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GENERAL INTRODUCTION

The optimal power flow (OPF) problem is recognized as one of the most crucial challenges in the
power system. It is a nonlinear, non-convex and large-scale issue. It entails satisfying operational,
physical, and security constraints while simultaneously optimizing multiple objective functions. The
task involves selecting suitable values for control variables to achieve the desired optimization

outcome. The primary objective of OPF is to minimize the generation cost, power loss, emission...etc

[1].

Due to the rising energy consumption and the high cost of producing energy through thermal
generators. the world has been compelled to transition towards the inclusion of renewable energy
sources in the electric grid, which in turn is considered clean, environmentally friendly and
inexpensive. However, the integration of renewable energies into the electrical network has
introduced complexity to the study of the optimal power flow (OPF) problem due to the intermittent
nature of these sources. The primary objective of integrating renewable generators such as wind
turbines, solar photovoltaic systems, and small hydro-power plants into the grid is to achieve several
benefits. These include minimizing the generation fuel cost, reducing power losses, and mitigating

environmental pollution [2].

Many methods and algorithms have been used for solving the OPF problem in the power system,
using traditional mathematical algorithms or metaheuristic approaches. Among the classical
optimization techniques are Newton method interior point and non-linear programming methods. It
is undeniable that some of the algorithms mentioned above possess notable strengths, including
excellent convergence properties and widespread utilization in industrial applications. However, It

shows weaknesses that cannot be overlooked because it leads to a reduction in its efficiency [3].

In recent times, the use of metaheuristic algorithms has become more common, particularly in
addressing the OPF problem. This is attributed to their ability to escape local optimality by leveraging
simple principles inspired by nature. Various metaheuristic optimization techniques have been
employed to solve the classical OPF problem, including improved versions of Particle Swarm
Optimization (PSO) and the application of Moth Swarm Optimization (MSO). These metaheuristic
approaches offer alternative and effective solutions to the OPF problem. Despite this, the use of the
mentioned algorithms was limited in traditional power systems that contain only thermal power

generators [4]

p.1



General Introduction

In recent years, researchers have conducted studies to address the optimal power flow (OPF) problem
in hybrid power systems that incorporate both classical and renewable energy sources such as wind,
solar, and hydropower [5]. These studies have involved the utilization of probability density functions
(PDF), such as Weibull and log normal distributions, to forecast variables like wind speed and solar
irradiance. These probabilistic models enable researchers to incorporate the uncertainty and

variability associated with renewable energy sources into the OPF problem formulation [6].

In this thesis, IEEE 30-bus and IEEE 57-bus test systems are modified in order to integrate solar,
wind and small-hydro power generators with a limited number of thermal generators. The
uncertainties of wind speed, solar irradiance and river flow are treated in detail and are modeled using
probability density functions, namely Weibull, log normal and Gumbel respectively. Two distinct
scenarios are considered in this research to address the intermittency of renewable sources:
overestimation and underestimation. To account for these scenarios, both reserve and penalty costs

are included in the generation cost.

This study presents the application of the Circulatory System-Based Optimization algorithm (CSBO)
to solve the OPF problem. It is important to note that this application of the CSBO algorithm to the
OPF problem, considering these specific renewable energy sources, has not been documented in the
existing literature. Thus, this study represents the first-ever attempt to utilize the CSBO algorithm for
addressing the OPF problem in this context.

The rest of the thesis will be structured as follows:

In the first chapter, we will present the description of the power flow and optimal power flow
problems, as well as the main objective and the formulation of the power flow (PF) and OPF
problems. Then, we will discuss the optimization principles of classical methods and their limitations.

The second chapter will mainly focus on meta-heuristic optimization methods, first we will focus on
defining what’s a metaheuristic optimization method is, followed by detailed presentation of the
proposed algorithm CSBO (definition, inspiration, mathematical equations and so on). Lastly, we
briefly presented three other algorithms (PSO, MFO and BWOA\) that will be used in the third chapter

along with other algorithms when comparing the obtained results from the application of CSBO.

The third chapter, in its first part, will provide a small introduction to the OPF problem involving
wind turbines, solar photovoltaic (PV), and small hydropower. Then, the problem formulation is
described along with the description of the different objective functions and the Modeling of the

Uncertainty of Renewable Energy Generators, while also providing the parameters of the studied

p. 2
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IEEE 30-bus and IEEE 57-bus networks. In the second part of this chapter, the proficiency of the
proposed CSBO algorithm was authenticated by comparing its results with those of other
contemporary optimizers. It was observed that the proposed method consistently yielded a better

optimal cost for various objective functions, outperforming the other optimizers.

Finally, we will conclude this modest thesis with a general conclusion on our effective contribution

and positive impact in the integration of renewable energies into electrical networks.

p. 3
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Chapter 1: Optimal Power Flow Problem

Chapter 1:
OPTIMAL POWER FLOW PROBLEM

1.1.Introduction

The optimal power flow (OPF) is one of the most studied nonlinear optimization problems. The
OPF’s goal to optimize the production and transmission of electrical energy in distribution networks
while considering system constraints and control limits. There is a wide diversity of OPF formulations
and solution methods available in the literature survey. The nature of the OPF continues to change

due to the modernization of electricity markets and the addition of renewable resources [7].

In this chapter, we present power flow and its variables, as well as the formulation of the problem
using the Newton-Raphson method. We also discuss the categorization of variables and constraints
and the construction of the objective function. Finally, we provide a summary of the formulation of

the optimal power flow.

1.2.Power flow (load flow) definition and objective

The power flow problem (load flow) study in an electrical network refers to the analysis and
calculation of the variables of an electric network under normal balanced operation in steady state.
These variables include node voltages, injected powers at nodes, and power flows in the lines. Losses
and currents can be derived from these variables.in a given network. So, in simpler language we can
say It involves studying and analyzing the flow of electrical power from sources (the generation
sources such as power plants) through the transmission and distribution networks to the numerous

loads (consumers) linked to the system [8].

The study of power flow involves calculating the voltage values within an electrical network at
specified ends and given conditions at bus sets. From these voltages, the active and reactive powers
flowing through each line and transformer are calculated. The set of equations representing the

electrical network is nonlinear in nature.

In practical applications, power flow calculation methods utilize the network configuration and
equipment properties to determine the complex voltage at each node. Additionally, these methods
assume perfect symmetry between the three phases of the three-phase system in the electrical
network. By considering these factors, an accurate assessment of the voltage conditions within the

network can be obtained [9]

P.5



Chapter 1: Optimal Power Flow Problem

Power flow studies are used for planning the construction and expansion of electrical networks, as
well as their operation and control. The result of a power flow problem informs the operator or
network planner about how the network lines are loaded, what the voltages are at different bus sets,

how much generated power is lost, and where the limits are exceeded [10].

In power flow calculation, a bus bar is defined by four parameters which are classified as given in the

following subsection.

1.2.1.Classification of bus bars according to their specifications [9]

We can classify bus bars into three categories based on the specifications of the variables used.

For each bus bar, two variables need to be specified beforehand, and the other two variables are to be

calculated.

e Reference bus bar (slack bus): It is a generator bus bar that can be classified based on two specified
variables: the voltage magnitude (V) and the phase angle (&). The power values (P and Q) at this

bus bar are initially unknown and need to be determined through calculations.

To establish a reference point for voltage angles, the reference bus bar is selected from the generator
bus bars with the highest active power. This reference bus bar serves as the benchmark for

determining the voltage angles at other bus bars in the system.

e Load bus bar: This bus bar supplies a load characterized by its active power P and reactive power
Q. Therefore, (P, Q) are specified, while (V, &) are to be calculated.

e Generator bus bar: This bus bar is connected to a generator that delivers an active power P under
a constant voltage V controlled by an Automatic VVoltage Regulator (AVR). Therefore, (P, V) are

specified, while (Q, &) are to be calculated.

Table 1 : Classification of bus bars according to their specifications [9]

Types of bus bars Known variables Unknown variables
Reference bus bar (V &) V, 8 P,Q
Generator bus bar (PV) P,V Q8
Load bus bar (PQ) P,Q V, 8§

P.6



Chapter 1: Optimal Power Flow Problem

1.2.2.Formulation of power flow equations [11].

The study of power flow involves calculating the voltages of the electrical network for specified
endpoints and given conditions at the buses, such as capacitive or inductive loads that need to be
supplied, generated powers, and voltage magnitudes at all buses. From these values, the currents in
the transmission lines, power flows, and power losses can be obtained. The nodal currant and voltage

equations of an electrical network with N buses are written in the following matrix form:

Equation (1.1) gives the relationship between the current and the voltage in an electrical network. So
we can say:

The nodal currant - voltage equation of an electrical network with N buses is given by the following
equations.

I Yi. Y2 - Yin Vi
I, _ Y. Yoo o Yo . Vi (1. 1)
IN YN1 YNl YNN Vl
Where:
Igys = Ygus * Vays (1.2

Igys = [, I, ... Iy]" : The vector of injected currents into each bus bar represents the external source
current. The current flowing from bus bar i to bus bar j is considered positive, while the current

flowing in the opposite direction is considered negative.

Vsus = [V1, Vs, ... Vy]" : The vector of complex voltages at each bus bar and Y_BUS represents the
admittance matrix of the system, which has a size of (N * N), where N is the number of bus bars in

the system.

Y;; © The diagonal element of the admittance matrix represents the sum of all the components

connected to that particular bus bar. This can be expressed mathematically by the following equation:

Yi = YN0 Vi (1.3)

ik

vk - The off-diagonal element i, k of the admittance matrix represents the negative sum of all the

components connected between bus bar i and bus bar j. In other words, it can be expressed as follow:

Yie = — Xk=i Vik (1. 4)

P.7
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According to equation (1.1), the net injected current at bus bar i can be expressed as follows:

L =YN_ Y=V, fori=1,2...,N (1.5)

Where:
Yy = Gy +j * Bye = Y (cosSy, + jsindy,) (1.6)
Vi = Rg +j * Imy, = Vi (cos8y + jsinsy,) 1.7

G;, and B;;, are the conductance and susceptance of Y, ; Rgrand Im, respectively the real and

imaginary parts of /, respectively. §, is the phase of the voltage at the busbar k;
8;x : the phase of the element ik;

The expression of the injected apparent power S; at a bus bar can be written as given by the

following equation:
S; =P = Qi =V *Ti=1 Vi * Vi (1.8)

P;,Q; : where P; and Q; are the active and reactive powers at bus bar I, respectively. By substituting

equations (1.5) and (1.6) into equation (1.7), we obtain the following equation:
P =YN_ ViV Yy cos(8y + 8, —8) i=12,..,N (1.9)
Qi =YV _ViViYiysin(8;, + 8, —8;) i=12,..,N (1. 10)
The equations (1.9) and (1.10) represent the power flow equations as follows:
P, = Pg; + Pp; (1.11)
Qi = Q¢i + Qp; 1.12)

Where P;;and Q;are generated the active and reactive powers generated, respectively.
Pp;and Qp;are the active and reactive powers demanded at the bus i, respectively .

Figure 1.1. represents the flowchart of Newton Raphson method

P.8
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Determine new set of
inequalities to enforce
using lagrange
multipliers

Make inifial guess of vector z =
[x it ¥]¥ and which inequality
constraints to enforce

Create the lagrangian given the
active inequality constraints.

