MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE AKLI MOHAND OULHADJ – BOUIRA FACULTE DES SCIENCES DE LA NATURE ET DE LA VIE ET DES SCIENCES DE LA TERRE DEPARTEMENT DE BIOLOGIE

Réf:/UAMOB/FSNVST/2023

MEMOIRE DE FIN D'ETUDES EN VUE DE L'OBTENTION DU DIPLOME MASTER

Domaine: SNV Filière: Ecologie et environnement

Spécialité : Biodiversité et Environnement

Présenté par :

FERRACHE Ikram & GACEM Ikram

Thème

Inventaire des espèces de poissons dans le barage Koudiat Asserdoune dans la commune de Maala (Bouira)

Soutenu le: 04 / 07 /2023 Devant le jury composé de :

Nom et Prénom	Grade				
Mme. LAMRI Naziha	MCB	Univ. de Bouira	Présidente		
Mme. IDER Djamila	MCB	Univ. de Bouira	Promotrice		
Mme. CHERIFI Assia	MCB	Univ. de Bouira	Examinatrice		

Année Universitaire: 2022/2023

Remerciment

Avant tout, je voudrais exprimer mes remerciements à Allah qui m'a donné la force et la volonté de faire ce travail.

Je tiens à remercier mes parents pour leur soutien constant. Mes sincères remerciements vont à **Mme Ider Djamila** pour avoir accepté de m'encadrer, de me conseiller et de me guider dans mon travail. Je tiens à remercier d'avoir **Mme Lamri Naziha** accepté de présider ses travaux et **Cherifi Assia** d'avoir accepté de faire partie du jury de ce mémoire. Je remercie tous les professeurs du facultéde sciences naturelles et de la vie qui nous ont beaucoup aidés et partagé leur expérience avec nous, ainsi que les personnes qui m'ont aidé de près ou de loin.

Dídicace

Tout d'abord, je dédie cemodeste travail à ceux qui m'ont soutenu tout au long de mon parcours universitaire.

Mon cher père Rabah

Mon chère Mère Zahía

Mes sœurs HADJER, SARA et ROUKIA

Et leur enfants AYA, MELISSA, ANFEL, DJAOUAD et DINA

A toutes la famille Gacem et Alouache

Ma Binôme qui a partagé ce travail avec moi et m'ont été d'une grande aide

Mes amís **Bouchra**, **Lamía**, **Nadjet**, **Lydía**, **Roumaíssa**, **Amel**, **Karíma** et **Lydía**

IKRAM. G

Dídicace

Tout d'abord, je dédie cemodeste travail à ceux qui m'ont soutenu tout au long de mon parcours universitaire.

Mon cher père Abde el kder

Mon chère Mère **Houría**

Mes sœurs Hacen, Houcín, Khalíl et Kater El Nada

A toutes la famille Ferrache et Achit

Ma Bínôme quí a partagé ce travail avec moi et m'ont été d'une grande aide

Mes amís Ikram, Chahinez, Lydia, Roumaissa, Kaouter, Kheira

 $IXRAM. \mathcal{F}$

Sommaire

•	• 4	1	4 1 1	
	ICTA	aan	tah	leaux
	1	uco	uun	LUUA

Liste	des	figures	5
-------	-----	---------	---

Introduction	01
Chapitre I : Synthèse Bibliographique	
I. Généralités sur les barrages	02
I.1. Définition	02
I.2. Les barrages en Algérie	02
I.3.Principaux barrages en Algérie	02
II. Généralités sur les poissons	03
II.1. Définition des poissons	03
II.2. Classification des poissons	03
II.3. Morphologie des poissons	03
III. Les espèces des poissons d'eau douce	04
III.1.Les espèces des poissons d'eau douce dans le monde	04
III.2.Les espèces des poissons d'eau douce en Algérie	06
IV. Technique de pêche utilisé dans l'eau douce	10
Chapitre II : Partie expérimentale	
I. Présentation de la zone d'étude	11
I.1. Situation géographique	11
I.2. Le climat	11
I.3. Hydrologie	12
II. L'échantillonnage et traitement des échantillons	12
II.1. Mesure biométriques	12
II 2. L'identification des espèces de poisson	13

II.2.1. Forme générale du corps	13
II.2.2. Nombre, position et forme des nageoires	13
II.2.3. La couleur	16
II.2.4. La tête	17
II.2.5. Les écailles	17
II.2.6. La ligne latérale	18
II.3. Détermination du sexe	18
II.4. Étude de sex-ratio (SR)	18
II.5. Estimation de l'âge	19
A- Scalimétrie	19
B- Otolithométrie	20
II.6. Analyse biométrique	21
II.6.1 Relation taille-poids	21
II.6.2. Coefficient de condition du Fulton (k)	21
Chapitre III : Résultas et discussion	
I. Identification des espèces	23
I.1. Le Carassin commun, Carassius carassius (Linnaeus, 1758)	24
I.2. Le Carpe commune, Cyprinus carpio (Linnaeus, 1758)	25
I.3. Le Gardon, <i>Rutilus rutilus</i> (linnaeus, 1758)	26
II. La variation de sex-ratio	28
II.1. Étude de sex-ratio (SR)	28
II.2. Estimation de l'âge	29
III. La variation des paramètres de croissance	31
III.1. La relation taille-poids de Carassius carassius	31
III.2. La relation taille-poids de Cyprinus carpio	32

III.3. La relation taille-poids de <i>Rutilus rutilus</i>	33
IV. Variation de coefficient de condition (K)	34
Conclusion et perspectives	36
Références bibliographiques	
Résumé	

Liste des tableaux

Tableau 01 : Principaux barrages en Algérie 02
Tableau 02 : Quelques espèces des poissons d'eau douce du monde
Tableau 03 : Inventaire des espèces de poissons d'eau douce algériennes
Tableau 04 : Quelques données hydrologiques du barrage. 12
Tableau 05 : Effectifs, taille et poids (maximale et minimale) des espèces de poisson échantillonnées. 23
Tableau 06 : Tableau démonstratif des différents critères distinctifs des espèces
identifiées
Tableau 07 : Taux de la sex-ratio entre les mâles et les femelles des 3 espèces (<i>C. carassius</i> ,C. carpio, R. rutilus)
Tableau 08 : clé âge-longueur obtenu par la lecture direct des otolithes de <i>Carassius</i> 30
Tableau 09 : clé âge-longueur obtenu par la lecture direct des otolithes de Cyprinus carpio 30
Tableau 10 : clé âge-longueur obtenu par la lecture direct des otolites de <i>Rutilus rutilus</i> 31

