انجمه ورية انجزائرية الديمقراطية الشعبية République Algérienne Démocratique et Populaire

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université Akli Mohand Oulhadj - Bouira -Institut de Technologie

ونراسة التعليم العالي والبحث العلمي جامعة أكلي محند أوكحاج - البويرة - معهد التكنولوجيا

Département de Génie de l'Eau

Rapport de soutenance

En vue de l'obtention du diplôme De Licence professionnelle en :

Hydraulique

Thème:

Dimensionnement du réseau de distribution de l'eau potable de la localité Zmala (Dechacha, El-Guendoulia, Ouled Raoudha) commune de Bordj Ghedir wilaya de Bordj Bou Arreridj

Réalisée par :

M^{lle} LAIFAOUI Chaima

Encadrée par :

Dr. REZIG Amina IT Bouira

Tuteur de l'entreprise :

M.BENZMAM Nordine Directeur de bureau d'étude

Soutenu devant le jury:

Président: HAMMID Hakim MAA (IT, Univ-Bouira) Examinateur: BALOUL Djouhra MAA (IT. Univ-Bouira)

Année Universitaire : 2022/2023

Remerciements

Nous remercions DIEU le tout puissant de nous avoir donné la foi, la santé, et le courage pour réaliser ce modeste travail.

Un immense merci à notre Encadreur **Dr REZIG Amina** pour son aide, sa disponibilité, ses précieux conseils, et surtout pour sa gentillesse et sa patience.

Un immense merci à notre Tuteur **BENZMAM Nordine**, pour son aide dans mon travail, ses conseils, et mon intégration dans ma vie professionnelle.

Au Président et aux membres de jury, pour nous avoir fait l'honneur d'accepter de juger notre modeste travail,

Sincères remerciements.

Un grand Mercí à toutes les personnes qui nous ont aidés, de près ou de loin, pour la réalisation de ce modeste travail.

Dédicace

Je dédie ce mémoire

A l'être le plus cher de ma vie ; ma mère

A celui qui m'a fait de moi une femme, mon père

A mes chers frères et sœurs

A tous mes amis de promotion de $3^{\rm eme}$ année Génie d'eau .

ملخص:

يهدف هذا المشروع إلى تزويد منطقة زمالة التي تتضمن ثلات مراكز :دشاشة و قندولية ؛ أولاد روضة ؛ بمياه الصالحة

للشرب لبلدية برج الغدير ولاية برج بوعريريج.

والغرض من هذا الموجز هو تقدير السكان وإحتياجات الماء اللازمة من أجل رسم مخطط شبكة توزيع المياه بمساعدة

البرامج (أوتوكاد و إيبانات.)

الكلمات المفتاحية: شبكة التوزيع، مركز زمالة، خزان، شبكة،

Résumé:

Ce projet vise à fournir de la localité Zmala, qui comprend trois zones : Dchacha, El-

Guendoulia, Ouled Raoudha, de l'eau potable de la Commune de Bordj Ghedir dans la wilaya

de Bordj Bou Arreridj.

Le but de ce résumé est d'estimer la population et les besoins en eau nécessaires pour élaborer

un schéma de réseau de distribution d'eau à l'aide des logiciels (AutoCAD et Epanet).

Mots clés: réseau distribution, centre Zamla, réservoir, réseau.

Abstract:

This project aims to provide the Fellowship area, which includes three centers: Dchacha, E-

Guendoulia, Ouled Raoudha, with drinking water from the municipality of Bordj Ghedir in

the Bordj Bou Arreridj province.

The purpose of this summary is to estimate the population and the necessary water needs in

order to draw up a water distribution network plan using software programs (AutoCAD and

Epanet).

Keywords: distribution network, center Zmala, reservoir, network

Table de matières

Remerciement.	
Dédicace.	
Table de matière.	
Liste des figures.	
Liste des tableaux.	
Introduction générale	1
Chapitre I: Présentation de l'entreprise d'accueil	,
I.1.Introduction.	
I.2.Présentation de l'entreprise d'accueil	
I.3. Les activités du bureau d'études	
I.4. Les moyens humains et matériels	5
I.5.les activités effectuées pendant le stage	5
I.6.Conclusion.	6
Chapitre II : Présentation de la zone d'étude	
II.1.Introduction	8
II.2.Présentation de la zone d'étude	8
II.2.1.Situation géographique de la zone	8
II.2.2.Situation climatique	9
II.2.3.Situation pluviométrique	9
II.2.4.Température	10
II.2.5.Evaporation	11
II.2.6.Humidité	12
II.2.7.Les vents	12
II.3.Situation hydrique	13
II.3.1.Les ressources en eau	
II.9.conclusion.	13

Chapitre III : Estimation des besoins en eau

III.1.Introduction.	15
III.2.Situation démographique	15
III.3.Estimation des besoins en eau	15
III.3.1.Estimation de la population future à différents horizons	15
III.3.2. Estimation des besoins collectifs	16
III.3.2.1. Estimation des besoins en eau de l'école scolaire	16
Tableau(III.2): Estimation des besoins en eau de l'école primaire	16
III.3.2.2.Estimation des besoins en eau de la mosquée	16
Tableau(III.3): Estimation des besoins en eau de mosquée	16
III.3.2.3.Estimation des besoins en eau d'administratifs et commerciaux	16
Tableau(III.4): Estimation des besoins administratifs et commerciaux	16
III.4.La consommation moyenne journalière	16
III.4.1.La consommation moyenne journalière domestique	17
III.4.2. La consommation moyenne journalière des différents équipements	17
III.4.2.1.Besoins scolaire	17
III.4.2.2.Besoinsde mosquée	18
III.4.2.3.Besoins administratif.	18
III.4.2.4 Besoins commerciaux	18
III.5.La consommation moyenne journalière totale	19
III.6.Majoration de la consommation moyenne journalière	19
III.7.Débit de pointe horaire	20
III.8.Débit minimum horaire	21
III.9.Conclusion.	22
Chapitre IV : Dimensionnement du réseau de distribution	
IV.1. Introduction.	23
IV.2.Classification des réseaux de distribution	
IV.2.1.Réseau Maillé	
IV.2.2.Réseau Ramifié	
IV.2.3.Réseau mixte.	
IV.2.4.Réseau étagé	
IV.3.Choix de réseau à adopter	
IV.4.Mode de distribution	

IV.4.1.La distribution gravitaire	26
IV.4.2.Le refoulement distributif	26
IV.5. Conception d'un réseau de distribution	27
IV.6.Choix du matériau des conduites du réseau	27
IV.8. Les étapes de calcul d'un réseau de distribution	28
La première étape de distribution c'est de faire un tracer des conduc AUTOCAD	-
IV.8.1.Transfère le réseau vers EPANET	29
IV.8.2.Calcule hydraulique du réseau de distribution	31
IV.8.2.1. Débit de pointe	31
IV.8.2.2.Débit spécifique	32
IV.8.2.3Débit en route	32
IV.8.2.4.Débit aux nœuds	35
IV.8.3.Modélisation et simulation du réseau	40
IV.8.4.Résultats de la simulation	40
IV.9.Mode de gestion du réseau de distribution	48
Chapitre V : Dimensionnement des rése	<u>rvoirs</u>
V.1.Introduction	50
V.2.classification des types de réservoirs	
▼ ±	
V.3.Choix de type de réservoir	50
•	50
V.3.Choix de type de réservoir	50 50 51
V.3.Choix de type de réservoir	
V.3.Choix de type de réservoir V.4.Le rôle de réservoir V.5.Equipement hydraulique de réservoir	
V.3.Choix de type de réservoir V.4.Le rôle de réservoir V.5.Equipement hydraulique de réservoir V.5.1.Conduite adduction	
V.3.Choix de type de réservoir. V.4.Le rôle de réservoir. V.5.Equipement hydraulique de réservoir. V.5.1.Conduite adduction V.5.2.Conduite de distribution	
V.3.Choix de type de réservoir. V.4.Le rôle de réservoir. V.5.Equipement hydraulique de réservoir. V.5.1.Conduite adduction V.5.2.Conduite de distribution V.5.3.Conduite de trop-plein	
V.3.Choix de type de réservoir. V.4.Le rôle de réservoir. V.5.Equipement hydraulique de réservoir. V.5.1.Conduite adduction. V.5.2.Conduite de distribution. V.5.3.Conduite de trop-plein. V.5.4.Conduite de vidange.	
V.3.Choix de type de réservoir. V.4.Le rôle de réservoir. V.5.Equipement hydraulique de réservoir. V.5.1.Conduite adduction V.5.2.Conduite de distribution V.5.3.Conduite de trop-plein V.5.4.Conduite de vidange V.6. Dimensionnement des réservoirs.	
V.3.Choix de type de réservoir. V.4.Le rôle de réservoir. V.5.Equipement hydraulique de réservoir. V.5.1.Conduite adduction. V.5.2.Conduite de distribution. V.5.3.Conduite de trop-plein. V.5.4.Conduite de vidange. V.6. Dimensionnement des réservoirs. V.6.1.Méthode analytique.	
V.3.Choix de type de réservoir. V.4.Le rôle de réservoir. V.5.Equipement hydraulique de réservoir. V.5.1.Conduite adduction. V.5.2.Conduite de distribution. V.5.3.Conduite de trop-plein. V.5.4.Conduite de vidange. V.6. Dimensionnement des réservoirs. V.6.1.Méthode analytique. V.6.1.1. Calculedu volume de régulation.	

Conclusion Générale	58
Liste de référence	

Liste des figures

Figure I.1: logo de bureau d'étude	4
FigureI.2: Localisation géographique de bureau d'étude	4
Figure II.1: Situation géographique de la wilaya de BBA	8
FigureII.2: Situation géographique de la localité Zmala	9
Figure II.3: Répartition mensuelle de la pluviométrie (2003-2016)	10
Figure II.4: Répartition mensuelle de la tmpérateure(2003-2016)	11
Figure II.5: Répartition mensuelle de l'évaporation (2003-2016)	11
Figure II.6: Répartition mensuelle de l'humidité relative (2003-2016)	12
Figure II.7: Répartition mensuelle de la vitesse des vents (2003-2016)	13
Figure IV.1: Schéma d'un réseau maillé	23
Figure IV.2: Schéma d'une réseau ramifié	24
Figure IV.3: Schéma d'un réseau mixte	24
Figure IV.4: Schéma d'un réseau étagé	25
Figure IV.5: Distribution gravitaire	26
Figure IV.6: Refoulement distributif	26
Figure IV.7: Schéma du réseau distribution de la localité Zmala sur AUTOCAD	28
Figure IV.8: Réseau distribution pour la zone haute	29
Figure IV.9: Réseau distribution pour la Zone Basse	30
Figure IV.10 : Réseau distribution pour Ouled Raoudha	31
Figure IV.11: Réseau de distribution aprés simulation (Dechacha)	41
Figure IV.12: Réseau de distribution aprés simulation (El-Geundoulia)	44
Figure IV.13: Réseau de distribution aprés simulation (Ouled Raoudha)	46
Figure V.1: Schéma générale de réservoir	52

Liste des tableaux

Tableau11.1: Repartition mensuelle de la pluie moyenne annuelle(2003-2016)	9
Tableau II.2: Répartition mensuelle de la température (2003-2016)	10
Tableau II.3: Répartition mensuelle de l'évaporation (2003-2016)	11
Tableau II.4: Répartition mensuelle de l'humidité relative (2003-20116)	12
Tableau II.5: Vitesses et les directions des vents dominants (2003-2016)	12
Tableau III.1: Nombre d'habitant du centre Zmala à l'horizon de 2022 à 2052	15
Tableau III.2: Estimation des besoins en eau de l'école primaire	16
Tableau III.3: Estimation des besoins en eau de mosqué	16
Tableau III.4: Estimation des besoins administratif et commerciaux	16
Tableau III.5: Consommation moyenne journalière du centre Zmala	17
Tableau III.6: Evaluation des besoins de l'école primaire	17
Tableau III.7: Evaluation des besoins de mosquée	18
Tableau III.8: Evaluation des besoins administratif	18
Tableau III.9: Evaluations des besoins commerciaux	18
Tableau III.10: Consommation moyenne journalière totale	19
Tableau III.11: Evaluation de la consommation maximale journalière	19
Tableau III.12: Variation de Bmax en fonction du nombre d'habitants	20
Tableau III.13: Evaluation débit de point horaire	21
Tableau III.14: Variation de Bmin en fonction du nombre d'habitant	21
Tableau III.15: Evaluation le débit minimum horaire	22
Tableau IV.1: Débit spécifique de centre Zmala	32
Tableau IV.2: Débit en route de zone haute (Dechacha)	33
Tableau IV.3: Débit en route de zone basse (El-Guendoulia)	34
Tableau IV.4: Débit en route Ouled Raoudha	34
Tableau IV.4 : Débit en route Ouled Raoudha	35
Tableau IV.5 :Débit au noeud de Dechacha	35
Tableau IV.5:Débit au noeud de Dechacha	36
Tableau IV.5 : Débit au noeud de Dechacha	37
Tableau IV.6 : Débit au noeud DEl-Guendoulia	37
Tableau IV.6 : Débit au noeud d'El-Guendoulia	38
Tableau IV.7: Débit au noeud d'Ouled Raoudha	38
Tableau IV.7: Débit au noeud d'Ouled Raoudh	39

