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The optimal power flow (OPF) problem is recognized as one of the most crucial challenges in the 

power system. It is a nonlinear, non-convex and large-scale issue. It entails satisfying operational, 

physical, and security constraints while simultaneously optimizing multiple objective functions. The 

task involves selecting suitable values for control variables to achieve the desired optimization 

outcome. The primary objective of OPF is to minimize the generation cost, power loss, emission…etc 

[1]. 

Due to the rising energy consumption and the high cost of producing energy through thermal 

generators. the world has been compelled to transition towards the inclusion of renewable energy 

sources in the electric grid, which in turn is considered clean, environmentally friendly and 

inexpensive. However, the integration of renewable energies into the electrical network has 

introduced complexity to the study of the optimal power flow (OPF) problem due to the intermittent 

nature of these sources. The primary objective of integrating renewable generators such as wind 

turbines, solar photovoltaic systems, and small hydro-power plants into the grid is to achieve several 

benefits. These include minimizing the generation fuel cost, reducing power losses, and mitigating 

environmental pollution [2]. 

Many methods and algorithms have been used for solving the OPF problem in the power system, 

using traditional mathematical algorithms or metaheuristic approaches. Among the classical 

optimization techniques are Newton method interior point and non-linear programming methods. It 

is undeniable that some of the algorithms mentioned above possess notable strengths, including 

excellent convergence properties and widespread utilization in industrial applications. However, It 

shows weaknesses that cannot be overlooked because it leads to a reduction in its efficiency [3]. 

In recent times, the use of metaheuristic algorithms has become more common, particularly in 

addressing the OPF problem. This is attributed to their ability to escape local optimality by leveraging 

simple principles inspired by nature. Various metaheuristic optimization techniques have been 

employed to solve the classical OPF problem, including improved versions of Particle Swarm 

Optimization (PSO) and the application of Moth Swarm Optimization (MSO). These metaheuristic 

approaches offer alternative and effective solutions to the OPF problem. Despite this, the use of the 

mentioned algorithms was limited in traditional power systems that contain only thermal power 

generators [4]
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In recent years, researchers have conducted studies to address the optimal power flow (OPF) problem 

in hybrid power systems that incorporate both classical and renewable energy sources such as wind, 

solar, and hydropower [5]. These studies have involved the utilization of probability density functions 

(PDF), such as Weibull and log normal distributions, to forecast variables like wind speed and solar 

irradiance. These probabilistic models enable researchers to incorporate the uncertainty and 

variability associated with renewable energy sources into the OPF problem formulation [6]. 

In this thesis, IEEE 30-bus and IEEE 57-bus test systems are modified in order to integrate solar, 

wind and small-hydro power generators with a limited number of thermal generators. The 

uncertainties of wind speed, solar irradiance and river flow are treated in detail and are modeled using 

probability density functions, namely Weibull, log normal and Gumbel respectively. Two distinct 

scenarios are considered in this research to address the intermittency of renewable sources: 

overestimation and underestimation. To account for these scenarios, both reserve and penalty costs 

are included in the generation cost.  

This study presents the application of the Circulatory System-Based Optimization algorithm (CSBO) 

to solve the OPF problem. It is important to note that this application of the CSBO algorithm to the 

OPF problem, considering these specific renewable energy sources, has not been documented in the 

existing literature. Thus, this study represents the first-ever attempt to utilize the CSBO algorithm for 

addressing the OPF problem in this context. 

The rest of the thesis will be structured as follows: 

In the first chapter, we will present the description of the power flow and optimal power flow 

problems, as well as the main objective and the formulation of the power flow (PF) and OPF 

problems. Then, we will discuss the optimization principles of classical methods and their limitations.  

The second chapter will mainly focus on meta-heuristic optimization methods, first we will focus on 

defining what’s a metaheuristic optimization method is, followed by detailed presentation of the 

proposed algorithm CSBO (definition, inspiration, mathematical equations and so on). Lastly, we 

briefly presented three other algorithms (PSO, MFO and BWOA) that will be used in the third chapter 

along with other algorithms when comparing the obtained results from the application of CSBO. 

The third chapter, in its first part, will provide a small introduction to the OPF problem involving 

wind turbines, solar photovoltaic (PV), and small hydropower. Then, the problem formulation is 

described along with the description of the different objective functions and the Modeling of the 

Uncertainty of Renewable Energy Generators, while also providing the parameters of the studied 
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IEEE 30-bus and IEEE 57-bus networks. In the second part of this chapter, the proficiency of the 

proposed CSBO algorithm was authenticated by comparing its results with those of other 

contemporary optimizers. It was observed that the proposed method consistently yielded a better 

optimal cost for various objective functions, outperforming the other optimizers. 

Finally, we will conclude this modest thesis with a general conclusion on our effective contribution 

and positive impact in the integration of renewable energies into electrical networks. 
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1.1.Introduction  

The optimal power flow (OPF) is one of the most studied nonlinear optimization problems. The 

OPF’s goal to optimize the production and transmission of electrical energy in distribution networks 

while considering system constraints and control limits. There is a wide diversity of OPF formulations 

and solution methods available in the literature survey. The nature of the OPF continues to change 

due to the modernization of electricity markets and the addition of renewable resources [7]. 

In this chapter, we present power flow and its variables, as well as the formulation of the problem 

using the Newton-Raphson method. We also discuss the categorization of variables and constraints 

and the construction of the objective function. Finally, we provide a summary of the formulation of 

the optimal power flow. 

1.2.Power flow (load flow) definition and objective 

The power flow problem (load flow) study in an electrical network refers to the analysis and 

calculation of the variables of an electric network under normal balanced operation in steady state.  

These variables include node voltages, injected powers at nodes, and power flows in the lines. Losses 

and currents can be derived from these variables.in a given network. So, in simpler language we can 

say It involves studying and analyzing the flow of electrical power from sources (the generation 

sources such as power plants) through the transmission and distribution networks to the numerous 

loads (consumers) linked to the system [8]. 

The study of power flow involves calculating the voltage values within an electrical network at 

specified ends and given conditions at bus sets. From these voltages, the active and reactive powers 

flowing through each line and transformer are calculated. The set of equations representing the 

electrical network is nonlinear in nature. 

In practical applications, power flow calculation methods utilize the network configuration and 

equipment properties to determine the complex voltage at each node. Additionally, these methods 

assume perfect symmetry between the three phases of the three-phase system in the electrical 

network. By considering these factors, an accurate assessment of the voltage conditions within the 

network can be obtained [9]
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Power flow studies are used for planning the construction and expansion of electrical networks, as 

well as their operation and control. The result of a power flow problem informs the operator or 

network planner about how the network lines are loaded, what the voltages are at different bus sets, 

how much generated power is lost, and where the limits are exceeded [10]. 

In power flow calculation, a bus bar is defined by four parameters which are classified as given in the 

following subsection. 

1.2.1.Classification of bus bars according to their specifications [9] 

We can classify bus bars into three categories based on the specifications of the variables used. 

For each bus bar, two variables need to be specified beforehand, and the other two variables are to be 

calculated. 

• Reference bus bar (slack bus): It is a generator bus bar that can be classified based on two specified 

variables: the voltage magnitude (V) and the phase angle (𝛿). The power values (P and Q) at this 

bus bar are initially unknown and need to be determined through calculations. 

To establish a reference point for voltage angles, the reference bus bar is selected from the generator 

bus bars with the highest active power. This reference bus bar serves as the benchmark for 

determining the voltage angles at other bus bars in the system. 

• Load bus bar: This bus bar supplies a load characterized by its active power P and reactive power 

Q. Therefore, (P, Q) are specified, while (V, 𝛿) are to be calculated. 

• Generator bus bar: This bus bar is connected to a generator that delivers an active power P under 

a constant voltage V controlled by an Automatic Voltage Regulator (AVR). Therefore, (P, V) are 

specified, while (Q, 𝛿) are to be calculated. 

Table 1 : Classification of bus bars according to their specifications [9] 

Types of bus bars Known variables Unknown variables 

Reference bus bar (V 𝜹 ) V, 𝛅 P, Q 

 Generator bus bar (PV) P, V Q, 𝛅 

Load bus bar (PQ) 

 

P, Q V, 𝛅 
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1.2.2.Formulation of power flow equations [11]. 

The study of power flow involves calculating the voltages of the electrical network for specified 

endpoints and given conditions at the buses, such as capacitive or inductive loads that need to be 

supplied, generated powers, and voltage magnitudes at all buses. From these values, the currents in 

the transmission lines, power flows, and power losses can be obtained. The nodal currant and voltage 

equations of an electrical network with N buses are written in the following matrix form: 

Equation (1.1) gives the relationship between the current and the voltage in an electrical network. So 

we can say: 

The nodal currant - voltage equation of an electrical network with N buses is given by the following 

equations. 

[

𝐼1

𝐼2

⋮
𝐼𝑁

] = [

𝑌11 𝑌12 ⋯ 𝑌1𝑁

𝑌21 𝑌22 ⋯ 𝑌2𝑁

⋮ ⋮ ⋱ ⋮
𝑌𝑁1 𝑌𝑁1 ⋯ 𝑌𝑁𝑁

] ∗ [

𝑉1

𝑉1

⋮
𝑉1

]                                             (1. 1) 

Where:  

     𝐼𝐵𝑈𝑆 = 𝑌𝐵𝑈𝑆 ∗ 𝑉𝐵𝑈𝑆                                                   (1. 2) 

 𝐼𝐵𝑈𝑆 = [𝐼1, 𝐼2, … 𝐼𝑁]ᵀ : The vector of injected currents into each bus bar represents the external source 

current. The current flowing from bus bar i to bus bar j is considered positive, while the current 

flowing in the opposite direction is considered negative. 

𝑉𝐵𝑈𝑆 = [𝑉1, 𝑉2, … 𝑉𝑁]ᵀ : The vector of complex voltages at each bus bar and Y_BUS represents the 

admittance matrix of the system, which has a size of (N * N), where N is the number of bus bars in 

the system. 

𝑌𝑖𝑖  : The diagonal element of the admittance matrix represents the sum of all the components 

connected to that particular bus bar. This can be expressed mathematically by the following equation: 

𝑌𝑖𝑖 = ∑ 𝑦𝑖𝑘
𝑁
𝑖=0
𝑖≠𝑘

                                                              (1. 3) 

𝑦𝑖𝑘 : The off-diagonal element 𝑖, 𝑘 of the admittance matrix represents the negative sum of all the 

components connected between bus bar i and bus bar j. In other words, it can be expressed as follow: 

 𝑌𝑖𝑘 = − ∑ 𝑦𝑖𝑘𝑘≠𝑖                                                            (1. 4) 
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According to equation (1.1), the net injected current at bus bar i can be expressed as follows: 

𝐼1 = ∑ 𝑌𝑖𝑘 ∗ 𝑉𝑘  𝑓𝑜𝑟𝑁
𝑘=1  i = 1, 2 … . , N                                              (1. 5) 

 

Where: 

𝑌̅𝑖𝑘 = 𝐺𝑖𝑘 + 𝑗 ∗ 𝐵𝑖𝑘 = 𝑌𝐼𝐾(𝑐𝑜𝑠δ𝑖𝑘 + 𝑗𝑠𝑖𝑛δ𝑖𝑘)                                  (1. 6) 

𝑉̅𝑘 = 𝑅𝐸𝑘 + 𝑗 ∗ 𝐼𝑚𝑘 = 𝑉𝐾(𝑐𝑜𝑠δ𝑘 + 𝑗𝑠𝑖𝑛δ𝑘)                                   (1. 7) 

𝐺𝑖𝑘 and 𝐵𝑖𝑘 are the conductance and susceptance of 𝑌̅𝑖𝑘  ; 𝑅𝐸𝑘and 𝐼𝑚𝑘 respectively the real and 

imaginary parts of 𝑉̅𝑘 respectively. δ𝑘 is the phase of the voltage at the busbar k; 

δ𝑖𝑘 : the phase of the element ik; 

The expression of the injected apparent power 𝑆𝑖̅ at a bus bar can be written as given by the 

following equation: 

𝑆𝑖
∗ = 𝑃𝑖 − 𝑄𝑖 = 𝑉𝑖

∗ ∗ ∑ 𝑌̅𝑖𝑘
𝑁
𝑘=1 ∗ 𝑉̅𝑘                                         (1. 8) 

𝑃̅𝑖,𝑄̅𝑖  : where 𝑃̅𝑖  and 𝑄̅𝑖 are the active and reactive powers at bus bar I, respectively. By substituting 

equations (1.5) and (1.6) into equation (1.7), we obtain the following equation: 

𝑃𝑖 = ∑ 𝑉𝑖
𝑁
𝑘=1 𝑉𝑘𝑌𝑖𝑘 cos(δ𝑖𝑘 + δ𝑘 − δ𝑖)    𝑖 = 1,2, … , 𝑁                            (1. 9) 

𝑄𝑖 = ∑ 𝑉𝑖
𝑁
𝑘=1 𝑉𝑘𝑌𝑖𝑘 sin(δ𝑖𝑘 + δ𝑘 − δ𝑖)    𝑖 = 1,2, … , 𝑁                           (1. 10) 

The equations (1.9) and (1.10) represent the power flow equations as follows: 

𝑃𝑖 = 𝑃𝐺𝑖 + 𝑃𝐷𝑖                                                           (1. 11) 

𝑄𝑖 = 𝑄𝐺𝑖 + 𝑄𝐷𝑖                                                          (1. 12) 

Where 𝑃𝐺𝑖and 𝑄𝐺𝑖are generated the active and reactive powers generated, respectively.  