Liste des figures

Figure 01 : Morphologie générale d'un poisson
Figure 02 : Situation géographique de Barrage Koudiat Acerdoune
Figure 03 : Photographie des différentes mesures effectuées sur le poisson
Figure 04: Anatomie d'un poisson
Figure 05 : Différentes positions des nageoires pelviennes
Figure 06 : Différentes formes de nageoires dorsales
Figure 07 : Les différentes formes de nageoires caudales
Figure 08 : Différents critères d'identification présents sur la tête
Figure 09 : Les différents types des écailles
Figure 10 : Image représentent la ligne latérale chez les poissons
Figure 11 : Photographie représentant les gonades femelle (A) et mâle (B)
Figure 12 : Lecture d'âge sur les écailles
Figure 13 : Photographie représentant l'extraction des otolithes
Figure 14 : Diagramme circulaire en secteurs, représentant taux de poissons échantillonnés
par espèce23
Figure 15 : Photographie de <i>C. carassius</i>
Figure 16 : Photographie de <i>C. carpio</i>
Figure 17 : Photographie de <i>R. rutilus</i>
Figure 18 : Histogramme représentant la sex-ratio en fonction des espèces. a : <i>Carassius carassius</i> ; b : <i>Cyprinus carpio</i> ; c : <i>Rutilus rutilus</i>
Figure 19 : Diagramme en secteur représentant la variation de sex-ratio de
l'échantillon
Figure 20 : Nuage de points représentant la relation entre le poids totale (g) et la longueur totale (cm) chez le carassin commun. a : Mâle ; b : Femelle ; c : Sexe combinés32
Figure 21 : Nuage de points représentant la relation entre le poids totale (g) et la longueur totale (cm) chez le Carpe commune. a : Mâle ; b : Sexe combinés

Figure 22 : Nuage de points montrant la relation entre le poids totale (g) et la longueur totale (cm) chez le mâle de Gardon	
Figure 23 : Histogramme représentant les valeurs de K en fonction de sexe chez le carassin commun	
Figure 24 : Histogramme représentant les valeurs de K en fonction des espèces (<i>C. carassius</i> ; <i>C. carpio</i> ; <i>R. rutilus</i>)	5

Introduction

Environ dix milles (10000) espèces de poissons strictement d'eau douce sont reconnues dans le monde. Un tiers de ces espèces sont menacées d'extinction, et certaines d'entre elles ont disparu en raison de la dégradation de leur environnement (**Bruslé et Quignard, 2004**).

L'Algérie, l'un des pays qui a introduit de nouvelles espèces de poissons pour développer l'aquaculture (Lounaci-Daoudi & Lounaci, 2019). Ces poissons occupent une large répartition géographique, répartis dans tout le pays du nord au sud, en passant par le centre (Tolba, 2018). L'ichtyofaune des eaux continentales d'Algérie se divise en espèces autochtones naturellement présentes dans le territoire Algérien, et espèces allochtones ou d'origine étrangère, il s'agit d'organismes introduits par l'Homme. Cette ichtyofaune est caractérisée par la prédominance des cyprinidés, des mugilidés et des cichlides (Bacha et Amara, 2007). Les espèces les plus souvent introduites en Algérie appartiennent à la famille des Cyprinidés (Morsi, 2016).

En raison de la situation géographique de l'Algérie, l'eau est une ressource inégalement répartie, ce qui a rendu la mobilisation de toutes les ressources en eau par la construction de barrages plus que nécessaire. Ces dernières années, l'Algérie a pris conscience de son potentiel en termes de pisciculture dans ces barrages, afin d'assurer la sécurité alimentaire et le développement économique. Par conséquent, plusieurs études ont été réalisées dans différents barrages, tels que le barrage de Bani Haroun (Mila), barrage l'Ksob (Mila) (Mimech, 2015). Dans la région de Bouira, aucune étude n'a été menée dans ce domaine.

Dans ce contexte, notre étude a pour but de réaliser un inventaire des espèces de poissons peuplant l'eau douce du barrage Koudiat Asserdoune (Maala, Wilaya de Bouira) et d'identifier leurs paramètres de croissance afin de pouvoir les préserver.

Notre travail s'articule sur trois parties :

- La première partie renferme des généralités sur les poissons d'eau douce dans le monde et en l'Algérie;
- La deuxième partie décrit le matériel et les méthodes suivies durant notre étude ;
- La troisième partie représente les résultats obtenus, et leur discussion. Nous terminons par une conclusion.

Chapitre 1 Synthèse Bibliographique

I. Généralités sur les barrages

I.1. Définition

Un barrage est un ouvrage technique hydraulique qui est installé sur un cours d'eau dans un grand bassin versant. Ces barrages sont situés dans des terres compactées à écoulement latéral, qui collectent et stockent chaque partie des eaux de ruissellement. Ils ont été créés pour assurer la préservation des sols et des eaux, réguler les crues des montagnes et recharger les vallées et les oueds (Alberge et al., 2006).

I.2. Les barrages en Algérie

L'Algérie a fait de grands progrès dans l'utilisation de l'eau pour assurer la satisfaction des besoins en eau domestiques, industriels et agricoles. A la fin de 2021, le nombre de barrages en Algérie a atteint 80 barrages fonctionnels dont la capacité a atteint 7.744 millions de mètres cubes (Ministère des Ressources en eau, 2021).

I.3. Principaux barrages en Algérie

Les principaux barrages en Algérie sont rapportés dans le tableau ci-dessous (Tableau 01).

Tableau 01: Principaux lacs barrage en Algérie (ANBT, 2023).

Nom	Wilaya	Capacité (Hm3)	Hauteur (m)
Beni Haroun	Mila	960	121
Koudiet Acerdoune	Bouira	640	121
Gargar	Relizane	358	90
Sidi Yacoub	Chlef	253	87
H. Debagh	Guelma	184	93
Bouroumi	Blida	181	100
Taksebt	Tizi ouzou	181	76
H. Boughrara	Tlemcen	175	85
Tilesdit	Bouira	164	65
Cheffia	El Taraf	159	51

II. Généralités sur les poissons

II.1. Définition des poissons

Les poissons sont des êtres à vie aquatique, à respiration branchiale, se mouvant à l'aide de nageoires paires ou impaires, multiradiées, à cœur pourvu d'une seule oreillette et d'un seul ventricule. Leur peau est le plus souvent couverte d'écailles minces, enchâssées dans des replis du derme (Cauvet, 1869 et Picaud et al., 2006).

II.2. Classification des poissons

Selon **Muus et Nielsen (2000)**, environ 25 000 espèces de poissons sont idenifiées, et qui se répartissent en trois groupes à savoir :

- ✓ les Agnathes : poissons sans mâchoire (lamproie, myxines) ;
- ✓ les poissons cartilagineux ou chondrichtyens (Chimères, requins et raies) ;
- ✓ les poissons osseux ou Ostéichtyens (Téléostéens), qui englobent la plupart des espèces actuellement existantes.