Tableau IV.8: Caractéristique des conduite du réseau Dechacha	42
Tableau IV.9: Caractéristique des noeuds du réseau Dechacha	43
Tableau IV.10: Caractéristique des conduites du réseau El-Guendoulia	44
Tableau IV.10: Caractéristique des conduites du réseau El-Guendoulia	44
Tableau IV.11: Caractéristique des noeud du réseau El-Guendoulia	45
Tableau IV.12: Caractéristique des conduites du réseau Ouled Raoudha	46
Tableau IV.12: Caractéristique des conduites du réseau Ouled Raoudha	47
Tableau IV.13: Caractéristique des noeuds du réseau Ouled Raoudha	47
Tableau V.1: Classification des types de réservoir	50
Tableau V.2 : Variation horarire en fonction du nombre de la population	54
Tableau V.3: Capacité du réservoi.	55
Tableau V.4: Capacité du réservoir	56

Introduction générale

L'alimentation en eau potable est une technique qui consiste au transport de l'eau à un débit généralement non constant depuis le prélèvement dans le milieu naturel, jusqu'au robinet du consommateur.

Rien de plus simple et de plus habituel que d'ouvrir un robinet pour avoir l'eau. Pourtant, on ne pense pas toujours que ce geste banal se cache derrière la mise en œuvre de moyens.

L'objectif de notre étude est de dimensionner le réseau de distribution de la localité Zmala qui compote trois zones : Dechacha, El-Guendoulia et OuledRaoudha (commune Bordj Ghedir) qui se situe dans wilaya de Bordj Bou Arreridj

Pourquoi ce projet a été choisi comme mémoire de fin d'étude ?

Cette étude m'a été proposé par le bureau d'étude chez lequel j'ai fait mon stage pratique pour que je puisse participer activement dans l'élaboration du dossier d'exécution et d'être en contact directe avec le terrain et de voir réellement la concrétisation de ce projet.

Pour cela, nous allons formuler ce document en cinq chapitres qui seront les suivants :

- -Une présentation de l'entreprise d'accueil qui est le Bureau d'étude TOP-HYD représenté par Mer Benzemam Nordine.
- -Le second chapitre est destiné à la présentation globale de la zone de Zmala y compris situation géographique du centre, infrastructure hydraulique existante, la situation climatique.
- -Le troisième chapitre est axé sur la détermination des besoins en eau nécessaire pour satisfaire la population à l'horizon projeté.
- -Le dimensionnement des réseaux de distribution comme quatrième chapitre qui permet de simuler le projet sur le logiciel EPANET dans le but d'avoir un réseau de distribution optimal (technique).

-Le dernier chapitre est consacré à la détermination des capacités des réservoirs de Dechacha et Ouled Raoudha tout on maintenant le réservoir existant de la Zone Basse (El-Guendoulia).

On terminera par une conclusion générale.

Chapitre I Présentation de l'entreprise d'accueil

I.1.Introduction

Dans le cadre d'une licence professionnelle au sein de l'institut des sciences et technique appliquée (TSTA) de Bouira, j'ai effectué un stage pratique d'une durée de 4 mois pour découvrir le milieu professionnel et préparer mon projet de fin d'étude.

Le responsable de bureau d'étude m'a proposé un sujet de dimensionnement d'un réseau de distribution de la localité Zmala (Dechacha, El-Guendoulia, Ouled Raoudha) commune de Bordj Ghedir willaya de Bordj Bou Arreridj parce que c'est en cours de projet.

I.2. Présentation de l'entreprise d'accueil

C'est un bureau d'étude privé agréé auprès du ministère des ressources en eau depuis 2006. Et expert judiciaire agréé auprès du ministère de la justice depuis 2012(Bureau d'étude TOP-HYD).

(Bureau d'étude TOP-HYD).

Fig(I.1): logo de Bureau d'étude

Fig(I.2): localisation géographique De Bureau d'étude (Google Maps).

I.3. Les activités du bureau d'études

Parmi ses fonctions au bureau et chantier ce qui suit (Bureau d'étude TOP-HYD) :

- Les études d'alimentation en eau potable et assainissement dans les milieux urbains et rural.
- Les études de protection des villes contre les risques d'inondations.
- Les études à caractère hydro-agricole.
- Les études de Voiries et réseaux divers.
- Les expertises judiciaires.
- La topographie. (levés topographiques, implantation de tous types d'ouvrage.....)

- La géodésie (auscultations).
- La cartographie (S.I.G).

Suivi de chantiers

Le bureau d'étude a réalisé un nombre important des études parmi lesquels :

- Etude de protection de la ville de HASNAOUA contre les risques d'inondation.
- Etude d'aménagement d'Oued BirAissa commune Ain Tasserra.
- Etude modificative de la protection de Ghailassa contre les risques d'inondation.
- Etude d'AEP des centres de Khelil et BirKasd Ali à partir du barrage Ain Zada.
- Etude d'AEP de la zone Haute de la ville de Bordj Bou Arréridj.
- Expertise et diagnostic du réseau d'AEP de Theniet Ennasr.
- Inventaire des unités industrielles de la zone industrielle de Bordj Bou Arréridj au profit de l'A.G.I.R.E (cartographie et SIG).
- Suivi des travaux de rénovation de l'OVOIDE 1000 de la ville de Bordj Bou Arréridj.

I.4. Les moyens humains et matériels

- Ingénieur en Hydraulique.
- Ingénieur en Géodésie.
- > Technicien en comptabilité
- ➤ Aide Topographe.
- ➤ Vehicule Pick -up doubles cabines
- Véhicule Minibus.
- > 02 stations topographiques.
- > GPS, Télémètre optique.
- > Matériel bureautique et informatique.

I.5.Les activités effectuées pendant le stage

Durant mon stage 4 mois j'ai eu la chance d'assister aux études des divers projets d'AEP et Assainissement dans le bureau d'étude (TOP-HYD) de Bordj Bou Arreridj, ou j'ai appris quelques notion de base sur les logiciel COVADIS, AUTOCAD, EPANET.

J'ai également visite de la localité Zmala : Dechacha, El-Guendoulia, Ouled Raoudha commune de Bordj Ghedir wilaya de Bordj Bou Arreridj.

En présentiel j'ai fait une étude d'un projet en cours de réalisation (dimensionnement du réseau de distribution de localité zmala) ou j'ai pu utiliser toutes les reconnaissances théorique obtenues au cours de ma formation.

I.6.Conclusion

Dans ce chapitre, nous avons présenté l'entreprise d'accueil et les activités du bureau d'études, les moyens humains et matériels.

Cette formation m'a été très utile car j'ai découvert le coté pratique, en plus de me permettre de développer de nouvelle compétence, aime le travail d'équipe et la communication professionnelle et en même temps j'ai réalisé mes taches pour arriver à préparer mon mémoire de fin d'étude.

Chapitre II Présentation de la zone d'étude

II.1.Introduction

Le centre de Zmala commune de Bordj Ghedir, wilaya de Bordj Bou Arreridj; souffre actuellement du problème d'alimentation en eau potable et ce non seulement de la quantité d'eau insuffisante mais aussi à la qualité du réseau de distribution qui existe actuellement :

- Nombre important de fuites
- Des tronçons de conduite sous dimensionnés (développement de la population)
- Les piquages illicites.

D'où la nécessité de projeter un nouveau réseau qui pourra satisfaire aux besoins en eau de la population actuelle et futur.

II.2. Présentation de la zone d'étude

II.2.1.Situation géographique de la zone :

La zone d'étude Zmala est situé sur la périphérie EST de la ville de Bordj Ghedir sur la route reliant Bordj Ghedir à Ras el-oued. (Bordj-Bou-Arreridj).

Elle est limitée au :

Nord: Wilaya de Bejaia
EST: Wilaya de Bouira
SUD: Wilaya de M'sila
OUEST: Wilaya de Sétif

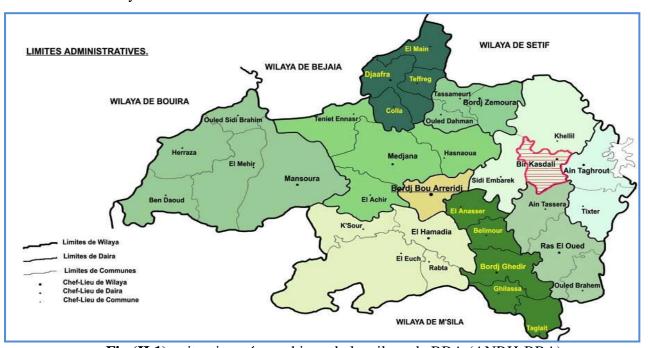


Fig (II.1): situation géographique de la wilaya de BBA (ANRH-BBA).

Le centre de Zmala est limitée au :

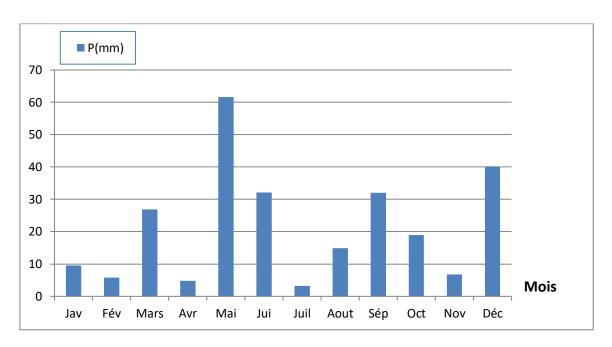
Nord : Commune El Anasser **EST :** Commune Ras el oued

SUD: Commune Teglait

OUEST: Commune Al Hamadia

Fig(II.2): situation géographique de la localité Zmala (Google Erth).

II.2.2.Situation climatique:

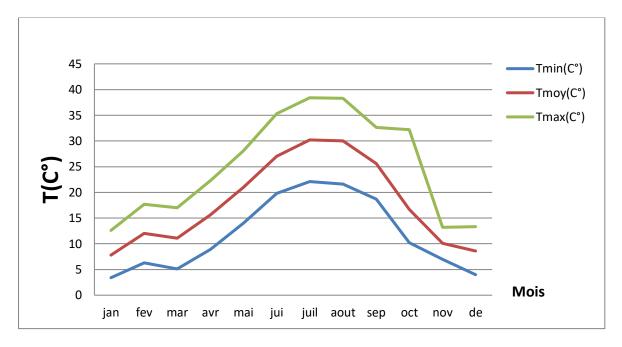

Le centre Zmala, commune bordj Ghedir, wilaya de Bordj-Bou-Arreridj, a un climat continental chaud et sec en été, froid et humide en hiver. (**Station de Bordj Ghedir**).

II.2.3. Situation pluviométrique :

Moyennes des précipitations enregistrée sur un période de 13 ans (2003-2016) d'une moyenne annuelle 260.4 mm d'eau par an, a été enregistré la précipitation maximale dans le mois mai, et la précipitation minimale dans le mois juil (Station de bordj Ghedir).

Tableau (II.1): Répartition mensuelle de la pluie moyenne annuelle (2003-2016).

Mois	Jan	Fév	Mars	Avr	Mai	Jui	juil	Aout	Sép	Oct	Nov	Déc	total
P (mm)	9.6	5.8	26.9	4.8	61.6	32.1	3.2	14.9	32.0	19.0	6.8	40.1	260.4

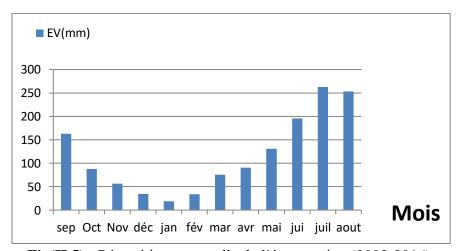

Fig(II.3): Répartition mensuelle de la pluviométrie (2003-2016).

II.2.4.Température:

Les valeurs enregistrée dans la station de Bordj Ghedir de l'année (2003-2016) donc dans le tableau, Le mois le plus chaux de l'année à bordj Ghedir est juil avec une T_{MAX} =38.4°C et T_{MIN} = 22.1°C. Et le mois le plus froid de l'année à bordj Ghedir est Janvier avec une T_{MAX} =12.6°C et T_{MIN} = 3.4°C. (Station de bordj Ghedir).

Tableau(II.2): Répartition mensuelle de la température (2003-2016)

Mois	Jan	Fév	Mars	Avr	Mai	Jui	juil	Aout	Sép	Oct	Nov	Déc	Moy
T _{min} (C°)	3.4	6.3	5.1	8.9	14.0	19.8	22.1	21.6	18.7	10.2	7.0	4.0	11.75
T _{moy} (C°)	7.8	12.0	11.1	15.6	21.0	27.0	30.2	30.0	25.6	16.7	10.1	8.6	17.97
T _{max} (C°)	12.6	17.7	17.0	22.3	28.1	35.3	38.4	38.3	32.6	32.2	13.2	13.3	25.08

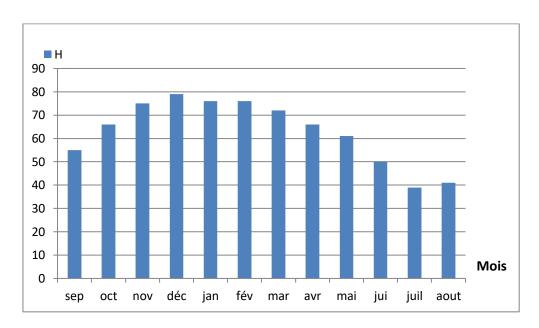

Fig(II.4): Répartition mensuelle de la température (2003-2016).

II.2.5.Evaporation:

L'évaporation moyenne annuelle retenue est donc de **1403mm**, comme on le remarque dans le tableau précédent, Elle est minimale durant les mois d'hiver (**Janvier** et **Février**), alors qu'elle est maximale pour les mois d'été (**Juillet** et **Août**) (**Station bordj Ghedir**).

Tableau (II.3): Répartition mensuelle de l'évaporation (2003-2016)

Mois	sep	oct.	nov	déc	jan	fév	mar	avr	mai	juin	juil.	Aout	total
EV	163	87.9	56.4	34.7	18.7	33.5	75.5	90.4	131	196	263	253	1403
(mm)													

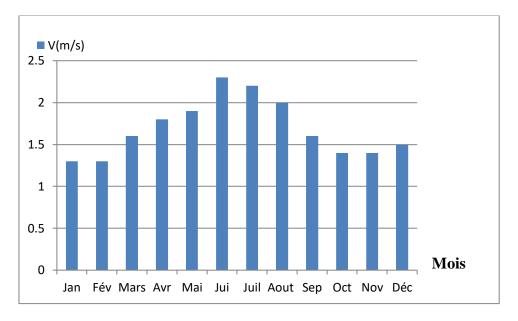

Fig(II.5): Répartition mensuelle de l'évaporation (2003-2016).

II.2.6.Humidité:

Elle représente le rapport entre la pression partielle de la vapeur d'eau dans l'air et la pression de saturation à la même température. L'humidité relative **moyenne** est de 63%. Elle présente un **maximum** en Décembre (79 %) et un **minimum** en Juillet (39 %) (**Station de Bordj Ghedir**).

Tableau (**II.4**) : Répartition mensuelle de l'humidité relative (2003-2016).

Mois	sép	oct.	nov.	déc	jan	fév	mar	avr	mai	juin	juil.	Aout	Moy
Н%	55	66	75	79	76	76	72	66	61	50	39	41	63


Fig(II.6): Répartition mensuelle de l'humidité relative (2003-2016).

II.2.7.Les vents:

Les vitesses moyennes mensuelles sont de **3 m/s** environ, sans grandes variations d'un mois sur l'autre (**les minimales à 1.3 m/s et les maximales à 2.3 m/s**) d'après les mesures de la station Bordj Ghedir pour la période (2003-2016). (**Station de bordj Ghedir**).

Tableau (II.5): les vitesses des vents dominants (2003-2016)

Mois	sép	oct.	nov.	déc	jan	fév	mar	avr	mai	juin	juil.	Aout	Moy
Vitesse (m/S)	1.6	1.4	1.4	1.5	1.3	1.3	1.6	1.8	1.9	2.3	2.2	2	1.7

Fig(II.7): Répartition mensuelle de la vitesse des vents (2003-2016).

II.3. Situation hydrique:

II.3.1.Les ressources en eau :

L'alimentation en eau potable du centre de Zmala se fait à partir d'un forage qui a un débit= 6 l/s.

II.9.Conclusion

En conclusion ; nous avons essayé de représenter le centre Zmala, ainsi que tous les facteurs et les caractéristiques (climat, vents, humidité, évaporation, température et pluviométrie) qui influent sur l'alimentation en eau potable de la localité Zmala.

Chapitre III Estimation des besoins en eau

III.1.Introduction

L'estimation des besoins en eau de notre agglomération exige de fixer une norme pour chaque catégorie de consommateur, cette norme unitaire (dotation) est définie en fonction des besoins de chaque consommateur et de la capacité de la ressource.

Cette évaluation varie considérablement en fonction de l'évolution démographique et des caractéristiques de la zone d'étude.

III.2. Situation démographique

La localité Zmala est divisé en trois zones :

Dechacha (zone haute):786 habitants.

El-Guendoulia (Zone basse): 420 habitants.

Ouled Raoudha: 540 habitants.

III.3. Estimation des besoins en eau

III.3.1. Estimation de la population future à différents horizons

Pour l'estimation de la population à l'horizon futur nous utiliserons la loi suivante :

$$P_n = P_0(1+2)^n$$
(III.1)

D'où:

 P_n : Population à l'horizon de calcule. (Pour notre cas $P_n=2052$)

 P_0 : Population a la date actuelle.(Pour notre cas $P_0=2022$)

2: Taux d'accroissement (%). (Pour notre cas 2=2.2 %)

n : Nombre d'années pendant lesquelles il y'a croissance géométrique (30 ans).

Tableau(III.1): Nombre d'habitant du centre Zmala à l'horizon de 2022 à 2052

Zone	Nombre d'habitants						
	Année 2022	Année 2052					
Dechacha	786	1510					
El-Guendoulia	420	807					
Ouled Raoudha	540	1038					

III.3.2. Estimation des besoins collectifs

Dans l'assemblée populaire municipal, nous avons constaté qu'un centre Ouled Raoudha, il y a une mosquée et une école primaire.

III.3.2.1. Estimation des besoins en eau de l'école scolaire

Tableau(III.2): Estimation des besoins en eau de l'école primaire.

Zone	Nombre d'élèves				
Zone	Année 2022	Année 2052			
Ouled Raoudha	130	250			

III.3.2.2.Estimation des besoins en eau de la mosquée

Tableau(III.3): Estimation des besoins en eau de mosquée

Zone	Nombre de fidèles					
Zone	Année 2022	Année 2052				
Ouled Raoudha	26	50				

La localité de Zmala, commune de Bordj Ghedir, wilaya de Bordj-Bou-Arreridj, le type d'agglomérations **semi rurale**. Donc d'après **le plan national** de l'eau nous avons pris les données suivantes :

III.3.2.3. Estimation des besoins en eau d'administratifs et commerciaux

Tableau(III.4): Estimation des besoins administratifs et commerciaux

Zone	Equipement	Nombre d'équipement Année 2052
El-Guendoulia	Administratifs	5
El Guellaouna	Commerciaux	3

III.4.La consommation moyenne journalière

La consommation moyenne journalière se détermine par la formule suivante :

$$\mathbf{Q}_{\text{mov/i}} = \mathbf{P} \times \mathbf{D}$$
.....(III.2)

D'où:

 $Q_{moy/j}$: consommation moyenne journalière (I/J).

P: Population (habitant).

D: Dotation journalière (l/j/habitant).

III.4.1.La consommation moyenne journalière domestique

Tableau(III.5): Consommation moyenne journalière du centre Zmala

Zone	Nombre d	'habitant	Dotation l/j/habitant	Consommation moyenne journalière (l/j)		
	Année Année 2022 2052		1/J/Habitant	Année	Année	
				2022	2052	
Dechacha	786	1510	150	117900	226500	
El-Guendoulia	420	807	150	63000	121050	
Ouled Raoudha	540	1038	150	81000	155700	
Totale	1746	3355	150	261900	503250	

III.4.2. La consommation moyenne journalière des différents équipements

III.4.2.1.Besoins scolaire

Tableau(III.6): Evaluation des besoins de l'école primaire

Zone	Nombre	e d'élèves	Dotation	Consommation moyenne journalière (l/j)		
Zone	Année 2022	Année 2052	(l/j/élè)	Année 2022	Année 2052	
Ouled Raoudha	130	250	25	3250	6250	

III.4.2.2.Besoinsde mosquée

Tableau(III.7): Evaluation des besoins de mosquée

7	Nombre	de fidèles	Dotation	Consommation moyenne journalière (l/j)		
Zone	Année 2022	Année 2052	(l/j/fid)	Année 2022	Année 2052	
Ouled Raoudha	26	50	20	520	1000	

III.4.2.3.Besoins administratif

Tableau(III.8): Evaluation des besoins administratif

Zone	Nombre d'équipement Année 2052	Dotation (l/j/ m²)	Consommation moyenne journalière (l/j) Année 2052
El-Guendoulia	5	15	75

III.4.2.4 Besoins commerciaux

Tableau(III.9): Evaluation des besoins commerciaux

Zone	Nombre d'équipement Année 2052	Dotation (l/j/m²)	Consommation moyenne journalière (l/j) Année 2052
El-Guendoulia	3	100	300

III.5.La consommation moyenne journalière totale

Les résultats de l'évaluation des besoins moyenne journalière de la zone Zmala à l'horizon **2052** sont représentés dans le tableau suivant :

Tableau(III.10): la consommation moyenne journalière Totale

Zone	La consommation moyenne journalière l/j Année 2052	La consommation moyenne journalière m³/j Année 2052
Dechacha	226500	226.500
El-Guendoulia	121050	121.050
Ouled Raoudha	155700	155,700
Totale	503250	503,250

III.6. Majoration de la consommation moyenne journalière

C'est la consommation d'eau maximale du jour le plus chargé de l'année.

On peut l'exprimer parl'équation suivante :

$$Q_{max/j} = Q_{moy/j} x K_{maxj} \dots (III.3)$$

D'où:

Q_{max/j}: consommation maximale journalière (1/j)

 $Q_{moy/j}$: consommation moyenne journalière (1/j)

K_{maxi}: Coefficient d'irrégularité journalière maximum [1.3-1.6]. (Pour notre cas K_{maxi}=1.3)

Tableau(III.11): Evaluation de la consommation maximale journalière

	La consommation moyenne		La consommation maximale		
Zone	journalière l/j	\mathbf{K}_{maxj}	journalière l/j		
	Année 2052		Année 2052		
Dechacha	226500	1.3	294450		
El-Guendoulia	121050	1.3	157365		
Ouled Raoudha	155700	1.3	202410		
Totale	503250	1.3	654225		

III.7.Débit de pointe horaire

Le débit horaire varie suivant les heures de la journée (sur 24 heures).

On peut l'exprimer par les l'équation suivante :

$$Q_{\text{maxh}} = \frac{Q_{max,j}}{24 \times 3600} x K_{\text{mah}}....(III.4)$$

D'ou:

Q_{max,h}: Débit de pointe Horaire (l/s)

Qmax,j :Débit de pointe journalier (1/j)

K_{max,h}: Coefficient d'irrégularité horaire maximale donnée par la formule suivante :

 α_{Max} : Coefficient tenant compte du niveau de confort et des équipements de l'agglomération qui est compris entre 1.2et 1.4 (Pour notre cas α_{Max} =1.2).

 β_{max} : Coefficient donné par un tableau en fonction de la taille d'agglomération.

Tableau(III.12): Variation de β_{max} en fonction du nombre d'habitants.