 𝑃𝐷𝑖and 𝑄𝐷𝑖are the active and reactive powers demanded at the bus i, respectively . 

Figure 1.1. represents the flowchart of Newton Raphson method 



 Chapter 1:                                                                                              Optimal Power Flow Problem  

P. 9 
 

 

Figure 1-1: Newton Raphson method's flowchart [12]. 

1.2.3.Power flow problem solution methods 

Generally, the method used to solve the problem flow problem is Newton-Raphson due to its fast 

convergence and reduced number of iterations compared to other methods (such as Gauss-Seidel). 

The Taylor series expansion of equations (1.8) and (1.9) is given by the following equation: 

[
ΔP
ΔQ

] = J ∗ [
ΔӨ
ΔQ

] ⇒ [
ΔP
ΔQ

] = [
J1 J2

J3 J4
] ∗ [

Δδ
Δv

]                                   (1. 13) 

𝐽1 =
𝜕𝑃𝑖

𝜕δ𝐾
, 𝐽2 =

𝜕𝑃𝑖

𝜕𝑉𝐾
, 𝐽3 =

𝜕𝑄𝑖

𝜕δ𝐾
, 𝐽4 =

𝜕𝑉𝑖

𝜕𝑉𝐾
                                      (1. 14) 
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Where: ΔP and ΔQ represent the differences between the specified and calculated active powers, and 

the differences between the specified and calculated reactive powers, respectively. 

 Δδ and Δv represent the differences between the specified and calculated angles, and the differences 

between the specified and calculated voltages respectively. J is the Jacobian matrix. 

ΔP𝑖 = 𝑃𝑖
𝑠𝑝é

− 𝑃𝑖
𝑐𝑎𝑙                                                        (1. 15) 

ΔQ𝑖 = 𝑄𝑖
𝑠𝑝é

− 𝑄𝑖
𝑐𝑎𝑙                                                       (1. 16) 

For a network with N buses, with NG generator buses, there are 2(N - 1) - NG equations to solve. 

Consequently, there are (N - 1) equations for active power and (N - 1 - NG) equations for reactive 

power, resulting in a Jacobian matrix of size (2N - 2 - NG) x (2N - 2 - NG) elements. 

The calculation of the Jacobian matrix elements is done as follows: [11] 

The diagonal and off-diagonal elements of J1 are given by the following equation: 

𝜕𝑃𝑖

𝜕δ𝑖
= ∑ |𝑉𝑘||𝑌𝑖𝑘||𝑉𝑖| sin(δ𝑖𝑘 + δ𝑘 − δ𝑖)𝑘≠1                                    (1. 17) 

𝜕𝑃𝑖

𝜕δ𝑘
= −|𝑉𝑘||𝑌𝑖𝑘||𝑉𝑖| sin(δ𝑖𝑘 + δ𝑘 − δ𝑖)   𝐾 ≠ 𝑖                              (1. 18) 

The diagonal and off-diagonal elements of J2 are given by the following equation: 

𝜕𝑃𝑖

𝜕𝑉𝑖
= 2|𝑌𝑖𝑖||𝑉𝑖| cos(δ𝑖𝑖) + ∑ |𝑉𝑘||𝑌𝑖𝑘||𝑉𝑖| cos(δ𝑖𝑘 + δ𝑘 − δ𝑖)𝑘≠1                (1. 19) 

𝜕𝑃𝑖

𝜕𝑉𝑖
= |𝑉𝑖𝑗||𝑉𝑖| cos(δ𝑖𝑘 + δ𝑘 − δ𝑖)   K ≠ i                                     (1. 20) 

The diagonal and off-diagonal elements of J3 are given by the following equation: 

𝜕𝑄𝑖

𝜕δ𝑖
= ∑ |𝑉𝑘||𝑌𝑖𝑘||𝑉𝑖| cos(δ𝑖𝑘 + δ𝑘 − δ𝑖)𝑘≠1                                     (1. 21) 

𝜕𝑄𝑖

𝜕𝑉𝑖
= −2|𝑌𝑖𝑖||𝑉𝑖| sin(δ𝑖𝑖) + ∑ |𝑉𝑘||𝑌𝑖𝑘||𝑉𝑖| sin(δ𝑖𝑘 + δ𝑘 − δ𝑖)𝑘≠1                      (1. 22) 

The diagonal and off-diagonal elements of J4 are given by the following equation: 

𝜕𝑄𝑖

𝜕𝑉𝑖
= −2|𝑌𝑖𝑖||𝑉𝑖| sin(δ𝑖𝑖) + ∑ |𝑉𝑘||𝑌𝑖𝑘||𝑉𝑖| sin(δ𝑖𝑘 + δ𝑘 − δ𝑖)𝑘≠1                     (1 .23) 
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𝜕𝑄𝑖

𝜕𝑉𝑘
= −|𝑉𝑘||𝑉𝑖| sin(δ𝑖𝑘 + δ𝑘 − δ𝑖)   K ≠ i                                       (1 .24) 

1.3. Optimal Power Flow (OPF)  

Optimal Power Flow (OPF) is a mathematical optimization problem in the field of electrical power 

systems. It is widely regarded as a fundamental tool in this field and has been the subject of wide 

research since it was introduced by Carpentier in 1962. The objective of the OPF problem is to 

identify the optimal settings for a given power system network in order to optimize a specific 

objective function while satisfying the power flow equations, system security, and operational limits 

of equipment. This involves manipulating various control variables, including generator real power 

outputs, voltages, transformer tap settings, phase shifters, switched capacitors, and reactors, to 

achieve an optimal network configuration based on the defined problem formulation. Moreover, OPF 

can offer valuable support to operators in addressing various challenges encountered in the planning, 

operation, and control of power networks. 

The primary objective of OPF is to minimize a cost function or maximize a performance index while 

ensuring that the power system operates within specified limits. The performance index can be related 

to efficiency, voltage stability, system reliability, or any other desired system performance parameter. 

The most utilized objective function in OPF is the minimization of overall fuel cost. However, other 

traditional objectives such as minimizing active power loss, bus voltage deviation, emissions from 

generating units, the number of control actions required, and load shedding. With the deregulation of 

the electric power industry. One of the major challenges in the OPF problem lies in the nature of the 

control variables, as some are continuous (such as real power outputs and voltages), while others are 

discrete (such as transformer tap settings, phase shifters, and reactive injections). 

The application domains of optimal power flow can be classified as follows [13–15] 

• Minimization of fuel cost. 

• Minimization of losses. 

• Improvement of voltage profile and stability. 

• Maximization of power transfer capability  

1.3.1.Problem formulation of optimal power flow model [16]. 

The main objective in solving OPF problems is to identify the optimal values for control variables, 

which involves minimizing a specific objective function while adhering to all physical and security 

constraints. Mathematically, the OPF problem can be expressed as follows: 
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Minimize:   𝑓(𝑥, 𝑢)                                                                  (1.25) 

Subject to:     

g(𝑥, 𝑢) = 0                                                             (1. 26) 

h(𝑥, 𝑢) ≤ 0                                                            (1. 27) 

where: 

f(x,u) presents the objective function; 

x represents the state variables vector of a power system network; 

u represents the control variables vector; 

( , )g x u  represents the equality constraints; 

( , )h x u  represents inequality constraints, where, ℎmax and ℎmin are the upper and lower boundary 

limits, respectively . 

1.3.2.Optimal power flow variables classification [15] 

In optimization problems, two main types of variables are considered: independent variables, also 

known as control or decision variables, and dependent variables, also known as state variables. The 

optimization process involves first determining the optimal values for the control variables and then 

calculating the corresponding values for the state variables based on those optimal control values. 

In the OPF problem, control variables may include: 

• Active power generation of all generator buses except slack bus; 

• Voltage of all generator buses; 

• Tap setting of all transformers; 

• Reactive power injection of shunt capacitor banks; 

• Moreover, state variables may also include; 

• Active power output of the slack bus; 

• Load bus voltages ; 

• Reactive power generation of generators; 

• Transmission line loadings. 

It is important to note that the number of control variables determines the dimensionality of the 

solution space. In other words, a problem with n control variables will result in an n-dimensional 

solution space.  



 Chapter 1:                                                                                              Optimal Power Flow Problem  

P. 13 
 

1.3.3. Constraints formulation  

OPF Constraints in the OPF problem are typically classified into two types: equality constraints and 

inequality constraints. These conditions define the feasible region of the problem, and any solution 

must fall within this region in order to satisfy all the constraints. 

1.3.3.1. Equality constraints 

The equality constraints in load flow analysis are derived from the physical laws that govern the 

behavior of an electrical network. These constraints are expressed as nonlinear equations in the power 

flow equations, which ensure that the net injection of active and reactive powers at each bus is equal 

to zero. 

1

1
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sin( ) cos( ) 0
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Gi di i j ij ij ij ij

j
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Gi di i j ij ij ij ij

j
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 

 

=

=


 − − + =  



  − − − = 




 (1.28) 

Where: 

NB is the total number of busses of the power system; 

GiP  is the active power of generation; 

GiQ  is the reactive power of generation; 

diP  is the active power of demand; 

diQ is the reactive power of demand; 

ijG  the conductance of the corresponding lines between the (i, j) buses; 

ijB  the susceptance of the corresponding lines between the (i, j) buses. 

1.3.3.2. Inequality constraints 

In the context of the OPF problem, inequality constraints typically impose limitations on various 

physical components in the electrical system. These components can include generators, tap-changing 

transformers, and phase-shifting transformers. Additionally, system security requirements and 

reactive power compensation limits contribute to the set of inequality constraints. Specifically, when 

considering generators, these constraints are concerned with maintaining active and reactive power 

levels within acceptable boundaries. 
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𝑃𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖

𝑚𝑎𝑥                                                      (1. 29) 

𝑄𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

𝑚𝑎𝑥                                                      (1 .30) 

The inequality constraints for load tap-changing transformers involve maximum and minimum tap 

positions, which determine the voltage level relative to the nominal voltage. These constraints are 

utilized to adjust voltage magnitudes and regulate reactive power flows. On the other hand, phase-

shifting transformers have maximum and minimum phase angle shifts to control voltage phases and 

regulate active power flows. These specific constraints are considered for both types of transformers. 

𝑇𝑖𝑘
𝑚𝑖𝑛 ≤ 𝑇𝑖𝑘 ≤ 𝑇𝑖𝑘

𝑚𝑎𝑥                                                      (1 .31) 

𝛼𝑖𝑘
𝑚𝑖𝑛 ≤ 𝛼𝑖𝑘 ≤ 𝛼𝑖𝑘

𝑚𝑎𝑥                                                      (1. 32) 

Reactive power compensators such as Batteries, reactors, etc. have limits defined by minimum and 

maximum values, which determine their operating range. These limits ensure that the devices operate 

within acceptable bounds and can effectively compensate for reactive power in the system. 

𝑄𝐶𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐶𝑖 ≤ 𝑄𝐶𝑖

𝑚𝑎𝑥                                                    (1 .33) 

Bounds on the apparent power flow in power transformers and transmission lines are set to uphold 

network security and avoid issues such as instability or thermal losses in conductors. These limits 

ensure that the power flow in these components remains within safe operating conditions, avoiding 

excessive heating and potential damage to the system. 

|𝑆𝑖𝑘|2 ≤ |𝑆𝑖𝑘
𝑚𝑎𝑥|2                                                      (1. 34) 

To preserve the quality of system security and electrical service, it is essential to limit violations on 

voltage constraints, which must remain within their tolerable limits. 

𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥                                                   (1. 35) 

1.3.3.3.Handling constraint [14]. 

There are different ways to handle constraints in evolutionary computation optimization algorithms. 

