
People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

AKLI MOHAND OULHADJ UNIVERSITY -BOUIRA-
Faculty of Sciences and Applied Sciences

Computer Science Department

Master Thesis
In Computer Science

Speciality:Information Systems and Software Engineering -ISIL-

Theme

Transformer-based Question Answering Model for the

Biomedical Domain

Supervised by Realized by

• Dr. AID Aicha • HADDOUCHE Ahcene

• RABIA Ikram

2022/2023

Acknowledgments

First and foremost, we extend our heartfelt gratitude to our dedicated super-

visor, Dr. Aid.A, whose unwavering efforts have played a pivotal role in the

successful completion of this thesis. We are profoundly grateful for her invalu-

able guidance, unwavering encouragement, unfailing availability, and genuine

interest in our work.

We would also like to express our sincere appreciation to all the esteemed

professors in our academic career. Their profound knowledge, expertise, and

passion for teaching have significantly contributed to our education and pro-

fessional growth.

We cannot overstate the immeasurable support and involvement of our beloved

families and dear ones throughout the entire process of bringing this work to

life. Their constant encouragement, both direct and indirect, has been an

invaluable source of motivation and inspiration for us.

We extend our sincerest thanks to all the individuals mentioned above, whose

unwavering support made this thesis possible. Your encouragement was in-

strumental in our success, and we could not have done it without you.

-Rabia Ikram

-Haddouche Ahcene

Dedications

À mes parents, qui ont été mes piliers tout au long de ce parcours, je dédie

ce mémoire. Votre amour inconditionnel et votre soutien indéfectible ont été

ma source d’inspiration et ma force motrice. Ma chère MANII, qui nous

a récemment quittée, disait toujours : "Le savoir est une lumière qui brille

éternellement." Je sais qu’elle veille sur moi là-haut, et si elle était avec

moi aujourd’hui, elle serait fière. Je lui dédie spécialement ce travail. Merci

d’avoir cru en moi et de m’avoir boosté à réaliser mes rêves.

À ma frangine Fadou, mon p’tit frangin Midou et mon neveux chéri Mirou,

j’ai vraiment pris la tête avec vous pendant tous ces mois, entre la pression

et les galères. Merci quand même de m’avoir supporté, Je vous aime les gars

!

À mes potes les plus proches, qui ont partagé les kifs et les galères de cette

aventure, je vous suis grave reconnaissante. Votre présence, votre écoute et

vos encouragements ont Ambiancé mon chemin et m’ont littéralement motivé.

À mon binôme Ahcene, qui a vraiment contribué dans la réalisation de ce

projet et avec qui j’ai tout partagé pour mener à bien cette thèse. We did it

finally!

Ce travail est le fruit de l’amour, de l’encouragement et du soutien de ces

personnes hors normes. Leur présence a rendu cette expérience enrichissante

et inoubliable. Je leur suis infiniment reconnaissante pour leur rôle essentiel

dans cette réalisation.

-Rabia Ikram

Dedications

I dedicate this modest work to

My dear parents for all their sacrifices, unwavering

love, support, and endless patience, I ask God to

provide you with happiness and a long life.

My dear sisters and brothers always gave me hope and

believed in my abilities.

and all my family for their encouragement throughout

my academic career.

A special dedication to my dear partner Ikram Rabia

for her patience and hard work despite difficult

circumstances.

To all my colleagues and friends. May Allah bless you

with success.

To all my teachers since my first years of studies.

To all those who feel dear to me and whom I have

failed to mention.

-Ahcene Haddouche

Abstract
Motivation

Question Answering (QA) is a highly focused topic in the field of Natural Language

Processing (NLP). Recent progress in neural network models and the availability of large

datasets like SQuAD have played a significant role in improving performance in open

domains. However, there remains a need to further effectively implement these systems

in more specific domains, especially in the biomedical field, to help medical practitioners

provide accurate solutions for inquiries related to medicine and healthcare, including

specific subjects such as the COVID-19 disease. Fortunately, recent models, such as

transformers, have opened up avenues and modern techniques for developing accurate

systems.

Aims

In this work, we aim to leverage transformer models and Transfer Learning to effec-

tively train models in the biomedical domain. By taking a pre-trained model for Question

Answering tasks and further fine-tuning it on specific domains, we enhance the system’s

performance in the biomedical domain. Our ultimate goal is to develop a QA system

specifically tailored for COVID-19 QA.

Results

We have trained BERT and RoBERTa models on the COVID-QA dataset and achieved

competitive results on COVID-19 QA. Our RoBERTa model achieved an Exact Match

(EM)/F1 score of 0.38 / 0.64, respectively, on COVID-QA, indicating successful perfor-

mance in COVID-19 QA.

Keywords

COVID-QA, COVID-19, Question Answering systems, transformers, RoBERTa, BERT.

Résumé
Motivation

Le Question Answering (QA) est un sujet trés ciblé dans le domaine du Traitement Au-

tomatique du Langage Naturel (TALN). Les progrès récents dans les modèles de réseaux

neuronaux et la disponibilité de vastes ensembles de données (dataset), tels que SQuAD,

ont joué un rôle significatif dans l’amélioration des performances dans des domaines ou-

verts. Cepandant, il est essentiel d’optimiser davantage la mise en œuvre de ces systèmes

dans des domaines plus spécifiques et restreints, notamment dans le domaine biomédi-

cal, afin d’assister de manière précise les professionnels de la santé dans la fourniture de

réponses exactes aux questions relatives à la médecine et aux soins de santé, y compris

des sujets spécifiques tels que la COVID-19. Avantageusement, l’émergence de modèles

récents tels que les transformers a ouvert de nouvelles perspectives prometteuses et a in-

troduit des techniques modernes pour développer des systèmes d’une précision accrue.

Objectifs

Dans cette étude, notre objectif consiste à exploiter les modèles de transformers et

l’apprentissage par transfert pour entraîner de manière efficace des modèles dans le do-

maine biomédical. En utilisant un modèle pré-entraîné pour les tâches de question-réponse

et en l’ajustant davantage pour des domaines spécifiques, nous améliorons les perfor-

mances du système dans le domaine biomédical. Notre objectif ultime est de développer

un système de Question Answering spécifiquement adapté pour répondre aux interroga-

tions relatives à la COVID-19.

Résultats

Nous avons procédé à l’entraînement de deux modèles, à savoir BERT et RoBERTa,

en utilisant le dataset COVID-QA, et nous avons obtenu des résultats remarquable en

matière de réponse aux questions relatives à la COVID-19. Notre modèle RoBERTa a

obtenu un score d’Exact Match (EM) de 0,38 et un score F1 de 0,64 sur le dataset COVID-

QA, ce qui témoigne d’une performance réussie dans la réponse aux questions spécifiques

à la COVID-19.

Mots-clés

COVID-QA, COVID-19, Question-Answering systems, transformers, RoBERTa, BERT.

Contents

Table des matières i

Table des figures iv

Liste des tableaux vi

List of Acronyms vii

General introduction 1

1 Question Answering 3

1.1 Introduction . 3

1.2 General overview of Question Answering 3

1.2.1 General overview . 3

1.2.2 Brief history of QA Systems . 4

1.3 Generic architecture of QA systems . 5

1.3.1 Question Processing Module . 5

1.3.2 Document Processing Module . 7

1.3.3 Answer Processing Module . 8

1.4 Classification of QA Systems . 9

1.4.1 Classification based on Approaches 10

1.4.2 Classification based on application domain 13

1.4.3 Classification based on Types of Questions 13

1.4.4 Classification based on Target tasks 15

1.5 Evaluation Techniques . 16

i

Table des matières

1.5.1 Confusion Matrix . 17

1.5.2 Accuracy . 17

1.5.3 F1 Score . 17

1.5.4 Mean Reciprocal Rank (MRR) . 18

1.5.5 Exact Match (EM) . 18

1.6 Datasets used in QA for Biomedical Domain 19

1.7 Summary table . 20

1.8 Conclusion . 21

2 Deep Learning and Transformers Architecture 22

2.1 Introduction . 22

2.2 Deep Learning . 23

2.3 Neural Networks (NN) . 23

2.4 Basic models of Artificial Neural . 26

2.4.1 Perceptron . 26

2.4.2 Multi-Layer Perceptron . 27

2.5 Neural Network Learning . 27

2.5.1 Backpropagation Algorithm . 28

2.6 Neural Networks for NLP . 30

2.6.1 The recurrent neural networks (RNN) 30

2.6.2 Long Short Term Memory (LSTM) 32

2.6.3 Bidirectional Long Short-Term Memory (BLSTM) 33

2.6.4 Sequence-to-sequence models (Seq2Seq) 33

2.6.5 Transformers . 34

2.6.6 Model Architecture . 35

2.6.7 Transfer Learning . 38

2.7 Transfer Learning in NLP . 38

2.7.1 feature-based transfer . 38

2.7.2 Fine-tuning . 39

2.8 Transformer-based models in QA systems 39

2.8.1 BERT . 39

2.8.2 ELECTRA . 40

2.8.3 GPT . 41

ii

Table des matières

2.8.4 T5 . 41

2.9 Related Works . 42

2.9.1 Comparative table . 44

2.10 Conclusion . 45

3 Proposed QA Model 47

3.1 Introduction . 47

3.2 Overall Architecture . 48

3.3 System Architecture . 49

3.4 Used Datasets . 50

3.4.1 Stanford Question Answering Dataset (SQuAD) 51

3.4.2 COVID-QA . 51

3.4.3 Data Exploration . 51

3.4.4 Used Datasets for Evaluation . 55

3.5 Building up the Proposed QA Model . 55

3.5.1 Language Models . 55

3.5.2 Preprocessing . 59

3.5.3 Fine-tuning . 60

3.5.4 Evaluation . 61

3.6 Conclusion . 62

4 Experimental Results and Discussion 63

4.1 Introduction . 63

4.2 Experimental Setup . 63

4.3 Results and Discussion . 65

4.4 Visualizing Attention . 68

4.5 Test of the proposed QA model . 69

4.6 Limitations and Challenges . 70

4.7 Conclusion . 71

Conclusion and Future Perspectives 72

Bibliographie 74

iii

List of Figures

1.1 Three main Processing Modules of QA . 5

1.2 Question Processing Module . 6

1.3 Document Processing module . 8

1.4 Answer Processing Module . 8

1.5 IR QA architecture [1] . 10

1.6 KB QA architecture [2] . 11

1.7 NLP QA architecture (only the modules highlighted in red) [2] 12

1.8 IBM Watson QA architecture [1] . 12

2.1 AI, ML, and DL [3]. 23

2.2 Feedforward [4] . 24

2.3 Feedback [4] . 25

2.4 Mathematical model of the formal neuron [5] 26

2.5 Forward-propagate [6]. 28

2.6 Back-propagate [6]. 29

2.7 Calculate parameter gradient [6] . 29

2.8 The recurrent neural network [7] . 31

2.9 LSTM cell [7] . 32

2.10 BLSTM structure [8] . 33

2.11 Seq2seq LSTM structure [8] . 34

2.12 Transformer model architecture [9] . 36

2.13 (left)Multi-Head Attention consists of several attention layers running in

parallel (right)Scaled Dot-Product Attention [10] 37

iv

Table des figures

2.14 Transfer Learning . 38

3.1 General pipeline of the training steps of the proposed models 49

3.2 General system architecture and steps of transformer-based models 50

3.3 Dataset format . 52

3.4 Positive and negative questions . 54

3.5 Distribution of Context Length . 54

3.6 Distribution of Answers Length . 55

3.7 Building a Question Answering System with BERT [11] 57

4.1 Result Comparison Of BERT Model . 66

4.2 Result Comparison Of RoBERTa Model 66

4.3 BERT Result curve . 66

4.4 RoBERTa Result curve . 66

4.5 Distribution of Prediction Answers Length 67

4.6 Avg F1 Based on Predicted Answers Length 68

4.7 Avg EM Based on Predicted Answers Length 68

4.8 Visualizing Token-To-Token Attention Scores for Three Versions of RoBERTa

Model . 69

v

List of Tables

1.1 Confusion Matrix . 17

1.2 Benchmark Datasets . 20

1.3 Summary table . 21

2.1 Comparative table of related works . 45

3.1 Input Example from SQuAD v2.0 . 52

3.2 Input Example from COVID-QA . 53

3.3 Hyper-parameters Comparison of Model 58

4.1 The experimental setup used . 64

4.2 Performance Comparison of Models . 65

4.3 Testing the proposed Biomedical QA Model 70

vi

List of Acronyms

QA Question-Answering.

NLP Natural Language Processing.

IE Information Extraction.

KB Knowledge Base.

IR Information Retrieval.

MRC Machine Reading Comprehension.

AI Artificial Intelligence.

ML Machine Learning.

DL Deep Learning.

MLM Masked Language Model.

NSP Next Sentence Prediction.

MSE Mean Squared Error.

vii

General introduction

Every year, biomedical academic communities publish a large number of scholarly articles.

According to the American National Library of Medicine (NLM), as of December 22, 2022,

over 1.5 million new citations were added to MEDLINE in that year [12]. With such a high

volume of new information, it becomes increasingly challenging for medical professionals

to stay up to date with recent developments. To address this issue, NLP systems that

can identify and return relevant information in a human-readable format are crucial. QA

systems are one type of tool that can be used to address this need.

QA systems can automatically extract information from text, such as scientific arti-

cles, and present it in a way that is easy for users to understand. This can help medical

professionals stay up-to-date on the latest research and make better decisions about pa-

tient care. However, developing accurate QA systems can be difficult due to the limited

diversity and complexity of the data, especially in specialized tasks and topics, such as

COVID-19, where relevant datasets are small and often scarce.

One solution is to fine-tune pre-trained transformer-based QA systems. Transformers

are a type of neural network that has demonstrated efficacy across various NLP tasks,

including QA. They are widely preferred over other types of models due to their ease

of use and efficiency in training. Additionally, they offer a broad scope for research and

continuous advancements to enhance their performance.

In this study, we aim to demonstrate the application of transformer models in a

biomedical domain QA scenario. Our focus will be on utilizing NLP and Deep Learning

(DL) techniques to train BERT and RoBERTa models to answer questions related to

biomedical specifically COVID-19.

The proposed models will be built upon the BERT and RoBERTa architectures, which

1

General introduction

have been pre-trained for language comprehension. Fine-tuning these pre-trained models

using the SQuAD dataset allows them to acquire knowledge of general QA patterns. As

well, further fine-tuning on smaller datasets can enhance their performance in specific

domains, such as COVID-19, through the utilization of Transfer Learning.

This thesis includes four chapters:

Chapter One provides a comprehensive overview of QA systems, techniques, architec-

tures, and the classification of QA systems based on various criteria, including approach,

application domain, question type, and target task. It also explores a list of some of the

well-known datasets, as well as the evaluation metrics used to assess their performance.

Chapter Two introduces some preliminaries, delves into the advancements in Artificial

Intelligence (AI), with a specific focus on DL and neural networks, and explores the

application of neural networks in NLP, especially Transformers. The chapter provides a

Thorough analysis of related works.

In Chapter Three, we will discuss the proposed approach for solving the problem. We

will present the datasets we used, the models we worked on, and the architecture of our

system.

The final chapter presents an analysis and discussion of the research findings from

the preceding chapters. We provide an overview of the experimental setup, including

the software and hardware employed. Furthermore, we discuss the results, showing the

performance improvements achieved through the model training.

2

Chapter 1
Question Answering

1.1 Introduction

QA is a field of study that involves a combination of three interrelated yet distinctive

areas: Information Retrieval (IR), Information Extraction (IE), and Natural Language

Processing (NLP). The primary aim of QA systems is to retrieve accurate answers to nat-

ural language queries, as opposed to search engines that provide long documents relevant

to a specific topic. QA focuses on providing extracted short and precise responses that

are specifically tailored to the user’s requests.

In the next sections, we will provide a general overview of QA systems by discussing

their definition, techniques, architectures, and evaluation metrics. We will also examine

their classification according to several criteria, such as the approach used, the application

domain, the question type, and the target tasks.