Calculate the hessian and
gradient of the lagrangian

Solve the equation
[HlAz = VL(z1 For Az

Calculate new =

Check

Tolerance

Are correct

Figure 1-1: Newton Raphson method's flowchart [12].

1.2.3.Power flow problem solution methods

inequalitie
enforced

Problem completed

Generally, the method used to solve the problem flow problem is Newton-Raphson due to its fast

convergence and reduced number of iterations compared to other methods (such as Gauss-Seidel).

The Taylor series expansion of equations (1.8) and (1.9) is given by the following equation:

a0] =7+ o] = acl =i 7] [

]1=E: 2

= m.fs = 95¢’

oP; _ 2Q; ] _ av;

4_6VK

(1. 13)

(1. 14)
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Chapter 1: Optimal Power Flow Problem

Where: AP and AQ represent the differences between the specified and calculated active powers, and

the differences between the specified and calculated reactive powers, respectively.

AS and Av represent the differences between the specified and calculated angles, and the differences

between the specified and calculated voltages respectively. J is the Jacobian matrix.

AP, = p*P¢ — peal (1. 15)
AQ; = QP — Q¢ (1. 16)

L

For a network with N buses, with NG generator buses, there are 2(N - 1) - NG equations to solve.
Consequently, there are (N - 1) equations for active power and (N - 1 - NG) equations for reactive

power, resulting in a Jacobian matrix of size (2N - 2 - NG) x (2N - 2 - NG) elements.
The calculation of the Jacobian matrix elements is done as follows: [11]

The diagonal and off-diagonal elements of J1 are given by the following equation:

dP; .

%, k=1 |Viel Y[ [Vi| sin(8y + 8, — 6;) (1.17)
oP; . i
a5, = WillYul Vil sin(8yc + 8 — 8;) K # 1 (1. 18)

The diagonal and off-diagonal elements of J2 are given by the following equation:

dP;

— = 2|Y;||Vil cos(8;;) + X1Vl IYik|1Vil cos(Si + 8 — ;) (1.19)
av;
—g’;z [Vij|IVil cos(8i + 8, — 8;) K#1i (1. 20)

The diagonal and off-diagonal elements of J3 are given by the following equation:

0Q;

a—gi = Dz Vil Y [[Vil cos(8 + 84 — 6;) (1.21)
0Q; . .
2% = 20, Vil sin(8) + T Vil Vi Vi] sin(8ipc + 85 — 8;) (1.22)

av;

The diagonal and off-diagonal elements of J4 are given by the following equation:

aQ; . .
st = ~ 2l IV sin(8:) + Sieaen Vel [¥ie Vil sin(B + 85 — 8)) (1.23)
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0Q; . ;
a—gk= ~ Vi [V;] sin(8y + 8, — 8;) K # i (1.24)

1.3. Optimal Power Flow (OPF)

Optimal Power Flow (OPF) is a mathematical optimization problem in the field of electrical power
systems. It is widely regarded as a fundamental tool in this field and has been the subject of wide
research since it was introduced by Carpentier in 1962. The objective of the OPF problem is to
identify the optimal settings for a given power system network in order to optimize a specific
objective function while satisfying the power flow equations, system security, and operational limits
of equipment. This involves manipulating various control variables, including generator real power
outputs, voltages, transformer tap settings, phase shifters, switched capacitors, and reactors, to
achieve an optimal network configuration based on the defined problem formulation. Moreover, OPF
can offer valuable support to operators in addressing various challenges encountered in the planning,

operation, and control of power networks.

The primary objective of OPF is to minimize a cost function or maximize a performance index while
ensuring that the power system operates within specified limits. The performance index can be related
to efficiency, voltage stability, system reliability, or any other desired system performance parameter.
The most utilized objective function in OPF is the minimization of overall fuel cost. However, other
traditional objectives such as minimizing active power loss, bus voltage deviation, emissions from
generating units, the number of control actions required, and load shedding. With the deregulation of
the electric power industry. One of the major challenges in the OPF problem lies in the nature of the
control variables, as some are continuous (such as real power outputs and voltages), while others are

discrete (such as transformer tap settings, phase shifters, and reactive injections).
The application domains of optimal power flow can be classified as follows [13-15]

e Minimization of fuel cost.

e Minimization of losses.

e Improvement of voltage profile and stability.
e Maximization of power transfer capability

1.3.1.Problem formulation of optimal power flow model [16].

The main objective in solving OPF problems is to identify the optimal values for control variables,
which involves minimizing a specific objective function while adhering to all physical and security

constraints. Mathematically, the OPF problem can be expressed as follows:
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Minimize: f(x,u) (1.25)
Subject to:
glx,u) =0 (1. 26)
h(x,u) <0 1. 27)
where:

f(x,u) presents the objective function;
X represents the state variables vector of a power system network;

u represents the control variables vector;

g(x,u) represents the equality constraints;

h(x,u) represents inequality constraints, where, Amax and imin are the upper and lower boundary
limits, respectively .

1.3.2.0ptimal power flow variables classification [15]

In optimization problems, two main types of variables are considered: independent variables, also
known as control or decision variables, and dependent variables, also known as state variables. The
optimization process involves first determining the optimal values for the control variables and then

calculating the corresponding values for the state variables based on those optimal control values.

In the OPF problem, control variables may include:

e Active power generation of all generator buses except slack bus;
e Voltage of all generator buses;

e Tap setting of all transformers;

e Reactive power injection of shunt capacitor banks;

e Moreover, state variables may also include;

e Active power output of the slack bus;

e Load bus voltages ;

e Reactive power generation of generators;

e Transmission line loadings.

It is important to note that the number of control variables determines the dimensionality of the
solution space. In other words, a problem with n control variables will result in an n-dimensional

solution space.
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1.3.3. Constraints formulation

OPF Constraints in the OPF problem are typically classified into two types: equality constraints and
inequality constraints. These conditions define the feasible region of the problem, and any solution

must fall within this region in order to satisfy all the constraints.

1.3.3.1. Equality constraints

The equality constraints in load flow analysis are derived from the physical laws that govern the
behavior of an electrical network. These constraints are expressed as nonlinear equations in the power

flow equations, which ensure that the net injection of active and reactive powers at each bus is equal

to zero.
NB
Py —Py =V, >V, [ G, cos(d;) + By sin(g;) | =0
j=1
- _ (1.28)
QGi _Qdi _Vi Zvj |:Gij Sln(é‘ij)_ Bij Cos(é}j):l =0
j=1
Where:

NB is the total number of busses of the power system;

P.; is the active power of generation;

Qg Is the reactive power of generation;

P, is the active power of demand,

Q,; Is the reactive power of demand;

G; the conductance of the corresponding lines between the (i, j) buses;

B, the susceptance of the corresponding lines between the (i, j) buses.
1.3.3.2. Inequality constraints

In the context of the OPF problem, inequality constraints typically impose limitations on various
physical components in the electrical system. These components can include generators, tap-changing
transformers, and phase-shifting transformers. Additionally, system security requirements and
reactive power compensation limits contribute to the set of inequality constraints. Specifically, when
considering generators, these constraints are concerned with maintaining active and reactive power

levels within acceptable boundaries.
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PMin < p.. < pmax (1. 29)
min < Qe < QU (1.30)

The inequality constraints for load tap-changing transformers involve maximum and minimum tap
positions, which determine the voltage level relative to the nominal voltage. These constraints are
utilized to adjust voltage magnitudes and regulate reactive power flows. On the other hand, phase-
shifting transformers have maximum and minimum phase angle shifts to control voltage phases and

regulate active power flows. These specific constraints are considered for both types of transformers.

TR™ < Ty < TR (1.31)

min max
Ui = Ak < g (1.32)

Reactive power compensators such as Batteries, reactors, etc. have limits defined by minimum and
maximum values, which determine their operating range. These limits ensure that the devices operate

within acceptable bounds and can effectively compensate for reactive power in the system.

QU™ < Q¢ < QU™ (1.33)

Bounds on the apparent power flow in power transformers and transmission lines are set to uphold
network security and avoid issues such as instability or thermal losses in conductors. These limits
ensure that the power flow in these components remains within safe operating conditions, avoiding

excessive heating and potential damage to the system.
|Sicl® < 1S5 |7 (1.34)

To preserve the quality of system security and electrical service, it is essential to limit violations on

voltage constraints, which must remain within their tolerable limits.
ymin <y, < ymex (1. 35)

1.3.3.3.Handling constraint [14].

There are different ways to handle constraints in evolutionary computation optimization algorithms.
e Preserving feasible solution method;

e Solution repair method;

¢ Infeasible solution rejection method;

e Penalty function method
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1.3.4. Objective functions

In optimal power flow (OPF), the objective function signifies the objective or target to be reached
when optimizing the operation of a power system. The objective function is usually defined

mathematically and measures the system's performance or cost.

Typically, the most commonly utilized objective in the OPF problem formulation is the minimization
of the overall cost associated with the active power generation from real energy production units. The
cost of each production unit is assumed to be solely dependent on the active power generated and is
represented by quadratic curves. Consequently, the total objective function of the electrical system
can be expressed as the sum of the quadratic cost models for all generators involved. By minimizing
this objective function, the OPF algorithm aims to optimize the operation of the system by

determining the optimal values for the control variables that minimize the total generation cost.

Minimise
F=3%5fi =X aiP® + biPi + ¢ (é) (1. 36)
or
Pgimin < Pi < Pgimax (1.37)
Pp; = P;i + Py; (1.38)

Where ai, bi, ci signify the cost coefficients of the i generation unit, and PDi, PLi are the demanded

power and the active transport losses, respectively.

1.3.5.Classical methods applied to the optimal power flow problem [17]

There are several classical optimization techniques that have been applied to solve Optimal Power
Flow (OPF) problems. Here are six categories of these techniques, along with a brief description of

each and their application statistics:

e Newton's method: in general, these are nonlinear equations that need to be solved using iterative
methods. The Newton method is particularly preferred because of its quadratic convergence

properties.

e Linear programming; Linear programming is a mathematical optimization technique used to
solve problems that involve linear constraints and an objective function. In this method, both the
objective function and constraints are represented as linear equations or inequalities, and the

variables are required to be non-negative.
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e Quadratic programming; Quadratic programming is a specific type of nonlinear programming
where the objective function is quadratic, and the constraints are either linear or linearized.

e Nonlinear programming: Nonlinear programming (NLP) is a branch of optimization that
focuses on solving problems with nonlinear objective functions and constraints. In NLP, the
constraints can be either from equalities or inequalities or both. The inequality constraints can be
bounded, meaning they have specified upper and lower limits. This allows for more flexibility in

defining the feasible region and finding optimal solutions.

e Interior point method: The interior point method, which has recently been rediscovered, offers
a faster and potentially superior alternative to the conventional simplex algorithm for solving
linear programming problems. Furthermore, this method has been extended to tackle nonlinear
programming (NLP) and quadratic programming (QP) problems, showing remarkable qualities
and yielding promising results. By introducing nonnegative slack variables, the interior point
methods transform inequality constraints into equalities. A logarithmic barrier function,
incorporating the slack variables, is subsequently added to the objective function, multiplied by
the barrier parameter. Throughout the solution process, this parameter is gradually reduced to

zero, ensuring convergence within the feasible region.