• Preserving feasible solution method; 

• Solution repair method; 

• Infeasible solution rejection method; 

• Penalty function method  
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1.3.4. Objective functions  

In optimal power flow (OPF), the objective function signifies the objective or target to be reached 

when optimizing the operation of a power system. The objective function is usually defined 

mathematically and measures the system's performance or cost. 

Typically, the most commonly utilized objective in the OPF problem formulation is the minimization 

of the overall cost associated with the active power generation from real energy production units. The 

cost of each production unit is assumed to be solely dependent on the active power generated and is 

represented by quadratic curves. Consequently, the total objective function of the electrical system 

can be expressed as the sum of the quadratic cost models for all generators involved. By minimizing 

this objective function, the OPF algorithm aims to optimize the operation of the system by 

determining the optimal values for the control variables that minimize the total generation cost. 

Minimise      

           𝐹 = ∑ 𝑓𝑖 = ∑ 𝑎𝑖𝑃2 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖
𝑁𝐺
𝑖=1

𝑁𝐺
𝑖=1  (

$

h
)                                      (1. 36) 

or 

𝑃𝐺𝑖 𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖 𝑚𝑎𝑥                                                   (1. 37) 

𝑃𝐷𝑖 = 𝑃𝐺𝑖 + 𝑃𝐿𝑖                                                          (1 .38) 

Where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 signify the cost coefficients of the 𝑖-th generation unit, and 𝑃𝐷𝑖, 𝑃𝐿𝑖 are the demanded 

power and the active transport losses, respectively. 

1.3.5.Classical methods applied to the optimal power flow problem [17]        

There are several classical optimization techniques that have been applied to solve Optimal Power 

Flow (OPF) problems. Here are six categories of these techniques, along with a brief description of 

each and their application statistics:   

• Newton's method: in general, these are nonlinear equations that need to be solved using iterative 

methods. The Newton method is particularly preferred because of its quadratic convergence 

properties. 

• Linear programming; Linear programming is a mathematical optimization technique used to 

solve problems that involve linear constraints and an objective function. In this method, both the 

objective function and constraints are represented as linear equations or inequalities, and the 

variables are required to be non-negative. 
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• Quadratic programming; Quadratic programming is a specific type of nonlinear programming 

where the objective function is quadratic, and the constraints are either linear or linearized. 

• Nonlinear programming: Nonlinear programming (NLP) is a branch of optimization that 

focuses on solving problems with nonlinear objective functions and constraints. In NLP, the 

constraints can be either from equalities or inequalities or both. The inequality constraints can be 

bounded, meaning they have specified upper and lower limits. This allows for more flexibility in 

defining the feasible region and finding optimal solutions. 

• Interior point method:  The interior point method, which has recently been rediscovered, offers 

a faster and potentially superior alternative to the conventional simplex algorithm for solving 

linear programming problems. Furthermore, this method has been extended to tackle nonlinear 

programming (NLP) and quadratic programming (QP) problems, showing remarkable qualities 

and yielding promising results. By introducing nonnegative slack variables, the interior point 

methods transform inequality constraints into equalities. A logarithmic barrier function, 

incorporating the slack variables, is subsequently added to the objective function, multiplied by 

the barrier parameter. Throughout the solution process, this parameter is gradually reduced to 

zero, ensuring convergence within the feasible region.  

1.3.6.Limitations of Classical Search Methods 

Addressing optimization problems using classical or traditional techniques can be challenging due to 

various factors depending on the nature of the problem. Difficulties arise when dealing with problems 

that have multiple local optima, involve discontinuities, exhibit changes in optimal solutions over 

time, or have constraints within the search space. Additionally, classical search techniques often 

struggle with problems that have large and complex exploration or search spaces, limiting their ability 

to thoroughly explore all potential solutions. Large-scale problems may be computationally expensive 

to solve using classical methods [18]. Overall, these limitations highlight the need for alternative 

approaches, such as metaheuristic optimization methods, in complex optimization scenarios. These 

methods will be discussed in the second chapter of this thesis. 

1.4. Conclusion  

In this chapter, we have presented the problem of ordinary power flow and optimal power flow, 

including its general formulation., discussed objective functions, and categorized the variables and 

constraints. It can be concluded that the study of power flow is fundamental to ensure safe, efficient, 
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and reliable operation of electrical networks. Through a detailed analysis of power flow, operators 

can optimize network performance. 
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2.1.Introduction  

The optimal power flow problem is considered one of the most challenging and intriguing issues in 

power systems. It involves solving a constrained optimization problem that is characterized by non-

linearity and non-convexity. Researchers have dedicated significant efforts over the past decades to 

develop optimal solutions for the OPF problem while ensuring system stability. [19] 

Earlier, many classical (deterministic) optimization algorithms had been successfully applied to the 

optimal power flow problem. But due to the limitations and inconveniences of classical optimization 

methods such as the limits mentioned in the previous chapter. many metaheuristics have been 

developed and many of them have been used to solve the OPF problem. 

It is important to note that there isn't a single algorithm that can solve all types of OPF problems 

effectively. The OPF problem can be formulated in different ways, with various objectives, variables, 

and constraints. This creates a need for new algorithms that can efficiently solve specific types of 

OPF problems this is known as The No Free Lunch Theorem (NFL theorem) In this chapter we will 

address three main points, which will be presented as follows. [20] 

• An introduction to meta-heuristic optimization methods (definition, background, advantages. 

etc.). 

• A detailed presentation of a new meta-heuristic algorithm inspired by regular body functions 

called CSBO. 

• Information about some other algorithms that were used to solve similar OPF problems and 

chosen to compare with CSBO to further indicate its performance.  

2.2. Metaheuristic optimization methods 

Optimization techniques are applicable to a wide range of problems where the goal is to search for 

optimality. There are numerous ways to classify and name these problems and as a result, the 

techniques used for optimization can vary considerably from one problem to another. In short we can 

define Optimization techniques as mathematical tools that aid in selecting the best decision from the 

available set of possible solutions to achieve the optimal goal. After the problem variables are defined,  

[21].Various optimization techniques can be employed to solve the OPF problem. These techniques 

can be broadly classified into two categories: mathematical methods and heuristic approaches.  
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Mathematical methods involve the formulation of the problem using mathematical representations 

and equations. 

Nevertheless, it is important to note that mathematical methods may not always be capable of solving 

highly complex problems effectively. [15] 

2.2.1. Heuristics and metaheuristics  

Heuristics are solution strategies or approaches that involves trial-and-error to generate satisfactory 

solutions to complex problems within a practical time frame, the degree of complexity of the treated 

problem can determine the chance to search every possible solution or combination, therefore the 

goal should be focused on finding good, feasible solutions in an acceptable timescale. [22]  

2.2.1.1.Metaheuristics 

A Meta-heuristic is a high-level heuristic technique that aims to provide a sufficiently good solution 

to an optimization problem, especially for spic-and-span information with unlimited computational 

power that cannot be solved by traditional means. [23] 

Meta-heuristics, as high-level techniques, do not guarantee the attainment of a globally optimal 

solution in any problem space. This limitation is due to the stochastic nature of most global 

optimization te²chniques employed in metaheuristics. These techniques heavily rely on the utilization 

of random variables, which greatly influences the obtained solution. As a result, the solution achieved 

through metaheuristics is highly dependent on the specific random variables generated during the 

optimization process. 

 Meta-heuristics are indeed effective in tackling combinatorial optimization problems, often 

providing good solutions even with limited computational resources.in optimization algorithms, with 

a wide range of feasible solutions. They have been proven to be useful approaches for optimization 

problems. In other words, metaheuristics can be seen as modern, nature-inspired algorithms or global 

search techniques that are valuable tools for optimization. 

These algorithms are highly effective and widely applicable, offering strong performance and a 

compelling drive towards achieving optimal solutions. In some cases, metaheuristic techniques are 

considered stochastic or fuzzy search methods that operate at a population level. When compared to 

direct search algorithms or classical gradient-based techniques, these techniques provide robust and 

high-level solutions. They belong to a higher class of algorithms that are designed to explore and 

search for good solutions to optimization problems. They achieve this by combining different 
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concepts, perceptions, and ideas in order to strike a balance between exploiting known solutions and 

exploring new possibilities. Exploration involves delving into the search space to uncover new 

potential solutions, while exploitation focuses on refining the search process to find better solutions 

within the vicinity. 

In simpler terms, metaheuristics are powerful algorithms that intelligently navigate the search space 

to find practical solutions for optimization problems. They blend different approaches to strike a 

balance between exploring new options and improving existing solutions. By doing so, they are able 

to uncover promising solutions and continuously refine the search process. [18] 

2.2.1.2.Shared characteristics of deferent meta-heuristic optimization algorithms 

• All meta-heuristic optimization algorithms share the same following characteristics. 

• They are based on some fundamental theories and mathematical models.  

• They are simple and easily implemented.   

• It is easy to develop their variants based on the existing meta-heuristics. 

They can be considered black boxes, from which, by given a set of inputs, a set of outputs can be 

easily obtained [15]Classification of metaheuristic optimization algorithms 

There are different bases for the classification of metaheuristic optimization algorithms in the 

literature. Two main classifications are based on the number of random solutions it generates at each 

step and the algorithm's inspiration [24] . 

The first classification separates the algorithms to two classes: [25]. 

Trajectory-based methods and population-based methods. The key distinction between these two 

classes is the number of tentative solutions used at each step of the iterative algorithm. Begin with a 

single initial solution. At each search step, the current solution is replaced by another solution found 

in its neighborhood, often the best one. Trajectory-based metaheuristic methods have a tendency to 

quickly identify a local optimal solution.  

On the other hand, population-based algorithms operate on a population of candidate solutions. 

Initially, this population is generated randomly, and subsequently improved through an iterative 

procedure. During each iteration, certain individuals within the population are replaced with newly 

generated ones, typically chosen based on their suitability for the given problem. This process results 

in the formation of a new generation. 
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Figure 2-1 represents classification based on trajectory/population-based methods.  

 

Figure 2-1 : Classification based on trajectory/population based methods 

The inspired meta-heuristic algorithms are classified into four subclasses as a primary classification 

[24] 

• Evolutionary techniques; 

• Swarm intelligence techniques ; 

• Physics-based techniques; 

• Human-related techniques. 

Figure 2-2 represents the classification of the inspired meta-heuristic algorithms. 

 

 

Figure 2-2 : Classification based on the inspiration of metaheuristic methods 
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2.3.Circulatory System Based Optimization (CSBO) algorithm  [26] 

CSBO is a new algorithm that draws inspiration from the regular functions of the human body. More 

specifically as its name suggest this algorithm is based on Regular circulatory system of humans.  

2.3.1.Regular circulatory system 

Blood plays a crucial role in maintaining the body's well-being, it transports oxygen and essential 

nutrients from the lungs to the body's tissues, it also facilitates the removal of waste products like 

carbon dioxide. This circulation of blood is vital for sustaining life and ensuring the overall health 

and proper functioning of all body parts. The body's blood vessels are functionally separated into two 

distinct circuits. Based on the simplistic model inspired by the circulatory system of the body, showed 

in Figure 2-3. 

 

Figure 2-3 : A simple inspiration model from the circulatory system for modeling CSBO 

The right ventricle serves as the pump for the pulmonary circuit, responsible for circulating blood 

through the lungs. On the other hand, the left ventricle acts as the pump for the systemic circuit, which 

supplies blood to the body's tissue cells. During pulmonary circulation, the oxygen-poor blood is 

transported from the right ventricle to the lungs, where it receives a fresh supply of oxygen. 

Subsequently, the oxygen-rich blood is returned to the left atrium. 

Systemic circulation is responsible for supplying functional blood to all body tissues. It transports 

oxygen and nutrients to the cells while collecting carbon dioxide and waste products. Oxygenated 

blood is carried from the left ventricle through arteries to the capillaries in the body's tissues. 

Deoxygenated blood, on the other hand, returns from the tissue capillaries through a network of veins 
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to the right atrium of the heart. It then moves into the right ventricle, completing one cycle, which is 

analogous to one iteration in our proposed algorithm.  

Blood is classified as a Newtonian fluid. The primary variables associated with the circulatory system 

include flow, pressure, and volume. The modeling of pressure-flow within the circulatory system can 

be approached from two perspectives, beating and non-beating. The model in question is inspired by 

the beating perspective, focusing on the dynamic nature of the circulatory system. 

2.3.2. Circulatory system regular performance as an intelligent systematic algorithm CSBO 

The algorithm treats the pulmonary and systemic circuits as separate groups, each having its own 

distinct optimization cycle. These circuits can be seen as specific functions modeled on a specific 

type of population. 