1.2 General overview of Question Answering

1.2.1 General overview

Human beings are by nature curious and worthy of knowledge. They tend to ask limitless

questions related to different topics. Nowadays, in order to satisfy this positive curiosity

and bring informative answers to their knowledge needs, they rely on various search

engines to interrogate them without really knowing the process that occurs behind the

screen. One of the systems that handles this process is called the QA System.

QA systems refer to computer-based systems that have the ability to provide automatic

3

Chapter 1 Question Answering

responses to questions in any language asked by a user. Their goals are to understand the

meaning of the question, retrieve relevant information from a large corpus of documents,

and present an accurate and concise answer to its requester. QA systems mostly make use

of IR and NLP techniques to achieve these goals. Their performance is typically evaluated

based on their accuracy and ability to provide relevant and useful information to users

[13].

Here is a simple example that illustrates the QA process described above [14]:

Document "... The novel virus was first identified in

an outbreak in the Chinese city of Wuhan in

December 2019. Attempts to contain it there

failed, allowing the virus to spread to other

areas of Asia....."

Question Where was the first identified case of the

coronavirus disease?

Answer Wuhan.

1.2.2 Brief history of QA Systems

QA systems have a long history, with roots dating back to the 1960s.

The earliest QA system, BASEBALL (Green Jr et al., 1961), was developed specifically

for QA relating to baseball games played in the American League over a season, including

statistics and more. The system used a rule-based language model for "decoding" natural

text generation and accessed a baseball relational database for authentic responses.

By 1973, significant enhancements in syntactical and semantic parsers had improved

the capabilities of QA systems, allowing for greater freedom of expression in questioning.

The best-known example of this was LUNAR, originally designed to aid lunar geologists

in accessing and evaluating chemical composition data on lunar rocks and soil, as a result

of the Apollo moon mission.

In the 1970s and 1980s, researchers began to explore the use of NLP techniques for QA.

NLP enabled the development of systems that could understand the meaning of questions

and match them to relevant information stored in databases. These systems were more

reliable than their rule-based predecessors but still had significant limitations.

The 1990s saw the rise of knowledge-based QA systems, which used semantic networks

4

Chapter 1 Question Answering

and ontologies to represent knowledge. These systems were able to reason about the

relationships between different pieces of information and provide more accurate answers.

However, they struggled with questions that required complex reasoning or inference.

The early 2000s saw the development of web-based QA systems, which used the vast

amounts of digital data available online to provide answers to user queries. These systems

were able to provide much more detailed and accurate answers than their predecessors,

but they struggled with understanding the context and meaning of questions.

2010s-present: In recent years, QA systems have continued to evolve rapidly, with

advances in DL and neural networks leading to major breakthroughs in NLP and ma-

chine comprehension. Today, cutting-edge QA systems are able to understand complex

questions and provide highly accurate, detailed answers across a wide range of domains

and subject areas [13].

1.3 Generic architecture of QA systems

As shown in Figure 1.1, a typical QA system consists of three distinct modules namely,

Question Processing, document processing, and Answer Processing [15].

Figure 1.1: Three main Processing Modules of QA

1.3.1 Question Processing Module

Question Processing is the module that takes questions as input, then, identifies the

question analysis, classifies the question type, derives the expected answer type,

and finally reformulates the original question into many similar ones. The Question

5

Chapter 1 Question Answering

Processing module is thus required to analyze, classify, and reformulate the question [15],

as shown in the figure 1.2 below.

Figure 1.2: Question Processing Module

Question Type Classification

Seeking to answer a given question, different strategies can be considered based on the

question type. For instance, one of these types is the so-called factoid questions (or

wh-questions: "who," "what," "where," "when" and "how") [15].

In fact, the question type classification directly affects the answers, just as the study

results made by Dan Moldovan et aL. in [16] show that 36.4% of errors happen due to

misclassification. This is due to the fact that defining the question type can impose

limitations on the characteristics of the expected response, which allows other modules

accurately locate and verify a response [17].

Question analysis

Question analysis, also called "Question Focus". Knowing the question type alone is not

enough to find answers to all questions. Indeed, factoid "What" questions in particular

can be quite ambiguous in the information they ask for. The same applies to many other

types of questions. To manage this ambiguity, an extra component that extracts the

question’s focus is critical [18].

A Question Focus is a word or a sequence of words that define the question and

disambiguate it by indicating what the question is looking for. For example, in the

6

Chapter 1 Question Answering

question, "What is the best programming language to use in deep learning projects?",

the best programming language and Deep learning are the focus [19].

Question Reformulation

After identifying the "focus" and the "question type," the module passes a list of keywords

(a query) to the IR component in the document processing module. The process of

extracting keywords could be performed with the help of standard techniques like named-

entity recognition, part-of-speech taggers, keyword and keyphrase extraction algorithms,

etc [15].

Answer type detection

Answer type detection takes as a foundation the mapping of the question classification

[18]. After a question has been categorized, a simple rule-based mapping will be used to

determine the potential answer types [15].

1.3.2 Document Processing Module

The document Processing module in QA systems is also referenced by the Passage Re-

trieval module, which applies several techniques to find the relevant documents for the

query generated in the previous module based on the indexed set of documents [18]. The

IR system may return a large number of documents. Therefore, the main goal of the

Document Processing module is to create a set of candidate passages that contain the

answer(s), and in pursuit of this objective, the Document Processing module is required

to:

- Retrieve a collection of ranked documents that are relevant to the query.

- Filter the returned documents from the retrieval system to minimize the number of

candidate documents and the size of candidate text contained in each document.

- Out of the retrieved and selected documents, candidate answers is extracted, which

constitutes the input for the Answer Processing module, as shown in the figure 1.3 below.

The reason for dividing the documents into shorter passages is to increase system

speed. The response time of a QA system is extremely necessary due to the interactive

nature of QA. [15].

7

Chapter 1 Question Answering

Figure 1.3: Document Processing module

1.3.3 Answer Processing Module

The Answer Processing module is the final stage of the QA system and is responsible for

identifying, extracting, and validating the candidate answers passed from the Document

Processing module. Thus, the Answer Processing module needs to: identify the answer

candidates; Extract and validate the final answer [15].

Figure 1.4: Answer Processing Module

Answer Identification

The answer type determined during question processing is critical in determining the an-

swer. Due to the fact that the answer type is usually not explicit in the question or the

answer, a parser is required to recognize named entities (e.g., names of persons and orga-

nizations, monetary units, dates, etc.). Using a part-of-speech tagger (for example, Brill

8

Chapter 1 Question Answering

tagger) can also aid in the recognition of answer candidates within identified paragraphs.

A candidate answer is created by recognizing the answer type returned by the parser. The

extraction and validation of the answer are based on a set of heuristics [15].

Answer Extraction

After identifying the correct answer, the shallow parsing technique is leveraged to extract

only the relevant word or phrase that corresponds to the question [2].

Answer Selection

Confidence in the correctness of an answer can be increased in a number of ways. One

way is to use a lexical resource to validate that a candidate’s answer was of the correct

answer type. Specific knowledge sources can also be used as a second opinion to validate

answers to questions within specific domains. This allows candidate answers to be sanity

checked before being presented to a user [15].

1.4 Classification of QA Systems

Several works have classified QA systems, based on different points of view and criteria.

For example, Jurafsky et al. [1] have classified them based on the used data source. Yogish,

Manjunath et al. have classified them based on the knowledge source and the techniques

used [20], whereas Pundge et al[21] have classified them based on the application domain

and the techniques used in the system.

In [17], the authors Mishra and Jain have listed eight criteria in their classification,

as follows: application domain, question type, query analysis, techniques used for answer

retrieval, features of databases, types of matching functions, databases, and forms of

answer generation.

In the following sections, we will describe and detail the four most important criteria

that we have identified in the literature, which are: the application domain, the question

type, the form of output answer, and the approaches used.

9

Chapter 1 Question Answering

1.4.1 Classification based on Approaches

Besides the main architecture, each QA system can be classified by an implementation

approach to one of the following four types [22]:

Information Retrieval

This approach uses a search engine to locate the answer to the query. The QA system

retrieves documents that contain relevant information and extracts the answer from them.

The system may use techniques such as keyword matching, document ranking, and text

similarity to find the most relevant documents, as shown in figure 1.5 [22].

Figure 1.5: IR QA architecture [1]

Knowledge Base (KB)

Instead of relying on unstructured text, this approach involves extracting answers from

structured data sources, specifically a knowledge base. Instead of using word-based

searches, standard database queries are employed. This paradigm leverages structured

data, such as ontologies, which provide a conceptual representation of concepts and their

relationships within a specific domain. Ontologies serve as a more advanced form of knowl-

edge base compared to relational databases. To retrieve information from the ontology,

queries are executed using structured languages, with one such language being SPARQL

(SPARQL Protocol and RDF Query Language), as illustrated in Figure 1.6 [22].

10

Chapter 1 Question Answering

Figure 1.6: KB QA architecture [2]

Natural Language Processing (NLP)

In Question Answering systems based on NLP, a combination of linguistic intuitions and

machine learning (ML) algorithms can be employed to extract answers from paragraphs

of text that are retrieved [23].

Linguistic intuitions involve knowledge about the structure and meaning of natural

languages, such as knowledge of grammar, syntax, and semantics. These intuitions aid

in identifying relevant information in the retrieved text and determining the meaning of

the question and answer. Examples of linguistic intuitions include part-of-speech tagging,

named entity recognition, and dependency parsing, etc [24].

To complement these linguistic intuitions, machine learning methods can be employed

to learn patterns and associations from large volumes of training data. By training on

a significant corpus of text and associated questions and answers, a machine learning

algorithm can learn to identify relevant information in the text using features derived

from linguistic intuitions. This approach enables the system to recognize patterns and

make accurate predictions, thereby improving the effectiveness of the QA system [25].

The NLP architecture employed for QA solely concentrates on the elements highlighted

in red within Figure 1.7.

11

Chapter 1 Question Answering

Figure 1.7: NLP QA architecture (only the modules highlighted in red) [2]

Hybrid

A powerful approach for building effective QA systems is to combine various techniques

and resources such as IR, NLP QA, and KB QA. IBM Watson serves as an excellent

example of this hybrid model, as shown in figure 1.8, which uses machine learning algo-

rithms, NLP techniques, and a vast corpus of knowledge to understand natural language

queries and provide accurate answers. By continuously learning from past experiences,

Watson improves its performance over time. The success of IBM Watson highlights the

importance of integrating multiple techniques and resources to create high-performance

QA systems [22].

Figure 1.8: IBM Watson QA architecture [1]

12

Chapter 1 Question Answering

1.4.2 Classification based on application domain

In addition to classifying QA systems from an implementation approach, their founda-

tional features can be presented, like domain, which defines QA systems through closed-

domain or open-domain models. We distinguish two types of QA systems classified based

on their application domain: Open-domain and Closed/Restricted domain.

Open Domain

An open domain QA system is designed to handle a wide range of general questions that

come from various domains, and it depends solely on general text and knowledge bases.

Additionally, these systems are typically expected to find answers from substantial Open

Domain knowledge sources, such as the web or Wikipedia, instead of a specific document

[26].

Closed Domain

A closed domain QA system is designed to handle questions related to a particular domain.

Typically, such systems are applied in a limited context where a specific type of question is

asked, and a small amount of context is given [26]. Examples of closed domain QA systems

include customer service chatbots, legal advice systems, and biomedical QA systems.

These systems are developed to provide accurate answers within their specific domain,

and they have access to a resource of domain-specific knowledge.

QA systems in the Biomedical Domain

The biomedical domain is a specialized form of closed domain QA that is designed to

provide answers to questions within the biomedical domain. They are designed to help

medical practitioners by offering solutions to queries in the fields of medicine and health-

care such as coronavirus disease. Professionals, researchers, and patients can easily and

precisely locate, and extract pertinent information that answers their needs [27].

1.4.3 Classification based on Types of Questions

Generating answers to a user’s query is directly related to the type of its questions;

therefore, the classification of queries in QA systems directly affects the responses. The

13

Chapter 1 Question Answering

classification is based on all the possible types of questions identified in the literature.

These types are as follows: list questions, factoid questions, definition questions, causal

questions, confirmation questions, and hypothetical questions [17].

Factoid Questions

Factoid-type questions are simple and fact-based, requiring a short phrase or sentence

as an answer [17], such as "How long is the incubation period for COVID-19?" These

questions typically start with wh-words like "what," "who," "when," "where," and "how.".

List questions

List questions require providing a list of items in the answer [17]. An example of a list

question could be "What are the symptoms of COVID-19?" where the answer would be

a list of symptoms such as fever, cough, fatigue, and shortness of breath.

Causal questions [how or why]

Causal questions seek to understand the reasons behind a particular phenomenon by

retrieving information that explains the events or factors that led to it. The answer to a

causal question provides an explanation of the cause-and-effect relationship being inquired

about [17].

Summary Questions

Summary questions can only be answered by a phrase extracted from a relevant document

or by writing a short text summarizing the most important relevant information [27]. For

example, "What are the most effective measures to prevent the spread of COVID-19?".

Definition questions

Definition questions require intricate processing of retrieved documents, and the absolute

answer either consists of a text piece or is acquired after summarizing more documents.

Usually, they start with "What is." Answers to definition questions can be any event or

entity [28].

14

Chapter 1 Question Answering

Confirmation questions

Confirmation questions are designed to elicit a binary answer, either "yes" or "no," and

often require common sense reasoning to produce the answer [28]. For example, "Is

COVID-19 caused by a virus?" is a confirmation question that can be answered with a

simple "yes" or "no" and requires a basic understanding of the nature of COVID-19.

1.4.4 Classification based on Target tasks

QA comprises multiple different tasks varying in their nature with some being more related

to semantics while others are more related to IR.

Document Retrieval

Also known as "Document Search," this is a task in IR systems that involves finding

relevant documents from a large collection of text data in response to a user’s query after

having performed a deeper analysis of these documents.

The principal challenge in document retrieval is to effectively represent the queries

and documents in a way that allows for efficient and accurate matching as well as greatly

minimizing the amount of time it takes to get the right answer [29].

In a QA system, if a retrieval system cannot locate any pertinent documents for a

particular question, the answer selection module will not be able to return a correct

answer [29].

Answer Selection

Answer Selection involves the task of discerning the accurate response to a question from a

set of candidate answers. The conventional approach typically favors answers that exhibit

semantic similarity to the question [30].

In other words, the process of Answer Selection (or Extraction) involves evaluating

relevant paragraphs or sentences to determine the most appropriate answer sentence (long)

or answer span (short) as the correct response to a given question. [31].

15

Chapter 1 Question Answering

Answer extraction

An answer extraction task is the parser that enables the recognition of the answer candi-

dates in the paragraphs.

So, once an answer candidate has been identified, a set of techniques is applied such as

pattern matching, named entity recognition, and machine learning algorithms which de-

pend on the question type, the text format, and the desired level of accuracy, to extract

only the relevant word or phrase that answers the question [15].

Machine Reading Comprehension (MRC)

MRC or Reading Comprehension (RC) is a subfield that focuses on developing algorithms

and models that can understand and answer questions about the text.

In other words, MRC is the ability to understand, analyze, and interpret a written text.

It involves making connections between words, sentences, and paragraphs, as well as using

background knowledge and context to understand the meaning of the text. It requires

more than just understanding what is clearly stated in the text, but also reading between

the lines, the understanding of what has not yet been said, is evident True [13].

Open QA

Open Domain QA, also known as OpenQA, refers to a QA task in which the provided

input consists of a question and a concise answer (typically a factoid answer), without any

accompanying paragraphs or documents. The objective of the systems is to locate relevant

documents from various sources, identify pertinent paragraphs within those documents,

and then employ answer processing techniques to extract a succinct answer.

In other words, Open QA is a union of both Answer Sentence Selection and RC tasks

done sequentially but with certain changes [31].

1.5 Evaluation Techniques

Several parameters are used to analyze the performance of different QA systems. The

evaluation metrics used in QA are accuracy and F1. To understand these measures, we

have to use the confusion matrix.