1.3.6.Limitations of Classical Search Methods

Addressing optimization problems using classical or traditional techniques can be challenging due to
various factors depending on the nature of the problem. Difficulties arise when dealing with problems
that have multiple local optima, involve discontinuities, exhibit changes in optimal solutions over
time, or have constraints within the search space. Additionally, classical search techniques often
struggle with problems that have large and complex exploration or search spaces, limiting their ability
to thoroughly explore all potential solutions. Large-scale problems may be computationally expensive
to solve using classical methods [18]. Overall, these limitations highlight the need for alternative
approaches, such as metaheuristic optimization methods, in complex optimization scenarios. These

methods will be discussed in the second chapter of this thesis.

1.4. Conclusion

In this chapter, we have presented the problem of ordinary power flow and optimal power flow,
including its general formulation., discussed objective functions, and categorized the variables and

constraints. It can be concluded that the study of power flow is fundamental to ensure safe, efficient,
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and reliable operation of electrical networks. Through a detailed analysis of power flow, operators

can optimize network performance.
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Chapter 2:
METAHEURISTIC OPTIMIZATION METHODS

2.1.Introduction

The optimal power flow problem is considered one of the most challenging and intriguing issues in
power systems. It involves solving a constrained optimization problem that is characterized by non-
linearity and non-convexity. Researchers have dedicated significant efforts over the past decades to
develop optimal solutions for the OPF problem while ensuring system stability. [19]

Earlier, many classical (deterministic) optimization algorithms had been successfully applied to the
optimal power flow problem. But due to the limitations and inconveniences of classical optimization
methods such as the limits mentioned in the previous chapter. many metaheuristics have been
developed and many of them have been used to solve the OPF problem.

It is important to note that there isn't a single algorithm that can solve all types of OPF problems
effectively. The OPF problem can be formulated in different ways, with various objectives, variables,
and constraints. This creates a need for new algorithms that can efficiently solve specific types of
OPF problems this is known as The No Free Lunch Theorem (NFL theorem) In this chapter we will

address three main points, which will be presented as follows. [20]

e An introduction to meta-heuristic optimization methods (definition, background, advantages.
etc.).

e A detailed presentation of a new meta-heuristic algorithm inspired by regular body functions
called CSBO.

¢ Information about some other algorithms that were used to solve similar OPF problems and

chosen to compare with CSBO to further indicate its performance.

2.2. Metaheuristic optimization methods

Optimization techniques are applicable to a wide range of problems where the goal is to search for
optimality. There are numerous ways to classify and name these problems and as a result, the
techniques used for optimization can vary considerably from one problem to another. In short we can
define Optimization techniques as mathematical tools that aid in selecting the best decision from the
available set of possible solutions to achieve the optimal goal. After the problem variables are defined,
[21].Various optimization techniques can be employed to solve the OPF problem. These techniques

can be broadly classified into two categories: mathematical methods and heuristic approaches.
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Mathematical methods involve the formulation of the problem using mathematical representations

and equations.

Nevertheless, it is important to note that mathematical methods may not always be capable of solving

highly complex problems effectively. [15]

2.2.1. Heuristics and metaheuristics

Heuristics are solution strategies or approaches that involves trial-and-error to generate satisfactory
solutions to complex problems within a practical time frame, the degree of complexity of the treated
problem can determine the chance to search every possible solution or combination, therefore the
goal should be focused on finding good, feasible solutions in an acceptable timescale. [22]

2.2.1.1.Metaheuristics

A Meta-heuristic is a high-level heuristic technique that aims to provide a sufficiently good solution
to an optimization problem, especially for spic-and-span information with unlimited computational

power that cannot be solved by traditional means. [23]

Meta-heuristics, as high-level techniques, do not guarantee the attainment of a globally optimal
solution in any problem space. This limitation is due to the stochastic nature of most global
optimization te2chniques employed in metaheuristics. These techniques heavily rely on the utilization
of random variables, which greatly influences the obtained solution. As a result, the solution achieved
through metaheuristics is highly dependent on the specific random variables generated during the

optimization process.

Meta-heuristics are indeed effective in tackling combinatorial optimization problems, often
providing good solutions even with limited computational resources.in optimization algorithms, with
a wide range of feasible solutions. They have been proven to be useful approaches for optimization
problems. In other words, metaheuristics can be seen as modern, nature-inspired algorithms or global

search techniques that are valuable tools for optimization.

These algorithms are highly effective and widely applicable, offering strong performance and a
compelling drive towards achieving optimal solutions. In some cases, metaheuristic techniques are
considered stochastic or fuzzy search methods that operate at a population level. When compared to
direct search algorithms or classical gradient-based techniques, these techniques provide robust and
high-level solutions. They belong to a higher class of algorithms that are designed to explore and
search for good solutions to optimization problems. They achieve this by combining different
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concepts, perceptions, and ideas in order to strike a balance between exploiting known solutions and
exploring new possibilities. Exploration involves delving into the search space to uncover new
potential solutions, while exploitation focuses on refining the search process to find better solutions

within the vicinity.

In simpler terms, metaheuristics are powerful algorithms that intelligently navigate the search space
to find practical solutions for optimization problems. They blend different approaches to strike a
balance between exploring new options and improving existing solutions. By doing so, they are able

to uncover promising solutions and continuously refine the search process. [18]

2.2.1.2.Shared characteristics of deferent meta-heuristic optimization algorithms

e All meta-heuristic optimization algorithms share the same following characteristics.
e They are based on some fundamental theories and mathematical models.

e They are simple and easily implemented.

e Itis easy to develop their variants based on the existing meta-heuristics.

They can be considered black boxes, from which, by given a set of inputs, a set of outputs can be

easily obtained [15]Classification of metaheuristic optimization algorithms

There are different bases for the classification of metaheuristic optimization algorithms in the
literature. Two main classifications are based on the number of random solutions it generates at each

step and the algorithm's inspiration [24] .
The first classification separates the algorithms to two classes: [25].

Trajectory-based methods and population-based methods. The key distinction between these two
classes is the number of tentative solutions used at each step of the iterative algorithm. Begin with a
single initial solution. At each search step, the current solution is replaced by another solution found
in its neighborhood, often the best one. Trajectory-based metaheuristic methods have a tendency to
quickly identify a local optimal solution.

On the other hand, population-based algorithms operate on a population of candidate solutions.
Initially, this population is generated randomly, and subsequently improved through an iterative
procedure. During each iteration, certain individuals within the population are replaced with newly
generated ones, typically chosen based on their suitability for the given problem. This process results

in the formation of a new generation.
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Figure 2-1 represents classification based on trajectory/population-based methods.

optimization
methods

classic meta-heuristic

trajectory- population-
based methods illbased methods

Figure 2-1 : Classification based on trajectory/population based methods

The inspired meta-heuristic algorithms are classified into four subclasses as a primary classification
[24]

e Evolutionary techniques;
e Swarm intelligence techniques ;
e Physics-based techniques;

e Human-related techniques.

Figure 2-2 represents the classification of the inspired meta-heuristic algorithms.

the inspired meta-
heuristic

Swarm
intelligence
techniques

Evolutionary
techniques

Physics-based Human-related
techniques techniques

Figure 2-2 : Classification based on the inspiration of metaheuristic methods
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2.3.Circulatory System Based Optimization (CSBO) algorithm [26]

CSBO is a new algorithm that draws inspiration from the regular functions of the human body. More

specifically as its name suggest this algorithm is based on Regular circulatory system of humans.

2.3.1.Regular circulatory system

Blood plays a crucial role in maintaining the body's well-being, it transports oxygen and essential
nutrients from the lungs to the body's tissues, it also facilitates the removal of waste products like
carbon dioxide. This circulation of blood is vital for sustaining life and ensuring the overall health
and proper functioning of all body parts. The body's blood vessels are functionally separated into two
distinct circuits. Based on the simplistic model inspired by the circulatory system of the body, showed

in Figure 2-3.

Artery

Vein
Blood with
02

Heart

Blood
pumping

Figure 2-3 : A simple inspiration model from the circulatory system for modeling CSBO

The right ventricle serves as the pump for the pulmonary circuit, responsible for circulating blood
through the lungs. On the other hand, the left ventricle acts as the pump for the systemic circuit, which
supplies blood to the body's tissue cells. During pulmonary circulation, the oxygen-poor blood is
transported from the right ventricle to the lungs, where it receives a fresh supply of oxygen.

Subsequently, the oxygen-rich blood is returned to the left atrium.

Systemic circulation is responsible for supplying functional blood to all body tissues. It transports
oxygen and nutrients to the cells while collecting carbon dioxide and waste products. Oxygenated
blood is carried from the left ventricle through arteries to the capillaries in the body's tissues.
Deoxygenated blood, on the other hand, returns from the tissue capillaries through a network of veins
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to the right atrium of the heart. It then moves into the right ventricle, completing one cycle, which is

analogous to one iteration in our proposed algorithm.

Blood is classified as a Newtonian fluid. The primary variables associated with the circulatory system
include flow, pressure, and volume. The modeling of pressure-flow within the circulatory system can
be approached from two perspectives, beating and non-beating. The model in question is inspired by

the beating perspective, focusing on the dynamic nature of the circulatory system.

2.3.2. Circulatory system regular performance as an intelligent systematic algorithm CSBO

The algorithm treats the pulmonary and systemic circuits as separate groups, each having its own
distinct optimization cycle. These circuits can be seen as specific functions modeled on a specific
type of population.

In the CSBO algorithm, similar to other metaheuristic optimization algorithms, an initial population
is generated randomly within the problem range. This population represents the mass of blood
droplets, and their positions correspond to potential solutions in the search space for the optimization
problem. The circulatory system functions as an operator on this population, refining and
strengthening the solutions while eliminating weaker individuals. In essence, the algorithm iteratively
improves the quality of solutions (represented by blood) within the search space (represented by the
body), inspired by the functionality of the circulatory system in the body.

Figure 2-4 illustrates how the evolutionary process of blood in the circulatory system can be
modeled as an optimization system.