In the CSBO algorithm, similar to other metaheuristic optimization algorithms, an initial population 

is generated randomly within the problem range. This population represents the mass of blood 

droplets, and their positions correspond to potential solutions in the search space for the optimization 

problem. The circulatory system functions as an operator on this population, refining and 

strengthening the solutions while eliminating weaker individuals. In essence, the algorithm iteratively 

improves the quality of solutions (represented by blood) within the search space (represented by the 

body), inspired by the functionality of the circulatory system in the body. 

Figure 2-4 illustrates how the evolutionary process of blood in the circulatory system can be 

modeled as an optimization system. 

 

Figure 2-4: The blood circulatory (a) and equivalent optimizer (b) process 
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The pulmonary circulation handles the deoxygenated blood, which can be considered equivalent to 

the weaker population. Conversely, the systemic circulation deals with oxygenated blood, which 

represents the population with better target values or solutions. In other words, it deals with the 

stronger population, each blood mass (BMi) corresponds to an individual in the population. The 

movement of each BMi is determined by its position, which directs it towards a more optimal position 

if possible, or it remains in its current position. Figure 2-4 illustrates how the evolutionary process of 

blood in the circulatory system can be modeled as an optimization system. Table 2 represent The 

equivalent concepts of the circulatory system 

Table 3 : The equivalent concepts of the circulatory system 

Element or function in the circulatory 

system 

The equivalent concept in the CSBO algorithm 

Blood mass Algorithm population 

Blood movement in the body Population movement within the problem range 

Cleaner blood with more oxygen Objective function 

Circulation cycle Algorithm iteration 

Deoxygenated blood Weaker population 

Oxygenated blood Stronger population 

Blood purification Population composition 

Blood pumping Changing the population position 

CO2 separation from blood Crossover 

Pulmonary and systemic circulations Population separation 

2.3.3.The mathematical modeling of the CSBO algorithm 

The CSBO algorithm, similar to other metaheuristic algorithms, begins by generating an initial 

population or blood masses BMi = (Bmi,1, Bmi,2,..., Bmi,D) for a typical problem with the number 

of dimensions D (d= 1:D), which randomly generates between the minimum BMmin = (Bmmin,1, 

Bmmin,2,..., Bmmin,D) and maximum BMmax = (Bmmax,1, Bmmax,2, . . . , Bmmax,D) values of 

the problem parameters range as follows: 

( ) ( )min max min1, ; 1:i popBM BM rand D BM BM i N= +  − = 
                         (2.1) 
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The movement of the BMi blood mass within the veins is determined by the applied force or pressure. 

The mass always goes in the direction where conditions are more favorable. As a result, its objective 

function (amount of force or pressure) has a lower value. 

The occurrence of blocked arteries in the heart can be modeled as a situation where locally optimal 

solutions become trapped. In the real world, it is desirable to avoid such scenarios. The optimization 

process of the program will continue as long as the body is functioning. Based on the positions of the 

particles and the values of their objective functions, the circulatory cycle phase is then modeled. 

( ) ( )1 1 23 3 2

new

i i i i i iBM BM K P BM BM K P BM BM= +   − +   −
                                (2.2) 

( ) ( )

( ) ( )

( ) ( )

1;

1;

0;

i j

i j

i j

F BM F BM

F BM F BM

F BM F BM

 


− 


=

(2.3)

The parameter Kij determines the flow of the ith blood mass (BMi) through the arteries. Pi is a 

value ranging from 0 to 1, which depends on the size of the problem. In each circulation cycle, the 

algorithm calculates the displacement of the blood mass and works towards achieving a better 

value. 

Deoxygenated blood, or the weaker population in optimization, is dealt with by the pulmonary 

circulation, as was previously described. In actuality, at each repetition the population is sorted in the 

CSBO, and the NR numbers of the weakest population are sent to the lungs to take up oxygen. 

( )1, , 1:new

i i

randn
BM BM randc D i NR

it

 
= +  = 

 
(2.4)

In (2.1), randc stands for the random vector from the Cauchy probability distribution, randn stands 

for the random normal number, it signifies the current algorithm iteration, and D stands for the 

dimension of the optimization problem. For this group, the pulmonary circulation also affects the pi 

in the following ways: 

( )1, , 1:iP rand D i NR= = (2.5)

The weakest sorted population's NR numbers, as previously mentioned, are directed to the pulmonary 

circulation. To circulate through the body, the remaining population (NL = Npop - NR) with better 

fitting values enter the systemic circulation with a renewed quantity, as represented in the following 

model:
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( ), , 3, 2,*new

i j i j i j jBM BM P BM BM= + − (2.6)

The systemic circulation also corrects the value of pi for this group of population in the following 

manner:

( )
, 1:

i worst

i

Best worst

F BM F
P i NL

F F

−
= =

−
(2.7)

Where FWorst represents the worst result and FBest represents the best result achieved by the cost 

function up to the current iteration. 

The optimization cycle continues for the specified number of iterations. During each iteration, every 

member of the population evaluates their new position and accepts it if it yields a better value for the 

fitness function, similar to other metaheuristic algorithms. 

2.4.Common Metaheuristic Algorithms used in solving OPF problems 

2.4.1.Moth-flame optimization algorithm  [25] 

The MFO algorithm is a new metaheuristic inspired by the nocturnal navigation mechanism used by 

butterflies in nature. This distinctive mechanism is mathematically modeled in MFO to perform 

global optimization tasks. In MFO, the search agents are represented by a population of night 

butterflies, each with a specific position in a given solution space. Additionally, the MFO approach 

also considers a set of NF flames (or artificial lights) randomly distributed around this solution space. 

Each flame also has a specific position, similar to how butterflies are "attracted" to nearby light 

sources. It is assumed that each butterfly "i" spirals towards a given flame "j". In this sense, while the 

positions of butterflies and flames represent solutions, only butterflies are true search agents, whereas 

flames represent the best NF solutions found so far by the MFO search process. 

Taking this into consideration, at each iteration "k", each butterfly is first assigned to a particular 

flame, and then a movement operator, modeled using a logarithmic spiral, is applied to update the 

position of each agent.  

Figure 2-5 shows the transverse orientation demonstrated by moths during navigation 

Figure 2-6 shows (a) butterfly flying around a light source; and (b) path of navigation around the light 

source 



Chapter 2:                                                                                    Metaheuristic Optimization Methods 

 

p. 28 

 

Figure 2-5 : Transverse Orientation Demonstrated by Moths During Navigation 

 

Figure 2-6 :(a) Butterfly Flying around a Light Source; (b) Path of Navigation around the 

Light Source 

2.4.2. Particle Swarm Optimization (PSO) [27] 

Particle Swarm Optimization (PSO) is a parallel optimization technique developed by Kennedy and 

Eberhart as an alternative to traditional genetic algorithms. They are inspired by the coordinated 

movements of flocks of birds insect swarms (or schools of fish or insect swarms). Similar to how 

these animals move in groups to find food sources or avoid predators, particle swarm algorithms 

search for solutions to optimization problems. 

In this algorithm, individuals are called particles, and the population is referred to as a swarm. Each 

particle decides its next movement based on its own experience, which is represented by the best 

position it has encountered so far, and the experience of its best neighbor. The neighborhood can be 

defined spatially, for example, by considering the Euclidean distance between the positions of two 

particles, or socially (position in the swarm). The particle's new velocity and direction are determined 
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by three tendencies: a propensity to follow its own path, a tendency to move back to its best position, 

and a tendency to move towards its best neighbor. 

Particle swarm algorithms can be applied to both discrete and continuous data. They have been tested 

and proven efficient for various knowledge extraction tasks. 

Figure 2-7 shows the concept of changing a research point using PSO 

 

Figure 2-7 : Concept of changing a research point using PSO [28] 

2.4.3.Black Widow Optimization Algorithm (BWOA) [29] 

This method of optimization is inspired by the hunting behavior of black widow spiders. The 

algorithm aims to search for and gradually improve solutions by using exploration and exploitation 

mechanisms. 

The proposed algorithm follows a flow diagram. Like other evolutionary algorithms, it starts with an 

initial population of spiders, where each spider represents a potential solution. These initial spiders 

attempt to reproduce in pairs to generate a new generation. 

They begin mating to produce a new generation in parallel. Just like in nature, each pair mates in its 

own web, separate from the others. In the real world, around 1000 eggs are produced in each mating, 

but eventually, only a few baby spiders survive - the stronger ones. In this algorithm, to reproduce, a 

table called "alpha" must also be created, with the same length as the widow table, containing random 
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numbers. Then, offspring is produced using 𝛼 according to the following equation (equation 1), where 

𝑥1 and 𝑥2 are the parents, and 𝑦1 and 𝑦2 are the offspring. 

{
𝑌1 = 𝑎 ∗ 𝑥1 + (1 − 𝑎) ∗ 𝑥2

𝑦2 = 𝑎 ∗ 𝑥2 + (1 − 𝑎) ∗ 𝑥1
(2.8) 

This process is repeated N_VAR/2 times, where N_VAR represents the number of variables in the 

problem, to ensure that randomly selected numbers do not repeat. Finally, the offspring and the 

mother are added to an array and sorted based on their fitness value. Then, according to the 

cannibalism rate, some of the best individuals are added to the newly generated population.  

Figure 2-8 shows female black widow (a) in her web with egg sac, and (b) on her web 

 

Figure 2-8 : (a) Female black widow in her web with egg sac. (b) Female black widow on 

her web. 

2.5.Conclusion  

In this chapter, we have presented a detailed explanation of metaheuristic optimization methods. This 

has allowed us to gain a better understanding of the concepts and principles used by metaheuristic 

algorithms and their potential applications. We introduced the Circulatory System Based 

Optimization (CSBO) algorithm, analyzing its unique features. Additionally, we briefly discussed the 

study of other algorithms, such as Moth Flame Optimization (MFO), Particle Swarm Optimization 

(PSO),  and the Black Widow Optimization Algorithm (BWOA). This chapter provides an 

introduction and a comprehensive overview of metaheuristic techniques and their diverse approaches 

to solving complex optimization problems. The following chapter presents the simulation results of 

our work, clearly explaining the algorithmic process of these methods and their application in power 

flow optimization with the integration of renewable energy sources. 
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3.1.Introduction  

Renewable energy sources (RES) like solar, wind, and hydro have become increasingly popular for 

use in stochastic power system operations. However, they require the ability to make optimal 

decisions in uncertain conditions. It is crucial to determine the best operating parameters for the 

electric grid and schedule various energy sources efficiently. 

 To deal with the stochastic nature of (RES) we have suggested the implementation of a new meta-

heuristic algorithm called circulatory system-based optimization (CSBO) in solving the OPF problem 

while taking into consideration the integration of RES (solar, wind, and small-hydro power) and their 

stochastic nature. The structure of the chapter is as follows: The OPF study with stochastic wind, 

solar, and hydropower problem formulation is described in Section 2. In Section 3, we have presented 

a detailed discussion concerning the treated cases and the obtained results. 

3.2.Solving OPF problems with stochastic PV, Wind and hybrid PV-small-hydro generators 

In traditional electric grids, the optimal power flow analysis is primarily focused on conventional 

power generators fueled by fossil fuels. However, as electricity markets have been liberalized and 

renewable energy sources have been integrated, the study of OPF has become more complex, leading 

to a significant increase in the complexity of the objective function. This complexity arises from the 

diverse functions that consider the variability and uncertainty inherent in the problem formulation. 

The primary objective of incorporating RES generators into the grids is to minimize transmission line 

losses and enhance the reliability and quality of electric grids. Moreover, they contribute to reducing 

environmental pollution. Additionally, as the injected power from RES continues to increase, it 

becomes crucial to determine the optimal contribution of each generator in the system. Therefore, 

efficient energy management and optimal scheduling of different resources can effectively support 

the diverse missions of electric power system operators, ultimately reducing the overall cost of 

electricity generation. [30]
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3.2.1.Optimal power flow model 

The important goal of solving OPF problems is to determine the optimal values of control variables 

so that they minimizing a certain objective function while respecting all the physical and security 

constraints. Mathematically, the OPF problem is expressed using the following equation 

                               ( , )Minimize F x u                                                                 (3.1) 

                         
( , ) 0

:
( , ) 0

g x u
subject to

h x u

=



                                                            (3.2) 

Where: ( , )F x u presents the objective function, x and u are the vectors of control and state variables, 

respectively, ( , )g x u  and ( , )h x u are the equality and inequality constraints, respectively. 

3.2.1.1.Objective Functions 

In this study, three objective functions are proposed, minimization of total generation cost, total active 

power loss, and cost with emission effect. 

The generation cost of thermal generators considering the valve point effect is given as follows: 

( ) ( )( )2 min

T

1

sin
TGN

TG i i TGi i TGi i i TGi TG

i

C P a b P c P d e P P
=

= + + +  −                                 (3.3) 

Where ia , ib , ic , id and ie represent the cost coefficients related to 𝑖-th thermal generator TGiP , min

TGiP  is 

the minimum value of power corresponding to 𝑖-th thermal generator. TGN  is the number of thermal 

generators; 

• Case 1: the first objective of OPF is the minimization of total generation cost considering both 

thermal generators and RESs can be formulated as: 

( ) ( ) ( ) ( )

( ) ( ) ( )  

1

, , , , , , , ,

, , , , , , , , ( ) ( ) ( )

Obj T TG W j WGs j RW j WG j WAv j PW j WAv j WG j

S k SG k RS k SG k SAv k PS k SAv k SG k SHG SHG RSH SHG SHAv PSH SHAv SHG

F C P C P C P P C P P

C P C P P C P P C P C P P C P P

 = + + − + −
 

 + + − + − + + − + − 

   (3.4) 

• Case 2: the second objective of OPF is the minimization of total active power loss in the electric 

grid, which can be formulated as: 

2 2 2

( )

1

minimize 2 cos ( )
nl

Obj Losses q ij i j i j i j

q

F P G V V VV  
=

 = = + − −                          (3.5) 
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where nl is the total number of transmission lines, 
( )q ijG is the conductance of the branch i-j, iV and 

jV

are the voltages at bus i and j respectively, 
ij i j  = − , is the difference in voltage angles between 

them. 

• Case 3: the final objective of OPF is to minimize both generation cost and emission by including 

the carbon tax as penalty, which can be formulated as: 

3 1

Obj Obj taxF F C E= +                                                                    (3.6) 

( ) ( )2

1

exp
TGN

i i TGi i TGi i i TGi

i

E P P P    
=

 = + + +
                                              (3.7) 

3.2.1.2. System Constraints 

While solving OPF objectives, different equality and inequality constraints are to be respected. These 

constraints are expressed as follow: 

Equality constraints 

1

1

cos( ) sin( ) 0

sin( ) cos( ) 0

NB

Gi di i j ij ij ij ij

j

NB

Gi di i j ij ij ij ij

j

P P V V G B

Q Q V V G B

 

 

=

=


 − − + =  



  − − − = 




                                (3.8) 

where GiP , GiQ  are the active and reactive power of generation, diP , diQ are the active and reactive 

power of demand and NB is the total number of bus of the power system. 

Inequality constraints 

• Generator constraints 

 

min max 1,2.....TGi TGi TGi TGP P P i N  =  (3.9) 
min max

TGi TGi TGiQ Q Q   (3.13) 

min max

WG WG WGP P P   (3.10) 
min max

WG WG WGQ Q Q   (3.14) 

min max

SG SG SGP P P   (3.11) 
min max

SG SG SGQ Q Q   (3.15) 

min max

SHG SHG SHGP P P   (3.12) 
min max

SHG SHG SHGQ Q Q   (3.16) 

• Prohibited operating zones POZs 

 min , max ,

2 2 2

poz j j poz j

TG TG TGP POZ P                                                           (3.17) 

• Security constraints 

min max 1,2.....Gi Gi Gi TGV V V i N  =                                          (3.18) 
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min max  Li Li LiV V V i NL                                          (3.19) 

max

i iS S i NTL                                            (3.20) 

3.2.2. Modeling the uncertainty of renewable energy generators 

Due to stochastic nature of RES, it is required to present the model uncertainty adopted in this study 

in terms of operation and planning of power systems. The wind speed is a random variable, wind 

uncertainty is modeled using the Probability Density Function (PDF) is to obtain its distribution 

employing shape factor (k) and scale factor (c). Mathematically can be written as: [29] 

( )
( )1

exp 0

k k
k S S

f S for S
c c c



−

    
=  −       
    

                               (3.21) 

The wind power model 

The output wind-power according to wind speed, is expressed as:  

( )

0, for

for

for

in out

in
w wr in r

r in

wr r out

and

P P

P

   

 
   

 

  

 


 −
=    

− 
  

                                           (3.22)      

With in  defines the turbine cut-in,  r  is the rated wind speed and out  pertains  cut-out wind speed, 

and wrP  rated output-power. [31,32] 

3.2.2.1.Wind power probability for different wind-speeds[31,32] 

The equation (22) states that, when in  is more than    and down than out , the output of power equal 

to zero. But the wind turbine output the rated-power wrP  for the condition of r out    . To model 

this fact, the probabilities of wind power is modeled as:  

( ) 0 1 exp expin out
w w wf P P

 
 

 

      
= = − − + −      

         

                                  (3.23)                          

( )  1 exp expr out
w w w wrf p p p

 
 

 

      
= = − − + −      

         

                                 (3.24)   

Outside to the discrete zones, the output of wind power is remained continuous for the condition of 

in r     , This probability is modeled by the following equation:  
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( )
( )

( )
( )1

exp

w
in r in

r in w wr
w w in r in

wr wr

P

P P
f p

P P







  
  

  
 

−

  
+ −  −     = + − −      

  
  

                (3.25) 

 

 

 

The solar-irradiance to energy conversion for the PV generator is modeled as follow: 

 

( )

2

2

for 0

for

sr c

std c

s

sr c

std

G
P G R

G R
P G

G
P G R

G

  
   

  
= 

 
 

 

                                      (3.26) 

3.2.3.Generation Cost minimization for renewable sources[5]  

When integrating renewable sources into the power grid, certain conditions must be taken into 

account, including the uncertainty and intermittency of these sources. Typically, private entities own 

wind farms and solar PV systems, which enter into purchase agreements for scheduled power with 

the independent system operator (ISO). As a result, the cost of these power generators can be divided 

into several components, namely direct cost, reserve cost, and penalty cost. The direct cost of wind 

and solar PV generators is outlined below. 

The direct cost associated with wind power from the j-th plant is expressed as a function of the 

scheduled power. [33] 

( ), , ,W j WG j j WG jC P g P=                                                      (3.27) 

Like the wind power plant, the direct cost related to the k-th solar PV plant is 

( ), , ,S k SG k k SG kC P h P=                                                      (3.28) 

Where 
jg and kh present the coefficient of direct cost corresponding to 𝑗th wind generator and kth 

solar generator respectively.
 ,WG jP and 

,SG kP  are the scheduled power from the appropriate generator. 

The direct cost function for the combination of solar photovoltaic and small hydro generation plant 

is given by [33] 

( ) ( )SHG SHG SG HG SG SG HG HGC P C P P g P h P= + = +                                     (3.29) 
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Where SHGP is the scheduled power from incorporated renewable resources, SGP and HGP present the 

electric power contribution from the solar and hydro generators, respectively. SGg and HGh are the 

coefficients of direct-cost corresponding to solar PV unit and small hydro unit, respectively. 

Due to stochastic nature of renewable energy sources, there are two possibilities tendencies which is, 

overestimation and underestimation. 

First case, when the actual power generated by renewable generators (PV, or combined PV and 

hydropower) less than the estimated-quantity in term of power, called overestimation. Second case is 

underestimation realised when estimated-quantity power is less than actual power.  

3.2.3.1.The reserve cost caused with overestimation is presented as follows[5]: 

( ) ( )

( ) ( )
,

, , , , , ,

, , , , ,
0

WG j

RW j WG j Av j RW j WG j WAv j

P

RW j WG j W j W W j W j

C P P K P P

K p P f P dp

− = −

= −
                                        (3.30) 

( ) ( )

( ) ( )

, , , , , ,

, , , , , ,

RS k SG k SAv k RS k SG k SAv k

RS k S SAv k SG k SG k SAv k SG k

C P P K P P

K f P P P E P P

− = −

 =    −  

                        (3.31) 

 

( ) ( )

( ) ( )

RSH SHG SHAv RSH SHG SHAv

RSH SH SHAv SHG SHG SHAv SHG

C P P K P P

K f P P P E P P

− = −

=    − 
                        (3.32) 

Where 
,RW jK is the reserve cost coefficient corresponding to 𝑗th wind generation unit, 

,WAv jP is the 

actual power delivered by the same unit, ( ),W W jf p is the PDF of wind power corresponding to 𝑗th 

wind power plant. 
,RS kK  is the reserve cost coefficient corresponding to kth solar power unit, 

,SAv kP is 

the actual power delivered by the same  unit, ( ), ,S SAv k SG kf P P is the probability of solar energy 

curtailment from  the scheduled power (
,SG kP ) and ( ), ,SAv k SG kE P P  is the prediction of solar-power 

above
,SG kP . RSHK  is the coefficient of reserve cost corresponding to the combined system, SHAvP  is 

the actual power delivered by the same plant, ( )SH SHAv SHGf P P  is the probability of combined system 

energy curtailment from  the scheduled power SHGP and ( )SHAv SHGE P P  is the prediction of delivered 

power below SHGP . 

3.2.3.2.The underestimation of power is related to the penalty terms which defined by second 

case. Mathematically, can be expressed as follows[5]: 

( ) ( ) ( ) ( )
,

,
, , , , , , , , , , ,

Wr j

WG j

P

PW j WAv j WG j PW j WAv j WG j PW j W j WG j W W j W j
P

C P P K P P K p p f P dp− = − = −           (3.33) 
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( ) ( ) ( ) ( ), , , , , , , , , , , ,PS k SA k SG k PS k SAv k SG k PS k S SAv k SG k SAv k SG k SG kC P P K P P K f P P E P P P − = − =     −      (3.34) 

 ( ) ( ) ( ) ( ) )PSH SHAv SHG PSH SHAv SHG PSH SH SHAv SHG SHAv SHG SHGC P P K P P K f P P E P P P− = − =     −    (3.35) 

Where 
,PW jK  is the coefficient of penalty cost relate to 𝑗-th wind power generator, 

,Wr jP is the rated 

output power from the plant, 
,PS kK  is the penalty cost coefficient corresponding to kth solar power 

generator, ( ), ,S SAv k SG kf P P  is the probability of solar energy surplus of the scheduled power 
,SG kP

and ( ), ,SAv k SG kE P P  is the prediction of solar-power above
,SG kP . PSHK  is the coefficient of penalty 

cost corresponding to the combined system, ( )SH SHAv SHGf P P  is the probability of combined system 

energy surplus of the scheduled power SHGP and ( )SHAv SHGE P P  is the prediction of the combined 

system power above SHGP . 

3.2.4. The proposed optimization algorithm 

01 Generate initial blood mass 𝑩𝑴𝒊using Equation (2.1) 
02 Calculate  𝒑𝒊 using Equation (2.5) and (2.7) 
03 it ← 0  
04 FE ←  𝑵𝒑𝒐𝒑 
05 While FE ≤ 𝑵𝒑𝒐𝒑 
06 it ← it + 1 
07 For i = 1 : 𝑵𝒑𝒐𝒑 
08 Calculate 𝑲𝒊𝟏 and using 𝑲𝟐𝟑Equation (2.3) 
09 Generate a new blood masse 𝑩𝑴𝒊

𝒏𝒆𝒘using Equation (2.2) 
10 Update the new position of blood mass i 
11 FE ←FE + 1 
12 end 
13 for i = 1 :NR 
14 for j = 1 : D 
15 if rand > 0,9 
16 perform the pulmonary circulation using Equations (2.4) 
17 else 
18 𝑩𝑴𝒊,𝒋

𝒏𝒆𝒘 = 𝑩𝑴𝒊,𝒋 
19 end 
20 End 
21 FE← FE + 1 
22 Calculate 𝒑𝒊for the weakest population using Equations (2.5) 
23 end 
24 for i = 1 :NL 
25 Perform the systematic circulations using Equations (2.6) 
26 Update the new position of blood mass i 
27 Calculate 𝒑𝒊 using Equation (2.7) 
28 FE ← FE + 1 
29 end 
30 Update the best solution 
31 end 
32 Return the best solution 
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3.2.5. Numerical results and analysis  

In the first part, three scenarios were considered on the modified IEEE 30-bus test system by 

MATLAB. The modification is to insert wind generator, solar generator and combined solar PV and 

small hydropower at bus #5, #11 and #13, respectively.  

 

Figure 3-1 : Modified IEEE 30 bus system [5] 

Table 3-1 indicates the characteristics of the modified IEEE 30-bus test systems. 

• In scenario I, total generation cost is minimized.  

• In second scenario II, total active power loss minimization is considered. 

• In the last one, both of generation cost and pollution were minimized while respecting all imposed 

constraints.  