II.3. Morphologie des poissons

Selon **Caratini** (1984), les poissons ont une forme qui leur permet de fendre l'eau avec aisance (ils sont hydrodynamiques). Leur tête se termine par une bouche, porte des yeux, des narines et, sur les côtés, deux petits volets et une fente appelés opercules qui se soulèvent et s'abaissent régulièrement. La tête se continue par le tronc portant des nageoires (Figure 01).

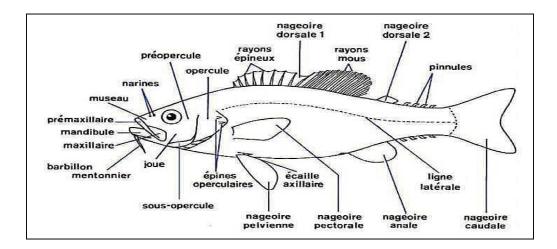


Figure 01: Morphologie générale d'un poisson (www.buz.isfad-gn.org).

III. Les espèces des poissons d'eau douce

Les poissons d'eau douce sont classés en fonction de leur tolérance à l'eau salée. La première catégorie de base comprend les familles dont les membres ne tolèrent pas la salinité et se limitent à l'eau douce, l'eau salée est un obstacle majeur pour eux. La deuxième classe comprend les individus qui sont généralement confinés à l'eau douce mais ont une certaine tolérance à l'eau de mer, leur distribution peut refléter une distribution dans les eaux côtières ou en parcourant de courtes distances en eau salée. Certains membres par famille peuvent être confinés à l'eau douce, et d'autres peuvent passer une grande partie de leur cycle de vie en eau douce. La troisième classe comprend principalement des groupes marins, dont certains entrent en eau douce (Berra, 2001).

III.1.Les espèces des poissons d'eau douce dans le monde

Environ 20 % de l'eau douce du globe se trouve dans les provinces des Prairies et dans les Territoires du Nord Ouest du globe terrestre réunis . On y trouve , dans de petits et de grands lacs, ainsi que dans plusieurs systèmes fluviaux (**DCMPO**, **1983**). L'Europe compte 546 espèces indigènes et 33 espèces introduites. Ce nombre est insignifant comparé aux milliers d'espèces qui vivent en Amérique du Nord. Cette pauvreté relative s'explique par la géographie particulière de l'Europe et l'histoire climatique du globe (**Daufranse**, **2011**).

Le tableau ci-dessous (Tableau 02) représente quelques espèces des poissons d'eau douce dans le monde, leurs noms communs et leur distribution géographique.

Tableau 02 : Quelques espèces des poissons d'eau douce du monde (Daufranse, 2011 ; jacqes et Jean-Pierre, 2013).

Famille	Espèces	Nom commun	Distribution géographique
Esocidés	Esox lucius (Rafinesque, 1815)	Le Brochet européen	-Toute l'Europe à l'exception de l'Italie. -Sibérie. -Amérique du Nord.
Percidés	Perça fluviatilis (Linnaeus, 1758)	La perche commune	-L'Europe à l'exception les régions méridionales. -Sibérie.
	Sander luciopera (Linnaeus, 1758)	Le sendre commun	-L'Europecentrale et orientale. -Etendu vers le nord et l'ouest de l'Europe.

Centrarchidés	Micropterus salmoides (Lacépède, 1802)	Le black-bass à grande bouche	-Amérique du NordIntroduitvers l'Europe : France, Grande-Bretagne, Pays-Bas, Allemagne, Espagne, La Russie et vers l'Afrique du nord, Afrique du Sud, Kenya, Zimbabwe, Thaïlande, Viêt-Nam, Hong-Kong, Japon
	Micropterus dolomieui (Lacépède, 1802)	Le black-bass à petite bouche.	-Les États-Unis. -Introduit en Allemagne, Pays-Bas, Danemark et le sud de Finlande.
Siluridés	Silurus glanis(Linnaeus, 1758)	Le silure glane	-L'Europe centrale et orientale.
	Salmo trutta fario (Linnaeus, 1758)	La truite de rivière	-Europe du Nord, Centrale et de l'Ouest.
	Salmo trutta lacustris (Linnaeus, 1758)	La truite de lac	-L'Europe.
Salmonidés	Oncorhynchusmykiss(Walbaum, 1792)	La truite arc-en- ciel	-L'Europe. -La France continentale .
	Salvelinus fontinalis (Mitchill, 1814)	L'omble de fontaine	-Nord-est de l'Amérique du nord. - Introduit en Europe.
	Salvelinus alpinus (Linnaeus, 1758)	L'omble- chevalier arctique	-L'Europe : Islande, Nord de Russie.
	Salvelinus umbla (Linnaeus, 1758)	L'omble- chevalier commun	-L'Europe.
Corégonidés	Coregonuslavaretus(Linnaeus, 1758)	Le corégone	-L'Europe du NordL'Europe centraleL'arc alpin Quelques rivières en AllemagneLa France.
Cottides	Cottus gobio(Linnaeus, 1758)	Le chabot	-Tout la France sauf la CorseTout l'Europesauf la péninsule ibérique Une partie dupourtourméditerranéenDes îles britanniquesLa Scandinavie.
	Phoxinusphoxinus(Linnaeus, 1758)	Le varion	-L'Europe, du Sud de la France jusqu'à la Russie.
	Telestessouffia (Risso, 1827)	Le blageon	-De l'est de la France à la Croatie.
	Chondrostomanasus(Linnaeus, 1758)	Le hotu	-La France au bassin du Danube, à l'exception du pourtour méditerranéenDes îles britanniquesLa Scandinavie.
Cyprinidés	Leuciscusleuciscus(Cuvier, 1816)	La vandoise	-L'Europe, de la Catalogne à la Russie . -La France, sauf en Corse. -Absente de la majorité partie de la

			péninsule ibérique, pourtour méditerranéen et bassin de la mer noire.
	Squaliuscephalus(Linnaeus, 1758)	Le chevaine	-L'Europe, sauf le nord de la Scandinavie. -En France, sauf en Corse.
	Alburnoidesbipunctatus(Bloch, 1782)	Le spirlin	-L'Europe, de la France à la Russie. -Absente de la péninsule ibérique.
	Barbus barbus(Linnaeus, 1758)	Le barbeau fluviatile	 -L'Europe, du Sud de la Grande-Bretagne au bassin du Danube. -La France, sauf certains rivières de l'Ouest et de la Crosse. Absent d'une partie du pourtour méditerranéen.
	Gobiogobio(Linnaeus, 1758)	Le goujon	-L'Europe, sauf une petite de la bordure méditerranéen et de la Scandinavie.
	Rutilus rutilus(Linnaeus, 1758)	Le gardon	-La France sauf en CorseAbsent de la péninsule ibérique, du pourtour méditerranéen, l'Écosse et de la Scandinavie.
	Alburnusalburnus(Rafinestique, 1820)	L'ablette	-La France, sauf en Corse. -L'Europe, sauf la péninsule ibérique, l'Italie, l'Irlande, la Grande-Bretagne, la Norvège et Finlande.

III.2.Les espèces des poissons d'eau douce en Algérie

L'inventaire des poissons des eaux douces algériennes a permis d'établir une liste de 69 espèces appartenant à 27 familles, dont 30 sont indigènes, 19 non-établ, 9 endémiques,7 introduites, 2 discutables et 2 non identifiées (Tabeau 03) (Kara, 2012; Jacques et Jean-Pierre, 2013) (www.fishbase.com).

Tableau 03: inventaire des espèces de poissons d'eau douce algériennes (Kara, 2012; Jacques et Jean-Pierre, 2013) (www.fishbase.com).

	Famille	Espèce	Nom commun	Lieu d'introduction	Origine	But d'introduction
A	cipenseridae	Acipensersturio (Linnaeus,1758)	Sturgeon	-	-	-
		Alosaalgériensis(Rega n, 1916)	Alose d'Afrique du Nord	-	-	-
Alo	osidae	Alosaalosa(Linnaeus, 1758)	Allisshad	-	Paléarctique	-

	Alosafalax(Lacépède, 1802)	Alose de Twaite	-	Paléarctique	-
	Aphaniusfasciatus(Val enciennes, 1821)	Fondule barré de Méditerran ée	-	Paléarctique	-
	Apricaphaniusiberus(V alenciennes, 1846)	Espagnol toothcap	-	-	-
Aphaniidae	Apricaphaniussaourens is(Blanco, Hrbek, Doadrio, 2006)	Aphanius du Sahara	-	-	-
	<i>Telliaapoda</i> (Gervais, 1853)	-	-	-	-
Anguillidae	Anguillaanguilla (Linnaeus, 1758)	Anguille europpéen ne	-	Paléarctique	-
Atherinidae	Atherinaboyeri(Risso, 1810)	Fonte de sable à grande échelle	-	-	-
Alestidae	Brycinusmacrolepidotu s(Valenciennes, 1850)	Véritable tétra à grande échelle	-	-	-
Blenniidae	Salaria fluviatilis (Asso,1801)	Blennie d'eau douce	-	Paléarctique	-
	Astatotilapiadesfontain i(Lacepède,1802)	-	-	-	-
Cichlidae	Coptodonzillii (Gervais, 1848)	Tilapia à ventre rouge	-	-	-
	Hemichromisbimaculat us (Gill, 1862)	Le poisson- juif	-	Ethiopien	-
	Hemichromisletourneu xi (Sauvage, 1880)	Poisson bijou	-	Ethiopien	-
	Oreochromisma crochir (Boulenger, 1912)	Tilapia à long bec	-	Ethiopien	Aquaculture
	Oreochromismossambi cus (Peters, 1852)	Mozambiq ue tilapia	Ain skhouna	Ethiopien	-
	Oreochromisniloticus (Linnaeus, 1758)	Tilapia du Nil	Barrages, exploitations agricoles	Ethiopien	Aquaculture
	Sarotherodongalilaeus(Linnaeus, 1758)	Tilapia à la mangue	-	Paléarctique	-
	Hemichromissaharae (Sauvage, 1880)	-	-	-	-
	Carasobarbusfritschii (Gunther, 1874)	-	-	-	-
	Carassiusauratus (Linnaeus, 1758)	Poisson rouge	-	Paléarctique	Ornament

	Carassiuscarassius	Carpe de	Barrage d'Ain	Paléarctique	Accident
Cyprinidae	(Linnaeus, 1758)	Crucian	Zada		
• • • • • • • • • • • • • • • • • • • •	Cyprinuscarpio	Carpe	Oueds de Mitidja	Paléarctique	Aquaculture
	(Linnaeus, 1758)	commun			
	Enteromiusdeserti	-	-	-	-
	(Pellegrin, 1909)				
	Luciobarbusbiscarensi	-	-	-	-
	s (Boulenger, 1911)				
	Luciobarbuscallensis(Barbe	-	-	-
	Valenciennes, 1842)	algérienne			
	Luciobarbuschelifensis (Brahimi, Freyhof,	-	-	-	-
	Henrard et Libois,				
	2017)				
	Luciobarbusleptopogo	_	_	_	_
	<i>n</i> (Schimper, 1834)				
	Luciobarbusmascarens	_	-	_	_
	is (Brahimi, Freyhof,				
	Henrard et Libois,				
	2017)				
	Luciobarbusnasus	-	-	-	-
	(Gunther, 1874)				
	Luciobarbusnumidiensi	-	-	-	-
	s (Brahimi, Freyhof,				
	Henrard et Libois,				
	2018)				
	Luciobarbussetivimensi	_	_	_	_
	s (Valenciennes, 1842)				
	5 (, 4101101111105,15 12)				
	Clarias	Poisson de	-	Ethiopien	-
	anguillaris(Linnaeus,	boue		-	
Clariidae	1758)				
	Clarias gariepinus	Poisson-	-	Ethiopien	-
	(Buchell, 1822)	chat			
		d'Afrique			
		du Nord			
	Lepomisgibbosus	Graine de	Tell	Néarctique	Pêche sportive
Centrarchidae	(Linnaeus, 1758)	citrouille		France	70.1
	Micropterus salmoides	Bar noir à	Barrages	Néarctique	Pêche sportive
	(Lacepède, 1802)	grande		France	
	Γ 1 : σ :	bouche	O1E "	NIZ Z	A 1.
E11	Esox lucius (Linnaeus,	Grand	Oued Foudha	Néarctique	Aquaculture
Esocidae	1758)	brochet		Paléarctique	
		.	0 1 1 2	France	
G 4 11	Gasterosteusaculeatus	Epinoche à	Oueds de Mitidja	Néarctique	Aquaculture
Gasterosteidae	(Linnaeus, 1758)	trois épines		Paléarctique	
				France	
	G 1: "	0.11			
C 1 ** 1	Gobius paganellus	Gobie de	-	-	-
Gobiidae	(Linnaeus, 1758)	roche			
Gobionidae	Pseudorasboraparva	Pierre	Rivière kebir	Indomalais	-
	(Temminck et	moroko			
	Schlegel, 1846)				

	Abramis brama	Dorade	Barrage d'Ain	Paléarctique	Accident
	(Linnaeus, 1758)	d'eau	Zada		
		douce			
	Alburnusalburnus	Bleak	Barrage de Cap	Paléarctique	-
	(Linnaeus, 1758)		Djinet	1	
Leuciscidae	Leuciscusaspius	Asp	Djinet		
Leuciscidae		Азр	_	_	_
	(Linnaeus, 1758)			D 14	
	Pseudophoxinuscallens	=	=	Paléarctique	-
	is (Guichenot, 1850)				
	Scardiniuserythrophtha	Rudd	Oueds Mazafran	Paléarctique	Pêche sportive
	lmus (Linnaeus, 1758)			France	
	Chelonauratus	Mulet gris	-	-	-
	(Risso, 1810)	doré			
	Chelonlabrosus	Mulet gris			
Marailidae		_	=	-	-
Mugilidae	(Risso, 1810)	épais			
	Chelonramada	Mulet gris	-	-	-
	(Risso, 1810)	mince			
	Chelon saliens	Mulet	-	-	-
	(Risso,1810)	bondissant			
	Mugilcephalus(Linnae	Mulet gris	-	-	-
	us, 1758)	à tête plate			
		_			
3.6	Dicentrarchuslabrax	Loup de	-	-	-
Moronidae	(Linnaeus, 1758)	mer			
		européen			
	Gambusia affinis	Poisson-	-	Néarctique	Bio contrôle
	(Baird et Girard, 1853)	moustique		•	
	Gambusia holbrooki	Moustique	Oueds Mazafran	Néarctique	Bio contrôle
Poeciliidae	(Girard, 1859)	de l'Est	O dodo ividzairan	rvearenque	Dio controle
1 occimiane	Poeciliareticulata	Guppy	Béni Abbès	Néotropique	
	(Peters, 1859)	Сирру	Delli Audes	Neonopique	-
			D 10.1	- · · ·	
	Perca fluviatilis	Perche	Barrage d'Ain	Paléarctique	Accident
Percidae	(Linnaeus, 1758)	européenn	Zada		
		e			
	Sander lucioperca	Sandre	Lac et barrages	Paléarctique	Aquaculture
	(Linnaeus, 1758)		d'Oubéira	Hongrie	•
Petromyzontid	Petromyzonmarinus	Lamproie		Paléarctique	
•	(Linnaeus, 1758)	marine	_	Néarctique	_
ae	(Lilliaeus, 1738)	maime		Nearchque	
	DI . 1				
Pleuronectidae	Platichthysflesus	Flet	-	-	-
	(Linnaeus, 1758)	flonder			
	Oncorhynchusmykiss	Truite arc-	El Milia	Néarctique	Aquaculture
	(Walbaum, 1792)	en-ciel		France	•
Salmonidae	Salmo macrostigma	Truite	-	Paléarctique	-
Summer	(Duméril, 1858)	brune		- arearerique	
	Salmo trutta (Linnaeus,	Truite de	Barrage de Ghrib	Paléarctique	Pêche sportive
	1758)		Darrage de Ollito	France	i cene sportive
	,	mer			
Siluridae	Silurus glanis	Poisson-	Barrage de	Paléarctique	Aquaculture
	(Linnaeus, 1758)	chat de	DjorfTorba	Hongrie	
		Wels			
	Syngnathusabaster	Poisson-	_	-	_
Syngnathidae	(Risso, 1827)	pipe à			
-JB	(= 2000, 2027)	rayures			
		noires			
		1101168			

Tincidae	<i>TincaTinca</i> (Linnaeus, 1758)	Tanche	El Golea	Paléarctique France	Pêche sportive
	Ctenopharyngodnidella (Valenciennes, 1844)	Carpe herbivore	Lac et barrages d'Oubéira	Hongrie	Aquaculture
	Hypophthalmichsmolitr ix (Valenciennes, 1844)	Carpe argentée	Lac et barrages d'Oubéira	Paléarctique Hongrie	Aquaculture
Xenocypridida e	Hypophthalmichsnobili s (Richardson, 1845)	Carpe à grosse tête	-	-1	-

IV. Technique de pêche utilisé dans l'eau douce

La pêche est une activité universelle qui mobilise beaucoup de types d'engins différents, et il en existe une très grande diversité tant à l'échelle mondiale que locale.

Les techniques de capture du poisson regroupent: les moyens directs de capture, notamment les engins de pêche, les bateaux de pêche et leur équipement de navigation, de manceuvre et de contrôle de l'engin de pêche et les moyens indirects de capture, en particulier la détection du poisson (sondeurs et sonars), l'attraction du poisson en vue de sa capture (lumière, appât), la connaissance du comportement du poisson en relation avec l'engin de pêche et la localisation des lieux de pêche par l'emploi des données sur l'environnement (hydrologie, bathymétrie) (Nedelec et al., 1979).

Chapitre 2 Partie expérimentale

I. Présentation de la zone d'étude

I.1. Situation géographique

Le barrage Koudiat Asserdoune sur l'oued Isser se situe dans la commune de Maala à une douzaine de km au sud de Lakhdaria, Wilaya de Bouira, à peu près à 60 km à l'Est d'Alger (Figure 02) (Coyne et Bellier, 2010).

Figure 02 : Situation géographique de Barrage Koudiat Acerdoune (Google maps, 2023).

I.2. Le climat

La Wilaya de Bouira se caractérise par hiver froids et été chaud. Pendant la période de janvier à avril, les températures minimales varient de 4,0 °C (janvier) à 9,4 °C (avril) tandis que les températures maximales varient de 13,9 °C (janvier) à 24,9 °C (avril).

Cette région est caractérisée par des quantités considérables de précipitations. Le mois le plus humide est janvier avec 58,7 mm, suivi de mars avec 28,2 mm, février avec 21,3 mm et avril avec 4,3 mm (www.infoclimat.fr).

11

I.3. Hydrologie

Le tableau ci-dessous représente les principales caractéristiques hydrologiques de site d'étude.

Tableau 04 : Quelques données hydrologiques du barrage (Coyne et Bellier, 2010).

Surface du bassin versant	2790km²
Longueur de l'oued amont	122km
Précipitations moyennes annuelles	565mm/an
Température moyenne annuelle	16° C
Evaporation annuelle	1260mm/ an
Surface de la retenue	18km²

II. Echantillonnage et traitement des échantillons

Notre échantillonnage a été effectué aléatoirement au niveau du barrage Koudiat Acerdoune entre Avril et Mai 2023. En raison de la diminution du niveau d'eau pendant cette période, nous n'avons réussi à obtenir que 25 individus de poissons appartenant à différentes espèces. Ces échantillons ont été prélevés par des pêcheurs à l'aide d'une canne à pêche, puis récupérés et conservés au réfrigérateur pour être traités ultérieurement au laboratoire, puis identifiés selon des critères morphologiques à l'aide de clés d'identification.

II.1. Mesure biométriques

Chaque individu a été mesuré au centimètre prés et pesé au milligramme prés à l'aide d'une règle graduée et une balance de précision 0.01g respectivement.

Les mesures effectuées sont (Figure 03) :

- Longueur totale (Lt) : Distance mesurée de l'extrémité antérieure du museau jusqu'à la pointe postérieure du plus long rayon de la nageoire caudale.
- Longueur standard (Ls) : Distance mesurée de l'extrémité antérieure du museau jusqu'au début de la nageoire caudale.
- Longueur à la fourche (Lf) : Distance mesurée de l'extrémité antérieure du museau jusqu'à la pointe du rayon médian de la nageoire caudale.
- Poids total (Pt) : représente le poids du poisson entier.

• Poids éviscéré (Pe) : représente le poids du poisson après avoir été vidé de tous ses viscères après dissection.

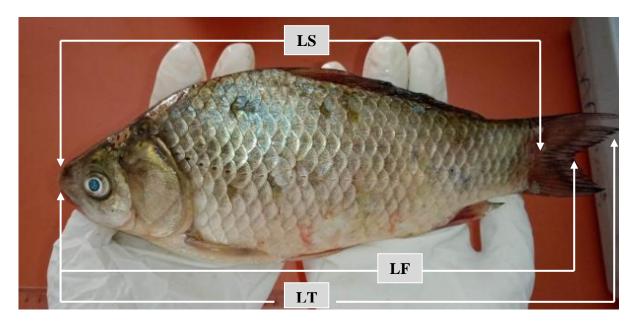


Figure 03 : Photographie des différentes mesures effectuées sur le poisson (Lt : longueur totale, Ls : longueur standard, Lf : Longueur à la fourche)

II.2. L'identification des espèces de poisson

L'identification des poissons à l'espèce nécessite toujours la capture et la manipulation des spécimens. De plus, pour plusieurs d'entre elles, un examen attentif de certaines structures est requis. Et cela en se basant sur les critères morphologiques les plus évidents possibles. (Desroches et François, 2010).

II.2.1. Forme générale du corps

La forme générale du corps dépend de la longueur, de la hauteur et de l'épaisseur du poisson. Les poissons ont un corps très distinctif qui diffère d'une espèce à l'autre : allongé, étroit, court et haut. Le pédoncule caudal est long ou court et mince ou épais. En vue transversale, le poisson est comprimé latéralement ou arrondi (**Desroches, 2017 ; Teletchea, 2020**).

II.2.2. Nombre, position et forme des nageoires

Selon Teletchea (2020), deux types de nageoires sont présents chez les poissons :

• Les nageoires paires (pectorales et pelviennes) sont situées de part et d'autre du poisson.

• Les nageoires impaires (dorsales, anales, caudales et adipeuses) sont situées dans l'axe de symétrie du corps.

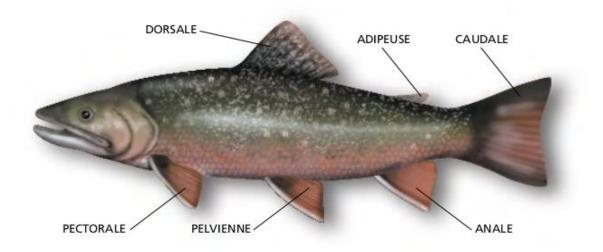


Figure 04: Anatomie d'un poisson (Desroches, 2017).

La largeur, la longueur, la position ainsi que le nombre de rayons (souples ou épineux) des nageoires sont des caractères très utiles pour identifier les espèces.

> Les nageoires paires

- Les nageoires pectorales peuvent être positionnées très bas ou très haut sur le corps de poisson (Figure 04). Elles sont parfois très larges (le Chabot commun) ou parfois absentes (les Lamproies).
- Les nageoires pelviennes sont aussi généralement bien développées, sauf chez l'Anguille et les Lamproies qui n'en possèdent pas. Elle présentent trois positions différentes (Figure 05): soit très en arrière du corps (d'abdominales), soit juste en arrière des pectorales (thoraciques), ou enfin en avant des pectorales (jugulaires) (**Teletchea, 2020**).

14

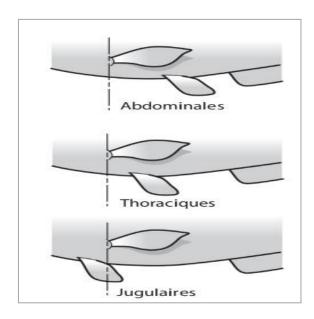


Figure 05 : Différentes positions des nageoires pelviennes (Teletchea, 2020).

> Les nageoires impaires

- La nageoire adipeuse ne comporte aucun rayon, se situe entre la nageoire dorsale et la nageoire caudale, sur le dos ou le pédoncule caudal du poisson (Figure 04). Présente Chez certaines familles de poissons : Salmonidés, Osméridés, Percopsidés,... chez certains Ictaluridés, elle est fusionnée à la nageoire caudale. (**Desroches, 2017**).
- La nageoire dorsale varie selon les espèces. Soit une seule nageoire très courte ou très longue, ou deux nageoires de longueur approximativement égale ou différente. La distance entre ces dernières peut être grande (séparées), très petite (juxtaposées) ou absente ce qui donne une longue nageoire (fusionnées) (Figure 06) (**Teletchea, 2020**).

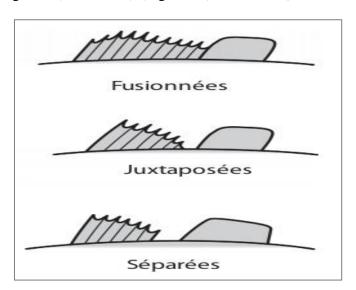


Figure 06: Différentes formes de nageoires dorsales (Teletchea, 2020).

- La nageoire anale, positionnée juste après l'anus du poisson, est présente chez toutes les espèces (Figure 04). Il n'y a que la longueur qui diffère: elle est par exemple très courte chez le Huchon et très longue chez la Brème commune (**Teletchea**, **2020**).

- *La nageoire caudale* est généralement bien développée, sa forme est liée au rapport entre sa hauteur et sa longueur, on distingue cinq grandes formes: asymétrique (hétérocerque), fourchue, échancrée, tronquée et arrondie (Figure 07) (**Teletchea, 2020**).

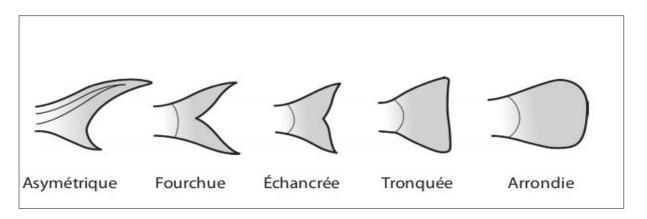


Figure 07: Les différentes formes de nageoires caudales (Teletchea, 2020).

II.2.3. La couleur

La couleur est un critère important d'identification. Cette couleur peut varier d'une espèce à une autre, selon le milieu, le stade du développement (juvénile, adulte) et le sexe (mâle ou femelle). Certaines espèces ont des marques distinctives : des rayures verticales ou horizontales sur le corps et des taches de différentes tailles et couleurs sur l'opercule ou sur les flancs (**Telechea**, **2020**).

II.2.4. La tête

- La tête contient deux yeux, une bouche, des narines et un museau.
- La taille de la bouche (petite, moyenne ou grande) et sa position (supère, terminale, infère, protractile) sont deux critères facilement observables qui permettent à identifier les espèces de poissons (Figure 08 'A') (**Teletchea, 2020**).

- Quelques espèces ont des barbillons (petit, court, effilé, très long) (Figure 08 'B') (Desroches, 2017).

Figure 08 : Différents critères d'identification présents sur la tête (Desroches, 2017; Teletchea, 2020).

II.2.5. Les écailles

Les écailles sont de trois types principaux : cycloïdes, cténoïdes et ganoïdes (Figure 09). La forme et le nombre des écailles, notamment celles de la ligne latérale, sont parfois utilisés pour identifier les espèces très proches morphologiquement (**Desroches**, **2017**).

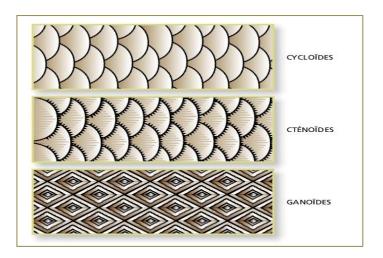


Figure 09: Les différents types des écailles (Desroches, 2017).

II.2.6. La ligne latérale

La ligne latérale est un canal tubulaire qui longe le flanc du poisson. Il peut être vu de l'extérieur à travers la série de pores (Figure 10). Elle peut être complète, partant de l'arrière de la tête jusqu'au pédoncule caudale, incomplète ou absente. Elle est une structure différente

de la bande latérale (résultant de la pigmentation foncée de certaines écailles) (**Desroches**, 2017).

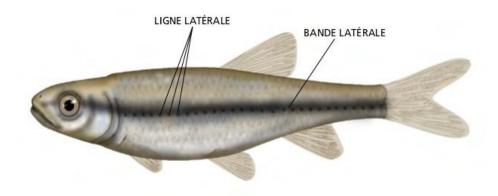


Figure 10 : Image représente la ligne latérale chez les poissons (Desroches, 2017).

II.3. Détermination du sexe

Le sexe a été déterminé par une observation macroscopique de la forme et de la couleur des les gonades.

Apres dissection par incision ventrale de l'anus jusqu'au niveau des nageoires pectorales à l'aide des ciseaux, les gonades ont été extraites et observées. Les gonades femelles apparaissent rondes avec une couleur rose contenant des vaisseaux sanguins (Figure 11 'A'), les gonades mâles sont aplaties de couleur blanche (Figure 11 'B').

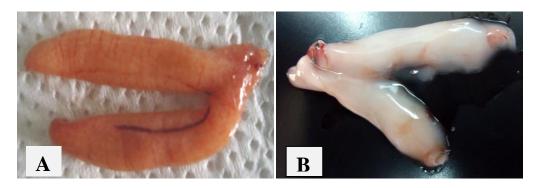


Figure 11: Photographie représentant les gonades femelle (A) et mâle (B).

II.4. Étude de sex-ratio (SR)

Le sex-ratio (SR) est Un indicateur qui permet d'évaluer l'évolution de la population et montre le taux de masculinité et de féminité (**Kartas et Quignard, 1984**).

Les proportions numériques des sexes sont exprimées comme suit :

Le rapport du nombre des mâles au nombre des femelles :

SR=Nm/Nf

✓ Taux de masculinité: (Nm / Nm+Nf) × 100

✓ Taux de féminité: (Nf / Nm+Nf) × 100

Où:

• SR : sexe ratio

Nm : nombre de mâlesNf : nombre de femelles

II.5. Estimation de l'âge

La détermination de l'âge a été effectuée par deux méthodes, scalimétrie (lecture directe sur des écailles) et otolithométrie (examen des otholites).

A- Scalimétrie

La scalimétrie est une méthode d'estimation de l'âge à partir des écailles, sur lesquelles sont enregistrées les variations saisonnières ou annuelles de croissance. Ces dernières, se traduisent par les zones de croissance lentes et étroites nommées des zones denses alternant avec des zones de croissance rapides et larges nommées zones claires. La somme des deux zones alternées représente une année de vie de poisson (Figure 12) (Morsi, 2016).

Les écailles ont été prélevées sur le côté gauche du poisson, sous la nageoire pectorale. Elles on été nettoyées afin d'éliminer les tissus et mucus qui les recouvrent. Une fois nettoyées, les écailles sont montées entre lame et lamelles et observées sous microscope optique (Boet et Le Louarn, 1985 ; Bouhbouh, 2002).

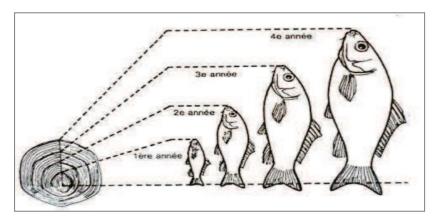


Figure 12 : Lecture d'âge sur les écailles (Morsi, 2016).

B- Otolithométrie

Les otolithes sont considérés comme de véritables « boîtes noires » (Indices de tous les évènements marquants du poisson depuis sa naissance). L'otolithe est une concrétion minérale formée par déposition des couches successives de carbonate de calcium. Il est logé dans l'oreille interne des poissons osseux. On retrouve trois paires d'otolithes : *le lapilli* et *l'asterisci* qui ont une petite taille, et le *sagittae* le plus grand qui est le plus utilisé dans la lecture d'âge (Figure 13). L'accroissement annuel se manifeste généralement par la présence de deux zones concentriques successives, une zone opaque correspondant à la majorité de la croissance annuelle et une zone creuse plus claire (hyaline) formée par le ralentissement de la croissance. Comme pour la scalimétrie, l'âge est donc déterminé en se référant aux couches concentriques (www.fousdetoc.com).

L'extraction des otolithes a été faite par une incision dans la boite crânienne des poissons à l'aide d'une pince. Puis ils sont nettoyés pour enlever les tissus de la macula.

Afin de faire apparaître les anneaux de croissance, les otolithes ont été montés sur lame avec une colle, soumis à un ponçage sur papiers abrasifs puis observés sous microscope optique (Panfili, 2002).

Figure 13 : Photographie représentant l'extraction des otolithes.

II.6. Analyse biométrique

II.6.1 Relation taille-poids

La relation taille poids est un indicateur de croissance important chez les poissons. A partir de cette relation, il est possible d'estimer la croissance pondérale chez les poissons (Morsi, 2016; Diop et al., 2019).

Selon **Elleboode** et *al* (2015), la relation entre la longueur totale et le poids total s'exprime par l'équation suivante (Ricker, 1968) :

$$Pt = a Lt^b$$

Où:

- Pt: poids total du poisson en g.
- Lt : longueur totale du poisson en cm.
- a : une constante.
- b : le coefficient d'allométrie.

Cette relation dépend étroitement de l'état biologique et physiologique du poisson ainsi que les conditions du milieu (Ouedraogo et al., 2019).

Le type de croissance est déterminé en fonction de coefficient d'allométrie b (**Diop et** *al.*, **2019**) :

- Si b = 3 : la croissance est isométrique, les deux variables ont la même allure de croissance, le poids et la taille croient avec la même vitesse.
- Si b < 3 : allométrie minorante, la longueur croit plus vite que le poids.
- Si b > 3: allométrie majorante, le poids croit plus vite que la taille.

II.6.2. Coefficient de condition du Fulton (k)

Le coefficient de condition du Fulton (k) est l'une des formules utilisées pour évaluer la relation longueur/poids chez les poissons. Cette relation implique que plus ce facteur est proche ou supérieur à 1, plus le poisson est gros et il se trouve ainsi dans de meilleures conditions environnementales. Le coefficient de condition est affecté par les facteurs trophiques, l'habitat, le parasitisme et par la période de reproduction (Bolger et Connolly, 1989., Yaragina et Marshall, 2000., Ouedraogo et al., 2019).

L'évolution mensuelle du coefficient de condition K (Fulton, 1911) est définie par la formule suivante (**Freon, 1991**) :

$$K = (Pe / Lt^3) \times 100$$

Avec:

• Pe : Poids éviscéré (g).

• Lt : Longueur totale (cm).

• K : Coefficient de condition du Fulton.

• 100 : Facteur multiplicateur.

Chapitre 3 Résultats et Discussion

I. Identification des espèces

L'échantillonnage réalisé dans le barrage de Koudiat Acerdoune nous a permis d'inventorier 3 espèces de poissons appartenant à la famille Cyprinidae.

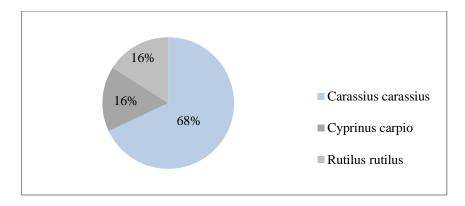

Le tableau N° 05 représente la taille et le poids (maximal et minimal) de ces poissons. L'espèce *Cyprinus carpio* représente la taille la plus grande, avec une longueur de 27,4 cm, tandis que *Carassius Carassius* possède le poids le plus élevé (263,96g).

Tableau 05: Effectifs, taille et poids (maximale et minimale) des espèces de poisson échantillonnées.

espèces	Effectifs	Nm	Nf	Lt max	Pt max	
				Lt min (cm)	Pt min (g)	
Carassius carassius	17	9	8	Lt _{max} : 25,2	Pt _{max} : 263,96	
				Lt _{min} : 9,7	Pt _{min} : 12,63	
Cyprinus carpio	4	3	1	Lt _{max} : 27,4	Pt _{max} : 254,57	
				Lt _{min} : 17,9	Pt _{min} : 73,34	
Rutilus rutilus	4	4	0	Lt _{max} : 21	Pt _{max} : 106,65	
				Lt _{min} : 16	Pt _{min} : 44,09	
Total	25					

Nm : nombre de mâles ; Nf : nombre de femelles ; Lt max : longueur totale maximale ; Lt min : longueur totale minimale ; Pt max : poids total maximal ; Pt min : poids total minimal

La figure N° 14 nous montre le taux des poissons échantillonnés. *C. carassius* est le mieux représenté par un pourcentage de 68 %, puis, *C. carpio* et *R. rutilus* avec 16 %.

Figure 14 : Diagramme circulaire en secteurs, représentant taux de poissons échantillonnés par espèce.

I.1. Le Carassin commun, *Carassius carassius* (Linnaeus, 1758)

> Classification

Règne:	Animalia
Embranchement :	Chordés
Sous-embranchement :	Vertébrés
Super-classe :	Poisson
Classe:	Actinoptérygiens
Ordre:	Cypriniformes
Famille:	Cyprinidae
Genre:	Carassius
Espèce :	Carassius carassius (Linnaeus, 1758)

> Description

Le carassin commun est un poisson à corps très haut et trapu, comprimé latéralement qui atteint 25-35 cm de long et pèse jusqu'à 1 kg. Caractérisé par un pédoncule caudal court et épais. Il a de grosses écailles qui engendrent une ligne latérale bien visible, une nageoire dorsale haute et convexe, caudale bien développée et fourchue et des dents pharyngiennes. Il a un dos brunâtre à reflets verdâtres. Flancs brun - jaunâtres à reflets bronze et ventre blanc – jaunâtre. Le carassin commun ne présente pas de barbillon (Figure 15).

Ecologie

Il préfère les eaux stagnantes (étangs et marécages) tièdes ou chaudes. Il tolère les eaux froides (2-22), saumâtres (6,5-9) avec une salinité maximale de 10 mg par litre. Il tolère également un faible taux d'oxygène dans l'eau (Jacques & Jean-Pierre, 2013).

Figure 15: Photographie de *C. carassius*.

24

I.2. Le Carpe commune, *Cyprinus carpio* (Linnaeus, 1758)

Classification de Carpe commune

Règne:	Animalia
Embranchement:	Chordés
Sous-embranchement :	Vertébrés
Super-classe :	Poisson
Classe:	Actinoptérygiens
Ordre:	Cypriniformes
Famille:	Cyprinidae
Genre:	Cyprinus
Espèce :	Cyprinus carpio (Linnaeus, 1758)

> Description

Le carpe commune a un corps massif qui atteint 50-75 cm de long et pèse jusqu'à 35-40 kg, moyennement élevé et légèrement comprimé latéralement. Un dos sombre, gris - vert à gris - brun, flancs à reflets dorés et ventre crème. Bouche terminale protractile munie de 4 barbillons sensoriels (1 long à chaque commissure et 2 plus courts à la lèvre supérieure) ce qui la distingue de *C. carassius*. Pas de dents buccales mais des dents pharyngiennes. Grandes écailles solidement implantées recouvrant tout le corps sauf la tête. Caractérisée par la présence de sept nageoires de couleur sombre par rapport à la couleur du corps. Une longue nageoire dorsale de forme concave qui commence au milieu de la longueur standard. Une nageoire caudale de forme fourchue. