayed a non-significant effect on TPC, while the quadratic effect exhibited a 
highly significant effect on TPC as shown in the estimated coefficient results reported in Table 3. According to three-dimensional 
response surface plots (Fig. 1b, 1d, and Fig. 1f), the TPC was decreased slightly from 200 to 300 W then TPC raised significantly at 
high microwave power (600 W). This microwave power effect on TPC was also noticed in interaction with other MAE parameters 
including ethanol-water mixture, irradiation time, and solvent to solid ratio. Notably, the maximum TPC was achieved when using a 
high power level of 600 W, an ethanol-water mixture of 58%, an irradiation time of 300 s, and a solvent to solid ratio of 50 mL g-1. 
These findings can be attributed to the impact of microwave power on the heating rate and temperature distribution during the 
extraction process. Higher power levels result in increased energy input, leading to a more rapid and uniform heating of the sample. 
This accelerated heating facilitates the release of phenolic compounds from the matrix and enhances their solubility in the extraction 
solvent (Dahmoune et al., 2015a). Nana et al. (2021) mentioned that 600 W of microwave power was the optimal MAE condition for 
extraction of total limonoid and antioxidant capacity from Trichilia roka. Furthermore, Berkani et al. (2020) reported that high mi
crowave power (600 W) and extended MAE time were the best operational parameters for the extraction of polysaccharides from 
Algerian jujube. Moreover, the optimal level of microwave power (600 W) obtained explained by the high solvent to solid ratio (50 mL 
g-1), which a large amount of solvent needs more absorption of microwave energy to heat the medium (Mandal and Mandal, 2010). 

3.2.3. Effect of MAE parameters on TEAC and TAC 
The TEAC and TAC of S. officinalis L. extracts varied from 160 to 279 μmolTE/gdw, 20 to 35 mgAAE/gdw, respectively as depicted in 

Fig. A.3 and Fig. A.4. According to the p-values of regression coefficients (Table 3), the linear effects (x1, x3, and x4) showed significant 
effects on TEAC, however only the linear effect (x4) exhibited a significant effect on TAC. Furthermore, only the quadratic effect (x2

1) 
showed a negative effect on both TEAC and TAC. Regarding the interaction effect terms, the x3x4 had a positive effect on TEAC, 
whereas all the other interactions showed a non-significant effect on TEAC and TAC. 

According to response surface methodology (Fig. A.3 and Fig. A.4), the lowest TEAC, and TAC were obtained at a lower level of 
ethanol concentration (30%) and extraction time (60 s), and lower level of microwave power (200 W), and solvent to solid ratio (20 
mL g-1). Furthermore, the TEAC was found to be highest at a middle level of ethanol concentration (58%) and extraction time (300 s), 
higher level of microwave power (600 W), and higher solvent-to-solid ratio (50 mL g-1). The TAC was higher at 58% of ethanol 
concentration and extraction time (267 s), microwave power (600 W), and solvent to solid ratio (50 mL g-1). The same effect of the 
ethanol-water mixture was observed for TEAC and TAC, where the increase of ethanol-water mixture from 30% to 58% increased the 
TEAC and TAC, then the two responses declined significantly with increasing the ethanol-water mixture from 58% to 80%. Similar 

Fig. 3. Differential content visualization of identified and unidentified MAE and UAE bioactive compounds with Volcano plot (Log 2 Fold change = 1).  
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results were found in the literature, mentioned that high antioxidant activity of medicinal plants was obtained at 49% - 58% of ethanol- 
water mixture (Luo et al., 2021; Shang et al., 2020; Song et al., 2011; Wen et al., 2015). The differences of antioxidant activity of 
S. officinalis L. leaves may be attributed to the difference in dielectric properties of the solvent, the loss tangent (tan δ) of methanol and 
water at 2.450 MHz and room temperature is 0.94, and 9.88, respectively, which the higher value of loss tangent, the better the 
material will heat under MW irradiation (Chemat and Cravotto, 2013). 

Another MAE parameter studied for the extraction of antioxidants from S. officinalis L. is the extraction time. The effect of time on 
TEAC and TAC in interaction with the ethanol-water mixture, and the solvent-to-solid ratio was found to be a less important parameter 
(Fig. A.3a, A.3e, A.4a, and Fig. A.4e). As the extraction time increased, the extraction efficiency of antioxidants increased slightly. In 
addition, the effect of extraction time in interaction with microwave power was more significant on TEAC and TAC (Fig. A.3d, and 
Fig. A.4d), which at low levels of microwave power the TEAC and TAC raised significantly with an increase in extraction time. 
However, at high levels of microwave power, the TEAC decreased significantly, when the time was prolonged from 60 to 150 s, then 
the TEAC increased when the time was more than 150 s (Fig. A.3d). Furthermore, at high levels of microwave power, the TAC 
increased slightly when the time prolonged from 60 to 150 s, and then the TEAC declined significantly when the time extended from 
150 to 300 s (Fig. A.4d). Wen et al. (2015) and Lovrić et al. (2017) reported that 4 and 5 min of extraction time is sufficient for the 
recovery of phenolic and antioxidant compounds from blackberry and blackthorn flowers, respectively. 