The proposed CSBO is executed to solve the three cases, and some other algorithms are chosen to 

compare with CSBO to further indicate its performance and consistency to find a near-optimal 

feasible solution. Tables 3-2 – 3-3 present the coefficients of thermal generators and limitations of 

both soft and hard- variables. 
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Table 3.1 : Characteristics of the modified test systems 

Elements IEEE 30-bus 

no. of buses 30 

no. of transmission lines 41 

no. of generators 06 

no. of thermal generators 03 

Number of renewable generators 03 

no. of load buses 24 

no. of control variables 12 

Initial Real and reactive  power 

demand 

283.4 MW ; 126.2 Mvar 

Table 3.2: Thermal generators cost and emission coefficients for test system  

Table 3.3 : Upper and lower bounds of control and state variables for test system I 

 Control variables State variables 

Variables PTG1 PTG2 PTG3 PWG PSG PSHG Vgi QTG1 QTG2 QTG3 QWG QSG QSHG 

Min 50 20 10 0 0 0 0.95 -20 -20 -15 -30 -25 -20 

Max  140 80 35 75 60 50 1.1 150 60 40 35 30 25 

Case 1: total generation cost minimization 

In the first case, the primary goal is to minimize the total generation cost considering wind, solar and 

combined solar and small hydro generators. Obtained results are based on the Weibull, lognormal 

and Gumbel PDF parameters. Table 3-4 indicates PDF parameters of renewable energy sources that 

have been presented in [5]. Weibull fitting and wind speed frequency distributions are presented in 

Figure 3-2 reached from the simulation of 8000 Monte Carlo scenarios Figure 3-3 presents the 

lognormal fitting and solar irradiance frequency distributions obtained from the simulation of 8000 

Generator 

 

Bus a 

 

b 

 

c 

 

d 

 

e 

 

α 

 

β 

 

γ 

 

 

δ 

 

ε 

TG1 1 0 2 0.0038 18 0.037 0.04091 -0.05554 0.06490 0.0002 6.667 

TG2 2 0 1.75 0.0175 16 0.038 0.02543 -0.06047 0.05638 0.0005 3.333 

TG3 8 0 3.25 0.0083 12 0.045 0.05326 -0.03550 0.03380 0.0020 2.000 
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sample size of Monte Carlo. Figure 3-4 presents active power distribution of solar PV generator at 

bus 11. 

In this study, combined solar PV with small hydro generator is used in place of thermal generator at 

bus 13. Figure 3-5 indicates the lognormal fitting and solar irradiance accessible of solar PV generator 

at the same bus. while Figure 3-6 indicates Gumbel fitting and river flow rate frequency distribution 

from small hydro generator. Like last time, diagrams are generated after the simulation of 8000 Monte 

Carlo scenarios. The capacity of solar PV generator is 45 MW while for small hydropower is 5 MW. 

Figure 3-7 and Figure 3-8 present the histograms of both available solar power and hydropower for 

the site and from the solar PV generator and small hydro generator respectively at bus 13. Table 3-5 

indicates direct, penalty and reserve cost coefficients of renewable energy sources. 

Table 3.4 : PDF parameters of renewable energy sources 

Wind-power generating unit 

No of turbines Rated power, Pwr (MW) Weibull PDF parameters 

25 75 l=9 ; p=2 

Photovoltaic power plant 

Rated power, 𝑷𝒔𝒓 (MW) Lognormal PDF parameters 

50 μ=5.2   σ=0.6 

Combined solar and small hydro-power 

Photovoltaic rated power 𝑷𝒔𝒓(MW) Lognormal PDF parameters 

45 μ=5.0   σ=0.6 

Small hydro rated power 𝑷𝒉𝒓(MW) Gumbel PDF parameters 

5 λ=15     γ=1.2 

Table 3.5: The different cost coefficients of renewable energy sources 

Direct cost coefficient Penalty cost coefficient Reserve cost coefficient 

Wind Solar Small 

hydro 

Wind Solar Small 

hydro 

Wind Solar Small 

hydro 

1.7jg =  1.6kh =  1.5HGh =  , 1.4PW jK =  , 1.4PS kK =  1.4PSHK =  , 3RW jK =  , 3RS kK =  3RSHK =  
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The figure 3-2 represent the Wind speed distribution at bus 5. 

 

Figure 3-2 : Wind speed distribution at bus 5 

The figure 3-3 represent the Solar irradiance for PV generator at bus 11 

                 

            Figure 3-3 : Solar irradiance for PV generator at bus 11 
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The figure 3-4 represent the Active power distribution of solar PV generator at bus 11              

 

    Figure 3-4: Active power distribution of solar PV generator at bus 11 

The figure 3-5 represent the Solar irradiance for solar PV generator at bus 13 

 

Figure 3-5 : Solar irradiance for solar PV generator at bus 13 
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The figure 3-6 represent the river flow rate for small hydro generator at bus 13 

 

Figure 3-6 : River flow rate for small hydro generator at bus 13 
 

The figure 3-7 represent the available solar power for the site and from the solar PV generator at 

bus 13. 

 

Figure 3-7: Available solar power for the site and from the solar PV generator at bus 13. 

 

 



Chapter 3:                                                          Solution of OPF Problems in Modern Power Systems 

p. 45 
 

The figure 3-8 represent the Available hydropower for the site and from the small hydro generator 

at bus 13 

 

Figure 3-8 : Available hydropower for the site and from the small hydro generator at bus 13 

Table 3.6 optimal results for the objective function and optimal control/state variables related to case 

1 that were obtained by various algorithms, including CSBO, AEO, and GTO. These optimal values 

were within the permissible range specified in Table 3-3. 

Table 3.7 compares the statistical results based on the minimum, average, maximum and standard 

deviation of the total generation cost obtained by CSBO with the chosen algorithms: BWOA, PSO, 

GSA, MFO, HS, and BMO given in ref. [5] as well as with implemented GTO and AEO. Through 

this comparison, it is clear that CSBO outperformed the rest of the algorithms in all statistical results 

within 30 independent runs of simulation. The minimum value of total generation cost obtained by 

CSBO is 787.3598 $/h. The proposed algorithm exceeds all optimization techniques, BWOA 

(791.4748), PSO (789.4849$/h), GSA (790.3496 $/h), MFO (789.5271$/h), HS (800.5362$/h), BMO 

(789.1248 $/h), GTO (789.2231$/h) and AEO (789.3185 $/h). The difference between the value 

obtained by CSBO and the worst value obtained by HS is 13.1764 $/h which is very important around 

316.2336 $ cost saving per day and 115425.264 $ cost saving per year. 
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Table 3.6 : Optimal results obtained of case 1 for different algorithms 

Variable MFO[5] BMO[5] GTO AEO INFO HS[8] GSA[5] PSO[5] BWOA[5] CSBO 

PTG1 134.90

79 

134.91

28 

134.91 134.91 134.93 134.9079 134.7760 134.9079 134.9088 135.23 

 

 

PTG2 40.004

8 

40.000

0 

42.58 40.45 41.99 65.0000 45.2135 40.0000 41.6666 39.62 

 

 

PWG 46.202

4 

46.937

2 

48.18 47.55 48.20 36.6795 47.1036 46.4294 45.4876 46.80 

 

 

PTG3 10.000

0 

10.000

0 

10.00 10.01 10.01 10.0000 10.8455 10.0000 11.8272 10.05 

 

 

PSG 44.727

1 

43.799

5 

39.66 41.54 40.09 31.8026 38.4926 44.7704 41.8719 40.66 

 

 

PSHG 13.304

9 

13.483

9 

13.97 14.79 14.06 11.6731 12.8524 13.0326 13.8799 16.85 

 

 

V1 1.0831 1.0835 1.077 1.076 1.075 1.0843 1.0816 1.0835 1.0520 1.086 

 

 

V2 1.0686 1.0691 1.064 1.060 1.061 1.0704 1.0678 1.0689 1.0429 1.068 

 

 

V5 1.0463 1.0476 1.039 1.037 1.041 1.0447 1.0450 1.0467 1.0351 1.041 

 

 

V8 1.0488 1.0493 1.040 1.041 1.041 1.0472 1.0471 1.0489 1.0367 1.045 

 

 

V11 1.1000 1.1000 1.098 1.100 1.099 1.1000 1.1000 1.1000 1.0380 1.096 

 

 

V13 1.0530 1.0524 1.052 1.067 1.061 1.0567 1.0535 1.0527 1.0380 1.053 

 

 

QTG1 -

0.4564 

-0.7352 1.35 4.88 0.35 -0.2154 -1.4807 -0.2965 -15.403 12.53 

 

 

QTG2 14.467

3 

14.582

8 

25.81 15.88 19.74 14.8635 15.5110 14.6635 10.9783 17.56 

 

 

QWG 23.250

8 

23.729

5 

24.11 24.79 27.66 24.4993 22.7903 23.2576 35.6096 22.35 

 

 

QTG3 37.050

9 

37.064

4 

38.38 38.83 38.84 36.4881 36.8058 36.8604 56.3782 39.53 

 

 

QSG 28.608 28.425 30.00 29.96 29.80 27.7191 28.486 28.578 13.712 28.14 

 

 

QSHG 14.885 14.477   17.04    22.46 20.30 16.3498 15.469 14.722 18.992 15.89 

 

 

FCost 

($/h) 

789.52

71 

789.12

48 

789.223

1 

789.318

5 

788.9417 800.5362 790.3496 789.4849 791.4748 787.3598 

 

787.3598 

 

Table 3.7 : Comparison of statistical results of case 1 for different algorithms 

Algorithms Minimum Maximum Average Std 

INFO 788.94 790.61 789.73 4.46E-01 

AEO 789.32 791.27 790.11 5.76E-01 

GTO 789.22 791.48 790.13 5.90E-01 

HS [5] 800.54 802.25 801.83 1.49E-01  

BMO [5] 789.12 793.09 790.44 1.04E+00  

MFO [5] 789.53 793.94 790.89 1.32E 00+  

GSA [5] 790.35 802.44 794.17 3.19E 00+  

PSO [5] 789.48 799.67 793.78 3.57E 00+  

BWOA [5] 791.47 796.53 793.70 1.20E 00+  

CSBO 787.36 788.05 787.75 1.19E-0.1 
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Figure 3-9: Convergence curve for OF in case 1 

  

Figure 3-10. Voltage profiles in PQ buses of CSBO algorithm for case 1 

Figure 3-9 represents the Convergence curve for OF in case 1, whereas figure3-10 represents Voltage 

profiles in PQ buses CSBO algorithm for case 1 as it can be seen the CSBO algorithm effectively 

maintains voltage profiles in PQ buses. The results clearly demonstrate the algorithm's capability 

ensuring that the voltage constraints are respected. 

Case 2: Total Active Power Losses Minimization (TAPLM) 

Table 3.8 presents the optimal results of the objective function, as well as the optimal values of the 

control and state variables for case 2, obtained using different algorithms. All the algorithms 

successfully satisfied all the constraints while achieving the optimal outcomes.  

Table 3.9 displays the statistical results comparing CSBO with other algorithms in terms of 

minimizing total active power loss in the OPF problem. CSBO achieved a minimum power loss of 

2.1059 MW, surpassing other optimization techniques except for INFO that achieved 2.09 MW. AEO 
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(2.1244 MW), BMO (2.1669 MW), MFO (2.1669 MW), PSO (2.1868 MW), BWOA (2.1876 MW), 

GTO (2.2212 MW), HS (2.5114 MW) and GSA (2.8962 MW). Figure 3.9 illustrates the convergence 

curve of the total active power loss. 