16

Chapter 1 Question Answering

1.5.1 Confusion Matrix

A confusion matrix summarizes the performance of a model with respect to test data. It

is a two-dimensional matrix, indexed in one dimension by the true class (actual) and in

the other by the class that the model assigns (predicted). The four cells of the matrix

are designated as true positive, false positive, true negative, and false negative [32], as

indicated in table 1.1.

Various measures, such as accuracy, recall, and precision, are derived and computed

from the confusion matrix.

Predicted

Positive Negative

Actual
Positive True positive False negative

Negative False positive True negative

Table 1.1: Confusion Matrix

1.5.2 Accuracy

Accuracy means how many data points are predicted correctly, the number of correct

predictions is given as the number of correct predictions divided by the total number of

predictions. The formula for it is:

accuracy =
truepositive+ truenegative

truepositive+ falsepositive+ truenegative+ falsenegative

The issue observed is the high rate of true negatives that a system can find, e.g.,

when a factual question is made, there is only one correct answer; anything else would be

incorrect and not selected. In this case, a system could have a high calculated accuracy

that is unmeaningful. To fix this issue, the F1 measure must be addressed.

1.5.3 F1 Score

The F1 measure is based on the same confusion matrix and has two measures: precision

and recall. Precision is the percentage of selected answers that are correct, and recall is

17

Chapter 1 Question Answering

the opposite measure; it is the percentage of correct answers selected. The fact that there

is a high rate of true negative answers is no longer relevant when precision and recall are

used.

Precision =
truepositive

truepositive+ falsepositive

Recall =
truepositive

truepositive+ falsenegative

The key concept here is the trade-off researchers must make for each measure while

looking for the best metrics to evaluate their systems. Most QA systems should use recall

as a metric because it doesn’t matter how high the false positive rates are if the true

positive rates are high. However, for a list or definition of QA systems, precision would

be better. The F1 measure is presented to balance this trade-off [22]. It is calculated as

follows:

F1 =
2(Precision ∗Recall)

Precision+Recall

Some other metrics can be used to evaluate QA systems, such as Mean Reciprocal Rank

(MRR) and Exact Match (EM).

1.5.4 Mean Reciprocal Rank (MRR)

The MRR is used to calculate the answer relevance and measure the proportion of ques-

tions for which the model provides the correct answer.

MRR =
n∑

i=1

1

ri

where n is the number of test questions and ri is the rank of the first correct answer for

the i-th test question[22].

1.5.5 Exact Match (EM)

EM is a binary metric, which means that it only indicates whether an answer is completely

correct or not. In other words, there is no partial credit given for answers that are partially

correct.

18

Chapter 1 Question Answering

1.6 Datasets used in QA for Biomedical Domain

The evaluation of a QA model’s performance can be conducted by testing it on benchmark

datasets commonly employed within the research community. In the following section, we

present a compilation of reputable datasets frequently used to report outcomes pertaining

to our QA model.

Stanford Question Answering Dataset (SQuAD)

SQuAD is a dataset specifically designed for question answering tasks and reading compre-

hension. It involves crowd workers posing questions based on a set of Wikipedia articles.

SQuAD 1.1 comprises approximately 100,000 question-answer pairs, while SQuAD 2.0

expands on this by including unanswerable questions within the corresponding reading

passage. In both versions, the answer to each question is a specific segment of text ex-

tracted from the given reading passage [33]. SQuAD itself is not a classifier, but it can be

used as a benchmark dataset to train and evaluate the performance of question-answering

classifiers.

BIOASQ

The BIOASQ challenge is a notable and accomplished event in the field of biomedical

research that has been running successfully since 2013. It encompasses various tasks

centered around biomedical data analysis and QA. Task B Phase B specifically concen-

trates on biomedical question answering, aiming to extract accurate answers from relevant

snippets for a given question. This challenge offers the largest and extensively utilized

manually-annotated dataset known as Machine Reading Comprehension for Biomedical

QA (MRC BQA), serving as a valuable resource in the field [34].

COVID-QA

COVID-QA is a QA dataset that encompasses a collection of 2019 QA pairs. These pairs

have been meticulously annotated by volunteer biomedical experts and are specifically

focused on scientific articles related to COVID-19.

Its answers are taken from longer texts (6118.5 tokens), and answers are generally

longer (13.9 words) and it does not contain n-way annotated development nor test sets

19

Chapter 1 Question Answering

[14].

PubMedQA

PubMedQA is a dataset specifically designed for biomedical question-answering, compris-

ing of questions extracted from PubMed abstracts. The primary objective of this dataset

is to provide answers to research inquiries utilizing the relevant information contained

within the abstracts, with response options of yes/no/maybe.

As well, this dataset marks the first instance where successful execution of reasoning

over biomedical research especially their quantitative contents, is required to answer the

asked questions [35].

We provide the comparison table 1.2 below, which highlights the variations between

the datasets listed.

Size Evaluation Question Type Domain

SQuAD 100K EM, F1 Confirmation, Extrac-

tion

Open domain

COVID-QA 2k EM, F1 Extraction Closed domain

BioASQ (Task

B Phase B)

3.7k F1, MRR Extraction, Summary,

Confirmation

Closed domain

PubMedQA 212k Acc, F1 Confiramtion Closed domain

Table 1.2: Benchmark Datasets

1.7 Summary table

We summarize in the table below 1.3 all the points that encompass our work.

20

Chapter 1 Question Answering

A summary table

Techniques Neural NLP, Transformers-Based

Data Format Text data

Domain Closed domain

Task Machine Reading Comprehension

Evaluation F1 and EM

Question Type Factoid, List, and Summary questions

Models BERT and RoBERTa

Datasets SQUAD and Covid-QA

Table 1.3: Summary table

1.8 Conclusion

In this chapter, we have explored the field of QA and its systems, which are computer

systems designed to automatically answer natural language questions asked by users. We

began by discussing its history, how it functions, and so on.

Next, we examined some of the key components of a QA system, including the Question

Processing module, the document processing module, and the Answer Processing module

and their classification.

Finally, we discussed evaluation metrics used to evaluate the performance of QA sys-

tems. We also reviewed some of the common datasets used for training QA models,

including the SQuAD and the COVID-QA dataset.

In the next chapter, we will explore one of the most powerful techniques for building

QA systems: neural networks and their several architectures used in NLP.

21

Chapter 2
Deep Learning and Transformers Architecture

2.1 Introduction

During the past few years, the field of AI has made significant progress, especially in

the domain of DL and neural networks. DL, a subset of machine learning, has enabled

machines to learn from large amounts of data and make decisions based on that learning.

Neural networks, on the other hand, are a set of algorithms inspired by the structure and

function of the human brain. They have become an essential tool for many applications

in ML, Computer Vision (CV), NLP, and more.

This chapter focuses on the main architectures of artificial neural networks (ANN),

starting with the formal neuron and basic models of ANN. We will discuss neural network

learning and the backpropagation algorithm, which is one of the most popular algorithms

used in training DL networks. Additionally, we will explore neural networks for NLP,

including Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), Bidi-

rectional Long Short-Term Memory (BLSTM), Transformers, their model architecture,

and attention mechanisms.

Furthermore, we will delve into TL, which is a technique that enables the use of pre-

trained models to improve the performance of new tasks. We will focus on transfer learning

in NLP and transformer-based models in QA systems, including BERT, ELECTRA, GPT,

and T5. Finally, we will review related works in this field and provide an overview of the

current state-of-the-art techniques. By the end of this chapter, readers will have a strong

understanding of the fundamentals of DL, NN, and their applications in NLP and TL.

22

Chapter 2 Deep Learning and Transformers Architecture

2.2 Deep Learning

AI is a set of algorithms and methods that try to mimic human intelligence. ML and DL

represent one of these widely used techniques [36], as illustrated in Figure 2.1 below.

Figure 2.1: AI, ML, and DL [3].

DL focuses on creating large NN models that are capable of making accurate data-

driven decisions. It is also particularly suited to contexts where the data is complex and

where there are large datasets available [37].

There have been three distinct phases in the development of DL. The first phase, known

as cybernetics, took place during the 1940s–1960s and involved the use of perceptrons

to train a single neuron. The second phase, referred to as connectionism, occurred

between the 1980s and 1990s and utilized back-propagation to train NN with one or two

hidden layers. Finally, the third and current phase, Deep Learning as we know it since

2006, which allows us to train very large and deep networks [38].

2.3 Neural Networks (NN)

The term "neural network" was traditionally used to describe a circuit or network of

biological neurons.1 However, in modern usage, "Artificial Neural Network" (ANN) more

commonly refers to a mathematical model for processing information, inspired by the

information processing mechanisms in biological nervous systems. ANNs are specifically

designed to address problems in AI without necessarily relying on the modeling of real
1Biological neuron is a cell of the nervous system specialized in the communication and processing of

information between the environment and the body, or within the body [39].

23

Chapter 2 Deep Learning and Transformers Architecture

biological systems. They have various applications, including speech recognition, image

analysis, and adaptive control. To perform these tasks, ANNs undergo a learning process

similar to that of biological systems, which involves the tuning of synaptic connections

between neurons. This learning process is also a fundamental aspect of ANNs [40].

Main Architectures of ANNs

The basic architecture of an ANN consists of three basic parts (named layers) [41]:

• Input Layer: It is the first layer responsible for receiving information (data) from

the external environment.

• Hidden, intermediate, or invisible layers: These layers perform most of the basic

work in a network. The layers are made up of neurons responsible for extracting

features.

• Output Layer: It is the last layer of neurons that produces and delivers the final

network outputs.

We distinguish two main ANN architectures, which are as follows [4]:

Feedforward Architecture: This architecture is called feedforward because infor-

mation flows always in one direction, which is from the input layer to the output layer

(no feedback connections), as shown in figure 2.2.

Figure 2.2: Feedforward [4]

24

Chapter 2 Deep Learning and Transformers Architecture

Feedback (Recurrent) Architectures: In this architecture, the outputs of neurons

are used as feedback inputs for other neurons. This feature enables the network to dy-

namically process information and maintain relationships, allowing it to store information

over time. An example of this architecture is shown in figure 2.3.

Figure 2.3: Feedback [4]

Formal neuron

Proposed in 1943 by Warren McCulloch and Walter Pitts [42], a formal neuron (artificial

neuron) is the building block of the ANN. It is a mathematical function that takes in one

or more inputs, applies a weight to each input, sums them up, and passes this sum through

an activation function to produce an output [5]. The following figure 2.4 represents the

general model of an artificial neuron. Its parameters are as follows:

1. Input connections (inputs) are a vector (x1, x2, . . . , xn) with weights (w1, w2, . . . , wn),

where each input is multiplied by its weight.

2. A summation function sums weights after multiplying each input by its own associ-

ated weight, with the addition of the bias b (used to adjust the output along with

the weighted sum of the inputs to the neuron);

a =

(
n∑

i=1

xi ∗ wi + b

)
. (2.1)

3. An activation function f normalizes the input and produces an output, which is

then passed forward into the subsequent layer. It adds non-linearity to the output,

25

Chapter 2 Deep Learning and Transformers Architecture

which enables neural networks to solve non-linear problems. In other words, a NN

without an activation function is essentially just a linear regression model.

The original activation function, the Heaviside step function, produces an output of

either 1 or 0, depending on whether the input is positive or negative, but it is rarely

used in modern neural networks due to its non-differentiability. Defined as follows:

H(x) =

0 if x < 0

1 if x > 0

Instead, there are other more well-known and commonly used activation functions,

such as the sigmoid function, which normalizes the output of each neuron to a value

in the range [0,1] [43]. The sigmoid function can be defined as follows:

f(x) =
1

1 + e−z

4. Output: Output the final activation y.

y = f

(
n∑

i=1

xi ∗ wi + b

)
(2.2)

Figure 2.4: Mathematical model of the formal neuron [5]

2.4 Basic models of Artificial Neural

2.4.1 Perceptron

Frank Rosenblatt invented the perceptron in 1957. He proposed to provide neural net-

works with a supervised learning rule inspired by Hebbian learning. A perceptron is

26

Chapter 2 Deep Learning and Transformers Architecture

a supervised learning algorithm for binary classifiers that allows neurons to learn and

process elements in the training set one at a time [42].

2.4.2 Multi-Layer Perceptron

A multilayer perceptron is created by chaining several perceptrons. Each neuron in each

layer still behaves as a linear classifier, but the use of intermediate layers allows for the

creation of complex partitions of the space. This makes it possible to project the data

provided as input into new spaces, in which an initially nonlinear task can become linear.

However, the use of intermediate layers makes it impossible to train these networks using

the perceptron learning rule. This is why it was not until the publication of gradient

backpropagation techniques that these networks became more widely used [42].

2.5 Neural Network Learning

One of the most important feature of an artificial neural network is its ability to learn

[44]. Neural network learning is divided into two types:

• Supervised Learning: This type of learning is based on matching inputs with

their correct outputs. The neural network is trained by improving the values of the

weights in order to reach the appropriate weights, to be able to produce the output

with the required accuracy corresponding to the input, and that makes it able to

produce the correct outputs for any new input. This type of learning is based on a

training algorithm called the Backpropagation Algorithm.

• Unsupervised Learning: This type of learning depends only on the inputs with-

out their correct outputs. The network works to find relationships that link these

inputs and try to classify them into similar categories by extracting distinct pat-

terns for each category. This enables the network to give output for the new input,

depending on its patterns [45].

In supervised learning tasks, the objective of training ANNs is to minimize the errors

between the desired output signal and the actual output signal; this error is typically

defined as a cost function. In order to minimize errors, we need to update the weights

related to each neuron. One common method for performing this weight update is to use

27

Chapter 2 Deep Learning and Transformers Architecture

a gradient descent algorithm. However, it only focuses on the updating of a single

neuron, whereas in ANN, we must design a rule to train all neurons, and Backpropa-

gation Algorithm is the most widely used algorithm to compute the gradient of each

neuron [45].

2.5.1 Backpropagation Algorithm

This Algorithm is combined with the gradient descent algorithm to calculate the gradient

of the loss function for all weights in the network and use the gradient value to update

the weights to minimize the loss function. This is done through these successive steps:

1. Forward-propagate: The first step of the backpropagation algorithm is to propagate

the inputs forward through the network layers towards the outputs, As shown in

Figure 2.5, the output of the network is denoted by ak, and to obtain the output

of each layer, the summation function zl and activation function al are applied to

the inputs of each layer l. The indices i, j, and k are used to denote the input

layer, hidden layers, and output layer, respectively. This process is calculated using

equation (2.2).

ak = gk(bk+
∑
j

gj(bj+
∑
i

aiwij)wik)) (2.3)

Figure 2.5: Forward-propagate [6].

2. Back-propagate: The second step of the algorithm is to calculate the error E between

the network output ak and the real output tk. This error is calculated through a cost

function by the following equations (2.4)(This function can be as simple as MSE

(Mean Squared Error) or more complex like cross-entropy.)

E =
1

2

∑
k∈K

(ak − tk)
2 (2.4)

The error signal δ′ is calculated (δk for the output layer and δj for the hidden layer)

by the following equation (2.5) to backpropagate it toward the input as shown in

28

Chapter 2 Deep Learning and Transformers Architecture

Figure 2.6, where g′k(zk) and g′j(zj) are the derivatives of the activation functions of

the output and hidden layers, respectively. The function E ′(ak, tk) represents the

derivative of the error function.

δk = g′k(zk)E
′(ak, tk)

δj = g′j(zj)
∑

k δkwjk

(2.5)

Figure 2.6: Back-propagate [6].

3. Calculate parameter gradient: The third step of the algorithm is to calculate the

gradients of the error function for weights in each layer l, to do that we use the

forward signals al-1 from the previous layer and the backward error signals δl from

the current layer, as shown in Equation (2.6). Similarly, to calculate the gradient

for each bias, we use the same gradient rule as for weights, but with one important

difference: the "feed-forward activations" for biases are always l+1, as shown in

Equation (2.7). This reflects the fact that biases are not connected to the previous

layer in the same way that weights are.