In addition, the microwave power showed to be a significant factor affecting the antioxidant capacity of S. officinalis L. leaves, 
which exhibited a positive effect on TEAC (x3, and x3x4), and a non-significant effect on TAC (Table 3). The increase in microwave 
power from 200 to 600 W significantly enhanced antioxidant capacity (Fig. A.3b, A.3d, and A.4d). The influencing of microwave on 
antioxidant activity of S. officinalis L. leaves extracts were also similar to those reported in the previous papers (Liu et al., 2010; Xueling 
et al., 2011). 

On the other hand, according to the results obtained from Table 3, Fig. A.3, and Fig. A.4, the solvent-to-solid ratio is considered the 
most MAE parameter that enhances the TEAC and TAC from S. officinalis L. leaves. The solvent-to-solid ratio showed a highly positive 
effect (p-value > 0.001). All the response surface plots (Fig. A.3c, A.3e, A.3f, A.4c, A.4e, and A.4f) show similar trends on the anti
oxidant capacity, where the increase in the solvent-to-solid ratio increased the TEAC and TAC which creates a better contact surface for 
the extraction of antioxidant compounds from S. officinalis L. leaves. Therefore, the optimal solvent-to-solid ratio for high antioxidant 
capacity was 50 mL g-1. These results are in line with the results of Zeković et al. (2017), Bhuyan et al. (2015) and Kaderides et al. 
(2019), which found that a large amount of solvent between 40 and 60 mL g-1 showed high recovery of polyphenols from Salvia 
officinalis L. by-products. 

3.3. Optimization of MAE of TPC and antioxidant capacity 

The DSD and I-optimal design were used for screening and optimization the MAE parameters, respectively. Based on desirability 
function, the optimal MAE conditions for the maximum of TPC, and TEAC, and TAC given by DSD were: ethanol concentration of 55%, 
microwave power of 200 W, MAE time of 4.35 min, solid–liquid ratio of 50 mL g-1. Under these optimal MAE conditions, the desir
ability value was 0.90. While the optimal MAE conditions for the maximum of TPC, and TEAC, and TAC given by I-optimal design 
were: ethanol concentration of 60%, microwave power of 600 W, MAE time of 4.79 min, solid–liquid ratio of 50 mL g-1. Under these 
optimal MAE conditions, the desirability value was 0.92. 

For the validation of the optimum MAE conditions for both DSD and I-optimal design, the average of TPC, TEAC, and TAC were 
compared to the predicted values given by the employed models. The experimental values of TPC, TEAC, and TAC of DSD were 39.97 
± 1.58 mgGAE/gdw, 266.05 ± 1.54 μmolTE/gdw, 35.85 ± 0.72 mgAAE/g dw, while the predicted values of TPC, TEAC, and TAC were 39.68 
mgGAE/gdw with predicted interval of [39.68 to 42.28], 264.99 μmolTE/gdw with predicted interval of [249.84.99 to 280.15], and 37.03 
mgAAE/g dw with predicted interval of [34.79 to 39.27]. Moreover, the experimental values of TPC, TEAC, and TAC of I-optimal design 
were 46.12 ± 0.08 mgGAE/gdw, 268.39 ± 1.28 μmolTE/gdw, 36.79 ± 0.20 mgAAE/g dw, while the predicted values of TPC, TEAC, and 
TAC were 47.60 mgGAE/gdw with predicted interval of [45.96 to 49.24], 278.79 μmolTE/gdw with predicted interval of [264.59 to 
292.99], and 34.67 mgAAE/g dw with predicted interval of [31.19 to 38.15]. The results were closely related to the data obtained from 
the optimization process, indicating that DSD and I-optimal design could be effectively used to screen and optimize the MAE for a 
maximum phenolic and antioxidant capacity. 

3.4. Differential analysis of MAE and UAE 

To evaluate the efficiency of extraction techniques, the optimal MAE extract obtained in this study was compared to the optimal 
UAE extract obtained by Moussa et al. (2022). The optimal MAE extract of common sage exhibited higher TPC (46.12 ± 0.08 mgGAE/

gdw) and TEAC (268.39 ± 1.28 μmolTE/gdw) than optimal extract obtained by UAE, where TPC and TEAC were 31.84 ± 0.248 mgGAE/

gdw, 237.95 ± 0.771 μmolTE/gdw, respectively. However, the UAE extract showed higher TAC (38.928 ± 0.548 mgAAE/g dw) than the 
MAE extract with a TAC of 36.79 ± 0.20 mgAAE/g dw. These results could be explained by the ability of microwave energy to enter the 
cell matrix, interact with polar molecules, and heat the biomaterial evenly as microwaves are absorbed by the whole sample equally, 
which in turn raises the pressure inside the plant cells. As the pressure increases, cell walls break down and phenolic compounds are 
released (Nayak et al., 2015). 

In order to characterize the quality and quantity of phenolic compounds of common sage leaves present in MAE and UAE optimal 
extracts, UHPLC-HRMS was applied to identify the major phenolic compounds present in both extracts. As most phenolic compounds 
contain one or more hydroxyl, carboxylic acid groups, or both, MS data were obtained in the negative ionization mode (Irakli et al., 
2021). Total ion chromatograms of MAE and UAE extracts of common sage are shown in Fig. 2, and Fig. A.5, while the major peaks 
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identified by UHPLC-HRMS analysis are presented in Table A.3 (Supplementary data). Each identification was confirmed by 
comparing the observed compounds’ MS2 spectra to those described in the literature. UHPLC-HRMS analysis of common sage leaves 
extracts allowed us to identify more than 80 different phenolic compounds present in both MAE and UAE optimal extracts. As 
mentioned in Table A.3 (Supplementary data), different types of bioactive compounds were assigned including hydroxycoumarins, 
phenolic diterpenes, flavonols and derivatives, flavones and derivatives, flavanones and derivatives, isoflavones, 2-arylbenzofuran 
flavones, phenolic acids and aldehydes, triterpenoids, lignin, sesquiterpenes, beta-hydroxyacids, tricarboxylic acids, organic acid, 
organic sugar, and sugar acid. 

The volcano plot of UHPLC-HRMS analysis generated by Compound Discoverer software (Fig. 3) provides an effective tool for 
visualizing the direction, magnitude, and significance of changes in the concentration of bioactive compounds present in both MAE 
and UAE extracts. Each point on the Volcano plot represents one detected compound. The log 2-fold values are plotted on the x-axis and 
the -log10 p-values are plotted on the y-axis for each compound detected by CD Software. The horizontal dashed line represents the 
significance threshold (p-value <0.05). A total of 268 points lying above a horizontal threshold were recognized as statistically 
different between MAE and UAE extracts. When the value of log 2-fold change is closer to 1 it indicates less difference, while moving 
away from 1 in either direction indicates more difference in terms of contents of particular compound. According to this 181 com
pounds were found to be more abundant in MAE extract (on the right of 0 on the x-axis) including caffeic acid galactoside, caffeic acid 
glucoside, caffeoyl-hexosyl-hexose, 6-hydroxyluteolin-7-O-glucoside, 6-hydroxyluteolin 7-O-rhamnoside, luteolin, hydroxyursolic 
acid, quercetin-3-O-malonylglucoside, luteolin-7-O-glucoside, micromeric acid, ursolic acid, genistin, luteolin O-malonyl hexoside, 
isorhamnetin-O-hexose, nepitrin, homoplantaginin, trihexoside, dihexoside (Fig. 3, Table A.3). On the other hand, 87 compounds were 
found to be better extracted in UAE (on the left of 0 on the x-axis) including 3,5-dimethoxycinnamic acid, p-coumaric acid/m-coumaric 
acid, rosmadial, epirosmanol, salvianolic acid B, epiisorosmanol, apigenin (Fig. 3, Table A.3). To conclude, the results show that 
phenolic acids, triterpenoids, and organic sugars were more abundant in MAE extract, which could be explained by the microwave 
heating provided by microwave power that acts as a driving force for MAE to destroy the cell wall of plant matrix (Chan et al., 2011). 
Similar results were obtained by Dahmoune et al. (2014), Nayak et al. (2015), İnce et al. (2013). However, MAE causes poor extraction 
of phenolic diterpenes due to their sensitivity to microwave heating which confirm that ultrasound assistance is more suitable for 
fragile bioactive compounds that require gentle extraction, while microwave is more suitable for more resistant compounds that 
require rapid extraction. 

4. Conclusion 

The present study was an attempt to optimize the MAE of phenolic compounds and antioxidant capacity from S. officinalis L. using 
two new statistical design including DSD and I-optimal design. Statistical and RSM analysis showed that ethanol concentration of 60%, 
microwave power of 600 W MAE time of 4.79 min, solid–liquid ratio of 50 mL g-1 were the optimal conditions for maximum of TPC, 
TEAC, and TAC. The MAE optimized based on the new statistical design is as an efficient and eco-friendly alternative method for the 
recovery of the bioactive compounds from plant matrices. The qualitative analysis using UHPLC-HRMS revealed that S. officinalis L. 
extract is an excellent source of bioactive compounds including phenolic acid and aldehydes, flavonoids, phenolic diterpenes, etc., 
where rosmarinic acid, carnosol, carnosic acid, and methyl carnosate were the main phenolic compounds. The relative content analysis 
of the Salvia officinalis L. bioactive compounds proved that MAE was better than UAE in term of quantity and extraction time. The 
differential analysis made it possible to indicate compounds that are particularly affected by the extraction method used. For this 
reason, when they are specifically targeted for extraction, an appropriate method would have to be considered. 
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Abstract 

The valorization of medicinal plants has gained significant attention due to their 

therapeutic properties. In this study, the optimization of the extraction of secondary metabolites 

and antioxidant activity from medicinal plants of Bouira region including C. caeruleus L. and 

S. officinalis L. using ultrasound and microwave-assisted techniques were carried out. New 

statistical design (Definitive screening design and I-optimal design) and supervised learning 

model (Support vector regression optimized using dragonfly algorithm) were used in this study. 

Furthermore, identifying secondary metabolites from medicinal plants is crucial for their 

potential use in pharmaceuticals. UHPLC-HRMS was employed to identify the S. officinalis 

L. compounds due to its high sensitivity and accuracy in detecting complex mixtures of 

compounds. These approaches demonstrated promising results in extracting and identifying 

bioactive compounds from medicinal plants. The use of a new statistical design and supervised 

learning model enhances the efficiency of the extraction process, while UHPLC-HRMS allows 

for the identification of bioactive compounds with high precision and sensitivity. Overall, these 

approaches provide a sustainable and efficient means of producing pharmaceuticals while 

preserving natural resources. 

Résumé 

La valorisation des plantes médicinales a suscité une attention considérable en raison 

de leurs propriétés thérapeutiques. Dans cette étude, l'optimisation de l'extraction des 

métabolites secondaires à partir de C. caeruleus L. et S. officinalis L. de la région de Bouira a 

été réalisée à l'aide des techniques assistées par ultrasons et micro-ondes. De nouveaux modèles 

statistiques y compris le plan de criblage définitif le plan I-optimal et le modèle Machine à 

vecteurs de support optimisée à l'aide de l'algorithme dragonfly ont été utilisés. De plus, 

l'identification des métabolites secondaires des plantes médicinales est cruciale pour leur 

utilisation potentielle en pharmacie, la chromatographie en phase liquide a ultra-haute couplée 

à la spectroscopie de masse haute résolution (CLUHP-SMHR) a été utilisée afin d’identifier 

les composés bioactifs de S. officinalis L. Ces approches et techniques ont démontré des 

résultats prometteurs dans l'extraction et l'identification de composés bioactifs des plantes 

médicinales. L'utilisation de nouveaux modèles statistiques et modèle à vecteurs supports 

améliore l'efficacité du processus d'extraction, tandis que CLUHP-SMHR permet 

l'identification de composés bioactifs avec une grande précision et sensibilité. Dans l'ensemble, 

ces approches fournissent un moyen durable et efficace pour la production des molécules et 

produits pharmaceutiques tout en préservant les ressources naturelles. 

 ملخص

 طرق حسينتتطوير و . في هذه الدراسة تم الطبيعية اهتمامًا كبيرًا بسبب خصائصها العلاجيةومستخلصاتها تلقى النباتات الطبية 

منطقة البويرة  جدة فياوتالم S. officinalis Lو  C. caeruleus L تانب منلأكسدة ا اتمضادب الغنيةالمركبات الثانوية  خلاصاست

إحصائية جديدة و نماذج استخدام تصاميم ب (Microwave) والميكروويف (Ultrasound) الصوتيةباستخدام تقنيات الأمواج فوق 

 Support vector regression optimized usingو   Definitive screening design and I-optimal designبما في ذلك 

dragonfly algorithm فإن تحديد المركبات الثانوية من النباتات الطبية أمر بالغ الأهمية لاستخدامها المحتمل ذلك، . علاوة على

 هاتم استخدام ،المركبات الطبيعة كشف وتحديدفي   عالةفوحساسيتها الUHPLC-HRMS  نظرا لدقة تقنية في المستحضرات الصيدلانية.

وتحديد  استخلاصأظهرت هذه الأساليب نتائج واعدة في حيث  S. officinalis L نبتة و المكونات المستخلصة منمركبات اللتحديد 

 ،المركبات ذهه لاصستخا في كفاءة عملية المستعملةالنماذج الاحصائية  عززتحيث  المركبات النشطة بيولوجيا من النباتات الطبية. 

سيلة توفر هذه الأساليب و عام،بتحديد المركبات النشطة بيولوجياً بدقة وحساسية عاليتين. بشكل  UHPLC-HRMS تقنية سمحتبينما 

 .مع الحفاظ على الموارد الطبيعية مستدامة وفعالة لإنتاج الأدوية
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