Nombre											
d'habitant	⟨1.0	1.5	2.5	4.0	6.0	10	20	30	100	300	>1000
X1000	(1.0	1.3	2.3	4.0	0.0	10	20	30	100	300	71000
β_{max}	2.0	1.8	1.6	1.5	1.4	1.3	1.2	1.15	1.10	1.03	1

Donc dans le tableau Habitation du centre de Zmala, commune de Bordj Ghedir, wilaya de Bordj Bou Arreridj, le nombre d'habitants est égale à 3353 c'est-à-dire nombre représente un coefficient β_{max} entre 1.6 et 1.5.

Par interpolation on calcul notre β_{max} :

 $B_{max} = 1.5568$

 Tableau (II.13): Evaluation le débit de point horaire

Zone	K _{max,h}	Débit de pointe Horaire l/s
Dechacha	1,868	6.366
El-Guendoulia	1,868	3.402
Ouled Raoudha	1,868	4.376
Totale	1,868	14.144

III.8.Débit minimum horaire :

On peut l'exprimer par les l'équation suivantes :

$$Q_{\text{min/h}} = \frac{Q_{max,j}}{24 \times 3600} \times K_{\text{minh}}...$$
(III.6)

D'ou:

Qmin,h: Débit minimum Horaire (l/h)

Qmax,j : Débit de pointe journalier (1/j)

 $\mathbf{K}_{\min,h}$: Coefficient d'irrégularité horaire minimale donnée par la formule suivante :

$$K_{min,h} = \alpha_{min} \times \beta_{min}$$
.....(III.8)

 α_{min} : Coefficient tenant compte du niveau de confort et des équipements de l'agglomération qui est compris entre 0.4et 0.6 (α_{Min} =0.4).

β_{Min}:Coefficient donné par un tableau en fonction de la taille d'agglomération.

Tableau(III.14): Variation de β_{min} en fonction du nombre d'habitant.

Nombre											
d'habitant	<1.0	1.5	2.5	4.0	6.0	10	20	30	100	300	>1000
X1000											
β _{min}	0.1	0.1	0.1	0.2	0.25	0.4	0.5	0.6	0.7	0.83	1

Donc dans le tableau Habitation du centre de Zmala, commune de Bordj Ghedir, wilaya de Bordj Bou Arreridj, le nombre d'habitants est égale à 3353 c'est-à-dire ce nombre représente un coefficient β_{min} entre 0.1 et 0.2

Par interpolation on calcul notre β_{min} :

 $B_{min} = 0.1568$

Tableau(III.15): Evaluation le débit minimum horaire

Zone	K _{min,h}	Débit de point Horaire l/s
Dechacha	0.062	0.211
El-Guendoulia	0.062	0.112
Ouled Raoudha	0.062	0.145
Totale	0.062	0.469

III.9.Conclusion

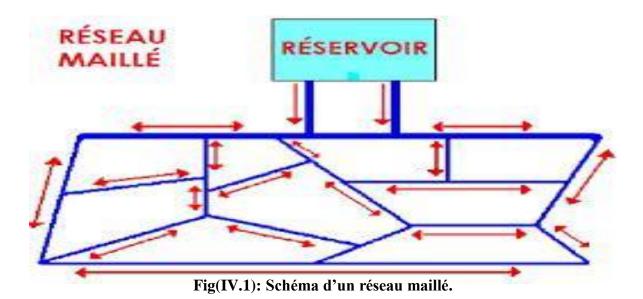
Dans ce chapitre, nous avons estimé les différents besoins en eau potable de la zone Zmala on intégrant toutes les catégories de consommation. Les besoins maximums en eau à l'horizon 2052 sont évalués à Q_{max/h}=14.144 l/s. On utilisant ce débit d'eau le calcul de dimensionnement du réseau distribution on pourra garantir une quantité d'eau suffisante pour toute la population de la localité de Zmala.

Chapitre IV Dimensionnement du réseau de distribution

IV.1. Introduction

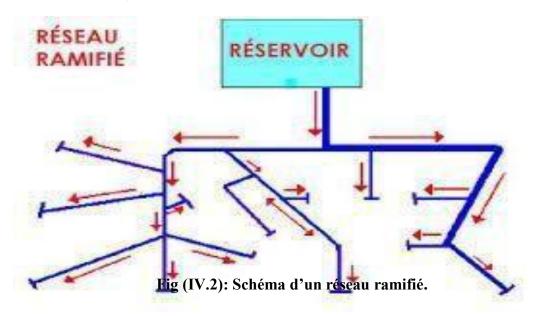
Dans ce chapitre nous allons projeter le réseau de distribution d'eau potable du centre Zmala commune de Bordj Ghedir à l'horizon 2052 en tenant compte de la répartition spatiale des constructions ainsi que les voies de communication (route, pisteetc.).

Dans ce présent chapitre, on prévoit de dimensionner le réseau de distribution en eau potable du centre Zmala en exploitant le logiciel EPANET.


IV.2. Classification des réseaux de distribution

Il existe 4 types de réseau de distribution :

- Réseau Maillé.
- Réseau Ramifié.
- Réseau étagé.
- Réseau Mixte.


IV.2.1.Réseau Maillé

Un réseau maillé est un réseau de conduites dont la plupart des extrémités des tronçons sont connectées pour former des mailles. Les points de rencontre des conduites sont des nœuds. Le sens de l'écoulement de l'eau à l'intérieur des mailles dépend fortement de la demande (Allouache.N & Abbas.Kh 2021-2022).

IV.2.2.Réseau Ramifié

Le réseau ramifié est constitué par une conduite principale et des conduites secondaires (Branches) branchées tout le long de la conduite principale : c'est un réseau arborescent. C'est un réseau qui n'assure aucune distribution du retour, il suffit qu'une panne se produise sur la conduite principale et que toute la population à l'aval sera privée d'eau (Allouache.N & Abbas.Kh 2021-2022).

IV.2.3.Réseau mixte

Ce réseau est constitué d'une partie ramifiée et une autre maillée (Allouache.N & Abbas.Kh 2021-2022).

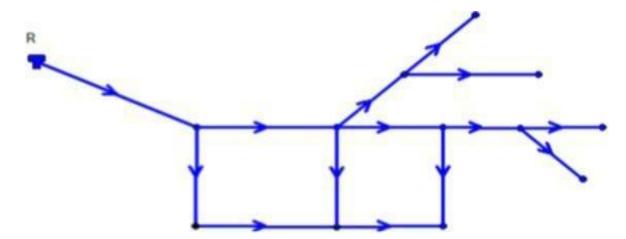


Fig (IV.3): Schéma d'un réseau Mixte.

IV.2.4.Réseau étagé

Ce réseau est caractérisé par une différence de niveau très importante, ce qui entraine de fortes pressions au point le plus bas. En effet ce système nécessite l'installation d'un réservoir intermédiaire, permettant une régulation de la pression (Allouache.N & Abbas.Kh 2021-2022).

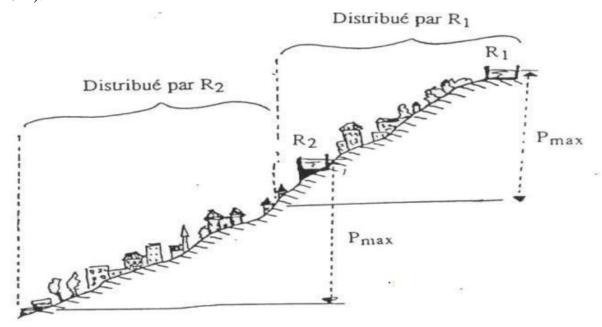
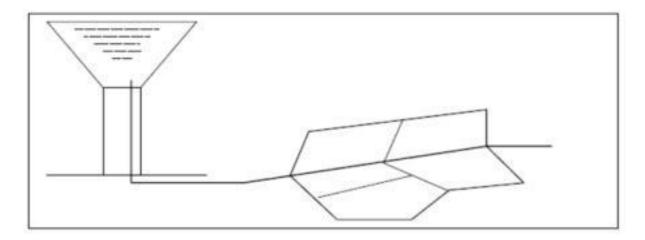


Fig (IV.4): Schéma d'un réseau étagé.

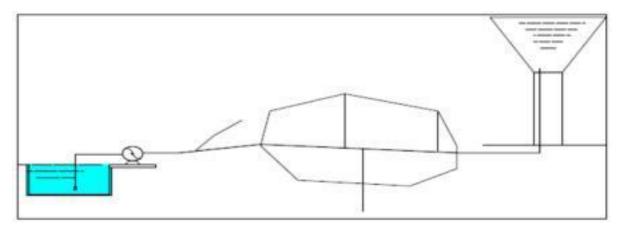
IV.3.Choix de réseau à adopter


On se basant sur la morphologie de la zone d'étude (Zmala) et la topographie accidentée du terrain nous avons opté pour un réseau mixte et ce pour les raisons suivantes :

- Disposition anarchique des constrictions.
- Impossibilité de traverser des terrains privé nos encore aménagé.
- Risque d'agression du réseau (impossibilité de contrôler les branchements illicites).
- Réduire le cout global du projet.

IV.4.Mode de distribution

IV.4.1.La distribution gravitaire


La distribution est entièrement gravitaire lorsqu'elle se fait à partir d'un stockage qui domine hydrauliquement tout le réseau, la pression de service est atteinte ou dépassée sur l'ensemble des zones sans l'intervention d'une machine élévatrice. (Allouache.N & Abbas.Kh 2021-2022).

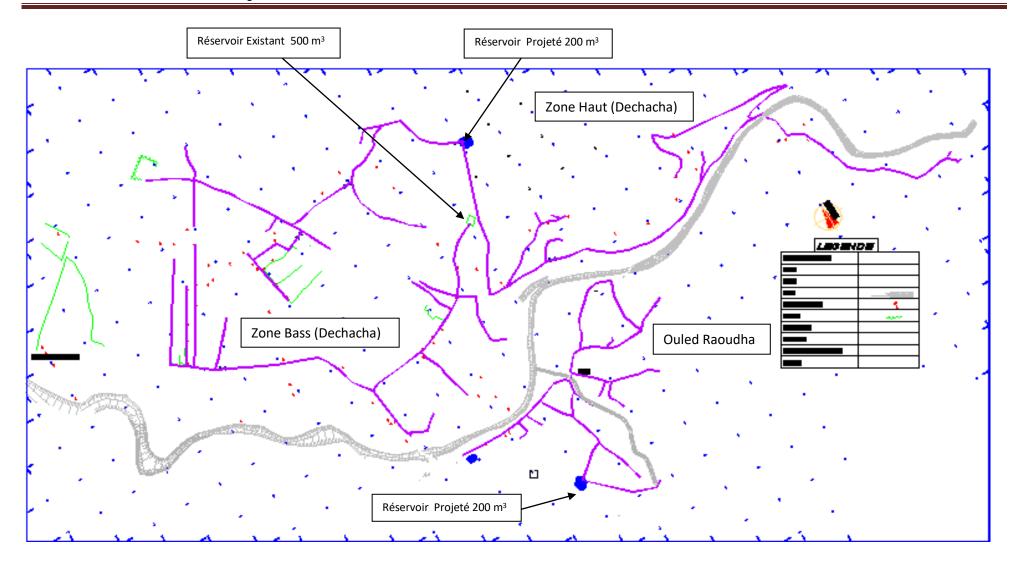
Fig(IV.5): Distribution gravitaire.

IV.4.2.Le refoulement distributif

Le refoulement distributif est adopté dans le cas ou le stockage serait inexistant ou qu'il se situe à l'opposé de la source d'eau potable, obligeant à traverser toute la localité pour joindre les deux installations. Ce sont les pompes qui assurent les pressions de service. (Allouache.N & Abbas.Kh 2021-2022).

Fig(IV.6): Le refoulement distributif.

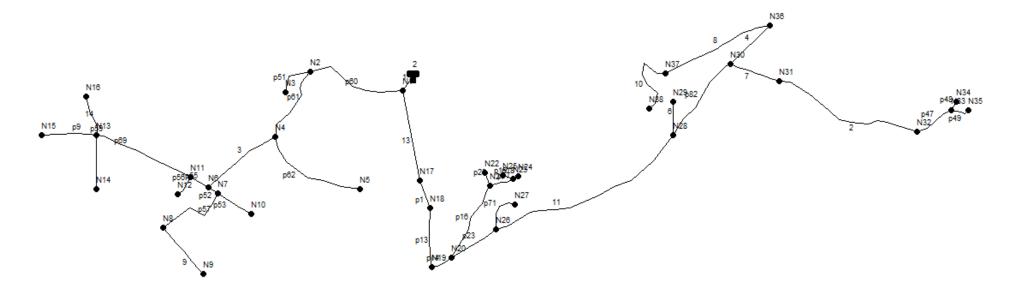
IV.5. Conception d'un réseau de distribution


Pour concevoir un réseau de distribution, on prend en compte des certains facteurs. Parmi ces facteurs, Nous citons (Allouache.N & Abbas.Kh 2021-2022).

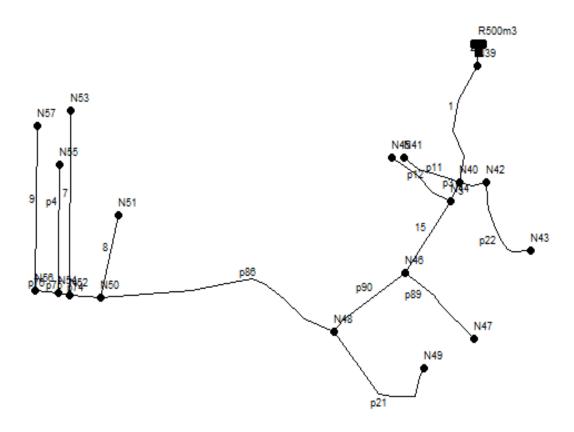
- Le souci d'assurer un service souple et précis.
- L'emplacement des quartiers et des consommateurs.
- Le relief.

IV.6. Choix du matériau des conduites du réseau

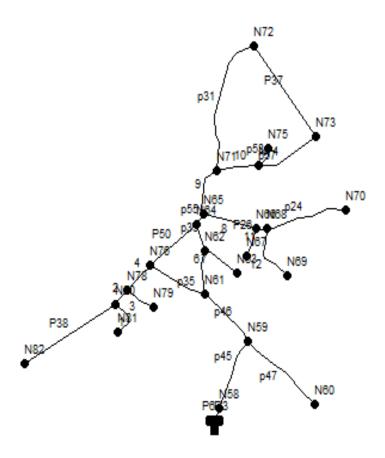
Le choix du type de matériaux des conduites par miles parties importantes de projection du Réseau, leur choix doit répondre à certaines exigences, à savoir :


- Pression interne supportée par la canalisation.
- La résistance à l'agressivité du sol.
- Facilité de la mise en œuvre.
- Disponibilité du produit sur le marché national.
- > Du prix unitaire.
- Durée de vie.

Fig(IV.7): Shéma du réseau distribution de la localité Zamala sur AUTOCAD.


IV.8.1.Transfère le réseau vers EPANET

1) Zone haute (Dechacha):


Fig(IV.8): Réseau distribution pour la zone haute (EPANET).

2) La zone basse (El-Guendoulia).

Fig(IV.9): Réseau distribution pour la zone Basse (EPANET).

3) Ouled Raoudha

Fig(IV.10): Réseau distribution pour Ouled Raoudha (EPANET).

IV.8.2. Calcule hydraulique du réseau de distribution

Le dimensionnement du réseau de distribution a pour objectif la détermination des paramètres géométrique et hydraulique des canalisations (diamètre; longueur; pression; vitesse d'écoulement et le débit).

IV.8.2.1. Débit de pointe :

C'est le débit qui correspond à la consommation maximale avec laquelle on dimensionnera le réseau de distribution (calculé déjà dans le chapitre précédent).

IV.8.2.2.Débit spécifique :

C'est le débit uniforme, il est défini comme étant le volume d'eau consommé à travers un mètre des canalisations pendant une seconde.

On peut l'exprimer par l'équation suivante :

Où:

 \mathbf{Q}_{s} = Débit spécifique (l/s.m)

Q_P= Débit de pointe (l/s)

 $\sum L$ = somme des longueurs des tronçons du réseau en mètre ou il y a distribution.

Le tableau (IV.1): Débit spécifique de centre Zmala.

Zone	$\sum L$ m	Débit de pointe l/s	Débit spécifique l/s.m
Dechacha	5114,91	6.366	0,001244597
El-Guendoulia	3137,12	3.402	0,001084434
Ouled Raoudha	2075,19	4.376	0,002108723

IV.8.2.3Débit en route :

Le débit en route de chaque tronçon est le produit de sa longueur par le débit spécifique. On peut l'exprimer par l'équation suivante :

$$Qr = Q_s \times L$$
.....(IV.2)

Où:

Qr : Débit en route (1/s).

Qr : Débit spécifique (l/s.m).

L : Longueur du tronçon considéré (m).

• Calculer du débit en route pour les différentes zones :

1. La zone haute (Dechacha):

Tableau (IV.2): Débit en route de zone haute (Dechacha).

Tronçon	Longueur	Débit spécifique	Débit en route
	m	l/s.m	l/s
D1-D2	231,2	0,001244597	0,287750826
D2-D3	86,75	0,001244597	0,10796879
D2-D4	178,2	0,001244597	0,221787185
D4-D5	243,5	0,001244597	0,30305937
D4-D6	190,3	0,001244597	0,236846809
D6-D7	27,64	0,001244597	0,034400661
D7-D8	170,3	0,001244597	0,211954869
D8-D9	139,5	0,001244597	0,173621282
D7-D10	87,68	0,001244597	0,109126265
D6-D11	46,18	0,001244597	0,057475489
D11-D12	48,55	0,001244597	0,060425184
D11-D13	234,8	0,001244597	0,292231376
D13-D14	120,8	0,001244597	0,150347318
D13-D15	124,5	0,001244597	0,154952327
D13-D16	94,11	0,001244597	0,117129024
D1-D17	207,4	0,001244597	0,258129418
D17-D18	66,63	0,001244597	0,082927498
D18-D19	135	0,001244597	0,168020595
D19-D20	49,85	0,001244597	0,06204316
D20-D21	187,9	0,001244597	0,233859776
D21-D22	32,26	0,001244597	0,040150699
D21-D23	56,45	0,001244597	0,070257501
D23-D24	13,16	0,001244597	0,016378897
D23-D25	25,2	0,001244597	0,031363844
D20-D26	119,6	0,001244597	0,148853801
D26-D27	92,83	0,001244597	0,11553594
D26-D28	494,26	0,001244597	0,615154513
D28-D29	77,54	0,001244597	0,096506051
D28-D30	210,8	0,001244597	0,262361048
D30-D31	139,34	0,001244597	0,173422146
D31-D32	349,1	0,001244597	0,434488813
D32-D33	93,86	0,001244597	0,116817874
D30-D34	21,55	0,001244597	0,026821065
D34-D35	41,6	0,001244597	0,051775235
D35-D36	140,91	0,001244597	0,175376163
D36-D37	262,1	0,001244597	0,326208874
D36-D38	273,56	0,001244597	0,340471955

2. La zone basse (El-Guendoulia)

Tableau (IV.3): Débit en route de zone basse (El-Guendoulia).

Tronçon	Longueur m	Débit spécifique l/s.m	Débit en route l/s
G1-G2	203,8	0,001084434	0,221007649
G2-G3	106,5	0,001084434	0,115492221
G3-G4	46,74	0,001084434	0,050686445
G2-G5	160,7	0,001084434	0,174268544
G2-G6	33,59	0,001084434	0,036426138
G6-G7	126,3	0,001084434	0,136964014
G6-G8	139,7	0,001084434	0,15149543
G8-G9	165,8	0,001084434	0,179799157
G8-G10	161,4	0,001084434	0,175027648
G10-G11	242,9	0,001084434	0,263409019
G10-G12	436,3	0,001084434	0,473138554
G12-G13	139,53	0,001084434	0,151311076
G12-G14	55,19	0,001084434	0,059849912
G14-G15	567,93	0,001084434	0,615882602
G14-G16	19,46	0,001084434	0,021103086
G16-G17	211,9	0,001084434	0,229791565
G16-G18	41,35	0,001084434	0,044841346
G18-G19	278,03	0,001084434	0,301505185

3. Ouled Raoudha

Tableau (IV.4): Débit en route OuledRaoudha

Tronçon	Longueur	Débit spécifique	Débit en route
	m	l/s.m	l/s
R1-R2	106,99	0,002108723	0,225612274
R2-R3	139,74	0,002108723	0,294672952
R2-R4	97,06	0,002108723	0,204672654
R4-R5	63,67	0,002108723	0,134262393
R5-R6	62,33	0,002108723	0,131436705
R5-R7	38,64	0,002108723	0,081481057
R7-R8	18,69	0,002108723	0,039412033
R8-R9	86,8	0,002108723	0,183037156
R9-R10	42,16	0,002108723	0,088903762
R9-R11	16,61	0,002108723	0,035025889
R11-R12	87,04	0,002108723	0,18354325
R11-R13	129,3	0,002108723	0,272657884
R8-R14	73,22	0,002108723	0,154400698
R14-R15	67,01	0,002108723	0,141305528
R15-R16	32,85	0,002108723	0,069271551
R16-R17	103,2	0,002108723	0,217620214
R17-R18	159,23	0,002108723	0,335771963

Tronçon	Longueur	Débit spécifique	Débit en route
	m	l/s.m	l/s
N17-R14	206,11	0,002108723	0,434628898
R7-R19	95,52	0,002108723	0,201425221
R4-R19	98	0,002108723	0,206654854
R19-R20	49,48	0,002108723	0,104339614
R20-R21	47,7	0,002108723	0,100586087
R20-R22	28,55	0,002108723	0,060204042
R22-R23	59,43	0,002108723	0,125321408
R22-R24	165,86	0,002108723	0,349752797

Suite Tableau (IV.4): Débit en route OuledRaoudha

IV.8.2.4.Débit aux nœuds

Le débit au nœud est celui qu'il faut assurer à chaque jonction des conduites de réseau. Il se calcule comme suit :

$$Q_n=0, 5 \times \sum Q_r+Q_{co}$$
....(IV.3)

Où:

Qr: Débit au nœud (1/s).

 $\sum \mathbf{Q_r}$: somme des débits en route du nœud considéré (1/s).

Qco: Débit concentré (l/s).

• Calculer les débits aux nœuds pour les différentes zones :

a) Zone Haute (Dechacha)

Tableau (IV.5): Débit au nœud de Dechacha.

Nœuds	Débit en route l/s	Débit aux nœuds l/s
D1	0,287750826	0,272940122
DI	0,258129418	0,272940122
	0,287750826	
D2	0,10796879	0,308753401
	0,221787185	
D3	0,10796879	0,053984395
	0,221787185	
D4	0,30305937	0,380846682
	0,236846809	
D5	0,30305937	0,151529685
	0,236846809	
D6	0,034400661	0,16436148
	0,057475489	
	0,034400661	
D7	0,211954869	0,177740898
	0,109126265	

Suit Tableau (IV.5): Débit au Dœud de Dechacha

Nœuds	Débit en route l/s	Débit aux nœuds l/s
D8	0,211954869	0,192788076
ро	0,173621282	0,192/000/0
D9	0,173621282	0,086810641
D10	0,109126265	0,054563133
	0,057475489	
D11	0,060425184	0,205066025
	0,292231376	
D12	0,060425184	0,030212592
	0,292231376	
D13	0,150347318	0,357330023
D13	0,154952327	
	0,117129024	
D14	0,150347318	0,075173659
D15	0,154952327	0,077476164
D16	0,117129024	0,058564512
D17	0,258129418	0,170528458
D17	0,082927498	0,170320430
D18	0,082927498	0,125474047
D 10	0,168020595	0,123+7+0+7
D19	0,168020595	0,115031878
D1)	0,06204316	0,113031070
	0,06204316	
D20	0,233859776	0,222378369
	0,148853801	
	0,233859776	
D21	0,040150699	0,172133988
	0,070257501	
D22	0,040150699	0,02007535
	0,070257501	
D23	0,016378897	0,059000121
	0,031363844	
D24	0,016378897	0,008189449
D25	0,031363844	0,015681922
	0,148853801	
D26	0,11553594	0,439772127
	0,615154513	
D27	0,11553594	0,05776797
	0,615154513	
D28	0,096506051	0,487010806
	0,262361048	
D29	0,096506051	0,048253026
	0,262361048	_
D30	0,173422146	0,305579679
	0,175376163	

Nœuds	Débit en route l/s	Débit aux nœuds l/s
D31	0,173422146	0,30395548
D31	0,434488813	0,30393346
D22	0,434488813	0.075650044
D32	0,116817874	0,275653344
D33	0,116817874	0,097707087
D34	0,026821065	0,013410533
D34	0,051775235	0,013410333
D35	0,051775235	0,025887618
	0,175376163	
D36	0,326208874	0,250792519
	0,340471955	
D37	0,326208874	0,333340415
D38	0,340471955	0,170235978
Totale		6.366

Suit Tableau (IV.5): Débit au nœud de Dechacha

b) La zone basse (El-Guendoulia)

Réseau d'incendie

Je propose d'installer un poteau d'incendie dans la zone basse. Cependant, pour la simulation de fonctionnement du réseau et pour vérifier son aptitude à répondre aux exigences de débit et de pression, on prévoie un seul poteau en marche installé au nœud N°42. Le débit de fonctionnement d'un poteau d'incendie doit être égal à 17 l/s.

Nœuds Débit d'incendie l/s Débit en route l/s Débit aux nœuds l/s 0,221007649 0,110503825 G1 0,221007649 0,115492221 G2 17 0,273597276 0,174268544 0,036426138 **G**4 0,050686445 0,025343223 0,115492221 G3 0,083089333 0,050686445 0,174268544 G5 0,087134272 0,036426138 0,136964014 0,162442791 **G**6 0,15149543 G7 0,136964014 0,068482007 0,15149543 0,179799157 G8 0,253161118 0,175027648

Tableau (IV.6): Débit au nœud d'El-Guendoulia.

Suite Tableau (IV.6) : Débit au nœud d'El-Guendoulia.

Nœuds	Débit en route l/s	Débit d'incendie l/s	Débit aux nœuds l/s
G9	0,179799157		0,089899579
	0,175027648		
G10	0,263409019		0,455787611
	0,473138554		
G11	0,263409019		0,13170451
	0,473138554		
G12	0,151311076		0,342149771
	0,059849912		
G13	0,151311076		0,075655538
	0,059849912		
G14	0,615882602		0,3484178
	0,021103086		
G15	0,615882602		0,307941301
	0,021103086		
G16	0,229791565		0,147867999
	0,044841346		
G17	0,229791565		0,114895783
G18	0,044841346		0,173173266
UIO	0,301505185		0,173173200
G19	0,301505185		0,150752593
Totale		17	20.402

c) Ouled Raoudha

Tableau (IV.7): Débit au nœud d'Ouled Raoudha.

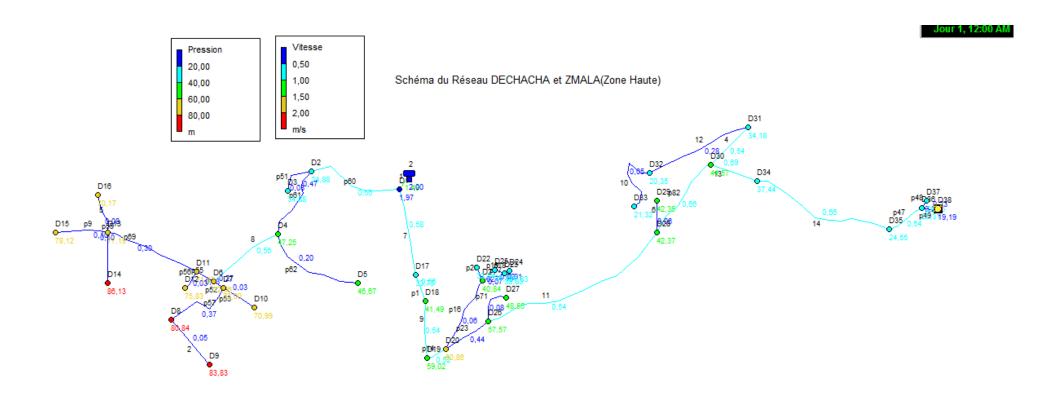
Nœuds	Débit en route l/s	Débit aux nœuds l/s
R1	0,225612274	0,112806137
	0,225612274	
R2	0,294672952	0,36247894
	0,204672654	
R3	0,294672952	0,147336476
	0,204672654	
R4	0,134262393	0,272794951
	0,206654854	
	0,134262393	
R5	0,131436705	0,173590078
	0,081481057	
R6	0,131436705	0,065718353
	0,081481057	
R7	0,039412033	0,161159156
	0,201425221	
	0,039412033	
R8	0,183037156	0,188424944
	0,154400698	

Suite Tableau (IV.7) : Débit au nœud d'Ouled Raoudha

Nœuds	Débit en route l/s	Débit aux nœuds l/s	
	0,183037156		
R9	0,088903762	0,153483404	
	0,035025889		
R10	0,088903762	0,044451881	
	0,035025889		
R11	0,18354325	0,245613512	
	0,272657884		
R12	0,18354325	0,091771625	
R13	0,272657884	0,136328942	
	0,154400698		
R14	0,141305528	0,365167562	
	0,434628898		
R15	0,141305528	0.10529954	
K15	0,069271551	0,10528854	
D16	0,069271551	0.142445992	
R16	0,217620214	0,143445883	
	0,217620214		
R17	0,335771963	0,494010538	
	0,434628898		
R18	0,335771963	0,167885982	
	0,201425221		
R19	0,206654854	0,256209845	
	0,104339614		
	0,104339614		
R20	0,100586087	0,155951513	
	0,060204042		
R21	0,100586087	0,050293044	
	0,060204042		
R22	0,125321408	0,267639124	
	0,349752797	7	
R23	0,125321408	0,062660704	
R24	0,349752797	0,174876399	
Totale		4.376	

IV.8.3. Modélisation et simulation du réseau

A l'aide du logiciel EPANET, on peut modéliser un système de distribution d'eau on suivant les étapes suivantes (BAOUCHE Mustapha & ATOUI Billel 2015-2016).):


- ♣ Dessiner un réseau représentant le système de distribution ou importer une description de base du réseau.
- **♣** Saisir les propriétés des éléments du réseau.
- ♣ Décrire le fonctionnement du système.
- ♣ Sélectionner un ensemble d'options de simulation.
- Lancer une simulation hydraulique ou une analyse de la qualité.
- Visualiser les résultats d'une simulation.

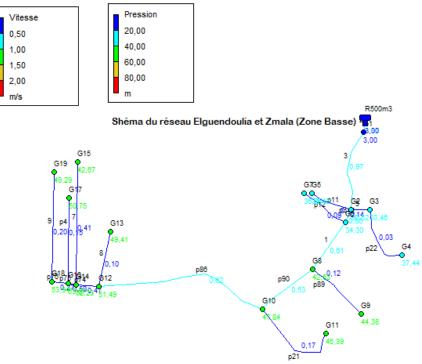
IV.8.4. Résultats de la simulation

Après introduction de tous les paramètres dans EPANET (les débits, les altitudes et les pressions de chaque nœud ainsi que la longueur et les diamètres de chaque arc (conduite)). On a lancé la simulation du réseau et suite à un changement successif des diamètres pour chaque réseau, dans le but de retrouver ceux qui sont idéales tout on respectant les conditions de pression et de vitesse.

- Le schéma des réseaux après simulation est le tableau présenté dans les figures et les tableaux suivants :

A. Zone haute

Fig(IV.11): Réseau de distribution après simulation de la zone Dechacha (EPANET).


Tableau (IV.8): Caractéristiques des conduites du réseau Dechacha

ID Amo	Longueur		Débit	Vitesse	Pert.Charge Unit.
ID Arc	m 66,63	mm 90	LPS	m/s	m/km
Tuyau p1		31	3,53	0,56	3,65
Tuyau p9	124,5		0,08	0,1	0,59
Tuyau p14	49,85	90	3,29	0,52	3,22
Tuyau p16	187,9	73,6	0,28	0,06	0,11
Tuyau p17	56,45	38,8	0,08	0,07	0,19
Tuyau p18	13,16	31	0,01	0,01	0,03
Tuyau p19	25,2	31	0,02	0,02	0,07
Tuyau p20	32,26	38,8	0,02	0,02	0,04
Tuyau p23	119,6	90	2,8	0,44	2,41
Tuyau p47	93,86	38,8	0,75	0,64	13,2
Tuyau p48	21,55	31	0,16	0,22	2,68
Tuyau p49	41,6	31	0,17	0,23	2,88
Tuyau p51	86,75	48,8	0,05	0,03	0,04
Tuyau p52	27,64	48,8	0,51	0,27	2,27
Tuyau p53	87,68	48,8	0,05	0,03	0,04
Tuyau p55	46,18	48,8	0,8	0,43	4,95
Tuyau p56	48,55	38,8	0,03	0,03	0,06
Tuyau p57	170,3	31	0,28	0,37	6,8
Tuyau p59	120,8	31	0,08	0,1	0,54
Tuyau p60	231,2	73,6	2,38	0,56	4,73
Tuyau p61	178,2	73,6	2,01	0,47	3,52
Tuyau p62	243,5	31	0,15	0,2	2,38
Tuyau p69	234,8	48,8	0,57	0,3	2,7
Tuyau p71	92,83	31	0,06	0,08	0,28
Tuyau p82	210,8	58,2	1,76	0,66	8,55
Tuyau 1	1	73,6	6,35	1,49	27,38
Tuyau 4	140,91	38,8	0,64	0,54	9,85
Tuyau 6	77,54	31	0,05	0,06	0,22
Tuyau 10	273,56	38,8	0,06	0,05	0,11
Tuyau 11	494,26	73,6	2,3	0,54	4,45
Tuyau 7	2074	90	3,7	0,58	3,97
Tuyau 8	190,3	58,2	1,48	0,56	6,27
Tuyau 2	139,5	48,8	0,09	0,05	0,07
Tuyau 5	94,11	31	0,06	0,08	0,29
Tuyau 9	135	90	3,41	0,54	3,43
Tuyau 12	262,1	38,8	0,33	0,28	3,19
Tuyau 13	139,34	38,8	0,82	0,69	15,27
Tuyau 14	349,1	38,8	0,78	0,66	14,01

Tableau (IV.9): Caractéristiques des nœuds du réseau Dechacha

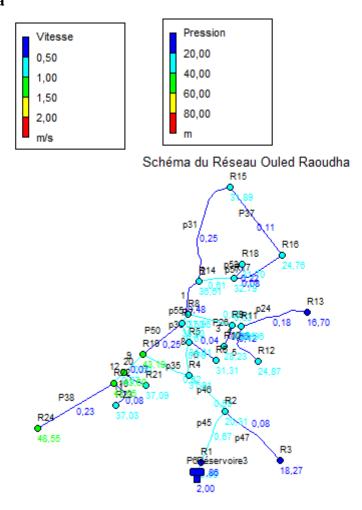
	Altitude	Demande Base	Charge	Pression
ID Nœud	m	LPS	m	m
Nœud D17	1134	0,171	1167,73	33,73
Nœud D18	1126	0,125	1167,49	41,49
Nœud D13	1095	0,357	1172,19	77,19
Nœud D15	1094	0,077	1172,12	78,12
Nœud D4	1127	0,381	1174,25	47,25
Nœud D6	1101	0,164	1173,06	72,06
Nœud D19	1108	0,115	1167,02	59,02
Nœud D20	1106	0,222	1166,86	60,86
Nœud D21	1126	0,172	1166,84	40,84
Nœud D23	1128	0,059	1166,83	38,83
Nœud D24	1129	0,008	1166,83	37,83
Nœud D25	1130	0,016	1166,83	36,83
Nœud D22	1133	0,02	1166,84	33,84
Nœud D26	1109	0,44	1166,57	57,57
Nœud D29	1122	0,048	1164,35	42,35
Nœud D33	1139	0,058	1160,32	21,32
Nœud D35	1131	0,026	1155,55	24,55
Nœud D36	1129	0,421	1154,31	25,31
Nœud D37	1130	0,163	1154,25	24,25
Nœud D38	1135	0,17	1154,19	19,19
Nœud D34	1123	0,039	1160,44	37,44
Nœud D2	1150	0,309	1174,88	24,88
Nœud D3	1140	0,054	1174,88	34,88
Nœud D7	1101	0,178	1173	72
Nœud D10	1102	0,055	1172,99	70,99
Nœud D11	1101	0,205	1172,83	71,83
Nœud D12	1097	0,03	1172,83	75,83
Nœud D8	1091	0,193	1171,84	80,84
Nœud D16	1102	0,059	1172,17	70,17
Nœud D14	1086	0,075	1172,13	86,13
Nœud D1	1174	0,273	1175,97	1,97
Nœud D5	1127	0,152	1173,67	46,67
Nœud D27	1118	0,058	1166,55	48,55
Nœud D32	1140	0,276	1160,35	20,35
Nœud D31	1127	0,304	1161,18	34,18
Nœud D28	1122	0,487	1164,37	42,37
Nœud D30	1118	0,306	1162,57	44,57
Nœud D9	1088	0,087	1171,83	83,83
Réservoir 2	1174	Sans Valeur	1176	2

B. La zone basse (El-Guendoulia)

Fig(IV.12): Réseau de distribution après simulation de la zone El-Guendoulia (EPANET).