∂E

∂wl−1,l

= al−1δl (2.6)

∂E

∂bl
= blδl (2.7)

Figure 2.7: Calculate parameter gradient [6]

4. Update parameters: The last step is to update all weights and biases using the

gradients calculated in the third step. With the learning rate parameter η by the

following equations:

wl−1,l = wl−1,l − η
∂E

∂wl−1,l

29

Chapter 2 Deep Learning and Transformers Architecture

bl = bl − η
∂E

∂bl

These four steps are repeated until the network error reaches an acceptable low value. At

this point, we can say that the artificial neural network has been trained [46].

2.6 Neural Networks for NLP

Deep neural networks have recently contributed significantly to natural language pro-

cessing tasks, including language modeling, sentiment analysis, syntactic parsing, and

machine translation. These models exhibit significant architectural differences, ranging

from RNNs and LSTM networks to Transformers. Of course, these distinctions are not

clear-cut, as different architectures can be combined within a single model and integrated

with other operational blocks, such as neural attention. We summarize these architectures

in the following paragraphs [47].

2.6.1 The recurrent neural networks (RNN)

The concept of RNNs was first proposed in the 1980s by a number of researchers, including

Paul Werbos, David Rumelhart, and James Elman [48]. RNNs are a type of neural

network designed to process sequential data, such as time-series data or natural language

sentences. This type uses recurrent connections that allow information to persist over

time.

The RNN generates a prediction yt for the current element of the sequence at time

t based on the input xt, and it takes into account the predictions it has made for the

previous elements of the sequence. Practically, this requires introducing a memorization

mechanism, in such a way that the prediction at time t uses both the memory at time

t-1 and the input sequence element at time t for that RNN define a hidden state ht-1 as

the memory of the network at time t-1 and Xt the input of the RNN at time t [7]. The

currently hidden state ht is used to generate the current state’s output ot as shown in

figure 2.8, where: xt is input vector, ht is hidden layer vector, otis output vector and tanh:

Activation functions.

30

Chapter 2 Deep Learning and Transformers Architecture

Figure 2.8: The recurrent neural network [7]

The simple RNN has two versions to calculate h and y, with t = 1 to t as follows:

• Elman network: Uses the output from the hidden layers as an input with the normal

input [49].

ht = g(Wxxt + Uhht1 + bh)

yt = Wyht + by

• Jordan network: Uses the outputs from the output layers as an input with the

normal input[50].

ht = g(Wxxt + Uhyt1 + bh)

yt = Wyht + by

where at each time step t, ht represents the hidden state, xt is the input, ht1 is the

hidden state from the previous time step, Wx is the weight matrix for the input,

Uh is the weight matrix for the hidden state, bh, and by are the bias term for the

hidden state and the output layer respectively,yt represents the output, Wy is the

weight matrix for the output layer and g is the activation function.

The architecture of RNNs makes them challenging to train, especially when dealing

with lengthy input sequences. Despite the fact that RNNs are excellent at short-term

memory, as more data is added, they trend to lose track of previously viewed information.

More specifically, there are two major issues that can arise when updating the network

weights using the error gradient [51]:

31

Chapter 2 Deep Learning and Transformers Architecture

Exploding Gradient: Occurs when gradients accumulate during an update.

Vanishing Gradient: Occurs when the gradients become very small or zero, causing

them to vanish during backpropagation. In order to address these problems, a set of

solutions has been proposed, the most important of these: Long Short-Term Memory.

2.6.2 Long Short Term Memory (LSTM)

Proposed by Hochreiter and Schmidhuber in 1997, LSTM is a variant of RNN architecture

designed to handle the vanishing gradient and exploding Gradient problems [52]. They

have replaced the recurrent hidden layer with a more complex cellular structure as shown

in Figure 2.9. The cell consists of several components that work together to allow the

network to selectively store or discard information over time.

The main components of this cell are as follows:

Figure 2.9: LSTM cell [7]

1. Memory cellCt: This stores the long-term memory and is updated over time based

on the input and the gates.

2. Input gate it: This determines which information from the input should be stored

in the memory cell.

3. Forget gate ft: This determines which information from the previous hidden state

should be forgotten.

4. Output gate ot: This determines which information from the memory cell should be

output to the next layer in the network.

5. Cell state activation functionσ tanh: This is the function that applies to the memory

cell’s internal state vector to transform it before outputting it to the next layer.

32

Chapter 2 Deep Learning and Transformers Architecture

By selectively storing or discarding information over time, this cellular structure can

learn to recognize complex patterns in sequential data, making it a powerful tool for tasks

such as natural language processing, speech recognition, and image captioning.

2.6.3 Bidirectional Long Short-Term Memory (BLSTM)

The fundamental concept behind BLSTM networks is to use two separate LSTM layers

to process each training sequence in both the forward and backward directions. After

processing in both directions, the outputs of the two networks are concatenated and fed

into the same output layer. This means that for every point in a given sequence, the

model can exploit both past and future information [53], as shown in the figure 2.10 .

Figure 2.10: BLSTM structure [8]

BLSTM is commonly used in NLP tasks, such as speech recognition, machine trans-

lation, sentiment analysis, and text classification.

2.6.4 Sequence-to-sequence models (Seq2Seq)

Sequence-to-sequence models are a straightforward application of the long short-term

memory architecture. As shown in figure 2.11, the Seq2Seq model consists of two LSTM

models: An encoder and a decoder, where the encoder takes an input sequence and

produces a fixed-length vector called the "context vector" or "thought vector", which

represents the input sequence’s semantic meaning. The decoder then uses this context

vector as an initial hidden state and generates an output sequence [54].

33

Chapter 2 Deep Learning and Transformers Architecture

Figure 2.11: Seq2seq LSTM structure [8]

Seq2Seq models have achieved state-of-the-art results on several NLP tasks, including

machine translation, text summarization, and speech recognition [7].

2.6.5 Transformers

In 2017, the Google Brain team introduced Transformers in a paper titled "Attention Is

All You Need" by Ashish Vaswani et AL. [9]. They proposed a new network architecture

based only on an attention mechanism, eliminating the need for recurrence and convo-

lutions. Today, Transformers have become the preferred model for NLP and computer

vision. This model architecture consists of a multi-head self-attention mechanism

combined with an encoder-decoder structure. This mechanism can achieve results

that outperform various other models in both evaluation score and training time [9].

The Encoder-Decoder Model:

The encoder-decoder models used in Transformers are similar to those used in sequence-

to-sequence models, but they are not exactly the same. The main difference is that

Transformers use self-attention mechanisms instead of RNNs to process input sequences.

The Attention Mechanism:

The attention mechanism is part of a neural architecture that enables it to dynamically

highlight relevant features of the input data, which, in NLP, is typically a sequence of

textual elements. It can be applied directly to the raw input or to its higher-level rep-

resentation. The core idea behind attention is to compute a weight distribution on the

input sequence, assigning higher values to more relevant elements [55].

Attention-based neural encoder-decoder models use context vectors to capture source

sentence information. These vectors are generated using the previous hidden state of the

34

Chapter 2 Deep Learning and Transformers Architecture

decoder and all encoder hidden states. The decoder can attend to all encoder hidden states

and use its previous hidden state to generate the target word. The attention mechanism

allows the decoder to access relevant information from the context vector without the

encoder compressing the source sentence into a single fixed-length vector. The attention

mechanism is effective for processing long and any length text sequences [56].

2.6.6 Model Architecture

The structure of most competitive neural sequence models that convert one sequence into

another is an encoder-decoder (as in the seq2seq model), in which the encoder maps an

input sequence of symbol representations (x1, ·, xn) to a sequence of continuous represen-

tations (z1, ·, zn). then, the decoder generates an output sequence (y1, ·, ym), with each

symbol generated one at a time. At each step, the model considers the symbols generated

in previous steps and uses them as additional input to generate the next symbol. This

process is called auto-regression. The Transformer model uses this overall architecture,

with stacked self-attention and point-wise fully connected layers for both the encoder and

decoder [9], as illustrated in Figure 2.12.

• Encoder: The encoder shown in the left half of Figure 2.12 is composed of N = 6

identical layers, where each layer contains two sub-layers: multi-head self-attention

and a fully connected feed-forward network. To enable residual connections, all sub-

layers, including the embedding layers, produce outputs of dimension dmodel = 512.

The output of each sub-layer is computed as LayerNorm(x+Sublayer(x)), where x

is the input to the sub-layer, and Sublayer(x) represents the function implemented

by the sub-layer itself [9].

• Decoder: The decoder shown in the right half of Figure 2.12 is also composed

of a stack of N = 6 identical layers, each layer contains three sub-layers. The

first sub-layer is a masked multi-head self-attention layer that allows the model to

attend to different parts of the input sequence. The second sub-layer is a multi-head

attention layer that performs attention over the output of the encoder stack. The

third sub-layer is a fully connected feed-forward network that applies non-linear

transformations to the outputs of the second sub-layer.

All sub-layers in the decoder, as well as the embedding layers, produce outputs of

35

Chapter 2 Deep Learning and Transformers Architecture

Figure 2.12: Transformer model architecture [9]

dimension dmodel = 512. Residual connections and layer normalization are applied

around each of the three sub-layers in each decoder layer [9].

• Attention

An attention function uses vectors to map a query and a set of key-value pairs to an

output. The output is a weighted sum of the values, with each weight determined

by a compatibility function between the query and its corresponding key [9].

Figure 2.13 shows two types of attention mechanisms used in the Transformer:

the left panel depicts Multi-Head Attention and the right panel shows Scaled Dot-

Product Attention.

Scaled Dot-Product Attention: is an attention mechanism that operates on

queries Q, keys K, and values V, where the dot products query with all keys are

scaled down by
√
dk, and apply a softmax function to obtain the weights on the

values. practically, we have a query Q, a key k, and a value V, and we calculate the

36

Chapter 2 Deep Learning and Transformers Architecture

attention as follows:

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
Scaling the dot products by 1√

dk
ensures that the dot products of the query and key

vectors are not too large, which helps prevent the softmax function from saturating.

Additionally, by scaling down the dot products, the resulting values will have a mean

of 0 and variance of 1, which makes it easier for the model to learn and update the

weights during training [9].

Multi-Head Attention: allows the model to capture various types of information

and learn complex relationships between different parts of the input, by attending

to different subspaces of the input sequence, and is defined as:

MultiHead (Q,K,V) = [head1, . . . , headh]W0

where headi = Attention
(
QWQ

i ,KWK
i ,VWV

i

)
where WQ

i ,W
K
i ,W

V
i and W0 are parameter projection matrices

Figure 2.13: (left)Multi-Head Attention consists of several attention layers running in

parallel (right)Scaled Dot-Product Attention [10]

37

Chapter 2 Deep Learning and Transformers Architecture

2.6.7 Transfer Learning

Transfer learning (TL) was defined by Pan and Yang in 2010 [57] as a machine learning

technique that aims to improve the learning of a target predictive function fT () in a target

domain DT and learning task TT using knowledge gained from a related but different

source domain DS and learning task TS, where DS ̸= DT or TS ̸= TT as shown in figure

2.14.

The objective of transfer learning is to enable learning in DT using the information

gained from DS and TS, where DS ̸= DT or TS ̸= TT . This involves transferring knowledge

from the source domain to the target domain, which may involve adapting a pre-trained

model, transferring features, or reusing parameters from the source domain to improve

the learning of the target function [57].

Figure 2.14: Transfer Learning

2.7 Transfer Learning in NLP

Transfer learning has proven to be highly effective in improving the performance of low-

resource NLP tasks that have limited training data, such as question answering. The

two most widely used transfer learning methods in NLP are feature-based transfer and

fine-tuning [58].

2.7.1 feature-based transfer

Feature-based transfer learning for NLP involves using a pre-trained language model to

extract features from text data and then using these features as input to a downstream

38

Chapter 2 Deep Learning and Transformers Architecture

NLP task. The pre-trained language model can be a general-purpose model that has been

trained on a large amount of text data, such as BERT, GPT-2, or RoBERTa, and the

downstream NLP task can be a specific task such as sentiment analysis, text classification,

or QA [58].

2.7.2 Fine-tuning

Fine-tuning a pre-trained model for downstream tasks in NLP has become a popular

approach, particularly in recent years with the emergence of large pre-trained models

such as BERT and GPT-2. Fine-tuning involves training the pre-trained model on a

task-specific dataset, such as QA or text classification, by copying the weights from a

pre-trained network and tuning them on the downstream task. The upstream model is

usually a neural language model that is pre-trained on a large dataset. One advantage of

fine-tuning is that it does not require task-specific model design, unlike feature-based TL,

where a separate classifier is trained on top of the pre-trained model. Instead, fine-tuning

replaces the final layer(s) of the pre-trained model with a new layer(s) that is specific to

the downstream task and then trains the entire model on the task-specific labeled data

[58].

2.8 Transformer-based models in QA systems

Transformer-based models have been widely used in QA systems due to their ability to

capture the contextual information of a sentence. The most popular transformer-based

models used in QA systems are BERT, ELECTRA, GPT, and T5.

2.8.1 BERT

Bidirectional Encoder Representations from Transformers (BERT): is an Encoder-based

only model that is based on the Transformer architecture, introduced by Google in 2018.

The BERT architectures originally presented by Devlin et al [59] include BERTBASE

and BERTLARGE, the "basic" version has 12 encoders, while the "large" version has

24 encoders. BERT’s uniqueness lies in its ability to read words from both directions

simultaneously, enabling it to utilize various strategies to learn contextualized word rep-

resentations.

39

Chapter 2 Deep Learning and Transformers Architecture

BERT comprises two phases: Pre-Training and Fine-Tuning.

Pre-Training: During the pre-training phase, BERT is trained on large amounts of

unlabeled text to learn contextual representations of words. This is done by utilizing

two tasks: Masked Language Model (MLM) and Next Sentence Prediction (NSP). In

MLM, a certain percentage of words in a sentence are masked, and the model is trained

to predict the masked words based on the surrounding context. In NSP, the model is

trained to predict whether two sentences are consecutive in the original text or not. By

pre-training on these tasks, BERT can learn to understand the relationships between

words in a sentence and how sentences relate to each other.

Fine-Tuning: BERT can be fine-tuned for several downstream NLP tasks such as

classification, Question Answering, and text summarization. Since BERT has language

comprehension abilities, fine-tuning the pre-trained weights becomes easier. In this pro-

cess, the pre-trained weights are adjusted to fit the specific task at hand, using labeled

data specific to that task. By fine-tuning these tasks, BERT can be customized to perform

specific NLP tasks with high accuracy [59].

2.8.2 ELECTRA

Efficiently Learning an Encoder that Classifies Token Replacements Accurately (ELEC-

TRA) is a variation of BERT that pre-trains the model using a different task called

replaced token detection, rather than the MLM task used in BERT. In this task, instead

of masking tokens with [MASK], tokens are replaced with different tokens, and the model

is trained to determine whether the tokens are actual or replaced. This approach allows

ELECTRA to use a larger proportion of the input text for pre-training and has shown

to be more computationally efficient than BERT while achieving similar or better per-

formance on downstream tasks [7]. ELECTRA is Encoder-based only, which means that

it only uses the encoder part of the transformer architecture for pre-training and infer-

ence. This makes the model computationally efficient and allows it to handle longer input

sequences compared to Decoder-based models like GPT. ELECTRA has been used in sev-

eral NLP applications, Including Sentiment Analysis (ISA), QA, and Language Modeling

(LM), among others [60].

40

Chapter 2 Deep Learning and Transformers Architecture

2.8.3 GPT

Generative Pre-trained Transformer (GPT) models have taken the NLP world by storm.

GPT is a Decoder-based model that uses a transformer-based architecture for language

modeling tasks, such as text generation, machine translation, and summarization. Unlike

other pre-training models, GPT models are trained only with a left-to-right language

modeling objective and do not require any supervised training data. They are fine-tuned

on downstream NLP tasks with only a small amount of task-specific labeled data. To

achieve state-of-the-art performance on these tasks, these language models require very

little to no examples.

Radford et al. introduced GPT for downstream tasks through fine-tuning. In 2019,

they developed GPT-2, and in 2020, Brown et al. introduced the GPT-3 zero-shot trans-

former technique, which eliminates the need for fine-tuning. The number of parameters in

the original Transformer model increased from 65M to 175B in the GPT-3 model between

2017 and 2020 [7].