Infected and deoxidized Blood

Nutrients and Clean Blood T The best
Oxygen performance

(@)

Local Optimized Population
- ircul
New Population IC clll'l atory Powerful Population T;l‘he best
ntelligence soulation
System

(b)

Figure 2-4: The blood circulatory (a) and equivalent optimizer (b) process
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The pulmonary circulation handles the deoxygenated blood, which can be considered equivalent to
the weaker population. Conversely, the systemic circulation deals with oxygenated blood, which
represents the population with better target values or solutions. In other words, it deals with the
stronger population, each blood mass (BMi) corresponds to an individual in the population. The
movement of each BM; is determined by its position, which directs it towards a more optimal position
if possible, or it remains in its current position. Figure 2-4 illustrates how the evolutionary process of
blood in the circulatory system can be modeled as an optimization system. Table 2 represent The
equivalent concepts of the circulatory system

Table 3 : The equivalent concepts of the circulatory system

Element or function in the circulatory The equivalent concept in the CSBO algorithm
system
Blood mass Algorithm population
Blood movement in the body Population movement within the problem range
Cleaner blood with more oxygen Objective function
Circulation cycle Algorithm iteration
Deoxygenated blood Weaker population
Oxygenated blood Stronger population
Blood purification Population composition
Blood pumping Changing the population position
CO. separation from blood Crossover
Pulmonary and systemic circulations Population separation

2.3.3.The mathematical modeling of the CSBO algorithm

The CSBO algorithm, similar to other metaheuristic algorithms, begins by generating an initial
population or blood masses BMi = (Bmi,1, Bmi,2,..., Bmi,D) for a typical problem with the number
of dimensions D (d= 1:D), which randomly generates between the minimum BMmin = (Bmmin,1,
Bmmin,2,..., Bmmin,D) and maximum BMmax = (Bmmax,1, Bmmax,2, . . ., Bmmax,D) values of

the problem parameters range as follows:

2.1)

BM, = BM,;, +rand (1 D)x(BM,,, —BM ;. };i =1: N 0

max
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The movement of the BMi blood mass within the veins is determined by the applied force or pressure.
The mass always goes in the direction where conditions are more favorable. As a result, its objective

function (amount of force or pressure) has a lower value.

The occurrence of blocked arteries in the heart can be modeled as a situation where locally optimal
solutions become trapped. In the real world, it is desirable to avoid such scenarios. The optimization
process of the program will continue as long as the body is functioning. Based on the positions of the
particles and the values of their objective functions, the circulatory cycle phase is then modeled.
new (2.2)
BM,™" = BM, +K;, x P x(BM; —BM, )+ K,; x P x(BM, - BM,)
1,F (BM,)(F(BM,)
~LF(BM,))F(BM) (2.3)
0;F(BM,)=F(BM)
The parameter Kij determines the flow of the ith blood mass (BMi) through the arteries. Pi is a
value ranging from 0 to 1, which depends on the size of the problem. In each circulation cycle, the

algorithm calculates the displacement of the blood mass and works towards achieving a better

value.

Deoxygenated blood, or the weaker population in optimization, is dealt with by the pulmonary
circulation, as was previously described. In actuality, at each repetition the population is sorted in the

CSBO, and the NR numbers of the weakest population are sent to the lungs to take up oxygen.

randn

It

BM ™ = BM, +( ]x randc(1,D),i=1:NR (2.4)

In (2.1), randc stands for the random vector from the Cauchy probability distribution, randn stands
for the random normal number, it signifies the current algorithm iteration, and D stands for the
dimension of the optimization problem. For this group, the pulmonary circulation also affects the pi

in the following ways:

P =rand(1,D),i=1:NR (2.5)

The weakest sorted population's NR numbers, as previously mentioned, are directed to the pulmonary
circulation. To circulate through the body, the remaining population (NL = Npop - NR) with better
fitting values enter the systemic circulation with a renewed quantity, as represented in the following

model:
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BM ™" =BM,; +P*(BM,,~BM, ) (2.6)
The systemic circulation also corrects the value of pi for this group of population in the following
manner:
F(BM. )-F
P= ( ') worst i =1:NL (2.7)
FBest_ worst

Where FWorst represents the worst result and FBest represents the best result achieved by the cost

function up to the current iteration.

The optimization cycle continues for the specified number of iterations. During each iteration, every
member of the population evaluates their new position and accepts it if it yields a better value for the

fitness function, similar to other metaheuristic algorithms.

2.4.Common Metaheuristic Algorithms used in solving OPF problems

2.4.1.Moth-flame optimization algorithm [25]

The MFO algorithm is a new metaheuristic inspired by the nocturnal navigation mechanism used by
butterflies in nature. This distinctive mechanism is mathematically modeled in MFO to perform
global optimization tasks. In MFO, the search agents are represented by a population of night
butterflies, each with a specific position in a given solution space. Additionally, the MFO approach
also considers a set of NF flames (or artificial lights) randomly distributed around this solution space.
Each flame also has a specific position, similar to how butterflies are "attracted™" to nearby light
sources. It is assumed that each butterfly "i" spirals towards a given flame "j". In this sense, while the
positions of butterflies and flames represent solutions, only butterflies are true search agents, whereas

flames represent the best NF solutions found so far by the MFO search process.

Taking this into consideration, at each iteration "k", each butterfly is first assigned to a particular
flame, and then a movement operator, modeled using a logarithmic spiral, is applied to update the

position of each agent.
Figure 2-5 shows the transverse orientation demonstrated by moths during navigation

Figure 2-6 shows (a) butterfly flying around a light source; and (b) path of navigation around the light

source
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Figure 2-6 :(a) Butterfly Flying around a Light Source; (b) Path of Navigation around the
Light Source

2.4.2. Particle Swarm Optimization (PSO) [27]

Particle Swarm Optimization (PSO) is a parallel optimization technique developed by Kennedy and
Eberhart as an alternative to traditional genetic algorithms. They are inspired by the coordinated
movements of flocks of birds insect swarms (or schools of fish or insect swarms). Similar to how
these animals move in groups to find food sources or avoid predators, particle swarm algorithms

search for solutions to optimization problems.

In this algorithm, individuals are called particles, and the population is referred to as a swarm. Each
particle decides its next movement based on its own experience, which is represented by the best
position it has encountered so far, and the experience of its best neighbor. The neighborhood can be
defined spatially, for example, by considering the Euclidean distance between the positions of two

particles, or socially (position in the swarm). The particle's new velocity and direction are determined

p. 28



Chapter 2: Metaheuristic Optimization Methods

by three tendencies: a propensity to follow its own path, a tendency to move back to its best position,

and a tendency to move towards its best neighbor.

Particle swarm algorithms can be applied to both discrete and continuous data. They have been tested

and proven efficient for various knowledge extraction tasks.

Figure 2-7 shows the concept of changing a research point using PSO

Towards its best
performance

Current position Towards its best
swarm position

Towards the

reachable point
with its current
speed

Figure 2-7 : Concept of changing a research point using PSO [28]

2.4.3.Black Widow Optimization Algorithm (BWOA) [29]

This method of optimization is inspired by the hunting behavior of black widow spiders. The
algorithm aims to search for and gradually improve solutions by using exploration and exploitation
mechanisms.

The proposed algorithm follows a flow diagram. Like other evolutionary algorithms, it starts with an
initial population of spiders, where each spider represents a potential solution. These initial spiders

attempt to reproduce in pairs to generate a new generation.

They begin mating to produce a new generation in parallel. Just like in nature, each pair mates in its
own web, separate from the others. In the real world, around 1000 eggs are produced in each mating,
but eventually, only a few baby spiders survive - the stronger ones. In this algorithm, to reproduce, a
table called "alpha™ must also be created, with the same length as the widow table, containing random
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numbers. Then, offspring is produced using « according to the following equation (equation 1), where

x1 and x2 are the parents, and y1 and y2 are the offspring.

{lea*x1+(1—a)*x2 (2.8)

ya=ax*x,+(1—a)*x

This process is repeated N_VAR/2 times, where N_VAR represents the number of variables in the
problem, to ensure that randomly selected numbers do not repeat. Finally, the offspring and the
mother are added to an array and sorted based on their fitness value. Then, according to the
cannibalism rate, some of the best individuals are added to the newly generated population.

Figure 2-8 shows female black widow (a) in her web with egg sac, and (b) on her web

Figure 2-8 : (a) Female black widow in her web with egg sac. (b) Female black widow on

her web.

2.5.Conclusion

In this chapter, we have presented a detailed explanation of metaheuristic optimization methods. This
has allowed us to gain a better understanding of the concepts and principles used by metaheuristic
algorithms and their potential applications. We introduced the Circulatory System Based
Optimization (CSBO) algorithm, analyzing its unique features. Additionally, we briefly discussed the
study of other algorithms, such as Moth Flame Optimization (MFO), Particle Swarm Optimization
(PSO), and the Black Widow Optimization Algorithm (BWOA). This chapter provides an
introduction and a comprehensive overview of metaheuristic techniques and their diverse approaches
to solving complex optimization problems. The following chapter presents the simulation results of
our work, clearly explaining the algorithmic process of these methods and their application in power

flow optimization with the integration of renewable energy sources.
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Chapter 3:

SOLUTION OF (OPF) PROBLEMS IN MODERN POWER
SYSTEM

3.1.Introduction

Renewable energy sources (RES) like solar, wind, and hydro have become increasingly popular for
use in stochastic power system operations. However, they require the ability to make optimal
decisions in uncertain conditions. It is crucial to determine the best operating parameters for the

electric grid and schedule various energy sources efficiently.

To deal with the stochastic nature of (RES) we have suggested the implementation of a new meta-
heuristic algorithm called circulatory system-based optimization (CSBO) in solving the OPF problem
while taking into consideration the integration of RES (solar, wind, and small-hydro power) and their
stochastic nature. The structure of the chapter is as follows: The OPF study with stochastic wind,
solar, and hydropower problem formulation is described in Section 2. In Section 3, we have presented

a detailed discussion concerning the treated cases and the obtained results.

3.2.S0lving OPF problems with stochastic PV, Wind and hybrid PV-small-hydro generators

In traditional electric grids, the optimal power flow analysis is primarily focused on conventional
power generators fueled by fossil fuels. However, as electricity markets have been liberalized and
renewable energy sources have been integrated, the study of OPF has become more complex, leading
to a significant increase in the complexity of the objective function. This complexity arises from the

diverse functions that consider the variability and uncertainty inherent in the problem formulation.

The primary objective of incorporating RES generators into the grids is to minimize transmission line
losses and enhance the reliability and quality of electric grids. Moreover, they contribute to reducing
environmental pollution. Additionally, as the injected power from RES continues to increase, it
becomes crucial to determine the optimal contribution of each generator in the system. Therefore,
efficient energy management and optimal scheduling of different resources can effectively support
the diverse missions of electric power system operators, ultimately reducing the overall cost of

electricity generation. [30]
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3.2.1.0ptimal power flow model

The important goal of solving OPF problems is to determine the optimal values of control variables
so that they minimizing a certain objective function while respecting all the physical and security

constraints. Mathematically, the OPF problem is expressed using the following equation

Minimize F(x,u) (3.1)

) x,u)=0
subject to: 9w (3.2)
h(x,u) <0
Where: F(x,u) presents the objective function, x and u are the vectors of control and state variables,

respectively, g(x,u) and h(x,u) are the equality and inequality constraints, respectively.

3.2.1.1.0bjective Functions

In this study, three objective functions are proposed, minimization of total generation cost, total active
power loss, and cost with emission effect.