Table 3.8: Optimal results obtained of case 2 for different algorithms 

Variable INFO MFO[5] HS[5] BMO[5] GTO AEO BWOA[5

] 

GSA[5] PSO[5] CSBO 

PTG1  50.01 50.0000 50.0013 50.0000 50.00 50.02 50.0000 53.9396 50.0000 50.07 

PTG2  25.16 30.0000 65.0000 30.0000 25.62 29.80 27.4484 67.8207 40.0000 23.81 

PWG  74.99 75.0000 75.0000 75.0000 75.00 74.95 73.2263 61.1047 75.0000 74.97 

PTG3  34.99 35.0000 33.9369 35.0000 35.00 34.91 45.0533 23.3276 35.0000 35.00 

PSG  59.99 50.0000 45.1813 50.0000 50.00 59.86 50.3881 46.9904 50.0000 60.00 

PSHG  40.35 45.5669 16.7919 45.5669 50.00 35.98 39.4714 33.1132 35.5868 41.66 

V1  1.060 1.0597 1.0639 1.0597 1.061 1.058 1.0521 1.0638 1.0610 1.062 

V2  1.055 1.0543 1.0600 1.0543 1.055 1.053 1.0479 1.0594 1.0560 1.057 

V5  1.045 1.0444 1.0479 1.0444 1.049 1.040 1.0402 1.0435 1.0455 74.97 

V8  1.049 1.0496 1.0498 1.0496 1.046 1.045 1.0476 1.0474 1.0497 35.00 

V11  1.096 1.1000 1.1000 1.1000 1.085 1.092 1.0581 1.1000 1.1000 60.00 

V13  1.063 1.0606 1.0536 1.0606 1.066 1.056 1.0568 1.0564 1.0571 41.66 

QTG1  -0.89 -4.8064 -4.3041 -4.8052 -1.04 0.38 -7.7466 -4.9102 -4.6581 0.04 

QTG2  14.43 6.9443 7.8094 6.9432 15.78 17.16 8.7748 8.7765 7.3152 17.27 

QWG  24.34 20.5941 20.9463 20.5960 24.43 21.70 23.3476 21.7427 20.7149 25.02 

QTG3  39.45 36.2915 37.4288 36.2921 40.00 39.23 44.3276 36.4820 36.6244 38.62 

QSG  29.98 29.8880 29.1509 29.8884 25.00 29.96 17.3799 29.7941 29.8316 29.38 

QSHG 20.41 18.6070 16.1932 18.6040 22.01 19.35 21.1666 16.9013 17.1485 17.51 

FLoss 

(MW) 

2.0938 2.1669 2.5114 2.1669 2.2212 2.1244 2.1876 2.8962 2.1868 2.1059 

Table 3.9: Comparison of statistical results of case 2 for different algorithms 

Algorithms Minimum Maximum Average Standard 

Deviation  AEO 2.1244 2.1813 2.1452 3.14E 02−  

GTO 2.2212 2.8313 2.4273 3.50E 01−  

BMO [5] 2.1669 2.5209  2.1906 6.50E 02−  

MFO [5] 2.1669 2.5215  2.2151 7.59E 02−  

HS [5] 2.5114  2.6544 2.5789  3.90E 02−  

GSA [5] 2.8962  4.3537 3.3340  3.59E 01−  

PSO [5] 2.1868  3.8005 2.4511 3.05E 01−  

BWOA [5] 2.1876 2.6771 2.4063 9.66E 02−  

INFO 2.0938 2.1790 2.1047 1.87E 02−  

CSBO 2.1059 2.1438 2.1221 8.70E-02 
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Figure 3-11: Convergence curve for OF in case 2 

Case 3: Generation cost with emission minimization 

The primary objective in this scenario is to minimize the generation cost while considering the impact 

of emissions. Reducing greenhouse gas emissions from conventional energy sources pose a 

significant challenge, and to address this, a carbon tax is imposed as a penalty. The goal is to optimize 

the generation cost while minimizing the environmental impact of emissions through the 

incorporation of this carbon tax. 

Table 3.10 compares statistical results related to this case for different algorithms. Based on these 

results, the minimum value obtained by CSBO is 818.6050 $/h which is close to the minimum value 

obtained by BMO 820.4852 $/h as the difference is 1.8802 $/h. Nevertheless, the proposed algorithm 

has surpassed all other optimization techniques in terms of average, maximum, and standard 

deviation. 
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Table 3.10 : Comparison of statistical results of case 3 for different algorithms 

Algorithms Minimum Maximum Average Std 

INFO 820.56 822.08 821.19 4.13E 01−  

AEO 820.58 821.85 821.46 5.27E 01−  

GTO 821.75 822.66 822.25 3.37E 01−  

BMO [5] 820.49 824.95 821.19 8.30E 01−  

MFO [5] 820.81 825.89 821.34 9.90E 01−  

HS [5] 827.02 827.78 827.67 2.07E 02−  

GSA [5] 822.13 829.41 825.11 1.90E 00+  

PSO[5] 820.81 835.15 824.55 3.34E 00+  

BWOA[5] 822.58 826.82 824.44 1.11E 00+  

CSBO 818.61 819.88 819.06 2.76E-01 

Table 3.11 : Optimal results obtained of case 3 for different algorithms 

Variable PSO[5] GSA[5] MFO[5

] 

BMO[5

] 

GTO AEO INFO BWOA HS[5] CSBO 

PTG1 126.595

0 

127.043

2 

126.593

8 

126.69 126.42 127.21 126.63 126.0739 123.4563 126.20 

PTG2 44.2211 45.6540 44.2121 44.231 44.43 46.88 44.35 43.1541 65.0000 44.09 

PWG 48.4997 45.5324 48.5097 48.491 48.53 49.76 48.66 46.6268 43.4951 48.72 

PTG3 10.0000 14.3060 10.0000 10.000 10.00 10.00 10.01 12.7203 10.0000 10.05 

PSG  45.0261 40.7565 45.0261 45.026 45.33 41.38 45.52 44.8928 34.9329 41.88 

PSHG 14.4528 15.5839 14.4528 14.452 14.17 13.75 13.71 15.5858 12.4211 17.93 

V1 1.0816 1.0818 1.0816 1.0816 1.076 1.078 1.076 1.0587 1.0824 1.075 

V2 1.0682 1.0683 1.0681 1.0682 1.062 1.063 1.061 1.0437 1.0703 1.064 

V5  1.0466 1.0460 1.0466 1.0466 1.039 1.039 1.041 1.0353 1.0469 1.044 

V8 1.0488 1.0493 1.0488 1.0489 1.041 1.040 1.041 1.0359 1.0483 1.042 

V1 1.1000 1.1000 1.1000 1.1000 1.097 1.097 1.098 1.0587 1.1000 1.094 

V13 1.0536 1.0539 1.0536 1.0535 1.053 1.051 1.058 1.0437 1.0559 1.064 

QTG1 -0.9694 -0.9707 -0.9946 -1.1055 4.93 5.08 5.10 -0.6057 -1.7444 -1.30 

QTG2 13.7453 13.9367 13.7523 13.8389 19.25 22.26 15.50 -2.5917 14.5427 22.90 

QWG 22.9881 23.2131 23.0018 23.0134 25.20 24.29 27.24 34.0173 23.9643 27.83 

QTG3 37.1349 36.8448 37.1307 36.9844 39.24 37.53 39.20 48.5122 36.8996 37.11 

QSG 28.6308 28.1882 28.6359 28.5148 30.00 29.98 29.84 19.9778 27.7266 27.70 

QSHG 15.0950 14.9932 15.0995 15.2158   17.51   16.76   19.32 19.2986 15.8818 20.84 

FCE 

($/h) 

820.806

4 

822.131

6 

820.807

1 

820.485

2 

821.749 820.5813 820.5593 822.5772 827.0182 818.6050 
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Figure 3-12 : Convergence curve for OF in case 3 

The inclusion of a carbon tax incentivizes the use of renewable energy sources, which are clean and 

environmentally friendly. As a result, the electric power generation from these sources is expected to 

increase. In the first case, the active power produced from the solar generator was 40.66 MW. 

However, in the third case, when the carbon tax was imposed, the active power produced from the 

solar generator significantly increased to 41.88 MW, showing a notable increase of about 1.22 MW. 

We also notice the increase in both wind and combined solar PV with small hydro generator. This 

demonstrates the positive impact of the carbon tax in promoting the use of renewable energy and 

reducing greenhouse gas emissions. 

The rest of study tested the performance of CSBO again, but with the modified IEEE 57-bus test 

system. The results obtained by the proposed algorithm were compared again with AEO and GTO, 

while BMO, MFO and PSO were selected from the rest of algorithms due to their efficiency.  

Combined solar PV and small hydro power generator are located at bus 6, while solar generator and 

wind generator are located at bus 9 and 12, respectively. The number of control variables to be 

minimized is 14 as mentioned in Table 3-13. Upper and lower bounds of control and state variables 

for modified IEEE 57-bus test system can be found Table 3-12 
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Table 3.12: Upper and lower bounds of control and state variables for test system I 

 Control variables State variables 

Variab PTG1 PTG2 PTG3 PTG4 PSG PSHG PWG Vgi QTG1 QTG2 QTG3 QTG4 QSG QSHG QWG 

Min 0 0 0 0 0 0 0 0.95 -140 -17 -10 -140 -3 -8 -150 

Max 575.88 100 140 550 220 100 210 1.1 200 50 60 200 9 25 155 

 

 

Figure 3-13 : Modified IEEE 57-bus-system [5] 
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Table 3-13 indicates the characteristics of the modified IEEE 57-bus test systems. 

Elements IEEE 57-bus test system 

no. of buses 57 

no. of transmission lines 88 

no. of generators 07 

no. of thermal generators 04 

Number of renewable generators 03 

no. of load buses 41 

no. of control variables 14 

Initial Real and reactive  power 

demand 

1250.80 MW ; 336.40 Mvar 

Case 4: Total generation cost minimization 

Table 3.14 showcases the optimal results obtained by CSBO and various other algorithms. The CSBO 

algorithm achieved a minimum total generation cost of 5256.7269 $/h, outperforming all other 

algorithms such as GTO (5260.0009 $/h), AEO (5260.2497 $/h), BMO (5300.457 $/h), MFO 

(5316.14 $/h), and PSO (5417.538 $/h). The difference between the value obtained by CSBO and the 

worst value obtained by PSO is 160.8111 $/h, resulting in significant cost savings of around 

3856.4664 $ per day and 1408705.236 $ per year. It is worth noting that while GTO and AEO achieve 

results closer to CSBO, there is still a noticeable difference of 3.274 $/h or 28680.24 $ per year, 

indicating the superior performance of CSBO in terms of cost optimization. Figure 3-14 presents the 

convergence curve related to this case.  
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Table 3.14: Optimal results obtained of case 4 for different algorithms 

Variables  MFO [5] PSO[5]  AEO INFO BMO [5] GTO CSBO 

PTG1 554.2932 500.4827 556.88 556.81 555.5707 556.35 564.04 

 

 

PTG2 100 100 100.00 100.00 100 100.00 98.99 

 

 

PTG3  76.62421 140 76.62 76.61 76.62421 76.62 74.42 

 

 

PSHG  100 100 100.00 100.00 100 100.00 99.82 

 

 

PTG4 54.47699 38.48657 51.23 51.23 51.27178 51.68 48.78 

 

 

PSG 200 200 200.00 200.00 200 200.00 199.97 

 

 

PWG 210 210 210.00 210.00 210 210.00 209.73 

 

 

V1 1.1 1.1 1.051 1.067 1.1 1.059 1.069 

 

 

V2 0.95 1.1 1.043 1.055 1.1 1.048 1.055 

 

 

V3 1.1 0.95 1.020 1.019 0.95 1.014 1.022 

 

 

V6 0.95 1.1 1.014 1.015 1.024522 1.012 1.016 

 

 

V8 1.052336 1.015266 1.013 1.014 1.021023 1.016 1.020 

 

 

V9 1.1 1.1 0.985 0.984 0.95 0.987 0.987 

 

 

V12 0.958536 1.1 0.975 0.968 0.98036 0.976 0.962 

 

 

QTG1 200 92.10943 98.26 143.76 200 125.02 159.13 

 

 

QTG2 -17 50 50.00 49.99 50 49.98 39.44 

 

 

 

QTG3 60 -10 48.70 27.89 -10 21.83 34.46 

 

 

 

QSHG -8 25 24.22 24.96 25 21.95 19.35 

 

 

 

 

QTG4 179.9646 18.25645 109.32 113.89 106.2492 117.75 127.35 

 

 

 

QSG 9 9 -1.48 -1.69 -3 -1.63 2.06 

 

 

 

QWG -46.2699 155 47.28 16.80 -1.47679 41.06 -2.08 

 

 

FCost ($/h) 5316.14 5417.538 5260.2497 5259.2040 5300.457 5260.0009 5256.7269 

 

 

Figure 3-14 : Convergence curve for OF in case 4 
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Figure 3-15 Voltage profiles in PQ buses of CSBO algorithm for case 4 

Figure 3-15 represents Voltage profiles in PQ buses CSBO algorithm for case 4 The CSBO algorithm 

demonstrates its effectiveness in maintaining voltage profiles in PQ buses, as evident from the results. 

It showcases the algorithm's capability to ensure that the voltage constraints are respected and upheld. 

Case 5: Total active power loss minimization 

 

Figure 3-16: Convergence curve for OF in case 5. 

The minimization of total active power loss is the secondary aim in the OPF problem using modified 

IEEE 57-bus test system. Again, the comparison of optimal results of CSBO with other different 

algorithms are illustrated in Table 3-15. Based on the results presented in this table, the minimum 

power loss of 19.6708 MW is obtained via CSBO. The proposed algorithm exceeds all optimization 

techniques, AEO (19.7633 MW), GTO (19.7703 MW), BMO (20.785 MW), MFO (21.3031 MW) 

and PSO (21.3621 MW). The convergence curve of total active power loss is depicted in Figure 3-1 
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Table 3.15: Optimal results obtained of case 5 for different algorithms 

 
 

Case 6: Generation cost with emission minimization   

Table 3.16 showcases the optimal results for the last case, which focuses on minimizing the 

generation cost while considering the emission effect. The CSBO algorithm achieved a minimum 

total generation cost of 5292.4087 $/h, surpassing all other optimization algorithms including AEO 

(5298.1921 $/h), GTO (5299.6942 $/h), BMO (5320.851 $/h), PSO (5332.054 $/h), and MFO 

(5332.379 $/h). The difference between the value obtained by CSBO and the worst value obtained by 

MFO is 39.9703 $/h, resulting in significant cost savings of approximately 959.2872 $ per day and 

350139.828 $ per year. It is worth noting that AEO and GTO achieve results close to CSBO, but there 

is still a noticeable difference of 5.7834 $/h or 50662.584 $ per year, highlighting the superior 

performance of CSBO in terms of cost optimization. Figure 3-17 presents the convergence curve 

related to this case. 

 

 

Variables MFO [5] PSO [5] AEO INFO BMO [5] GTO CSBO 

PTG1 259.8313 273.4183 298.32 302.96 262.6827 293.00 291.90 

 PTG2 39.25049 34.07384 0.99 3.32 39.12372 7.57 25.81 

 PTG3 140 140 139.98 139.93 140 140.00 137.80 

 PSHG 100 100 100.00 100.00 100 100.00 96.37 

 PTG4 323.0214 314.67 321.26 314.31 319.7785 320.00 308.23 

 PSG 200 200 200.00 200.00 200 200.00 200.00 

 PWG 210 210 210.00 209.99 210 210.00 210.00 

 V1 1.050806 1.0514 1.021 1.023 1.045745 1.021 1.041 

 V2 1.1 1.1 1.014 1.015 1.1 1.013 1.033 

 V3 1.1 1.1 1.016 1.017 1.1 1.010 1.031 

 V6 1.1 1.1 1.025 1.022 1.1 1.021 1.026 

 V8 1.030651 1.032615 1.038 1.029 1.03229 1.038 1.027 

 V9 1.099932 0.95 1.003 0.999 0.95 1.005 1.004 

 V12 0.950289 0.95 0.977 0.979 0.95768 0.981 0.995 

 QTG1 123.7601 123.7423 61.36 62.36 105.8136 63.65 72.53 

 QTG2 50 50 49.91 48.10 50 50.00 45.54 

 QTG3 60 60 31.10 35.75 60 17.62 39.49 

 QSHG 25 25 0.12 2.81 25 -4.14 3.14 

 QTG4 60.39987 71.64968 87.95 72.39 66.64419 91.72 49.50 

 QSG 9 -3 9.00 8.92 -3 9.00 4.93 

 QWG -43.207 -42.0513 42.13 51.22 -21.5476 53.93 61.43 

 FLoss (MW) 21.3031 21.3621 19.7633 19.7040 20.785 19.7703 19.6708 
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Table 3.16: Optimal results obtained of case 6 for different algorithms 

Variables MFO [5] PSO [5] AEO INFO BMO [5] GTO CSBO 

PTG1 553.3165 554.1651 556.41 553.97 551.8909 554.41 558.16 

PTG2 100 100 99.17 100.00 100 100.00 99.99 

PTG3 76.62421 76.62421 76.63 76.55 76.6242 76.63 76.37 

PSHG 100 100 100.00 100.00 100 100.00 99.92 

PTG4 52.55224 51.77639 52.43 53.67 52.19387 53.44 50.88 

PSG 200 200 200.00 200.00 200 200.00 199.84 

PWG 210 210 210.00 210.00 210 210.00 210.00 

V1 1.078181 1.1 1.067 1.065 1.090978 1.046 1.054 

V2 1.1 0.95 1.056 1.053 1.1 1.038 1.040 

V3 1.036156 1.1 1.020 1.019 0.961542 1.016 1.006 

V6 1.1 1.1 1.008 1.014 1.1 1.012 1.005 

V8 1.011965 1.001535 1.018 1.013 1.044066 1.012 1.018 

V9 1.019763 1.1 0.988 0.985 0.95 0.989 0.991 

V12 0.985229 0.985591 0.964 0.968 1.1 0.979 0.983 

QTG1 130.9053 200 146.51 138.29 65.39634 87.78 127.55 

QTG2 50 -17 49.94 49.62 50 48.33 38.01 

QTG3 42.54005 60 34.95 30.31 -10 45.12 12.35 

QSHG 25 25 5.78 24.98 25 24.93 11.63 

QTG4 78.66775 61.37461 126.76 109.10 63.4618 101.07 123.84 

QSG 9 9 8.80 3.02 -3 9.00 5.46 

QWG 27.21733 26.59974 3.09 18.53 155 59.21 59.53 

FCE ($/h) 5332.379 5332.054 5298.1921 5295.8597 5320.851 5299.6942 5292.4087 

 

Figure 3-17: Convergence curve for OF in case 6 



Chapter 3:                                                          Solution of OPF Problems in Modern Power Systems 

p. 58 
 

 Conclusion  

In this chapter, we introduced a novel algorithm called CSBO, designed specifically for solving the 

stochastic OPF problem in hybrid power systems. The algorithm was evaluated using three different 

single objective functions: minimizing total generation cost, total active power loss, and generation 

cost while considering emission effects. The objective was to find near-optimal solutions for these 

problems while ensuring compliance with equality and inequality constraints. The results obtained 

clearly demonstrate the superior performance of the CSBO algorithm in all cases compared to other 

algorithms such as AEO, BMO, GTO, MFO, INFO, and PSO. The CSBO algorithm consistently 

outperformed these algorithms, providing more effective and efficient solutions for the OPF problem 

in the considered scenarios. 
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In conclusion, this thesis focused on addressing the optimal power flow (OPF) problem in hybrid 

power systems that incorporate renewable energy sources. The integration of these intermittent 

sources presents new challenges in optimizing power flow while considering operational, physical, 

and security constraints. To tackle these challenges, the Circulatory System-Based Optimization 

(CSBO) algorithm was applied as a metaheuristic approach inspired by the circulatory system. 

Through the application of the CSBO algorithm, this research demonstrated its effectiveness in 

solving the OPF problem in hybrid power systems. The algorithm consistently outperformed other 

optimization techniques, producing improved optimal costs for various objective functions.in case 1 

the total generation cost reduction was 0.2% compared to INFO which is the closest result to CSBO 

and 1.65% for HS as the worst result this translates into 115425.264 $/year. Also, in case 4 we saw a 

2.968% reduction compared to PSO resulting in significant cost savings of around 1408705.236 $ per 

year. This highlights the potential of metaheuristic algorithms in effectively integrating renewable 

energies into electrical networks. By incorporating probability density functions to model the 

uncertainty and variability of renewable sources, the thesis accounted for the intermittent nature of 

wind, solar, and small-hydro power generation. Two scenarios, overestimation, and underestimation, 

were considered to address the unpredictability of renewable energy sources, resulting in the inclusion 

of reserve cost and penalty cost in the generation cost. 

The findings of this research contribute to the field by offering insights into the application of the 

CSBO algorithm specifically in the context of hybrid power systems. The successful utilization of 

CSBO highlights the importance of exploring novel metaheuristic approaches to overcome the 

limitations of traditional optimization methods. 

Overall, this thesis demonstrates the potential of the CSBO algorithm in achieving effective and 

optimized power flow in hybrid power systems. The integration of renewable energy sources into the 

electrical grid can be enhanced through the utilization of advanced optimization techniques. This 

research contributes to the growing body of knowledge in the field of optimal power flow and 

provides a steppingstone for future research in improving the integration of renewable energies into 

electrical networks 
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Abstract This thesis addresses the optimal power flow (OPF) problem in hybrid power systems involving 

renewable energy sources. The OPF problem includes optimizing various objectives while considering 

operational, physical, and security constraints. Traditional mathematical algorithms approaches have been 

used to solve the OPF problem, but they often suffer from limitations in terms of efficiency and 

convergence. To overcome the challenges introduced by intermittent RES, the Circulatory System-Based 

Optimization (CSBO) algorithm is proposed and applied on the Modified IEEE 30-bus and IEEE 57-bus 

test systems. Probability density functions (Weibull, lognormal and Gumbel) model the uncertainty of 

RESs. Two scenarios, overestimation and underestimation, account for intermittency by including reserve 

cost and penalty cost in the generation cost. The proficiency of the CSBO algorithm is validated by 

comparing its results with other optimizers. The research demonstrates that CSBO consistently 

outperforms other techniques, achieving improved optimal costs for various objective functions. This 

study contributes to the effective integration of renewable energies into electrical networks, enhancing 

economic and environmental benefits.  

Key words:  CSBO, Optimal power flow, hybrid renewable energy systems, Emission, Wind power, PV 

Solar power, small hydropower plant, Uncertainty. 

Résumé : Cette thèse aborde le problème du l’écoulement de puissance optimal (OPF) dans les systèmes 

d’alimentation hybrides impliquant des sources d’énergie renouvelables. Le problème OPF comprend 

l’optimisation de divers objectifs tout en tenant compte des contraintes opérationnelles, physiques et de 

sécurité. Les approches traditionnelles d’algorithmes mathématiques ont été utilisées pour résoudre le 

problème de l’OPF, mais elles souffrent souvent de limitations en termes d’efficacité et de convergence. 

Pour surmonter les défis introduits par les SER intermittents, l’algorithme CSBO (Circulatory System-

Based Optimisation) est proposé et appliqué sur les systèmes de test IEEE 30 bus modifiés et IEEE 57 bus. 

Les fonctions de densité de probabilité (Weibull, lognormal et Gumbel) modélisent l’incertitude des SER. 

Deux scénarios, la surestimation et la sous-estimation, tiennent compte de l’intermittence en incluant le 

coût de réserve et le coût de pénalité dans le coût de production. La compétence de l’algorithme CSBO est 

validée en comparant ses résultats avec d’autres optimiseurs. La recherche démontre que CSBO surpasse 

constamment les autres techniques, obtenant des coûts optimaux améliorés pour diverses fonctions 

objectives. Cette étude contribue à l’intégration efficace des énergies renouvelables dans les réseaux 

électriques, renforçant ainsi les avantages économiques et environnementaux 

Mots Clés : l’écoulement de puissance optimal (EPO), Méthodes métaheuristiques, Optimisation par 

CSBO, Réseau électrique, énergie éolienne, Solaire photovoltaïque, 

في أنظمة الطاقة الهجينة التي تنطوي على مصادر الطاقة المتجددة.  (  OPFهذه الأطروحة مشكلة تدفق الطاقة الأمثل )  تتناول :  ملـخـص 
تحسين الأهداف المختلفة مع مراعاة القيود التشغيلية والمادية والأمنية. تم استخدام مناهج الخوارزميات الرياضية التقليدية  OPFتتضمن مشكلة 

كنها غالبا ما تعاني من قيود من حيث الكفاءة والتقارب. للتغلب على التحديات التي أدخلتها التغيرات العشوائية لمصادر  ل  ،OPFلحل مشكلة  
   IEEEو  IEEE 30-busوتطبيقها على أنظمة اختبار  (  CSBOالطاقة المتجددة، تم اقتراح خوارزمية التحسين القائم على نظام الدورة الدموية )

57-bus  المعدلة. ت( قوم دوال كثافة الاحتمالWeibull  وlognormal      وGumbel  ) بنمذجة عدم اليقين في مصادر الطاقة المتجددة. وهناك
يتم التحقق من    سيناريوان، هما المبالغة في التقدير والتقليل من التقدير، يمثلان التقطع بإدراج تكلفة الاحتياطي وتكلفة الغرامة في تكلفة التوليد.

 الأخرى،يتفوق باستمرار على التقنيات  CSBOمن خلال مقارنة نتائجها مع المحسنات الأخرى. يوضح البحث أن  CSBOمية كفاءة خوارز 
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ائية، مما يحقق تكاليف مثالية محسنة لمختلف الوظائف الموضوعية. تساهم هذه الدراسة في التكامل الفعال للطاقات المتجددة في الشبكات الكهرب 
 الاقتصادية والبيئية.  مما يعزز الفوائد 

 الشمسيةالطاقة    الرياح،طاقة    الكهربائية،الشبكة    ،CSBOالتحسين بواسطة    خوارزمية التحسين، تدفق الطاقة الأمثل،    الكلمات الرئيسية: 
 .الكهروضوئية
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