2.8.4 T5

Text-to-Text Transfer Transformer (T5) is a type of neural network architecture for NLP

tasks, introduced by Raffel Colin and al. in the research paper "Exploring the Limits

of Transfer Learning with a Unified Text-to-Text Transformer" [61]. T5 is an Encoder-

Decoder-based model that is based on the Transformer architecture and is designed to

perform a wide range of NLP tasks, including question-answering, summarization, and

translation, among others. The T5 model is trained on a large corpus of text and fine-

tuned on specific tasks, and it is capable of performing well even on tasks that it has never

been explicitly trained on (zero-shot learning). Additionally, the T5 model can perform

multiple tasks at once through a technique called "prefix tuning [61].

The T5 model is a Pre-Norm model that uses LayerNorm without bias, and it uses ReLU

activation instead of the more common GELU activation function. The output projection

weights are tied to the input embedding matrix, and it uses 128 relative positional embed-

dings that are added at each layer. The T5 model comes in several sizes, with the smallest

having 233 million parameters and the largest having 2.8 billion parameters. T5v1.1 is

an updated version of T5 that is trained on different data, uses GEGLU activations, and

does not include dropout. It also slightly modifies the model shapes and does not tie the

41

Chapter 2 Deep Learning and Transformers Architecture

logit layer with input embeddings [62].

2.9 Related Works

This section provides an overview of related works that had already been done in QA for

biomedical domain and COVID-19 using DL techniques and Transformers architectures.

In [14], Möller et al. presented the first dataset for COVID-related QA in SQuAD-style,

named COVID-QA. The authors used the CORD-19 scientific articles and provided 2019

annotated QA pairs related to COVID-19, based on 147 scientific articles. To evaluate

the proposed dataset, they chose the pre-trained RoBERTa-base architecture was then

fine-tuned on the SQuAD dataset, as well as the proposed COVID-QA dataset. This

study shows that finetuning the model on the COVID-QA dataset results in significant

improvement across both F1 and EM scores.

Tang et al. [63] developed CovidQA, a dataset consisting of 124 question-article pairs

related to COVID-19, which were extracted from the CORD-19 dataset [64]. Although

the dataset is small, it can still be useful for evaluating the performance of models in

the COVID-19 domain, particularly those using zero-shot or TL methods. The authors

tested the effectiveness of several baseline techniques, including term-based methods and

various transformer-based models. In unsupervised models, BioBERT was found to be

the most effective compared to BERT and T5. For fine-tuning models in MS MARCO and

SQuAD, T5 achieved the highest overall effectiveness. The authors also described their

methodology for constructing the dataset and presented their findings on the effectiveness

of these baselines. However, due to its small size, the dataset may not be suitable for

training DL Network models.

Lee et al.[65] proposed a system consisting of three components: COVIDASK, a QA

system for COVID-19 that combines biomedical text mining and QA techniques to provide

answers to questions in real-time. the system uses DenSPI (Document Encoder with

Selective Paragraph Interactions) model which is purely trained on SQuaD and Natural

Questions; and the evaluation of COVIDASK on a COVID-19 dataset created by the

authors. Although COVIDASK is not an open-domain question-answering system, it

employs techniques from such systems as it needs to handle a large amount of text. The

primary focus of COVIDASK is reducing the latency between querying and receiving an

42

Chapter 2 Deep Learning and Transformers Architecture

answer. This is achieved by either decreasing the number of documents retrieved or pre-

indexing all appropriate answer phrases into dense and sparse vectors. Then, Maximum

Inner Product Search is performed between query vectors and phrase vectors to reduce

the number of times a model passes through a document to only one.

Su et al. [66] proposed the CAiRE-COVID QA system, which consists of three different

modules. The first module, Document Retriever, preprocesses the user’s query and re-

trieves the n most relevant publications. It paraphrases long, complex queries into simpler

ones that are easier for the system to comprehend. These queries are run through the IR

module, which returns paragraphs with the highest matching scores. The second module,

Relevant Snippet Selector, highlights and re-ranks the most relevant parts of the retrieved

paragraphs based on their scores,to enhance both generalization and domain-expertise ca-

pability, they combine the HLTC-MRQA model that is an XLNet-based QA model which

is trained on six different QA datasets via multi-task learning with the BioBERT QA

model, which is fine-tuned on the SQuAD dataset and evaluate their QA module perfor-

mance on the CovidQA dataset The third module, Multi-Document Summarizer, returns

an abstractive summary by summarizing the top relevant paragraphs. This QA module

is an example of an extractor and re-ranker, as it focuses on a small-sized dataset such as

sentences or articles.

Alzubi et al. [67] proposed and developed COBERT, a QA system that utilizes BERT

to answer COVID-19 related queries. The authors pre-trained BERT on a COVID-19

specific dataset to enhance the model’s ability to understand domain-specific language.

The system was evaluated on a dataset consisting of questions related to COVID-19. The

results show that COBERT achieves 81.3 EM and 88.7 F1-score on SQuAD 1.1 dev, and

after fitting the pipeline on the CORD-19 corpus, the model achieves 81.5 EM and 88.3

F1-score. The authors suggest that COBERT could assist healthcare professionals in

finding accurate information quickly during the COVID-19 pandemic.

In the paper proposed by Reddy et al. [68], the authors present an End-to-end QA

system that requires both IR over a large document collection and MRC on the retrieved

passages. The baseline MRC system fine-tunes a pre-trained RoBERTa-large model for 3

epochs on SQuAD2.0 and then for 1 epoch on Natural Questions (NQ) training examples.

It achieves an EM 34.0 and F1 59.4 on the NQ dev set. The proposed method includes

a novel example generation model that can produce synthetic training examples for both

43

Chapter 2 Deep Learning and Transformers Architecture

IR and MRC. These generated examples are used to fine-tune a pre-trained language

model on the target domain, which allows the model to adapt effectively to the COVID-

19 domain without the need for large amounts of annotated data. Recent work has shown

that neural IR systems can be trained successfully using only supervised QA examples

from open-domain datasets.

In [69], Ngai et al. created three QA systems for the Kaggle COVID-19 Open Research

Dataset (CORD-19) after reviewing various QA systems submitted to the Kaggle compe-

tition. They evaluated the performance of three transformer models (BERT, ALBERT,

and T5) on two new QA datasets (CovidQA and CovidGQA) and presented preliminary

results. The authors also discussed challenges in developing a high-performing QA system

for COVID-19 research and suggested solutions to improve performance.

2.9.1 Comparative table

The following table 2.1 summarizes the related works discussed previously and compares

them to our proposed work based on different comparaison criteria.

Work Pretrained

Model

Further

pretrain

Dataset

Finetuning

Dataset

Further

finetuning

Dataset

Evaluation

Dataset

Evaluation

Metrics

Score

F1 59.53

EM 25.90

Precision 0.282

Recall 0.404

MRR 0.415

F1 23.37

EM 13.04

F1 26.32

EM 11.59

F1 59.4

EM 34.0

Moller

et al. [14]
RoBERTa SQUAD COVID-QA

COVID-

QA

Tang et

al. [63]
T5 MS Marco COVIDQA

Ngai et

al. [69]

ALBERT-

base
SQUAD COVIDQA

BERT

large
SQUAD COVIDQA

Reddy et

aL.[68]

RoBERTa

large
SQUAD CORD-19

COVID-

QA

44

Chapter 2 Deep Learning and Transformers Architecture

Lee et al.

[65]

DenSPI SQUAD Natural

Questions

COVID-19 EMsent 0.7736

MRR 0.288

Precision 0.177

Recall 0.423

MRR 0.291

Precision 0.169

Recall 0.415

MRR 0.318

Precision 0.192

Recall 0.477

EM 81.5

F1 88.3

EM 80.6

F1 87.3

EM 0.30

F1 0.58

F1 64.87

EM 38.61

Dan Su

et al. [66]

BioBert CORD-19 SQUAD COVID19

HLTC-

MRQA

(XLNet)

CORD-19 COVID19

Ensemble CORD-19 COVID19

Alzubi et

al. [67]

BERT SQUAD CORD-19 CORD-19

Distil-

BERT
SQUAD CORD-19 CORD-19

Proposed

model

BERT SQUAD COVID-QA
COVID-

QA

RoBERTa SQUAD COVID-QA
COVID-

QA

Table 2.1: Comparative table of related works

2.10 Conclusion

This chapter has provided an overview of deep learning and neural networks, focusing on

the main architectures of ANNs. We discussed the formal neuron and basic models of

ANNs, as well as neural network learning with the backpropagation algorithm.

Furthermore, we explored the use of neural networks in NLP, including RNNs, LSTMs,

BLSTMs, Transformers, and their model architecture and attention mechanisms. We

also discussed TL, a technique that allows the use of pre-trained models to improve the

performance of new tasks, with a focus on TL in NLP and transformer-based models in

QA systems, such as BERT, ELECTRA, GPT, and T5.

45

Chapter 2 Deep Learning and Transformers Architecture

Finally, we reviewed related works in this field, providing an overview of the current

state-of-the-art techniques. this chapter has demonstrated the significant impact of DL

and transformer architectures on various domains, especially in NLP and QA.

46

Chapter 3
Proposed QA Model

3.1 Introduction

In this chapter, we will discuss the proposed approach for QA using transformers for

the biomedical domain. The goal of this solution is to enable models to understand and

answer medical-related questions asked in natural languages.

The system architecture of the proposed QA model encompasses various components

and processes. It involves the utilization of the SQUAD and COVID-QA datasets, which

serve as the foundation for training and evaluating the model. These datasets provide a

diverse range of questions and contexts, allowing for a comprehensive assessment of the

QA model’s performance.

The chapter explores the inclusion of language models, specifically BERT and RoBERTa,

in the development of the proposed QA model. These pre-trained models have demon-

strated remarkable performance in NLP tasks and form an important part of the archi-

tecture. The chapter also encompasses data exploration, which involves gaining insights

into the datasets and understanding their characteristics, distribution, and potential chal-

lenges.

The preprocessing stage is essential in preparing the data for training. This includes

tokenization, which breaks down the text into smaller units for analysis, determining the

end index of answers to accurately locate the relevant information, and converting answer

positions to token-based positions for model compatibility.

The fine-tuning process involves setting up the model architecture and training it on

the available data. This step allows the model to adapt and learn from the specific domain

47

Chapter 3 Proposed QA Model

and task requirements. Training the model involves optimizing the model parameters and

adjusting the hyper-parameters to achieve the best possible performance.

3.2 Overall Architecture

QA systems can be useful for the medical and biomedical research communities to stay up-

to-date when new literature is rapidly growing. However, developing accurate QA systems

using small datasets can be challenging due to the limited diversity and complexity of the

data. This challenge is particularly pronounced in specialized tasks and topics such as

COVID-19, where relevant datasets are often scarce. This can make it difficult to train a

QA system that can accurately answer questions about this topic.

One solution to address this challenge is to perform two rounds of fine-tuning on

pre-trained transformer-based models: initial fine-tuning followed by further fine-tuning.

First, we fine-tune the model on the SQuAD dataset to enable the model to learn general

QA patterns. This enhances the model’s accuracy in answering a broader range of ques-

tions. Next, we further fine-tune the model on the COVID-QA dataset to enhance its

performance on the specific domain of COVID-19. This enables the model to learn more

domain-specific features and patterns relevant to answering COVID-related questions.

The subsequent sections will provide a detailed discussion of the pre-processing tech-

niques employed and the hyper-parameters used during the fine-tuning process. Figure

3.1 presents an overview of the pipeline architecture for our proposed approach.

48

Chapter 3 Proposed QA Model

Figure 3.1: General pipeline of the training steps of the proposed models

3.3 System Architecture

Answering questions using transformer-based models such as BERT employs a series of

essential steps to provide accurate responses to user queries. Figure 3.2 illustrates the

overall process of QA.

Preprocessing: Questions and contexts, which are extracted from the dataset, are

tokenized and converted into a sequence of tokens. Special tokens like [CLS] (classifica-

tion) and [SEP] (separator) are added to mark the beginning and the separation of the

questions and contexts.

Embedding: The tokenized questions and contexts are embedded into a vector space.

The embeddings are learned during the pre-training process. These embeddings capture

the contextual meaning of the tokens.

Encoding: The embedded questions and contexts are encoded into a sequence of

49

Chapter 3 Proposed QA Model

vectors using a transformer encoder. The transformer encoder consists of multiple layers

that process the tokens and capture their contextual representations.

Attention: The encoded questions and contexts are attended to each other using

a self-attention mechanism called the Transformer’s multi-head attention. The self-

attention mechanism calculates attention weights for each token based on its relationship

with other tokens, capturing the importance of each token in the context.

Answer prediction: The attended questions and contexts are passed through a task-

specific layer, often a combination of linear and softmax1 layers, to predict the start and

end positions of the answer within the context. These layers map the encoded represen-

tations to probability distributions over all possible answer spans.

Post-processing: The start and end positions predicted by the model are used to

extract the answer span from the context. The answer span is then cleaned, processed,

and returned as the final answer.

Figure 3.2: General system architecture and steps of transformer-based models

3.4 Used Datasets

To train our models, we utilize two datasets: SQuAD for fine-tuning and COVID-QA for

further fine-tuning.
1is a mathematical function that is used in machine learning and statistics to convert a vector into a

probability distribution.

50

Chapter 3 Proposed QA Model

3.4.1 Stanford Question Answering Dataset (SQuAD)

SQuAD is a collection of QA pairs derived from Wikipedia articles, where the correct

answers can be any sequence of tokens in the given text. Created through crowdsourcing,

SQuAD offers diversity in its questions and answers, making it a valuable resource for

training models. SQuAD 1.1 comprises 107,785 QA pairs from 536 articles, while SQuAD

2.0 includes additional unanswerable questions [33]. By fine-tuning BERT on the SQuAD

V2 dataset, the model becomes proficient in identifying crucial contextual cues in the

input text and generating accurate answers for a wide range of questions.

3.4.2 COVID-QA

COVID-QA is a QA dataset consisting of 2,019 QA pairs that have been annotated by

volunteer biomedical experts [14]. The questions and answers are based on scientific arti-

cles specifically related to COVID-19. By incorporating this dataset into the fine-tuning

process, our model gains a deeper understanding of domain-specific features and pat-

terns that are crucial for accurately answering COVID-related questions. This additional

fine-tuning step enhances the model’s performance in addressing queries related to the

biomedical and COVID-19 domains.

3.4.3 Data Exploration

Analyzing and exploiting the datasets is helpful for us in the data prepossessing step

and in choosing good hyper-parameter values for our models. These have proved to be

extremely influential in determining the performance of our model in the training process.

Format

Both the SQuAD and COVID-QA datasets follow a similar format as shown in Fig 3.3,

which consists of the following fields:

’Id’: Unique identifier for each data instance.

’Title’: Title of the article or document containing the context.

’Context’: The passage or section from the document that contains the information

relevant to the question.

51

Chapter 3 Proposed QA Model

’Question’: The question asked based on the given context. Questions in both datasets

are mostly factoid questions.

’Answers’: A list of answer objects, where each object contains the ’text’ field repre-

senting the answer text and the ’answer_start’ field indicating the character offset in the

context where the answer starts.

Figure 3.3: Dataset format

The following table 3.1 illustrates a concrete example taken from the SQuAD v2.0

dataset for illustration purposes:

Id 56de3aeccffd8e1900b4b6af

Title Southern Europe

Context " The Late Middle Ages represented a period of upheaval in Europe. The

epidemic known as the Black Death and an associated famine caused a de-

mographic catastrophe in Europe as the population plummeted. Dynastic

struggles and wars of conquest kept many of the states of Europe at war for

much of the period. In the Balkans, the Ottoman Empire, a Turkish state

originating in Anatolia, encroached steadily on former Byzantine lands, culmi-

nating in the Fall of Constantinople in 1453 ."

Question What disease plagued Europe during the Late Middle Ages?