Tableau	(IV.10)	: Caractéristiques	des conduites o	lu réseau	El-Guendoulia

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge Unit.
ID Arc	m	mm	LPS	m/s	m/km
Tuyau p3	33,59	73,6	2,82	0,66	6,41
Tuyau p4	211,9	31	0,12	0,15	1,48
Tuyau p11	106,5	31	0,09	0,12	0,84
Tuyau p12	126,3	31	0,07	0,09	0,41
Tuyau p21	242,9	31	0,13	0,17	1,87
Tuyau p22	160,7	31	0,03	0,03	0,11
Tuyau p74	55,19	58,2	1,24	0,47	4,61
Tuyau p75	19,46	38,8	0,59	0,5	8,51
Tuyau p76	41,35	38,8	0,32	0,27	3,03
Tuyau p86	436,3	58,2	1,66	0,62	7,69
Tuyau p89	165,8	31	0,09	0,12	0,93
Tuyau p90	161,4	73,6	2,25	0,53	4,29
Tuyau 2	1	163,6	20,4	0,97	4,84
Tuyau 7	567,93	31	0,31	0,41	8,03
Tuyau 8	139,53	31	0,08	0,1	0,56
Tuyau 9	278,03	31	0,15	0,2	2,35


Suite Tableau (IV.10) : Caractéristiques des conduites du réseau El-Guendoulia

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge Unit.
ID Arc	m	mm	L/S	m/s	m/km
Tuyau 1	139,7	73,6	2,59	0,61	5,51
Tuyau 3	100	163,6	20,29	0,97	4,76
Tuyau 5	46,74	31	0,11	0,14	1,33

Tableau (IV.11): Caractéristiques des nœuds du réseau EL-Guendoulia.

	Altitude	Demande Base	Charge	Pression
ID Nœud	m	LPS	m	m
Nœud G3	1106	0,083	1136,46	30,46
Nœud G2	1104	17,274	1136,52	32,52
Nœud G6	1102	0,162	1136,3	34,3
Nœud G16	1078	0,148	1131,07	53,07
Nœud G17	1080	0,115	1130,75	50,75
Nœud G14	1079	0,348	1131,23	52,23
Nœud G15	1084	0,308	1126,67	42,67
Nœud G13	1082	0,076	1131,41	49,41
Nœud G5	1102	0,087	1136,43	34,43
Nœud G7	1100	0,068	1136,25	36,25
Nœud G10	1087	0,456	1134,84	47,84
Nœud G11	1089	0,132	1134,39	45,39
Nœud G4	1099	0,025	1136,44	37,44
Nœud G12	1080	0,342	1131,49	51,49
Nœud G18	1077	0,173	1130,94	53,94
Nœud G1	1134	0,111	1137	3
Nœud G19	1081	0,151	1130,29	49,29
Nœud G8	1093	0,253	1135,53	42,53
Nœud G9	1091	0,09	1135,38	44,38
Réservoir R500m3	1134	Sans Valeur	1137	3

C. Ouled Raoudha

 $\textbf{Fig}(\textbf{IV.13}): \textbf{R\'eseau de distribution apr\`es simulation de la zone Ouled Raoudha (EPANET)}.$

Tableau (IV.12): Caractéristiques des conduites du réseau Ouled Raoudha.

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge Unit.
ID Arc	m	mm	LPS	m/s	m/km
Tuyau p24	129,3	31	0,14	0,18	1,97
Tuyau P26	42,16	31	0,04	0,06	0,2
Tuyau p31	206,11	31	0,19	0,25	3,49
Tuyau p33	38,64	58,2	1,62	0,61	7,33
Tuyau p35	95,52	58,2	1,65	0,62	7,57
Tuyau p45	106,99	90	4,28	0,67	5,15
Tuyau p46	97,06	90	3,78	0,59	4,11
Tuyau p47	139,74	48,8	0,15	0,08	0,26
Tuyau p53	32,85	31	0,17	0,22	2,82
Tuyau p55	18,69	73,6	2,13	0,5	3,91
Tuyau p57	103,2	31	0,06	0,08	0,28
Tuyau P6	25,63	90	4,4	0,69	5,4

Suite Tableau (IV.12) : Caractéristiques des conduites du réseau Ouled Raoudha.

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge Unit.
ID Arc	m	mm	LPS	m/s	m/km
Tuyau P50	98	58,2	0,68	0,25	1,6
Tuyau P38	165,86	31	0,17	0,23	3,03
Tuyau P37	159,23	31	-0,09	0,11	0,79
Tuyau 1	73,22	58,2	1,28	0,48	4,82
Tuyau 2	67,01	38,8	0,72	0,61	12,17
Tuyau 3	86,8	31	0,67	0,89	31,33
Tuyau 4	16,61	31	0,47	0,63	17,02
Tuyau 5	87,04	31	0,09	0,12	0,98
Tuyau 6	62,33	48,8	0,07	0,04	0,05
Tuyau 8	63,67	58,2	1,86	0,7	9,37
Tuyau 9	49,48	38,8	0,71	0,6	11,94
Tuyau 10	47,7	31	0,05	0,07	0,23
Tuyau 11	59,33	31	0,06	0,08	0,33
Tuyau 12	28,55	31	0,51	0,67	19,08

Tableau (IV.13): Caractéristiques des nœuds du réseau Ouled Raoudha

ID Nœud	Altitude	Demande Base	Charge	Pression
ID Nœud	m	LPS	m	m
Nœud R12	1109	0,092	1133,87	24,87
Nœud R11	1107	0,246	1133,96	26,96
Nœud R13	1117	0,136	1133,7	16,7
Nœud R9	1106	0,153	1134,24	28,24
Nœud R10	1106	0,044	1134,23	28,23
Nœud R16	1111	0,143	1135,76	24,76
Nœud R17	1103	0,494	1135,79	32,79
Nœud R14	1100	0,365	1136,61	36,61
Nœud R8	1099	0,188	1136,96	37,96
Nœud R15	1104	0,105	1135,89	31,89
Nœud R6	1106	0,066	1137,31	31,31
Nœud R5	1103	0,174	1137,31	34,31
Nœud R7	1099	0,161	1137,03	38,03
Nœud R4	1106	0,273	1137,91	31,91
Nœud R19	1094	0,256	1137,19	43,19
Nœud R21	1099,5	0,05	1136,59	37,09
Nœud 20	1093	0,156	1136,6	43,6
Nœud R24	1087	0,175	1135,55	48,55
Nœud R1	1137	0,113	1138,86	1,86
Nœud R2	1118	0,362	1138,31	20,31
Nœud R3	1120	0,147	1138,27	18,27
Nœud R18	1104	0,168	1135,7	31,7
Nœud R23	1099	0,063	1136,03	37,03
Nœud R22	1093	0,268	1136,05	43,05
Réservoir 3	1137	Sans Valeur	1139	2

IV.9.Mode de gestion du réseau de distribution

Pour une gestion rationnelle du réseau de distribution de la zone de Zmala nous avons projeté 03 réseaux séparés l'un de l'autre :

- La zone haute sera alimentée à partir du réservoir projeté 200 m³.
- La Zone Basse, à partir du réservoir existant 500 m³.
- Ouled Raoudha à partir du réservoir projeté 200m³.
- La projection d'un système de vanne pour régler les pressions et pour mieux maitriser la quantité d'eau distribuée en cas de baisse du volume d'eau produit.
- ➤ Vu les faibles vitesses d'écoulement enregistrés dans le comportement du réseau après simulation, nous préconisons l'implantation des vannes de vidanges des réseaux de distribution dans les points bas pour éviter le colmatage des conduites. Ces vidanges seront ouvertes périodiquement.

IV.10.Conclusion

Dans ce chapitre nous avons projeté les réseaux de distribution de chaque zone on utilisant des réseaux mixte (maillée et ramifié) .la projection du réseau est faite par le logiciel AUTOCAD.

A la fin le calcule hydraulique de simulation des réseaux est effectue par le logiciel EPANET.

Chapitre V Dimensionnement de réservoir

V.1.Introduction

Le réservoir est un ouvrage aménagé pour contenir de l'eau, potable destiné à la consommation publique, soit de l'eau à usage industriel.

L'objectif de ce chapitre est de déterminer la capacité des ouvrages de stockage nécessaire pour satisfaire les besoins futurs à alimenter et pour assurer un bon fonctionnement de réseau.

V.2. classification des types de réservoirs

On appelle réservoir, un ouvrage de forme circulaire ou rectangulaire destinée à emmagasiner un liquide : l'eau pour notre cas. On peut classer les réservoirs selon plusieurs critères, à savoir :

Tableau(V.1): c	lassification	des types o	le réservoirs
-----------------	---------------	-------------	---------------

Type de matériau	La situation par apport au sol	La forme géométrique	La considération esthétique
Réservoir métallique	Réservoir Enterrées	Circulaire	Affirme les fonctions de l'ouvrage
Réservoir en maçonnerie	Réservoir Surélevés	Rectangulaires	S'intégrer au paysage
Réservoir en béton armé fabriqué ou précontraint	Réservoir Semi enterré	quelconque	

V.3.Choix de type de réservoir

De multiples facteurs interviennent dans la détermination du type de réservoir, sont (AZNI.M & OUDID.A 2017-2018).) :

- La sécurité d'approvisionnement et la facilité d'exploitation
- Les facteurs économiques.
- Conditions hydrauliques de la distribution : volume de réservoir, pression à assurer.
- > Type de décideur : maître d'ouvrage, maître d'œuvre ou exploitant.
- Conditions topographiques de la région à desservir.

V.4.Le rôle de réservoir

Certes, la fonction la plus importante d'un réservoir est de stoker de l'eau, mais aussi il assure plusieurs autres avantages, qui sont les suivants (AZNI.M & OUDID.A 2017-2018).):

- Combler le manque aux heures de pointes.
- Une exploitation simple et facile.
- Maintenir l'eau a une température constante.
- Régularisation du fonctionnement des pompes.
- Une assurance des pressions nécessaires en tout point du réseau.

V.5. Equipement hydraulique de réservoir

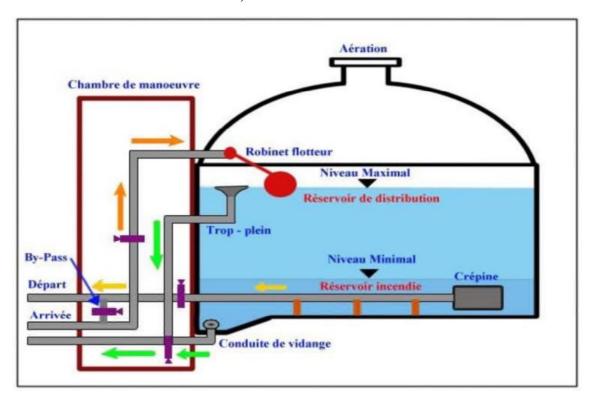
V.5.1. Conduite adduction

La conduite d'adduction débouche dans le réservoir et doit pouvoir s'obturer quand l'eau atteint dans la cuve son niveau maximum l'obturation se fait par un robinet flotteur si l'adduction s'effectue est gravitaire ou par un dispositif permettent l'arrêt du moteur si l'adduction s'effectue par refoulement (AllOUACHE.N & ABBAS.KH 2021-2022).

V.5.2.Conduite de distribution

La conduite de distribution est généralement placée à une hauteur de 20cm au-dessus du radier du réservoir, afin d'éviter toutes sortes de dépôts de boues dans les conduites. Un minimum de 50 cm aussi au-dessus du la conduite de distribution doit être réservé en cas d'abaissement du plan d'eau, pour éviter la pénétration de l'air dans les conduites (AZNI.M & OUDID.A 2017-2018).

V.5.3.Conduite de trop-plein


C'est une conduite qui assure l'évacuation du débit d'adduction excédentaire lors de l'atteinte d'un niveau maximal dans le réservoir. Cette conduite ne doit pas comporter de robinet sur son parcours et son extrémité doit être en forme de siphon afin d'éviter l'introduction de certains corps nocifs dans la cuve (AllOUACHE.N & ABBAS.KH 2021-2022).

V.5.4. Conduite de vidange

La conduite de vidange se trouve généralement au point le plus bas du réservoir, elle permet sa vidange totale en cas de nettoyage ou toutes sortes de maintenances, elle est raccordée à la conduite de trop-plein (AZNI.M & OUDID.A 2017-2018)

V.5.5.Conduite by-pass

C'est un tronçon de conduite qui relie la conduite d'arrivée et la conduite de départ dans le cas d'un réservoir unique non compartimenté. Cette conduite fonction ne quand le réservoir est isolé pour son entretien ou dans le cas d'un incendie à forte charge (BOUCHE.M & ATOUI.B 2015-2012).

Fig(V.1): Schéma générale de réservoir

V.6. Dimensionnement des réservoirs

Dans cette localité qui est : Dechacha et El-Gunedoulia, Ouled Raoudha, nous avons projeté 03 réseaux séparés l'un de l'autre pour les réseaux de Dechacha (zone haute) et Ouled Raoudha nous avons projetés deux réservoirs. Pour El-Guendoulia (zone basse) nous allons conserver le réservoir existant 500 m³.

Le calcul de capacité des réservoirs peut se faire par la méthode analytique.

V.6.1. Méthode analytique

La méthode analytique se base sur le régime de la consommation tout au long de la journée et le temps du fonctionnement de la pompe ,Le volume totale V_T est déterminé par la formule suivante(REZIG.2022) :

$$V_T = V_r + V_{inc}$$
 (V.1)

Avec

V_T: volume totale (m³)

V_r: volume de régulation (m³)

 $V_{inc} = 120 \text{ m}^3$.

V.6.1.1. Calculedu volume de régulation

Le volume de régulation V_r est calculé selon la formule suivante :

$$V_{r} = \frac{Qmaxj \times Pmax\%}{100} \dots (V.2)$$

Avec:

V_r: Le volume de régulation (m³)

Q_{maxj}: la consommation maximale journalière (m³/j)

P_{max}: Pourcentage maximale.

V.6.1.2. Détermination de la valeur de P

Pour calculer le Pourcentage maximale (P_{max}) on utilisé le tableau(V.2), et D'après le tableau on prend la colonne Moins de 10000 habitant.

Tableau(V.2): Variation horaire en fonction du nombre de la population

		Nombre d'habitant					
Heurs	Moins de 10000	De1000 1à50000	De50001à 100000	plusde10 0000	Agglo. De type rural		
00-1	1	1.5	3	3.35	0.75		
1-2	1	1.5	3.2	3.25	0.75		
2-3	1	1.5	2.5	3.3	1		
3-4	1	1.5	2.6	3.2	1		
4-5	2	2.5	3.5	3.25	3		
5-6	3	3.5	4.1	3.4	5.5		
6-7	5	4.5	4.5	3.85	5.5		
7-8	6.5	5.5	4.9	4.45	5.5		
8-9	6.5	6.25	4.9	5.2	3.5		
9-10	5.5	6.25	5.6	5.05	3.5		
10-11	4.5	6.25	4.8	4.85	6		
11-12	5.5	6.25	4.7	4.6	8.5		
12-13	7	5	4.4	4.6	8.5		
13-14	7	5	4.1	4.55	6		
14-15	5.5	5.5	4.2	4.75	5		
15-16	4.5	6	4.4	4.7	5		
16-17	5	6	4.3	4.65	3.5		
17-18	6.5	5.5	4.1	4.35	6		
18-19	6.5	5	4.5	4.4	6		
19-20	5	4.5	4.5	4.3	6		
20-21	4.5	4	4.5	4.3	6		
21-22	3	3	4.8	4.2	3		
22-23	2	2	4.6	3.75	2		
23-24	1	1.5	3.3	3.7	1		

a. La zone basse (El-Guendoulia)

La zone el-Guendoulia dispose d'un réservoir d'une capacité de stockage **500 m³** qui était destiné pour alimenter en eau potable toute la zone mais avec l'extension de cette zone et l'émergence d'autres constructions plus élevé et plus éloigné que le réservoir **500 m³** nous avons proposés d'autres réservoirs pour la zone haute et pour Ouled Raoudha.

b. La zone haute (Dechacha)

Pour calculer la capacité du réservoir on prend La consommation maximale journalière **294450l/j**. et sur le tableau (**V.3**) de capacité du réservoir on calcul le pourcentage maximale.

Tableau (V.3): Capacité du réservoir

Heures	Consommation horaire de Q _{maxj} (%)	L'apport (%)	Eau stocké dans réservoir (%)	Eau distribué dans réservoir%	Reste(%)
00-01	1	4,16	3,16		3,16
01-02	1	4,16	3,16		6,32
02-03	1	4,16	3,16		9,48
03-04	1	4,16	3,16		12,64
04-05	2	4,16	2,16		14,8
05-06	3	4,17	1,17		15,97
06-07	5	4,17		-0,83	15,14
07-08	6,5	4,17		-2,33	12,81
08-09	6,5	4,17		-2,33	10,48
09-10	5,5	4,17		-1,33	9,15
10-11	4,5	4,17		-0,33	8,82
11-12	5,5	4,17		-1,33	7,49
12-13	7	4,17		-2,83	4,66
13-14	7	4,17		-2,83	1,83
14-15	5,5	4,17		-1,33	0,5
15-16	4,5	4,17		-0,33	0,17
16-17	5	4,17		-0,83	-0,66
17-18	6,5	4,17		-2,33	-2,99
18-19	6,5	4,17		-2,33	-5,32
19-20	5	4,17		-0,83	-6,15
20-21	4,5	4,17		-0,33	-6,48
21-22	3	4,16	1,16		-5,32
22-23	2	4,16	2,16		-3,16
23-24	1	4,16	3,16		0
Totale	100	100			

$$P_{max} = |V+| (\%) + |V-| (\%).....(v.3)$$

$$P_{\text{max}\%} = 15,97 + 6,48 = 22,45 \%$$

* Le volume résiduel du réservoir Dechacha

$$V_r = 22,45 \times 294.450/100 = 66.104 \text{ m}^3$$

On prend $V_{inc}=120m.^3$

Ce qui donne le volume total de réservoir $V_T = 66,140 + 120 \text{ m}^3$

 $V_T = 186,104 \text{ m}^3$

On prend : $V_T = 200 m^3$.

c. Ouled Raoudha

Pour calculer la capacité du réservoir on prend La consommation maximale journalière **202410 l/j**. et sur le tableau **(V.4)** de capacité du réservoir on calcul le pourcentage maximale.

Tableau (V.4): Capacité du réservoir

Heures	Consommatio n horaire de Q _{maxj} (%)	L'apport (%)	Eau stocké dans réservoir (%)	Eau distribué dans réservoir%	Reste(%
00-01	1	4,16	3,16		3,16
01-02	1	4,16	3,16		6,32
02-03	1	4,16	3,16		9,48
03-04	1	4,16	3,16		12,64
04-05	2	4,16	2,16		14,8
05-06	3	4,17	1,17		15,97
06-07	5	4,17		-0,83	15,14
07-08	6,5	4,17		-2,33	12,81
08-09	6,5	4,17		-2,33	10,48
09-10	5,5	4,17		-1,33	9,15
10-11	4,5	4,17		-0,33	8,82
11-12	5,5	4,17		-1,33	7,49
12-13	7	4,17		-2,83	4,66
13-14	7	4,17		-2,83	1,83
14-15	5,5	4,17		-1,33	0,5
15-16	4,5	4,17		-0,33	0,17
16-17	5	4,17		-0,83	-0,66
17-18	6,5	4,17		-2,33	-2,99
18-19	6,5	4,17		-2,33	-5,32
19-20	5	4,17		-0,83	-6,15
20-21	4,5	4,17		-0,33	-6,48
21-22	3	4,16	1,16		-5,32
22-23	2	4,16	2,16		-3,16
23-24	1	4,16	3,16		0
Totale	100	100			

❖ Le volume résiduel du réservoir Ouled Raoudha

 $V_r = 22,45 \times 202,410/100 = 45,441 \text{ m}^3$

On prend $V_{inc}=120m.^3$

Ce qui donne le volume total de réservoir $V_T = 45,441+120 \text{ m}^3$

 $V_T = 165,441 \text{ m}$

On prend : $V_T = 200 \text{ m}^3$.

V.7.Dimensionnement de la cuve

Les réservoirs de Dechacha (zone haute) et Ouled Raoudha sont de type circulaire, ont une capacité **200m**³ et même hauteur.

Pour calculer le diamètre du réservoir on utilisé la formule suivante :

$$\mathbf{D} = \left(\frac{4 \times Vt}{h \times \pi}\right)^{\frac{1}{2}}$$

Avec:

 V_t : Volume Totale (m³).

h: hauteur de réservoir (m), (Pour notre cas h=4m).

On prend : D=8m.

V.8.Conclusion

Dans ce chapitre nous avons dimensionné les capacités des deux réservoirs **200m³** du réseau distribution Dechacha et Ouled Raoudha, mais pour le réservoir de stockage de la zone-El-Guendoulia nous avons constaté l'existence d'un réservoir **500m³** on bon état.

Conclusion Générale

Dans ce projet de mémoire de fin d'étude nous avons étudié le réseau de distribution d'eau potable de trois Zone (Dechacha, OuledRaoudha, El-Guendoulia).

Nous avons présenté l'entreprise d'accueil qui est le BET : TOP-HYD (bureau d'étude spécialisé dans les études Hydrauliques) et avons cités les tâches et quelques études réalisés.

Dans le deuxième chapitre, nous avons présenté la localité de Zmala commune de Bordj Ghedir wilaya de Bordj Bou Arreridj ainsi que toutes ses caractéristiques.

Dans le troisième chapitre, sur la base de la population actuelle (2022) nous avons pu calculer la population des trois zones à l'horizon 2052 et sur la base de cette population nous avons calculé les besoins en eau potable :

Population à l'horizon 2052 = 3353 habitants, $Q_{moy/j} = 503,250$ m³/j, $Q_{maxh} = 14.144$ l/s (la base de calcul des réseaux de distribution (03 zones).

À l'aide du logiciel **AUTOCAD** nous avons projeté le réseau de distribution et à l'aide du logiciel EPACAD nous avons transféré le réseau projeté vers le logiciel **EPANET**, et ainsi nous avons fait une simulation du comportement hydraulique des réseaux des trois Zones (Dechacha, Ouled Raoudha, El-Guendoulia).

À fin de déterminer les diamètres optimaux tout on respectant les conditions de vitesse et de pression.

A la base des besoins en eau et le débit, on a pu dimensionner les ouvrages de stockage nécessaires pour les zones : Dechacha et Ouled Raoudha qui sera d'une capacité de 200 m³ donc la Hauteur 4m et le diamètre 8m. Quand à la zone Basse El-Guendoulia, le réservoir existe et en bon état avec une capacité de 500 m³.

Ce stage pratique est considéré comme une porte ouverte vers le milieu professionnel ou j'ai pu mettre en application mes connaissances théoriques et être en contact directe avec les problèmes techniques qu'un professionnel rencontre dans les projets d'alimentation en eau potable et l'assainissement des eaux usées.

J'ai aussi appris quelques notions sur les logiciels (AUTOCAD et EPANET, COVADIS et Google Earth).

Enfin, j'espère que ce travail pourra servir de référence aux étudiants.

Liste de référence

ALLOUACH Naim -ABBS Khaled, Etude de réseau d'AEP centre GUEMMOUR commun EL ANASSER mémoire de master université de béjaia 2021-2022.

AZNI Massinissa OUDID Abderrezak, Etude du réseau d'alimentation en eau potable de quatre villages : Zennona kebira, Zennona Sghira, Lachbour et Makhamra, de la commune d'EL-Achir Willaya de Bordj Bou Arreridj mémoire de master université de béjaia 2017-2018.

BOUCHE Mustapha ATOUI Bilel, étude d'alimentation en eau potable du centre Ouled Sidi H'cen commune de Ghailassa de bordj Bou Arreridj mémoire de master université de béjaia 2015-2016.