The generation cost of thermal generators considering the valve point effect is given as follows:
Nrg i
C, (PTG ) :Zai +b P +¢ PT%;. +‘di xsin (ei (PTnc;:n — P ))‘ (3.3)
i=1

Wherea,,b,,c;,d;and e, represent the cost coefficients related to i™" thermal generator P, P2" is

the minimum value of power corresponding to i*" thermal generator. N is the number of thermal

generators;
e Case 1: the first objective of OPF is the minimization of total generation cost considering both

thermal generators and RESs can be formulated as:

Fébj = CT (PTG)+[CW,j (PWGs,j )+CRW,j (PWG,j - PWAv,j )+CPW,j (PWAv,j - PWG,j ):| (34)
+|:Cs,k (PSG,k )+ CRs,k (PSG.k - PSAv,k )+CPS,k (PSAv,k - PSG,k ):| +[CSHG (PSHG) + CRSH (PSHG - PSHAV) + CPSH (PSHAV - PSHG)]

e Case 2: the second objective of OPF is the minimization of total active power loss in the electric

grid, which can be formulated as:

nl
Fa; = minimize P => G, [Viz +V/} -2VV,cos (6, -6, )} (3.5)
g=1
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where nl is the total number of transmission lines, G, is the conductance of the branch i-j,V;and Vv,

a(ii
are the voltages at bus i and j respectively, &, =, —&;, is the difference in voltage angles between

them.

e Case 3: the final objective of OPF is to minimize both generation cost and emission by including

the carbon tax as penalty, which can be formulated as:

F03bj = Fébj +Cu xE (3.6)
Nrg
E= Z[(O‘i +BRei +7, PTZG|)+5| exp (&P )} (3.7)
i1

3.2.1.2. System Constraints

While solving OPF objectives, different equality and inequality constraints are to be respected. These

constraints are expressed as follow:

Equality constraints

NB
Ps—Pi-ViDV, [Gij cos(d;) +B; sin(é‘ij)] =0
j=1

NB (3.8)
QGi _Qdi _Vi Zvj [Gij Sin(é}j)_ Bij Cos(é‘ij)] =0

where P;;,Qg are the active and reactive power of generation, P,,Q,are the active and reactive

power of demand and NB is the total number of bus of the power system.

Inequality constraints

e Generator constraints

Pai < P <Pa i=12..Ng (3.9 & < Qre <Qre (3.13)
Rie’ < Ry SRy (3.10) M < Que QI (3.14)
PR" <P < P> (3.11) Qi < Qg < QI (3.15)
Piic < Pyie <P (3.12) Qi < Qgue <QI™ (3.16)

o Prohibited operating zones POZs
RUs™ < POZ/, <Ry ™ (3.17)
o Security constraints
VI <V SV i=12...Ny (3.18)
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VAU VARES VLS i eNL (3.19)
S, < 5™ i e NTL (3.20)

3.2.2. Modeling the uncertainty of renewable energy generators

Due to stochastic nature of RES, it is required to present the model uncertainty adopted in this study
in terms of operation and planning of power systems. The wind speed is a random variable, wind
uncertainty is modeled using the Probability Density Function (PDF) is to obtain its distribution

employing shape factor (k) and scale factor (c). Mathematically can be written as: [29]

(k-1) K
f,(S)= (Ej(éj X eXp— (%} for 0<S <o (3.21)

c/\C

The wind power model

The output wind-power according to wind speed, is expressed as:

0, for v(v,, and v)v,

out

P,(v)=1P, (: __‘;‘" J for v, <v<y, (3.22)

P, for v,<v<y

out

With v, defines the turbine cut-in, v, isthe rated wind speed and v,, pertains cut-out wind speed,

ut

and P,, rated output-power. [31,32]

3.2.2.1.Wind power probability for different wind-speeds[31,32]

The equation (22) states that, when v;, is more than v and down thanv,

out 1

the output of power equal

to zero. But the wind turbine output the rated-power P, for the condition of v, <v <v_. . To model

out *

this fact, the probabilities of wind power is modeled as:

f,(P,){P, =0} :1-exp{-(%ﬂ+exp[-(%)ﬂ} (3.23)
£, (p) Py = Pur) =l—exp{—(%}1+exp{—(%)ﬂ} (3.24)

Outside to the discrete zones, the output of wind power is remained continuous for the condition of

v,, <v<v, , This probability is modeled by the following equation:
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B
Vot D ()

in r in

A1
fW(pW)=M{Vm+E—W(Vr—Vm)j| exp| — Wra (3.25)

wr

The solar-irradiance to energy conversion for the PV generator is modeled as follow:

2
Psr( G ] for 0<G<R,
Gstd c

2
P (G—J for G=R,
G

sr
std

P.(G)= (3.26)

3.2.3.Generation Cost minimization for renewable sources[5]

When integrating renewable sources into the power grid, certain conditions must be taken into
account, including the uncertainty and intermittency of these sources. Typically, private entities own
wind farms and solar PV systems, which enter into purchase agreements for scheduled power with
the independent system operator (ISO). As a result, the cost of these power generators can be divided
into several components, namely direct cost, reserve cost, and penalty cost. The direct cost of wind
and solar PV generators is outlined below.

The direct cost associated with wind power from the j™ plant is expressed as a function of the
scheduled power. [33]

Cui (Pc.i) = 9iRuc (3.27)
Like the wind power plant, the direct cost related to the k' solar PV plant is
Cs (Pse,k ) =hPy (3.28)

Where g; and h, present the coefficient of direct cost corresponding to j" wind generator and k™"
solar generator respectively. R, ; and P, , are the scheduled power from the appropriate generator.

The direct cost function for the combination of solar photovoltaic and small hydro generation plant

is given by [33]

CSHG (PSHG) = C(PSG + PHG) =0sc Pse + hHG PHG (3-29)
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Where P, is the scheduled power from incorporated renewable resources, P,; and P, present the
electric power contribution from the solar and hydro generators, respectively. g,;and h,; are the
coefficients of direct-cost corresponding to solar PV unit and small hydro unit, respectively.

Due to stochastic nature of renewable energy sources, there are two possibilities tendencies which is,
overestimation and underestimation.

First case, when the actual power generated by renewable generators (PV, or combined PV and
hydropower) less than the estimated-quantity in term of power, called overestimation. Second case is
underestimation realised when estimated-quantity power is less than actual power.

3.2.3.1.The reserve cost caused with overestimation is presented as follows[5]:

CRW,j PW PAV i ) KRW i (PWG PWAV’J' )

. ’ (3.30)
:Krzw,j_“O ( ) fw( j)dp\N,j
RS k ( SGk SAv k) KRs,k (PSG,k B PSAv,k) (3 31)
= KRs,k * fs (PSAv,k < PSG,k)*[PSG,k - E(PSAv,k < PSG,k )]
RSH (PSHG SHAv) KRSH (PSHG SHAv) (3 32)
= KRSH * fSH (PSHAV < PSHG) *[PSHG - E(PSHAV < PSHG)]
Where K., is the reserve cost coefficient corresponding to j™ wind generation unit, R,,, ;Is the

actual power delivered by the same unit, f, (pw’j)is the PDF of wind power corresponding to j*

wind power plant. K, is the reserve cost coefficient corresponding to k™ solar power unit, P,,,, is

the actual power delivered by the same unit, f ( sav k< Psc ) is the probability of solar energy
curtailment from the scheduled power (P, , ) and E( vk > Peg k) is the prediction of solar-power
above P . Kgg, is the coefficient of reserve cost corresponding to the combined system, Py, is
the actual power delivered by the same plant, f, (P, < Psyc) 1S the probability of combined system
energy curtailment from the scheduled power P, and E(P,.,, < P;.c) is the prediction of delivered
power below Py .

3.2.3.2.The underestimation of power is related to the penalty terms which defined by second

case. Mathematically, can be expressed as follows[5]:
CPW,j(PWAv,j_PWG,j):KPW,j(PWAv,j_PWG,j) prjjwrj(pw pWG]) ( w,j)dp\/v,j (3-33)
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CPS,k (PSA,k - PSG,k): KPS,k (PSAv,k - PSG,k) = KPS,k * (PSAv,k > PSG,k)*[E(PSAv,k > PSG,k)_ PSG,k] (3.34)

CPSH (PSHAV - PSHG) = I<PSH (PSHAV - I:)SHG): KPSH * fSH (PSHAV > I:’SHG) *[ E(I:)SHAV > PSHG) - PSHG)] (335)

Where K., ; is the coefficient of penalty cost relate to j-th wind power generator, R, ,is the rated

output power from the plant, K is the penalty cost coefficient corresponding to k™ solar power

PS k
generator, f (PSAV’k > PSG’k) is the probability of solar energy surplus of the scheduled power P,
and E(PSAV,k > PSG’k) is the prediction of solar-power above Py , . K., is the coefficient of penalty

cost corresponding to the combined system, fg, (P, > Psys) 1S the probability of combined system
energy surplus of the scheduled power Py, and E(P,.,,, > Psy) IS the prediction of the combined
system power above P, .

3.2.4. The proposed optimization algorithm

01  Generate initial blood mass BM;using Equation (2.1)

02  Calculate p; using Equation (2.5) and (2.7)

03 it—0

04 FE «— Nnnn

05 WhileFE < N,o»

06 it—it+1

07 Fori=1:N,m

08  Calculate K;; and using K,zEquation (2.3)

09  Generate a new blood masse BM ™" using Equation (2.2)
10  Update the new position of blood mass i

11 FE «<FE+1

12 end

13 fori=1:NR

14  forj=1:D

15 ifrand >0,9

16  perform the pulmonary circulation using Equations (2.4)

17 else
18 BM?Y = BM;;
19 end
20 End

21 FE— FE + 1

22 Calculate p;for the weakest population using Equations (2.5)
23 end

24 fori=1:NL

25  Perform the systematic circulations using Equations (2.6)

26  Update the new position of blood mass i

27  Calculate p; using Equation (2.7)

28 FE — FE+1

29 end
30 Update the best solution
31 end

32 Return the best solution
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3.2.5. Numerical results and analysis

In the first part, three scenarios were considered on the modified IEEE 30-bus test system by
MATLAB. The modification is to insert wind generator, solar generator and combined solar PV and
small hydropower at bus #5, #11 and #13, respectively.

29

i

hu-—|n 1:—35—

A Transformers

~
b 1
it Wind gencrator
e

Solar PV array

R
< Small-hydro gencrator

Figure 3-1 : Modified IEEE 30 bus system [5]

Table 3-1 indicates the characteristics of the modified IEEE 30-bus test systems.
e Inscenario I, total generation cost is minimized.
e Insecond scenario Il, total active power loss minimization is considered.

e Inthe last one, both of generation cost and pollution were minimized while respecting all imposed
constraints.