Answers ’text’: [’the Black Death’], ’answer_start’: [87]

Table 3.1: Input Example from SQuAD v2.0

52

Chapter 3 Proposed QA Model

And the following table 3.2 illustrates an example taken from the COVID-QA dataset.

Id 262

document

id

630

Context "... Mother-to-child transmission (MTCT) is the main cause of HIV-1 infec-

tion in children worldwide. Given that the C-type lectin receptor, dendritic

cell-specific ICAM-grabbing non-integrin-related (DC-SIGNR, also known as

CD209L or liver/lymph node–specific ICAM-grabbing non-integrin (L-SIGN)),

can interact with pathogens including HIV-1 and is expressed at the maternal-

fetal interface, we hypothesized that it could influence MTCT of HIV-1..."

Question What is the main cause of HIV-1 infection in children?

Answers ’text’: [’Mother-to-child transmission (MTCT)’], ’answer_start’: [370]

Table 3.2: Input Example from COVID-QA

Characteristics

Positive questions and negative questions in the context of QA refer to answerable ques-

tions and unanswerable questions, respectively. In the SQuAD dataset, as depicted in

Figure 3.4, there are 86,821 positive questions, which are questions with corresponding

answers, and 43,498 negative questions, which are questions without any feasible answer.

In contrast, all the questions in the COVID-QA dataset are answerable, meaning that each

question has a relevant answer associated with it. Incorporating unanswerable questions

into the training process has several benefits. By exposing QA models to both answerable

and unanswerable questions, the models can become more robust and better aligned with

real-world QA scenarios.

Unanswerable questions imply that the answer is an empty list. We must take this

into consideration when calculating the start and end of the answer.

53

Chapter 3 Proposed QA Model

Figure 3.4: Positive and negative questions

Context Length

The structure of the context in the SQuAD and COVID-QA datasets differs significantly

as figure 3.5 shows. In SQuAD, the contexts are subsections or paragraphs extracted from

Wikipedia articles, while in COVID-QA, the contexts consist of the full research articles.

As a result, the contexts in COVID-QA are significantly longer than the contexts in

SQuAD.

This disparity in context length has implications for model training. Therefore, when

training models on these datasets, it is important to consider the context length when

choosing the hyper-parameters.

Figure 3.5: Distribution of Context Length

Questions and Answers Length The question types in the SQuAD and COVID-

54

Chapter 3 Proposed QA Model

QA datasets are similar as figure 3.6 shows. However, there are some stark differences

in the lengths of the answers. In SQuAD, 97.6% of the answers consist of five or fewer

tokens. In contrast, only 35% of the answers in COVID-QA have fewer than five tokens.

The rest of the answers are even longer than that, with the longest clocking in at 144

tokens.

Figure 3.6: Distribution of Answers Length

3.4.4 Used Datasets for Evaluation

To evaluate the performance of our QA models, we utilize the SQuAD v2 dataset, which

serves as a reliable benchmark for understanding and extracting answers from contex-

tual information. Additionally, we employ the COVID-QA dataset to further assess the

capabilities of our models in answering questions related to Covid-19. We measure the

performance of our QA models using the same evaluation metrics as SQuAD v2, namely

the macro-averaged F1 score and the EM. These metrics allow us to evaluate the effec-

tiveness of our models in accurately extracting answers from the given context.

3.5 Building up the Proposed QA Model

3.5.1 Language Models

Bert

The BERT model is built using a stack of bidirectional Transformer encoders [59]. Its

architecture is defined by three important parameters: the number of layers (transformer

55

Chapter 3 Proposed QA Model

blocks), the hidden size, and the number of self-attention heads in each transformer block.

These parameters play a crucial role in defining the distinct versions of BERT, which

exhibit variations in capacity and functionality. Among the notable versions, two of the

most important ones are:

BERT Base: It uses 12 Transformer layers, and 110 million parameters, and is suitable

for training on small-scale datasets [70]. For our work, we employed this version of BERT.

BERT Large: It uses 24 Transformer layers, and 340 million parameters, and is suitable

for large-scale datasets with complex tasks [70].

This pre-trained NLP model has shown its effectiveness across different tasks, including

QA. BERT-based QA systems are typically composed of three primary components: input

encoding, contextual encoding, and answer generation. These components work together

to process the input, understand its context, and generate accurate answers [71].

In the input encoding component, the question and context passage are tokenized into

numerical representations using WordPiece tokenization. The tokens are then represented

using token embeddings 2 Additionally, segment embedding 3 is added to differenti-

ate between the question and context passage. The input encoding component combines

the token and segment embeddings to capture the semantic meaning of the words and

their relative position in the question and context passage.

In the contextual encoding component, BERT generates contextual embeddings for

each token by taking into account the surrounding context of the token using a transformer

architecture. The transformer architecture allows BERT to capture the relationships

between each word and its surrounding context, resulting in a more accurate and nuanced

understanding of the input text. BERT generates these embeddings by processing the

token and segment embeddings generated in the input encoding component.

In the answer generation component, the contextual embeddings generated in the

previous step are used to predict the start and end positions of the answer within the

context passage. This is done using attention mechanisms and fully connected layers. The

predicted start and end positions are then used to extract the answer from the passage,

which is the output of the BERT-based QA system. The answer generation component
2Are numerical vectors that represent the meaning of each token, taking into account its position in

the sentence.
3Is a numerical vector that is added to each token to indicate which segment it belongs to (the question

or the context passage).

56

Chapter 3 Proposed QA Model

uses the contextual embeddings to capture the meaning of the words in their context and

predict the most likely answer [11], as shown in figure 3.7.

Figure 3.7: Building a Question Answering System with BERT [11]

RoBERTa

RoBERTa-based QA (Robustly Optimized BERT Pretraining Approach) [72] is an im-

proved version of BERT-based QA, which is also a QA system based on pre-trained NLP

models. While it shares the same underlying mechanism as BERT, except that it uses

a byte-level BPE (Byte Pair Encoding) as a tokenizer. RoBERTa introduced notable

improvements when it was introduced in 2019. These enhancements include training on

larger datasets (with a total size of approximately 160 GB), utilizing a larger batch size of

8,000 with 300,000 steps, and removing the NSP Task due to observations that it did not

provide significant benefits. Another improvement is the use of dynamic masking instead

of static masking. As a result, RoBERTa has outperformed BERT in various NLP tasks,

including natural language understanding and QA, and has achieved high rankings in

several data science competitions [73].

In our work, we used these two language models in our solution that are readily

available and can be directly loaded from Hugging Face [74], which is an open-source

software library and community that offers a straightforward and user-friendly interface

for working with state-of-the-art NLP models. It provides a convenient way to access and

use these models, allowing us to leverage their advanced capabilities for our specific tasks.

57

Chapter 3 Proposed QA Model

Hyper-parameters

Table 3.3 presents the hyper-parameters we used for fine-tuning the two pre-trained mod-

els, BERT and RoBERTa, on the SQuAD and COVID-QA datasets.

The ’batch_size’ is a hyper-parameter that determines the number of samples pro-

cessed in each training iteration. We set the batch size to a specific value, which determines

how many examples are processed in parallel before updating the model weights.

The ’Max_length’ hyper-parameter represents the maximum size of input tokens.

Any tokens exceeding this length are truncated to fit within the specified limit.

The ’Doc_stride’ refers to the stride size used when splitting documents into smaller

chunks for processing. This parameter determines the overlapping or non-overlapping

nature of the chunks.

The ’max_answer_length’ hyper-parameter defines the maximum allowed length

for generated answers. Any generated answer longer than this limit is truncated or mod-

ified accordingly.

For optimization, we used the Adam optimizer with weight decay and a specific

learning rate. The weight decay helps in controlling the growth of the model’s param-

eters during training, while the learning rate determines the step size for updating the

model weights.

All other hyper-parameters were kept as default settings, meaning they were not mod-

ified and used the predefined values provided by the model architecture.

Models BERT RoBERTa

Datasets SQUAD COVID-QA SQUAD COVID-QA

max_length 384 512 384 512

doc_stride 128 170 128 170

train_batch_size 3 3 3 3

max_answer_length 30 300 30 300

learning Rate 1e-5 2e-5 1e-5 2e-5

num_train_epochs 2 2 2 2

Table 3.3: Hyper-parameters Comparison of Model

These hyper-parameters were carefully chosen and fine-tuned to achieve the best per-

58

Chapter 3 Proposed QA Model

formance for our models on the SQuAD and COVID-QA datasets.

3.5.2 Preprocessing

Before we can input the texts into our model, we need to perform preprocessing on

them. This is to ensure that the texts are in a format that the model can understand.

Preprocessing typically includes the following steps:

Tokenization

The tokenizer performs several tasks. Firstly, it breaks down the text into individual

tokens, including words, punctuation marks, and special characters. Additionally, it adds

special tokens like "[CLS] and [SEP]" for BERT, "<s> and </s>" for RoBERTa, at the

beginning and end of the text. These special tokens play an important role in helping the

model distinguish the question from the context during the process.

For this purpose, we use the Huggingface Transformer Tokenizer which will ensure

that we get a tokenizer that corresponds to the model architecture we want to use.

One important aspect of preprocessing is handling very long documents in QA tasks.

Typically, in other tasks, we truncate long documents when they exceed the model’s

maximum sentence length. However, in QA, removing part of the context may result in

losing the answer we are searching for.

To address this, we employ a strategy where one example in our dataset can produce

multiple input features, each of which is equal to or shorter than the maximum length of

the model (controlled by the hyper-parameter max_length). This allows us to retain

the context and minimize the risk of losing the answer. Additionally, to ensure we don’t

miss the answer if it lies at the point where we split a long context, we introduce some

overlap between the generated features. This overlap is controlled by the hyper-parameter

’doc_stride’. By incorporating overlap, we increase the chances of capturing the answer

within one of the input features.

Another issue that we have to take care of is avoiding truncating the question. In fact,

the question remains intact while we focus on handling the length of the context. This is

achieved by setting the truncation parameter to "only_second", which means only the

second part (the context) will be truncated if it exceeds the maximum length specified by

a hyper-parameter.

59

Chapter 3 Proposed QA Model

Finally, we configure the parameter return_overflowing_tokens to True with the

tokenizer. it enables the generation of a list of features that may exceed the max-

imum length limit. This functionality is particularly useful when dealing with long

documents or contexts In addition to this, the tokenizer also provides us with the off-

set_mapping=True for each token. The offset_mapping gives us the character-level

start and end offsets for each token, allowing us to establish a mapping between the tokens

and their corresponding positions in the original text.

Determining the End Index of Answers

As we observe in the datasets, the answers are represented as dictionaries containing the

answer text and an integer denoting the start index of the answer within the context.

However, BERT (and RoBERTa) models necessitate both the start and end positions of

the answer. Since SQuAD or COVID-QA datasets do not provide the end index of the

answer within the context, we need to determine it ourselves.

Sometimes, the answers in the dataset may be off by one or two characters. To account

for this, we need to make adjustments to the start and end positions of the answers when

mapping them to the tokenized context. This ensures that we accurately align the answer

boundaries with the corresponding tokens.

Converting Answer Positions to Token-based Positions

Next, we convert the start and end positions of the answers from character-based posi-

tions to token-based positions. When working with the Hugging Face Tokenizers library,

we utilize the built-in char_to_token() method. This method allows us to map the

character positions to their corresponding token positions in the tokenized context. By

doing so, we ensure that the answer boundaries are aligned with the appropriate tokens

for further processing.

3.5.3 Fine-tuning

Setting the Model

Now that our data is prepared for training, we can proceed to download the pretrained

model and fine-tune it. For our QA task, we will utilize the AutoModelForQues-

60

Chapter 3 Proposed QA Model

tionAnswering class, which is designed specifically for this purpose. Similar to the

tokenizer, we can use the from_pretrained method, which will automatically download

and cache the model for us. In addition to the model and tokenizer, we also need to create

an optimizer for the fine-tuning process. We will use the PyTorch optimizer AdamW,

which incorporates gradient bias correction and weight decay.

To set up the optimizer, we need to specify the learning rate (lr) and pass the model

parameters to it.

Training the Model

To train the model, we utilize the train method, which trains the model for a specified

number of epochs. Each epoch represents a complete pass through the training data.

After each epoch, the model’s performance is evaluated on the validation data. The

evaluation of the validation data helps us determine whether to continue training or stop

training based on the model’s performance.

3.5.4 Evaluation

To evaluate our model, we need to associate the predictions of the model with specific

segments of the context. The model generates logits4 that indicate the probable starting

and ending positions of the answers.

We have one logit for each feature and each token. The most obvious thing to predict

an answer for each feature is to take the index for the maximum of the start logits as a

start position and the index for the maximum of the end logits as an end position.

This will work great in a lot of cases, but what if this prediction gives us something

impossible: the start position could be greater than the end position, or point to a span

of text in the question instead of the answer.

To handle this, we need to first get the model’s predictions for the start and end

positions of the answers. We can then use these start and end logits to generate a list of

possible answers. We can filter out any answers that are not valid, such as those with a

start position greater than the end position or those that point to a span of text in the

question instead of the answer.
4Are the raw output values that predict logits for the start and end positions of the answer span

within the given context.

61

Chapter 3 Proposed QA Model

Once we have a list of valid answers, we can sort them by their score in descending

order and keep the best one. The score is calculated by adding the start and end logits

for each answer.

Finally, the best answer is added to the list of predictions. This process is repeated

for each set of start and end logits in the raw predictions, resulting in a list of predictions

for the given input.

To compute the metrics, we used the official evaluation script for SQuAD version 2.0.

This script takes as input the list of predictions and the ground truth answers, and it

outputs the F1 score and EM metrics.

3.6 Conclusion

This chapter has presented the proposed approach for QA using transformers for the

biomedical domain. The system architecture of the proposed QA model was described,

highlighting the utilization of language models such as BERT and RoBERTa. Addition-

ally, the chapter explored the step-by-step process of building the model, which included

data exploration, preprocessing techniques like tokenization and answer position determi-

nation, and the subsequent fine-tuning and training procedures. Finally, the evaluation

of the proposed QA model was presented, showcasing its performance.

In the next chapter, we will delve into a comprehensive review and discussion of

the results obtained from the evaluation of the proposed QA model. Furthermore, we

will address the challenges and difficulties encountered throughout the development and

implementation process.

62

Chapter 4
Experimental Results and Discussion

4.1 Introduction

In this chapter, we analyze and discuss our research findings, building upon the ground-

work laid in the preceding chapters.

We begin by providing an overview of the experimental setup used in our study,

including the software and hardware utilized.

Next, we delve into the results and discussion section. We highlight the significant

performance improvements achieved through the fine-tuning process. We examine the

effects of further fine-tuning and compare the performances of the BERT and RoBERTa

models. We analyze performance trends through curves and explore the distribution

of prediction answer lengths. We then focus on visualizing attention mechanisms and

conduct a comparison between actual and predicted answers of our model. Finally, we

address the limitations and challenges encountered during our research.

4.2 Experimental Setup

The following Table 4.1 provides a comprehensive summary of the experimental setup

used in this study, encompassing the hardware and the software employed and formed

the foundation of our experimental setup, enabling rigorous testing and evaluation of the

proposed models.

63

Chapter 4 Experimental Results and Discussion

• CPU: Intel(R) Core(TM) i5-7200U • RAM: 16GB • Disk:

1TB SSD

• CPU: Intel(R) Core(TM) i7-5200U • RAM: 16GB • Disk:

1TB

Google Colaboratory (Colab), by Google : • CPU: In-

tel(R) Xeon(R) • GPU: Tesla T4, 16GB • RAM: 12.7GB •

Disk: 107.7GB

Kaggle Notebooks, by Kaggle : • CPU: Intel(R) Xeon(R) •

GPU: Tesla P100-PCIE-16GB • RAM: 13 GB • Disk: 107.37

GB

Programming

Language

Python 3

Hugging Face Datasets: a Python library for loading and

preprocessing datasets. It provides a simple and unified in-

terface for loading datasets from a variety of sources, such

as CSV files, JSON files, and HDF5 files. It also provide a

variety of preprocessing functions, such as tokenization, nor-

malization, and filtering.

Hugging Face TokenizersFast: state-of-the-art tokenizers

library, optimized for both research and production. It pro-

vides an implementation of today’s most used tokenizers in

Transformers, with a focus on performance and versatility

Hugging Face Transformers: a popular open-source

Python library for NLP tasks. It provides a number of pre-

trained transformers models and a framework for fine-tuning

these models on custom tasks.

PyTorch: an open-source machine learning framework using

Python, based on the Torch library. It is used for a wide vari-

ety of tasks, including natural language processing, computer

vision, and robotics. PyTorch is known for its flexibility and

ease of use.

Hardware and

Training

Personal

Computer

Cloud Tools

Software and

Librairies
Librairies

Table 4.1: The experimental setup used

64

Chapter 4 Experimental Results and Discussion

4.3 Results and Discussion

To present the results obtained from our models, we provide a detailed explanation of the

findings as outlined in Table 4.2, Figures 4.1, and 4.2 . We evaluated our model based

on two standard metrics: F1 score and EM score. We used the same evaluation dataset,

COVID-QA, for all of our experiments.

The BERT model, fine-tuned on COVID-QA without any further fine-tuning, achieved

an F1 score of 0.33 and an EM score of 0.14. When we fine-tuned it on SQuAD without

any further fine-tuning, it achieved an F1 score of 0.04 and an EM score of 0.07. After

fine-tuning the BERT model on the SQuAD dataset and further fine-tuning it on COVID-

QA, we observed an improvement in performance, with the F1 score increasing to 0.58

and the EM score improving to 0.3.

The RoBERTa model, after being fine-tuned only on the COVID-QA dataset, achieved

an F1 score of 0.48 and an EM score of 0.22. Similarly, when we fine-tuned the model on

the SQuAD dataset without any further fine-tuning, it maintained a similar performance

with an F1 score of 0.48 and an EM score of 0.18. However, by performing additional

fine-tuning on the SQuAD dataset and then on the COVID-QA dataset, we observed

a significant improvement in performance. The F1 score increased to 0.64, indicating a

better ability to provide accurate answers, and the EM score improved to 0.38, indicating

a higher rate of exact matches between the predicted and ground truth answers.

Our previous experiments allowed us to choose the RoBERTa model fine-tuned on

SQuAD and further fine-tuned on COVID-QA. This model achieved the best performance

on the COVID-QA dataset.

Model Fine-tuning Further Fine-tuning F1 EM

BERT-base-uncased

COVID-QA 0.19 0.05

SQuAD 0.07 0.04

SQuAD COVID-QA 0.58 0.30

RoBERTa-base

COVID-QA 0.48 0.22

SQuAD 0.48 0.18

SQuAD COVID-QA 0.64 0.38

Table 4.2: Performance Comparison of Models

65

Chapter 4 Experimental Results and Discussion

Figure 4.1: Result Comparison Of

BERT Model

Figure 4.2: Result Comparison Of

RoBERTa Model

After training the models for 5 epochs, we analyzed the progression of the EM and F1

score, as shown in Figures 4.3 and 4.4. Both metrics gradually increased during the initial

two epochs, indicating that the model was able to learn and improve its performance

during this period. However, beyond these two epochs, the scores reached a plateau,

suggesting that the model had already captured the majority of the relevant information

from the training data.

It is worth mentioning that the proposed model was trained for two epochs, as men-

tioned previously in Chapter 3. This decision was made based on the observation that the

best results in terms of the EM and F1 scores were achieved within this limited training

timeframe.

Figure 4.3: BERT Result curve Figure 4.4: RoBERTa Result curve

66

Chapter 4 Experimental Results and Discussion

Figure 4.5 illustrates the distribution of predicted answers length by the model. The

figure showcases that the model is capable of predicting answers of varying lengths, ranging

from short to long. This indicates the model’s ability to adapt and generate answers of

different lengths based on the context and question at hand. It is important to note

that the length of the predicted answers is influenced by the context and question being

addressed.

Figure 4.5: Distribution of Prediction Answers Length

Figures 4.6 and 4.7 show that as the length of the answer increases, both the average

F1 score and EM score tend to augment. This suggests that longer answers provide more

information that can be leveraged by the model, leading to improved performance in terms

of both the F1 score and EM score. However, the figures also highlight the presence of

variability in the scores, even for answers of the same length. This variability can be

attributed to a number of factors, including:

The varying levels of difficulty among the questions. Some questions may inherently

pose more challenges, resulting in lower scores, while others may be comparatively easier,

67

Chapter 4 Experimental Results and Discussion

leading to higher scores.

The model’s performance is influenced by factors such as question complexity, linguis-

tic nuances, and potential ambiguity, all of which can impact its ability to consistently

provide correct answers.

The results suggest that the model generates accurate and informative answers as the

length of the answer increases. However, the model’s performance is not perfect, and it is

important to consider that the model may not always be able to answer them correctly.

Figure 4.6: Avg F1 Based on Predicted

Answers Length

Figure 4.7: Avg EM Based on Predicted

Answers Length

4.4 Visualizing Attention

In addition to performance metrics, analyzing the attention mechanism of QA models

can provide insights into how the model attends to different parts of the input text when

generating answers. Attention mechanisms allow the model to focus on relevant infor-

mation and disregard irrelevant or redundant information. By visualizing the attention

weights, it is possible to understand which parts of the input text are most influential in

generating the model’s predictions.

The output_attentions tensor represents attention matrices, also known as atten-

tion probabilities, for all 12 layers and all 12 heads. It represents a softmax-normalized

dot product between the key and query vectors. In the literature, it has been used as an

important indicator of how much a token relates to another token in the text. In the case

of the QA model, it indicates which tokens relate to each other in the question, text, or

answer segment.

68

Chapter 4 Experimental Results and Discussion

Below Fig 4.8 shows visualizing token-to-token attention scores for the last layer over

the three steps base model, fine-tuning on the SQuAD, and further fine-tuning on the

COVID-QA. We see that the attention augments over the steps. As depicted in Figure

4.8a, the base model allocated relatively equal attention to all input tokens, including both

the question and context. Conversely, Figure 4.8b demonstrates that the model fine-tuned

on SQUAD exhibited attention primarily focused on the context tokens relevant to the

question. Although this model provided correct answers, it is evident that the model

fine-tuned on COVID-QA, as shown in Figure 4.8c, displayed the most optimal attention.

(a) RoBERTa Base (b) RoBERTa Base Finetuned on

SQUAD

(c) RoBERTa Base Further Fine-

tuned on COVID-QA

Figure 4.8: Visualizing Token-To-Token Attention Scores for Three Versions of RoBERTa

Model

4.5 Test of the proposed QA model

To test our proposed QA model for the biomedical domain, a list of queries was prepared,

consisting of random questions like:

- Why is the disease being called coronavirus disease ?

- What is the main cause of HIV-1 infection in children ?

- What are the most common symptoms of COVID-19 ?

- Why have antiretroviral medications had limited benefit in treating influenza ?

Table 4.3 shows the outputted answers to these questions by the proposed Roberta model.

We see a total success of the QA task. The proposed model is able to correctly answer

all the given questions.

69

Chapter 4 Experimental Results and Discussion

Question Real Answer Our Model’s Answer

Why is the disease being called

coronavirus disease?

It is part of the coron-

avirus family of viruses

that cause respiratory in-

fections

It is part of the coron-

avirus family of viruses

that cause respiratory in-

fections

What is the main cause of HIV-1

infection in children?

Mother-to-child trans-

mission (MTCT)

Mother-to-child trans-

mission (MTCT)

What are the most common

symptoms of COVID-19?

fever, dry cough, and loss

of taste and smell

fever, dry cough, and loss

of taste and smell

Why have antiretroviral medica-

tions had limited benefit in treat-

ing influenza?

drug resistance and fre-

quent antigenic mutation

drug-resistance and fre-

quent antigenic mutation

Table 4.3: Testing the proposed Biomedical QA Model

4.6 Limitations and Challenges

During our research and experiments, we have encountered several challenges and limita-

tions that can we summarized as follows: First, we used the base version of the models

due to resource constraints. The base version of models has a limited number of param-

eters and may not capture as much fine-grained information as the larger versions, such

as BERT Large or BERT Huge. As a result, our model’s performance may be relatively

lower compared to what could be achieved with a larger model.

Second, the model is trained on English data, so it may not be able to understand or

QA in other languages. To improve its ability to answer questions in multiple languages,

it can be trained on multilingual datasets.

Additionally, the model is trained on SQuAD, which enables it to answer questions

effectively. However, its performance may be limited when it comes to answering questions

in specific domains other than COVID-19. To improve the model’s ability to handle

multiple domains, it can be trained on multi-domain datasets. By training the model on

multilingual and multi-domain datasets, we can improve its ability to answer questions

in different languages and about different topics.

Finally, One significant challenge was the extensive time required to run the notebook.

70

Chapter 4 Experimental Results and Discussion

We had to wait for several hours, sometimes up to nine hours, to complete the training

and see the results of changing some hyper-parameters.

To train the model, we needed GPU resources. We turned to cloud solutions, such as

Google Colab or Kaggle which is paid. However, this introduced new problems. There

were instances where our Google account connection was unexpectedly disconnected or

our GPU resources were depleted, resulting in wasted time and effort. Also, when we

tried to train larger versions of models, the RAM would saturate. We also encountered

this problem when training the COVID-QA dataset, which has a very long context. This

forced us to choose a maximum input length.

4.7 Conclusion

We presented in this chapter the experimental results and discussion of our trained

question-answering model specifically for COVID-19-related queries. We began by out-

lining the experimental setup employed in our study.

The subsequent Results and Discussion section presented a comprehensive analysis

of the model’s performance. A significant aspect of our analysis involved visualizing

attention, which allowed us to gain a deeper understanding of the factors that influence

further fine-tuning.

Furthermore, we presented examples of the testing of the proposed QA model, and

the exploration of limitations and challenges provided valuable insights into the model’s

performance and underlying mechanisms.

71

Conclusion and Future Perspectives

The field of Automatic QA had experienced significant evolution in recent years. This

was due to the incorporation of deep learning and neural network architectures, such as

recurrent neural networks (RNNs), long short-term memory networks (LSTMs), bidirec-

tional LSTMs (BLSTMs), and transformers. The use of transfer learning techniques had

further enhanced the performance of QA systems and models, enabling improved ques-

tion answering across various domains, including the biomedical field, COVID-19-related

queries, and many other subjects.

In this thesis, we proposed a training method for Question Answering (QA) using

transformer models, leveraging deep learning techniques specifically in the context of the

COVID-19 domain. We provided a comprehensive overview of QA, covering its historical

background, classifications, and evaluation methodologies. We extensively discussed the

significance of Deep Learning (DL) and transformer architectures in the field of Natural

Language Processing (NLP) and thoroughly reviewed existing works related to QA.

We presented the proposed QA model, including its overall architecture, system design,

and detailed explanations of the datasets used for training and evaluation. The construc-

tion process of the model encompassed language models, preprocessing techniques, and

fine-tuning procedures.

Throughout this thesis, we introduced the field of QA by defining and explaining the

general process for training transformer-based models. The experimental results show-

cased the effectiveness and potential of this approach. However, we acknowledge the

limitations and challenges encountered during the research. To address these limitations

and overcome the identified challenges, further investigations and advancements in the

field are warranted.

72

Conclusion and Future Perspectives Conclusion and Future Perspectives

In future research and development of QA using deep learning techniques, we aim to

explore the set of models that utilize different deep learning layers and attention mecha-

nisms.

Training with larger models and more GPUs. This will allow the system to learn more

complex relationships between words and phrases, and it will also allow us to train the

models faster.

Training with other datasets, such as BioASK. This will help the system answer a

wider range of questions, including those that are not related to COVID-19.

Adding a document retrieval module, This module will allow the system to retrieve

relevant documents or passages that contain potential answers to questions. This will

help the system provide more comprehensive and informative answers.

73

Bibliography

[1] D. Jurafsky and J.H. Martin. Speech and Language Processing: An Introduction

to Natural Language Processing, Computational Linguistics, and Speech Recognition.

Prentice Hall series in artificial intelligence. Pearson Prentice Hall, 2009.

[2] Ramachandra Rao and Sanjay Kamath. Question Answering with Hybrid Data and

Models. PhD thesis, Université Paris-Saclay, 2020.

[3] AI, machine learning, deep learning - schéma • Regional-

IT — regional-it.be. https://www.regional-it.be/detached/

cette-intelligence-artificielle-que-nous-ne-comprenons-plus/

ai-machine-learning-deep-learning-schema/. [Accessed 15-Jun-2023].

[4] Ivan Nunes Da Silva, Danilo Hernane Spatti, Rogerio Andrade Flauzino, Luisa He-

lena Bartocci Liboni, Silas Franco dos Reis Alves, Ivan Nunes da Silva, Danilo

Hernane Spatti, Rogerio Andrade Flauzino, Luisa Helena Bartocci Liboni, and

Silas Franco dos Reis Alves. Artificial neural network architectures and training

processes. Springer, 2017.

[5] Mohammed Saber, El Rharras Abdessamad, Saadane Rachid, Hatim Khar-

raz Aroussi, and Mohammed Wahbi. Artificial neural networks, support vector ma-

chine and energy detection for spectrum sensing based on real signals. International

Journal of Communication Networks and Information Security, 11, 04 2019.

[6] Deep learning - section 3. https://note.zbmain.com/ainote/dlnew/

deeplearning/section3/. Accessed: March 17, 2023.

74

https://www.regional-it.be/detached/cette-intelligence-artificielle-que-nous-ne-comprenons-plus/ai-machine-learning-deep-learning-schema/
https://www.regional-it.be/detached/cette-intelligence-artificielle-que-nous-ne-comprenons-plus/ai-machine-learning-deep-learning-schema/
https://www.regional-it.be/detached/cette-intelligence-artificielle-que-nous-ne-comprenons-plus/ai-machine-learning-deep-learning-schema/
https://note.zbmain.com/ainote/dlnew/deeplearning/section3/
https://note.zbmain.com/ainote/dlnew/deeplearning/section3/

Bibliographie

[7] Khalid Nassiri and Moulay Akhloufi. Transformer models used for text-based ques-

tion answering systems. Applied Intelligence, pages 1–34, 2022.

[8] Woohyun Kim, Yerim Han, Kyoung Kim, and Kwan-Woo Song. Electricity load

forecasting using advanced feature selection and optimal deep learning model for the

variable refrigerant flow systems. Energy Reports, 6:2604–2618, 11 2020.

[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in

neural information processing systems, 30, 2017.

[10] Momina Qazi, Muhammad Usman Shahid Khan, and Mazhar Ali. Detection of fake

news using transformer model. pages 1–6, 01 2020.

[11] Munazza Zaib, Dai Hoang Tran, Subhash Sagar, Adnan Mahmood, Wei Emma

Zhang, and Quan Z. Sheng. Bert-coqac: Bert-based conversational question an-

swering in context. CoRR, abs/2104.11394, 2021.

[12] National library of medicine. Retrieved from https://www.nlm.nih.gov/bsd/

stats/cit_added.html.

[13] Khalid Nassiri and Moulay Akhloufi. Transformer models used for text-based ques-

tion answering systems. Applied Intelligence, pages 1–34, 2022.

[14] Timo Möller, Anthony Reina, Raghavan Jayakumar, and Malte Pietsch. COVID-QA:

A question answering dataset for COVID-19. In Proceedings of the 1st Workshop on

NLP for COVID-19 at ACL 2020, Online, July 2020. Association for Computational

Linguistics.

[15] Ali Mohamed Nabil Allam and Mohamed Hassan Haggag. The question answering

systems: A survey. International Journal of Research and Reviews in Information

Sciences (IJRRIS), 2(3), 2012.

[16] Dan Moldovan, Marius Pasca, Sanda Harabagiu, and Mihai Surdeanu. Performance

issues and error analysis in an open-domain question answering system. In Proceed-

ings of the 40th Annual Meeting of the Association for Computational Linguistics,

pages 33–40, Philadelphia, Pennsylvania, USA, July 2002. Association for Computa-

tional Linguistics.