The proposed CSBO is executed to solve the three cases, and some other algorithms are chosen to
compare with CSBO to further indicate its performance and consistency to find a near-optimal

feasible solution. Tables 3-2 — 3-3 present the coefficients of thermal generators and limitations of
both soft and hard- variables.

p. 39



Chapter 3: Solution of OPF Problems in Modern Power Systems

Table 3.1 : Characteristics of the modified test systems

Elements IEEE 30-bus

no. of buses 30

no. of transmission lines 41

no. of generators 06

no. of thermal generators 03

Number of renewable generators 03

no. of load buses 24

no. of control variables 12

Initial Real and reactive power 283.4 MW ; 126.2 Mvar
demand

Table 3.2: Thermal generators cost and emission coefficients for test system

Generator Bus a b c d e o B Y ) €

TG1 1 0 2 0.0038 18 0.037 0.04091 -0.05554 0.06490 0.0002 6.667
TG2 2 0 175 0.0175 16 0.038 0.02543 -0.06047 0.05638 0.0005 3.333
TG3 8 0 325 0.0083 12 0.045 0.05326 -0.03550 0.03380 0.0020 2.000

Table 3.3 : Upper and lower bounds of control and state variables for test system |

Control variables State variables
Variables Prct Pte2 Ptes Pwe Psc Psie Vg  Qrer Qree Qrez Qws Qsc  QsHe
Min 50 20 10 0 0 0 09 -20 -20 -15 -30 -25 -20
Max 140 80 35 75 60 50 1.1 150 60 40 35 30 25

Case 1: total generation cost minimization

In the first case, the primary goal is to minimize the total generation cost considering wind, solar and
combined solar and small hydro generators. Obtained results are based on the Weibull, lognormal
and Gumbel PDF parameters. Table 3-4 indicates PDF parameters of renewable energy sources that
have been presented in [5]. Weibull fitting and wind speed frequency distributions are presented in
Figure 3-2 reached from the simulation of 8000 Monte Carlo scenarios Figure 3-3 presents the

lognormal fitting and solar irradiance frequency distributions obtained from the simulation of 8000
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sample size of Monte Carlo. Figure 3-4 presents active power distribution of solar PV generator at
bus 11.

In this study, combined solar PV with small hydro generator is used in place of thermal generator at
bus 13. Figure 3-5 indicates the lognormal fitting and solar irradiance accessible of solar PV generator
at the same bus. while Figure 3-6 indicates Gumbel fitting and river flow rate frequency distribution
from small hydro generator. Like last time, diagrams are generated after the simulation of 8000 Monte
Carlo scenarios. The capacity of solar PV generator is 45 MW while for small hydropower is 5 MW.
Figure 3-7 and Figure 3-8 present the histograms of both available solar power and hydropower for
the site and from the solar PV generator and small hydro generator respectively at bus 13. Table 3-5

indicates direct, penalty and reserve cost coefficients of renewable energy sources.
Table 3.4 : PDF parameters of renewable energy sources

Wind-power generating unit

No of turbines Rated power, P, (MW) Weibull PDF parameters
25 75 =9 ; p=2
Photovoltaic power plant
Rated power, Pg,. (MW) Lognormal PDF parameters
50 p=5.2 0=0.6

Combined solar and small hydro-power

Photovoltaic rated power P,.(MW) Lognormal PDF parameters
45 u=5.0 0=0.6

Small hydro rated power Pp,.(MW) Gumbel PDF parameters
5 =15 y=12

Table 3.5: The different cost coefficients of renewable energy sources

Direct cost coefficient Penalty cost coefficient Reserve cost coefficient
Wind Solar  Small Wind Solar Small Wind Solar Small
hydro hydro hydro

9,=17 h=16 ho=15 Ky =14 Ky, =14 K, =14 Kp ;=3 Ky, =3 Kq =3
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The figure 3-2 represent the Wind speed distribution at bus 5.
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Figure 3-2 : Wind speed distribution at bus 5

The figure 3-3 represent the Solar irradiance for PV generator at bus 11
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Figure 3-3 : Solar irradiance for PV generator at bus 11

p. 42



Chapter 3: Solution of OPF Problems in Modern Power Systems

The figure 3-4 represent the Active power distribution of solar PV generator at bus 11
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Figure 3-4: Active power distribution of solar PV generator at bus 11

The figure 3-5 represent the Solar irradiance for solar PV generator at bus 13
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Figure 3-5 : Solar irradiance for solar PV generator at bus 13
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The figure 3-6 represent the river flow rate for small hydro generator at bus 13
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Figure 3-6 : River flow rate for small hydro generator at bus 13

The figure 3-7 represent the available solar power for the site and from the solar PV generator at

bus 13.
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Figure 3-7: Available solar power for the site and from the solar PV generator at bus 13.
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The figure 3-8 represent the Available hydropower for the site and from the small hydro generator

at bus 13
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Figure 3-8 : Available hydropower for the site and from the small hydro generator at bus 13

Table 3.6 optimal results for the objective function and optimal control/state variables related to case
1 that were obtained by various algorithms, including CSBO, AEO, and GTO. These optimal values

were within the permissible range specified in Table 3-3.

Table 3.7 compares the statistical results based on the minimum, average, maximum and standard
deviation of the total generation cost obtained by CSBO with the chosen algorithms: BWOA, PSO,
GSA, MFO, HS, and BMO given in ref. [5] as well as with implemented GTO and AEO. Through
this comparison, it is clear that CSBO outperformed the rest of the algorithms in all statistical results
within 30 independent runs of simulation. The minimum value of total generation cost obtained by
CSBO is 787.3598 $/h. The proposed algorithm exceeds all optimization techniques, BWOA
(791.4748), PSO (789.4849%/h), GSA (790.3496 $/h), MFO (789.5271%$/h), HS (800.5362%/h), BMO
(789.1248 $/h), GTO (789.2231%/h) and AEO (789.3185 $/h). The difference between the value
obtained by CSBO and the worst value obtained by HS is 13.1764 $/h which is very important around
316.2336 $ cost saving per day and 115425.264 $ cost saving per year.
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Variable, MFO[5]

Pre1
Prc2
Pwe
Pras
Psc
Pshe
Vi
V,
Vs
Vs
Vu
Vi3
Qa1
Qe
Qwe
Qa3
Qsc
QsHe

I:Cost

PSO[5]

40.0000
46.4294
10.0000
44,7704
13.0326
1.0835
1.0689
1.0467
1.0489
1.1000
1.0527
-0.2965
14.6635
23.2576
36.8604
28.578
14.722
789.4849

Table 3.6 : Optimal results obtained of case 1 for different algorithms
BMO[5]  GTO AEO INFO HS[8] GSA[5]
13490 13491 13491 134.91 134.93
40.004 @ 40.000 42.58 40.45 41.99 65.0000  45.2135
46.202 46.937 48.18 47.55 48.20 36.6795 @ 47.1036
10.000 @ 10.000 10.00 10.01 10.01 10.0000  10.8455
44,727 @ 43.799  39.66 41.54 40.09 31.8026  38.4926
13.304 = 13.483 13.97 14.79 14.06 11.6731 12.8524
1.0831 1.0835 1.077 1.076 1.075 1.0843 1.0816
1.0686 1.0691 1.064 1.060 1.061 1.0704 1.0678
1.0463 1.0476 1.039 1.037 1.041 1.0447 1.0450
1.0488 @ 1.0493 1.040 1.041 1.041 1.0472 1.0471
1.1000 @ 1.1000 1.098 1.100 1.099 1.1000 1.1000
1.0530 1.0524 1.052 1.067 1.061 1.0567 1.0535
- -0.7352 1.35 4.88 0.35 -0.2154 -1.4807
14.467 = 14582  25.81 15.88 19.74 14.8635 @ 15.5110
23.250 23.729 2411 24.79 27.66 24.4993 = 22.7903
37.050 37.064 38.38 38.83 38.84 36.4881  36.8058
28.608 28.425 30.00 29.96 29.80 27.7191 28.486
14.885 14477 17.04 22.46 20.30 16.3498 15.469
789.52 789.12 789.223 789.318 788.9417 800.5362 790.3496
Table 3.7 : Comparison of statistical results of case 1 for different algorithms
Algorithms Minimum Maximum Average
INFO 788.94 790.61 789.73
AEO 789.32 791.27 790.11
GTO 789.22 791.48 790.13
HS [5] 800.54 802.25 801.83
BMO[5] 789.12 793.09 790.44
MFO [5] 789.53 793.94 790.89
GSA[5] 790.35 802.44 794.17
PSO[5] 789.48 799.67 793.78
BWOA[5] 791.47 796.53 793.70
CSBO 787.36 788.05 787.75

BWOA[5]

134.9079 134.7760 134.9079 134.9088

41.6666
45.4876
11.8272
41.8719
13.8799
1.0520
1.0429
1.0351
1.0367
1.0380
1.0380
-15.403
10.9783
35.6096
56.3782
13.712
18.992
791.4748

Std
4.46E-01
5.76E-01
5.90E-01
1.49E-01
1.04E+00

1.32E+00
3.19E+00
3.57E+00
120E+00
1.19E-0.1

CSBO

135.23
39.62
46.80
10.05
40.66
16.85
1.086
1.068
1.041
1.045
1.096
1.053
12.53
17.56
22.35
39.53
28.14
15.89

787.3598
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Figure 3-9: Convergence curve for OF in case 1
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Figure 3-10. Voltage profiles in PQ buses of CSBO algorithm for case 1

Figure 3-9 represents the Convergence curve for OF in case 1, whereas figure3-10 represents Voltage
profiles in PQ buses CSBO algorithm for case 1 as it can be seen the CSBO algorithm effectively
maintains voltage profiles in PQ buses. The results clearly demonstrate the algorithm's capability

ensuring that the voltage constraints are respected.
Case 2: Total Active Power Losses Minimization (TAPLM)

Table 3.8 presents the optimal results of the objective function, as well as the optimal values of the
control and state variables for case 2, obtained using different algorithms. All the algorithms

successfully satisfied all the constraints while achieving the optimal outcomes.

Table 3.9 displays the statistical results comparing CSBO with other algorithms in terms of
minimizing total active power loss in the OPF problem. CSBO achieved a minimum power loss of

2.1059 MW, surpassing other optimization techniques except for INFO that achieved 2.09 MW. AEO
_________________________________________________________________________________________________________________________________|]
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(2.1244 MW), BMO (2.1669 MW), MFO (2.1669 MW), PSO (2.1868 MW), BWOA (2.1876 MW),
GTO (2.2212 MW), HS (2.5114 MW) and GSA (2.8962 MW). Figure 3.9 illustrates the convergence

curve of the total active power loss.

Table 3.8: Optimal results obtained of case 2 for different algorithms

Variable INFO | MFO[5] = HS[5] BMO[5]  GTO AEO  BWOA[5 GSA[5] | PSO[5]  CSBO
Pro1 50.01  50.0000 50.0013 50.0000  50.00 50.02  50.0000 53.9396 50.0000  50.07
Prc2 25.16  30.0000 65.0000 30.0000  25.62 29.80  27.4484 67.8207 40.0000  23.81
Pwe 7499  75.0000 75.0000 75.0000  75.00 7495 732263 61.1047 75.0000  74.97
Pre3 34.99 35.0000 @ 33.9369 35.0000 35.00 34.91 45.0533 23.3276 = 35.0000 35.00
Psc 59.99 50.0000 @ 45.1813 50.0000 50.00 59.86 50.3881 46.9904 50.0000 60.00
Pshe 40.35 455669 @ 16.7919 @ 45.5669 50.00 35.98 39.4714  33.1132 @ 35.5868 41.66
Vi 1.060  1.0597  1.0639  1.0597  1.061 1.058  1.0521  1.0638  1.0610  1.062
Vs 1.055  1.0543 = 1.0600  1.0543 = 1.055 1.053 = 1.0479  1.0594  1.0560 = 1.057
Vs 1.045  1.0444  1.0479 = 1.0444  1.049 1.040  1.0402  1.0435  1.0455 = 74.97
Vs 1.049  1.0496  1.0498 = 1.0496  1.046 1.045 = 1.0476  1.0474  1.0497 = 35.00
\ 1.096  1.1000  1.1000  1.1000  1.085 1.092  1.0581  1.1000  1.1000  60.00
Vi3 1.063 1.0606 1.0536 1.0606 1.066 1.056 1.0568 1.0564 1.0571 41.66
Qro1 -0.89  -4.8064 -4.3041 -4.8052  -1.04 0.38 -7.7466  -4.9102  -4.6581 0.04
Qroz 1443  6.9443  7.8094  6.9432  15.78 17.16 87748 87765  7.3152  17.27
Qwe 24.34 20.5941 @ 20.9463 20.5960 24.43 21.70 23.3476  21.7427 20.7149 25.02
Qres 3945  36.2915 37.4288 36.2921  40.00 39.23 443276 36.4820 36.6244  38.62
Qsc 29.98  29.8880 29.1509 29.8884  25.00 29.96  17.3799 29.7941 29.8316  29.38
QsHo 2041  18.6070 16.1932 18.6040 2201 = 19.35  21.1666 16.9013 17.1485  17.51

FLoss 2.0938 2.1669 25114 2.1669 22212 2.1244 2.1876 2.8962 2.1868 2.1059
Table 3.9: Comparison of statistical results of case 2 for different algorithms

Algorithms Minimum Maximum Average Standard
AEO 2.1244 2.1813 2.1452 3.14E-02
GTO 2.2212 2.8313 2.4273 3.50E —01

BMO 5] 2.1669 2.5209 2.1906 6.50E —02
MFO [5] 2.1669 2.5215 2.2151 7.59E —02
HS [5] 25114 2.6544 2.5789 3.90E-02
GSA[5] 2.8962 4.3537 3.3340 3.59E-01
PSO[5] 2.1868 3.8005 2.4511 3.05E-01
BWOA 5] 2.1876 2.6771 2.4063 9.66E —02
INFO 2.0938 2.1790 2.1047 187E—-02
CSBO 2.1059 2.1438 2.1221 8.70E-02
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Figure 3-11: Convergence curve for OF in case 2
Case 3: Generation cost with emission minimization

The primary objective in this scenario is to minimize the generation cost while considering the impact
of emissions. Reducing greenhouse gas emissions from conventional energy sources pose a
significant challenge, and to address this, a carbon tax is imposed as a penalty. The goal is to optimize
the generation cost while minimizing the environmental impact of emissions through the

incorporation of this carbon tax.

Table 3.10 compares statistical results related to this case for different algorithms. Based on these
results, the minimum value obtained by CSBO is 818.6050 $/h which is close to the minimum value
obtained by BMO 820.4852 $/h as the difference is 1.8802 $/h. Nevertheless, the proposed algorithm
has surpassed all other optimization techniques in terms of average, maximum, and standard

deviation.
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Table 3.10 : Comparison of statistical results of case 3 for different algorithms

Algorithms Minimum Maximum Average Std
INFO 820.56 822.08 821.19 4.13E-01
AEO 820.58 821.85 821.46 5.27E-01
GTO 821.75 822.66 822.25 3.37E-01

BMO [5] 820.49 824.95 821.19 8.30E-01
MFO [5] 820.81 825.89 821.34 9.90E —01
HS [5] 827.02 827.78 827.67 2.07E—-02
GSA [5] 822.13 829.41 825.11 190E + 00
PSO[5] 820.81 835.15 824.55 3.34E+00
BWOA[5] 822.58 826.82 824.44 111E+00
CSBO 818.61 819.88 819.06 2.76E-01

Table 3.11 : Optimal results obtained of case 3 for different algorithms

Variable pso[5] GSA[5] MFO[5 BMO[5 GTO  AEO INFO BWOA  HS[5] CSBO
Pre: 126595 127.043 126593 12669 12642 12721  126.63  126.0739 123.4563  126.20

Pre2 442211 45.6540 44.2121 44.231  44.43 46.88 44.35 43.1541 65.0000 44.09
Pwe 48.4997 45.5324 48.5097  48.491  48.53 49.76 48.66 46.6268 43.4951 48.72
Pras 10.0000 14.3060 10.0000  10.000 = 10.00 10.00 10.01 12.7203 10.0000 10.05
Psc 45.0261 40.7565 45.0261 45.026  45.33 41.38 45.52 44.8928 34.9329 41.88
Psho 14.4528 155839 14.4528 14452  14.17 13.75 13.71 15.5858 12.4211 17.93

Vi1 1.0816  1.0818 1.0816  1.0816  1.076 1.078 1.076 1.0587 1.0824 1.075
V, 1.0682 1.0683  1.0681  1.0682  1.062 1.063 1.061 1.0437 1.0703 1.064
Vs 1.0466  1.0460 1.0466  1.0466  1.039 1.039 1.041 1.0353 1.0469 1.044
Vs 1.0488  1.0493 1.0488 1.0489 @ 1.041 1.040 1.041 1.0359 1.0483 1.042
Vi1 1.1000  1.1000  1.1000  1.1000  1.097 1.097 1.098 1.0587 1.1000 1.094
Vi3 1.0536  1.0539 1.0536  1.0535 1.053 1.051 1.058 1.0437 1.0559 1.064
Qa1 -0.9694 -0.9707 -0.9946 -1.1055  4.93 5.08 5.10 -0.6057 -1.7444 -1.30
Qre2 13.7453 = 13.9367 13.7523 13.8389 @ 19.25 22.26 15.50 -2.5917 14.5427 22.90

Qwe 22.9881 23.2131 23.0018 23.0134 25.20 24.29 27.24 34.0173 23.9643 27.83
Qres 37.1349 36.8448 37.1307 36.9844 39.24 37.53 39.20 48.5122 36.8996 37.11
Qsc 28.6308 28.1882 28.6359 28.5148 30.00 29.98 29.84 19.9778 27.7266 27.70
QsHe 15.0950 14.9932 15.0995 15.2158 17.51 16.76 19.32 19.2986 15.8818 20.84
Fce 820.806 = 822.131 820.807 820.485 821.749 820.5813 820.5593 822.5772  827.0182  818.6050
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Figure 3-12 : Convergence curve for OF in case 3

The inclusion of a carbon tax incentivizes the use of renewable energy sources, which are clean and
environmentally friendly. As a result, the electric power generation from these sources is expected to
increase. In the first case, the active power produced from the solar generator was 40.66 MW.
However, in the third case, when the carbon tax was imposed, the active power produced from the
solar generator significantly increased to 41.88 MW, showing a notable increase of about 1.22 MW.
We also notice the increase in both wind and combined solar PV with small hydro generator. This
demonstrates the positive impact of the carbon tax in promoting the use of renewable energy and

reducing greenhouse gas emissions.

The rest of study tested the performance of CSBO again, but with the modified IEEE 57-bus test
system. The results obtained by the proposed algorithm were compared again with AEO and GTO,
while BMO, MFO and PSO were selected from the rest of algorithms due to their efficiency.
Combined solar PV and small hydro power generator are located at bus 6, while solar generator and
wind generator are located at bus 9 and 12, respectively. The number of control variables to be
minimized is 14 as mentioned in Table 3-13. Upper and lower bounds of control and state variables
for modified IEEE 57-bus test system can be found Table 3-12

p. 51



Solution of OPF Problems in Modern Power Systems

Chapter 3:
Table 3.12: Upper and lower bounds of control and state variables for test system |

Control variables State variables

Variab Pre1 Ptz Pres  Prea Pss  Psic  Pwe Vg  Qmer  Qmez  Qres  Qres Qs Qsue  Qwe

Min 0 0 0 0 0 0 0 09 -140 -17 -10 -140 -3 -8 | -150

Max 575.88 100 140 550 220 100 210 1.1 200 50 60 200 9 25 155

@ Thermal units
)‘\ Wind gencrator

Solar PV array

43
e L
5 Slir:
41
55

Small-hydro generator

03

Figure 3-13 : Modified IEEE 57-bus-system [5]
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Table 3-13 indicates the characteristics of the modified IEEE 57-bus test systems.

Elements IEEE 57-bus test system
no. of buses 57

no. of transmission lines 88

no. of generators 07

no. of thermal generators 04

Number of renewable generators 03

no. of load buses 41

no. of control variables 14

Initial Real and reactive power 1250.80 MW ; 336.40 Mvar
demand

Case 4: Total generation cost minimization

Table 3.14 showcases the optimal results obtained by CSBO and various other algorithms. The CSBO
algorithm achieved a minimum total generation cost of 5256.7269 $/h, outperforming all other
algorithms such as GTO (5260.0009 $/h), AEO (5260.2497 $/h), BMO (5300.457 $/h), MFO
(5316.14 $/h), and PSO (5417.538 $/h). The difference between the value obtained by CSBO and the
worst value obtained by PSO is 160.8111 $/h, resulting in significant cost savings of around
3856.4664 $ per day and 1408705.236 $ per year. It is worth noting that while GTO and AEO achieve
results closer to CSBO, there is still a noticeable difference of 3.274 $/h or 28680.24 $ per year,
indicating the superior performance of CSBO in terms of cost optimization. Figure 3-14 presents the

convergence curve related to this case.
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Table 3.14: Optimal results obtained of case 4 for different algorithms

Variables
Prc1

Pre2

Pres

PsHc

Prcs

Psc

Pwa

V12

Q61
QTe2
QT3
QsHe
Qe
Qsc

Qwe
Fcost ($/h)

MFO [5]
554.2932
100
76.62421
100
54.47699
200
210
1.1
0.95
1.1
0.95
1.052336
1.1
0.958536
200
-17
60
-8
179.9646
9
-46.2699
5316.14

8000
7500
7000

6500

Total Fuel Cost

6000

5500

5000

Iteration

PSO[5] AEO INFO BMO [5] GTO
500.4827 556.88 556.81 555.5707 556.35
100 100.00 100.00 100 100.00
140 76.62 76.61 76.62421 76.62
100 100.00 100.00 100 100.00
38.48657 51.23 51.23 51.27178 51.68
200 200.00 200.00 200 200.00
210 210.00 210.00 210 210.00
11 1.051 1.067 11 1.059
11 1.043 1.055 11 1.048
0.95 1.020 1.019 0.95 1.014
11 1.014 1.015 1.024522 1.012
1.015266 1.013 1.014 1.021023 1.016
11 0.985 0.984 0.95 0.987
11 0.975 0.968 0.98036 0.976
92.10943 98.26 143.76 200 125.02
50 50.00 49.99 50 49.98
-10 48.70 27.89 -10 21.83
25 24.22 24.96 25 21.95
18.25645 109.32 113.89 106.2492 117.75
9 -1.48 -1.69 -3 -1.63
155 47.28 16.80 -1.47679 41.06
5417.538 5260.2497 5259.2040 5300.457 | 5260.0009
0 500 1000 1500 2000 2500 3000 3500

Figure 3-14 : Convergence curve for OF in case 4

CSBO
564.04
98.99
74.42
99.82
48.78
199.97
209.73
1.069
1.055
1.022
1.016
1.020
0.987
0.962
159.13
39.44
34.46
19.35
127.35
2.06
-2.08
5256.7269
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Figure 3-15 Voltage profiles in PQ buses of CSBO algorithm for case 4
Figure 3-15 represents Voltage profiles in PQ buses CSBO algorithm for case 4 The CSBO algorithm
demonstrates its effectiveness in maintaining voltage profiles in PQ buses, as evident from the results.
It showcases the algorithm's capability to ensure that the voltage constraints are respected and upheld.

Case 5: Total active power loss minimization

120

100

W)
IN o ©
IS S S

Active Power Loss (M

N
o
T

0 500 1000 1500 2000 2500 3000 3500
Iteration

Figure 3-16: Convergence curve for OF in case 5.

The minimization of total active power loss is the secondary aim in the OPF problem using modified
IEEE 57-bus test system. Again, the comparison of optimal results of CSBO with other different
algorithms are illustrated in Table 3-15. Based on the results presented in this table, the minimum
power loss of 19.6708 MW is obtained via CSBO. The proposed algorithm exceeds all optimization
techniques, AEO (19.7633 MW), GTO (19.7703 MW), BMO (20.785 MW), MFO (21.3031 MW)
and PSO (21.3621 MW). The convergence curve of total active power loss is depicted in Figure 3-1
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Table 3.15: Optimal results obtained of case 5 for different algorithms

Variables
Prc1
Prc2
Pres
PsHe
Prca

Psc
Pwc
V1
V2
V3
Vs
Vs
Vg
V12
Q71
QT2
Q7e3
QsHe
Qe
Qsc

Qwe
FLoss (MW)

Case 6: Generation cost with emission minimization

MFO [5]
259.8313
39.25049
140
100
323.0214
200
210
1.050806
1.1
11
11
1.030651
1.099932
0.950289
123.7601
50
60
25
60.39987
9
-43.207
21.3031

PSO [5]
273.4183
34.07384
140
100
314.67
200
210
1.0514
11
11
11
1.032615
0.95
0.95
123.7423
50
60
25
71.64968
-3
-42.0513
21.3621

AEO
298.32
0.99
139.98
100.00
321.26
200.00
210.00
1.021
1.014
1.016
1.025
1.038
1.003
0.977
61.36
49.91
31.10
0.12
87.95
9.00
42.13

19.7633

INFO
302.96
3.32
139.93
100.00
314.31
200.00
209.99
1.023
1.015
1.017
1.022
1.029
0.999
0.979
62.36
48.10
35.75
2.81
72.39
8.92
51.22

19.7040

BMO [5]
262.6827
39.12372
140
100
319.7785
200
210
1.045745
1.1
1.1
1.1
1.03229
0.95
0.95768
105.8136
50
60
25
66.64419
-3
-21.5476
20.785

GTO
293.00
7.57
140.00
100.00
320.00
200.00
210.00
1.021
1.013
1.010
1.021
1.038
1.005
0.981
63.65
50.00
17.62
-4.14
91.72
9.00
53.93

19.7703

CSBO
291.90
25.81
137.80
96.37
308.23
200.00
210.00
1.041
1.033
1.031
1.026
1.027
1.004
0.995
72.53
45.54
39.49
3.14
49.50
4.93
61.43
19.6708

Table 3.16 showcases the optimal results for the last case, which focuses on minimizing the

generation cost while considering the emission effect. The CSBO algorithm achieved a minimum

total generation cost of 5292.4087 $/h, surpassing all other optimization algorithms including AEO
(5298.1921 $/h), GTO (5299.6942 $/h), BMO (5320.851 $/h), PSO (5332.054 $/h), and MFO
(5332.379 $/h). The difference between the value obtained by CSBO and the worst value obtained by
MFO is 39.9703 $/h, resulting in significant cost savings of approximately 959.2872 $ per day and
350139.828 $ per year. It is worth noting that AEO and GTO achieve results close to CSBO, but there
is still a noticeable difference of 5.7834 $/h or 50662.584 $ per year, highlighting the superior

performance of CSBO in terms of cost optimization. Figure 3-17 presents the convergence curve

related to this case.
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Table 3.16: Optimal results obtained of case 6 for different algorithms

Variables
Prc1
Prc2
Pres
PsHe
Prca

Psc

Pwec

Fce ($/h)

MFO[5] ~ PsO[5]  AEO INFO  gMmO [5]
553.3165 554.1651 556.41 553.97 551.8909
100 100 99.17 100.00 100
76.62421 76.62421 76.63 76.55 76.6242
100 100 100.00 100.00 100
52.55224 51.77639 52.43 53.67 52.19387
200 200 200.00 200.00 200
210 210 210.00 210.00 210
1.078181 11 1.067 1.065 1.090978
11 0.95 1.056 1.053 11
1.036156 11 1.020 1.019 0.961542
11 11 1.008 1.014 11
1.011965 1.001535 1.018 1.013 1.044066
1.019763 11 0.988 0.985 0.95
0.985229 0.985591 0.964 0.968 11
130.9053 200 146.51 138.29 65.39634
50 -17 49.94 49.62 50
42.54005 60 34.95 30.31 -10
25 25 5.78 24.98 25
78.66775 61.37461 126.76 109.10 63.4618
9 9 8.80 3.02 -3
27.21733 26.59974 3.09 18.53 155
5332.379 5332.054 5298.1921 5295.8597 5320.851
11000 . . .
10000 | 1
9000 | 1
;_%;
g 8000
7000 f 1
6000 1
5000 : : ‘ ‘ : ‘
0 500 1000 1500 2000 2500 3000 3500

Iteration

Figure 3-17: Convergence curve for OF in case 6

GTO
554.41
100.00

76.63
100.00

53.44
200.00
210.00

1.046

1.038

1.016

1.012

1.012

0.989

0.979

87.78

48.33

45.12

24.93
101.07

9.00

59.21

5299.6942

CSBO
558.16
99.99
76.37
99.92
50.88
199.84
210.00
1.054
1.040
1.006
1.005
1.018
0.991
0.983
127.55
38.01
12.35
11.63
123.84
5.46
59.53
5292.4087
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Conclusion

In this chapter, we introduced a novel algorithm called CSBO, designed specifically for solving the
stochastic OPF problem in hybrid power systems. The algorithm was evaluated using three different
single objective functions: minimizing total generation cost, total active power loss, and generation
cost while considering emission effects. The objective was to find near-optimal solutions for these
problems while ensuring compliance with equality and inequality constraints. The results obtained
clearly demonstrate the superior performance of the CSBO algorithm in all cases compared to other
algorithms such as AEO, BMO, GTO, MFO, INFO, and PSO. The CSBO algorithm consistently
outperformed these algorithms, providing more effective and efficient solutions for the OPF problem

in the considered scenarios.
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GENERAL CONCLUSION

In conclusion, this thesis focused on addressing the optimal power flow (OPF) problem in hybrid
power systems that incorporate renewable energy sources. The integration of these intermittent
sources presents new challenges in optimizing power flow while considering operational, physical,
and security constraints. To tackle these challenges, the Circulatory System-Based Optimization
(CSBO) algorithm was applied as a metaheuristic approach inspired by the circulatory system.
Through the application of the CSBO algorithm, this research demonstrated its effectiveness in
solving the OPF problem in hybrid power systems. The algorithm consistently outperformed other
optimization techniques, producing improved optimal costs for various objective functions.in case 1
the total generation cost reduction was 0.2% compared to INFO which is the closest result to CSBO
and 1.65% for HS as the worst result this translates into 115425.264 $/year. Also, in case 4 we saw a
2.968% reduction compared to PSO resulting in significant cost savings of around 1408705.236 $ per
year. This highlights the potential of metaheuristic algorithms in effectively integrating renewable
energies into electrical networks. By incorporating probability density functions to model the
uncertainty and variability of renewable sources, the thesis accounted for the intermittent nature of
wind, solar, and small-hydro power generation. Two scenarios, overestimation, and underestimation,
were considered to address the unpredictability of renewable energy sources, resulting in the inclusion

of reserve cost and penalty cost in the generation cost.

The findings of this research contribute to the field by offering insights into the application of the
CSBO algorithm specifically in the context of hybrid power systems. The successful utilization of
CSBO highlights the importance of exploring novel metaheuristic approaches to overcome the

limitations of traditional optimization methods.

Overall, this thesis demonstrates the potential of the CSBO algorithm in achieving effective and
optimized power flow in hybrid power systems. The integration of renewable energy sources into the
electrical grid can be enhanced through the utilization of advanced optimization techniques. This
research contributes to the growing body of knowledge in the field of optimal power flow and
provides a steppingstone for future research in improving the integration of renewable energies into

electrical networks
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Abstract

ABSTRACT

Abstract This thesis addresses the optimal power flow (OPF) problem in hybrid power systems involving
renewable energy sources. The OPF problem includes optimizing various objectives while considering
operational, physical, and security constraints. Traditional mathematical algorithms approaches have been
used to solve the OPF problem, but they often suffer from limitations in terms of efficiency and
convergence. To overcome the challenges introduced by intermittent RES, the Circulatory System-Based
Optimization (CSBO) algorithm is proposed and applied on the Modified IEEE 30-bus and IEEE 57-bus
test systems. Probability density functions (Weibull, lognormal and Gumbel) model the uncertainty of
RESs. Two scenarios, overestimation and underestimation, account for intermittency by including reserve
cost and penalty cost in the generation cost. The proficiency of the CSBO algorithm is validated by
comparing its results with other optimizers. The research demonstrates that CSBO consistently
outperforms other techniques, achieving improved optimal costs for various objective functions. This
study contributes to the effective integration of renewable energies into electrical networks, enhancing
economic and environmental benefits.

Key words: CSBO, Optimal power flow, hybrid renewable energy systems, Emission, Wind power, PV
Solar power, small hydropower plant, Uncertainty.

Résumé : Cette these aborde le probléme du 1’écoulement de puissance optimal (OPF) dans les systémes
d’alimentation hybrides impliquant des sources d’énergie renouvelables. Le probleme OPF comprend
I’optimisation de divers objectifs tout en tenant compte des contraintes opérationnelles, physiques et de
sécurité. Les approches traditionnelles d’algorithmes mathématiques ont été utilisées pour résoudre le
probleme de I’OPF, mais elles souffrent souvent de limitations en termes d’efficacité et de convergence.
Pour surmonter les défis introduits par les SER intermittents, 1’algorithme CSBO (Circulatory System-
Based Optimisation) est proposé et appliqué sur les systemes de test IEEE 30 bus modifiés et IEEE 57 bus.
Les fonctions de densité de probabilité (Weibull, lognormal et Gumbel) modélisent I’incertitude des SER.
Deux scénarios, la surestimation et la sous-estimation, tiennent compte de I’intermittence en incluant le
co(t de réserve et le colt de pénalité dans le colt de production. La compétence de I’algorithme CSBO est
validée en comparant ses résultats avec d’autres optimiseurs. La recherche démontre que CSBO surpasse
constamment les autres techniques, obtenant des codts optimaux améliorés pour diverses fonctions
objectives. Cette étude contribue a I’intégration efficace des énergies renouvelables dans les réseaux
électriques, renforcant ainsi les avantages économiques et environnementaux

Mots Clés : I’écoulement de puissance optimal (EPO), Méthodes métaheuristiques, Optimisation par
CSBO, Réseau électrique, énergie éolienne, Solaire photovoltaique,
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