75

https://www.nlm.nih.gov/bsd/stats/cit_added.html
https://www.nlm.nih.gov/bsd/stats/cit_added.html

Bibliographie

[17] Amit Mishra and Sanjay Kumar Jain. A survey on question answering systems with

classification. Journal of King Saud University-Computer and Information Sciences,

28(3):345–361, 2016.

[18] Andrew Lampert. A quick introduction to question answering. Dated December,

2004.

[19] Dan Moldovan, Sanda Harabagiu, Marius Pasca, Rada Mihalcea, Roxana Girju,

Richard Goodrum, and Vasile Rus. The structure and performance of an open-

domain question answering system. In Proceedings of the 38th Annual Meeting of

the Association for Computational Linguistics, pages 563–570, Hong Kong, October

2000. Association for Computational Linguistics.

[20] Ravindra Hegadi, Deepa Yogish, and Manjunath T N. A survey of intelligent question

answering system using nlp and information retrieval techniques. International Jour-

nal of Advanced Research in Computer and Communication Engineering, 5:536–540,

05 2016.

[21] Ajitkumar M Pundge, SA Khillare, and C Namrata Mahender. Question answering

system, approaches and techniques: a review. International Journal of Computer

Applications, 141(3):0975–8887, 2016.

[22] Marco Antonio Calijorne Soares and Fernando Silva Parreiras. A literature review

on question answering techniques, paradigms and systems. Journal of King Saud

University-Computer and Information Sciences, 32(6):635–646, 2020.

[23] Marco Antonio Calijorne Soares and Fernando Silva Parreiras. A literature review

on question answering techniques, paradigms and systems. Journal of King Saud

University - Computer and Information Sciences, 32(6):635–646, 2020.

[24] Raffaella Bernardi, Valentin Jijkoun, Gilad Mishne, and Maarten Rijke. Selectively

using linguistic resources throughout the question answering pipeline. 01 2004.

[25] Sadid A Hasan and Oladimeji Farri. Clinical natural language processing with deep

learning. Data Science for Healthcare: Methodologies and Applications, pages 147–

171, 2019.

76

Bibliographie

[26] Zhen Huang, Shiyi Xu, Minghao Hu, Xinyi Wang, Jinyan Qiu, Yongquan Fu, Yuncai

Zhao, Yuxing Peng, and Changjian Wang. Recent trends in deep learning based open-

domain textual question answering systems. IEEE Access, 8:94341–94356, 2020.

[27] Mourad Sarrouti, Abdelmonaime Lachkar, and Said El Alaoui Ouatik. Biomedical

question types classification using syntactic and rule based approach. In 2015 7th

International Joint Conference on Knowledge Discovery, Knowledge Engineering and

Knowledge Management (IC3K), volume 1, pages 265–272. IEEE, 2015.

[28] Bolanle Ojokoh and Emmanuel Adebisi. A review of question answering systems.

Journal of Web Engineering, 17(8):717–758, 2018.

[29] Christof Monz. Document retrieval in the context of question answering. In Fab-

rizio Sebastiani, editor, Advances in Information Retrieval, pages 571–579, Berlin,

Heidelberg, 2003. Springer Berlin Heidelberg.

[30] Aïssatou Diallo, Markus Zopf, and Johannes Fürnkranz. Learning analogy-preserving

sentence embeddings for answer selection. arXiv preprint arXiv:1910.05315, 2019.

[31] Sanjay Kamath Ramachandra Rao. Question Answering with Hybrid Data and Mod-

els. Theses, Université Paris-Saclay, February 2020.

[32] Kai Ming Ting. Confusion Matrix, pages 209–209. Springer US, Boston, MA, 2010.

[33] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD:

100,000+ questions for machine comprehension of text. In Proceedings of the 2016

Conference on Empirical Methods in Natural Language Processing, pages 2383–2392,

Austin, Texas, November 2016. Association for Computational Linguistics.

[34] Sanjay Kamath, Brigitte Grau, and Yue Ma. An adaption of BIOASQ question an-

swering dataset for machine reading systems by manual annotations of answer spans.

In Proceedings of the 6th BioASQ Workshop A challenge on large-scale biomedical se-

mantic indexing and question answering, pages 72–78, Brussels, Belgium, November

2018. Association for Computational Linguistics.

[35] Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W Cohen, and Xinghua Lu.

Pubmedqa: A dataset for biomedical research question answering. arXiv preprint

arXiv:1909.06146, 2019.

77

Bibliographie

[36] Khadidja METTAS and Maissa Fatna RAI. A Deep Learning Model for Text-based

CAPTCHA Breaking. PhD thesis, , 2020.

[37] J.D. Kelleher. Deep Learning. The MIT Press Essential Knowledge series. MIT Press,

2019.

[38] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Adaptive Computation

and Machine Learning series. MIT Press, 2016.

[39] Jyh-Woei Lin. Artificial neural network related to biological neuron network: a

review. Advanced Studies in Medical Sciences, 5(1):55–62, 2017.

[40] Sonali B Maind, Priyanka Wankar, et al. Research paper on basic of artificial neural

network. International Journal on Recent and Innovation Trends in Computing and

Communication, 2(1):96–100, 2014.

[41] Ivan Nunes da Silva, Danilo Hernane Spatti, Rogerio Andrade Flauzino, Luisa He-

lena Bartocci Liboni, and Silas Franco dos Reis Alves. Artificial Neural Network

Architectures and Training Processes, pages 21–28. Springer International Publish-

ing, Cham, 2017.

[42] Alain Droniou. Apprentissage de représentations et robotique développementale:

quelques apports de l’apprentissage profond pour la robotique autonome. PhD thesis,

Université Pierre et Marie Curie-Paris VI, 2015.

[43] Sagar Sharma, Simone Sharma, and Anidhya Athaiya. Activation functions in neural

networks. Towards Data Sci, 6(12):310–316, 2017.

[44] Anthony Brabazon, Michael O’Neill, and Seán McGarraghy. Natural computing al-

gorithms, volume 554. Springer, 2015.

[45] Mingzhe Chen, Ursula Challita, Walid Saad, Changchuan Yin, and Mérouane Deb-

bah. Machine learning for wireless networks with artificial intelligence: A tutorial on

neural networks. arXiv preprint arXiv:1710.02913, 9, 2017.

[46] By Dustin Stansbury. A gentle introduction to artificial neural networks. 2020.

[47] Tao Lei et al. Interpretable neural models for natural language processing. PhD thesis,

Massachusetts Institute of Technology, 2017.

78

Bibliographie

[48] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-

tations by back-propagating errors. nature, 323(6088):533–536, 1986.

[49] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

[50] Michael I Jordan. Serial order: A parallel distributed processing approach. In Ad-

vances in psychology, volume 121, pages 471–495. Elsevier, 1997.

[51] Charu C Aggarwal et al. Neural networks and deep learning. Springer, 10(978):3,

2018.

[52] Sepp Hochreiter and Jürgen Schmidhuber. Lstm can solve hard long time lag prob-

lems. Advances in neural information processing systems, 9, 1996.

[53] Shu Zhang, Dequan Zheng, Xinchen Hu, and Ming Yang. Bidirectional long short-

term memory networks for relation classification. In Proceedings of the 29th Pacific

Asia conference on language, information and computation, pages 73–78, 2015.

[54] Arighna Chakraborty and Asoke Nath. Scope and challenges in conversational ai

using transformer models. 2021.

[55] Andrea Galassi, Marco Lippi, and Paolo Torroni. Attention in natural language

processing. IEEE transactions on neural networks and learning systems, 32(10):4291–

4308, 2020.

[56] Md Tahmid Rahman Laskar et al. Utilizing the transformer architecture for question

answering. 2020.

[57] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions

on knowledge and data engineering, 22(10):1345–1359, 2010.

[58] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin

De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-

efficient transfer learning for nlp. In International Conference on Machine Learning,

pages 2790–2799. PMLR, 2019.

[59] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

79

Bibliographie

[60] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra:

Pre-training text encoders as discriminators rather than generators. arXiv preprint

arXiv:2003.10555, 2020.

[61] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael

Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer

learning with a unified text-to-text transformer. The Journal of Machine Learning

Research, 21(1):5485–5551, 2020.

[62] Vladislav Lialin, Kevin Zhao, Namrata Shivagunde, and Anna Rumshisky. Life

after bert: What do other muppets understand about language? arXiv preprint

arXiv:2205.10696, 2022.

[63] Raphael Tang, Rodrigo Nogueira, Edwin Zhang, Nikhil Gupta, Phuong Cam,

Kyunghyun Cho, and Jimmy Lin. Rapidly bootstrapping a question answering

dataset for covid-19. arXiv preprint arXiv:2004.11339, 2020.

[64] Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar, Russell Reas, Jiangjiang Yang,

Darrin Eide, Kathryn Funk, Rodney Kinney, Ziyang Liu, William Merrill, et al.

Cord-19: The covid-19 open research dataset. ArXiv, 2020.

[65] Jinhyuk Lee, Sean S Yi, Minbyul Jeong, Mujeen Sung, Wonjin Yoon, Yonghwa Choi,

Miyoung Ko, and Jaewoo Kang. Answering questions on covid-19 in real-time. arXiv

preprint arXiv:2006.15830, 2020.

[66] Dan Su, Yan Xu, Tiezheng Yu, Farhad Bin Siddique, Elham J Barezi, and Pascale

Fung. Caire-covid: A question answering and query-focused multi-document sum-

marization system for covid-19 scholarly information management. arXiv preprint

arXiv:2005.03975, 2020.

[67] Jafar A Alzubi, Rachna Jain, Anubhav Singh, Pritee Parwekar, and Meenu Gupta.

Cobert: Covid-19 question answering system using bert. Arabian journal for science

and engineering, pages 1–11, 2021.

[68] Revanth Gangi Reddy, Bhavani Iyer, Md Arafat Sultan, Rong Zhang, Avi Sil, Vittorio

Castelli, Radu Florian, and Salim Roukos. End-to-end qa on covid-19: domain

adaptation with synthetic training. arXiv preprint arXiv:2012.01414, 2020.

80

Bibliographie

[69] Hillary Ngai, Yoona Park, John Chen, and Mahboobeh Parsapoor. Transformer-

based models for question answering on covid19. arXiv preprint arXiv:2101.11432,

2021.

[70] BERT — huggingface.co. https://huggingface.co/docs/transformers/model_

doc/bert. [Accessed 23-May-2023].

[71] Ying-Hong Chan and Yao-Chung Fan. A recurrent BERT-based model for question

generation. In Proceedings of the 2nd Workshop on Machine Reading for Question

Answering, pages 154–162, Hong Kong, China, November 2019. Association for Com-

putational Linguistics.

[72] RoBERTa — huggingface.co. https://huggingface.co/docs/transformers/

model_doc/roberta. [Accessed 23-May-2023].

[73] Liu Zhuang, Lin Wayne, Shi Ya, and Zhao Jun. A robustly optimized bert pre-

training approach with post-training. In Proceedings of the 20th chinese national

conference on computational linguistics, pages 1218–1227, 2021.

[74] Hugging Face – The AI community building the future. — huggingface.co. https:

//huggingface.co/. [Accessed 23-May-2023].

[75] Dan I Moldovan, Sanda M Harabagiu, Marius Pasca, Rada Mihalcea, Richard

Goodrum, Roxana Girju, and Vasile Rus. Lasso: A tool for surfing the answer

net. In TREC, volume 8, pages 65–73, 1999.

[76] Jurafsky Daniel, Martin James H, et al. Speech and language processing: An introduc-

tion to natural language processing, computational linguistics, and speech recognition.

prentice hall, 2007.

[77] Md Tahmid Rahman Laskar, Jimmy Xiangji Huang, and Enamul Hoque. Contex-

tualized embeddings based transformer encoder for sentence similarity modeling in

answer selection task. In Proceedings of the Twelfth Language Resources and Evalua-

tion Conference, pages 5505–5514, Marseille, France, May 2020. European Language

Resources Association.

81

https://huggingface.co/docs/transformers/model_doc/bert
https://huggingface.co/docs/transformers/model_doc/bert
https://huggingface.co/docs/transformers/model_doc/roberta
https://huggingface.co/docs/transformers/model_doc/roberta
https://huggingface.co/
https://huggingface.co/

Bibliographie

[78] H Jabbar and Rafiqul Zaman Khan. Methods to avoid over-fitting and under-fitting

in supervised machine learning (comparative study). Computer Science, Communi-

cation and Instrumentation Devices, 70:163–172, 2015.

[79] Tanik Saikh, Sovan Kumar Sahoo, Asif Ekbal, and Pushpak Bhattacharyya.

Covidread: A large-scale question answering dataset on covid-19. arXiv preprint

arXiv:2110.09321, 2021.

[80] Google Colab — research.google.com. https://research.google.com/

colaboratory/faq.html?hl=fr#:~:text=Colaboratory%2C%20souvent%

20raccourci%20en%20%22Colab,donn%C3%A9es%20et%20%C3%A0%20l’%C3%

A9ducation. [Accessed 24-May-2023].

[81] Kaggle: Your Machine Learning and Data Science Community — kaggle.com. https:

//www.kaggle.com/. [Accessed 26-May-2023].

82

https://research.google.com/colaboratory/faq.html?hl=fr#:~:text=Colaboratory%2C%20souvent%20raccourci%20en%20%22Colab,donn%C3%A9es%20et%20%C3%A0%20l'%C3%A9ducation.
https://research.google.com/colaboratory/faq.html?hl=fr#:~:text=Colaboratory%2C%20souvent%20raccourci%20en%20%22Colab,donn%C3%A9es%20et%20%C3%A0%20l'%C3%A9ducation.
https://research.google.com/colaboratory/faq.html?hl=fr#:~:text=Colaboratory%2C%20souvent%20raccourci%20en%20%22Colab,donn%C3%A9es%20et%20%C3%A0%20l'%C3%A9ducation.
https://research.google.com/colaboratory/faq.html?hl=fr#:~:text=Colaboratory%2C%20souvent%20raccourci%20en%20%22Colab,donn%C3%A9es%20et%20%C3%A0%20l'%C3%A9ducation.
https://www.kaggle.com/
https://www.kaggle.com/

	Table des matières
	Table des figures
	Liste des tableaux
	List of Acronyms
	General introduction
	Question Answering
	Introduction
	General overview of Question Answering
	General overview
	Brief history of QA Systems

	Generic architecture of QA systems
	Question Processing Module
	Document Processing Module
	Answer Processing Module

	Classification of QA Systems
	Classification based on Approaches
	Classification based on application domain
	Classification based on Types of Questions
	Classification based on Target tasks

	Evaluation Techniques
	Confusion Matrix
	Accuracy
	F1 Score
	Mean Reciprocal Rank (MRR)
	Exact Match (EM)

	Datasets used in QA for Biomedical Domain
	 Summary table
	Conclusion

	 Deep Learning and Transformers Architecture
	Introduction
	Deep Learning
	Neural Networks (NN)
	Basic models of Artificial Neural
	Perceptron
	Multi-Layer Perceptron

	Neural Network Learning
	Backpropagation Algorithm

	Neural Networks for NLP
	The recurrent neural networks (RNN)
	Long Short Term Memory (LSTM)
	Bidirectional Long Short-Term Memory (BLSTM)
	Sequence-to-sequence models (Seq2Seq)
	Transformers
	Model Architecture
	Transfer Learning

	Transfer Learning in NLP
	feature-based transfer
	Fine-tuning

	Transformer-based models in QA systems
	BERT
	ELECTRA
	GPT
	T5

	Related Works
	Comparative table

	Conclusion

	Proposed QA Model
	Introduction
	Overall Architecture
	System Architecture
	Used Datasets
	Stanford Question Answering Dataset (SQuAD)
	COVID-QA
	Data Exploration
	Used Datasets for Evaluation

	Building up the Proposed QA Model
	Language Models
	Preprocessing
	Fine-tuning
	Evaluation

	Conclusion

	Experimental Results and Discussion
	Introduction
	Experimental Setup
	Results and Discussion
	Visualizing Attention
	Test of the proposed QA model
	Limitations and Challenges
	Conclusion

	Conclusion and Future Perspectives
	Bibliographie

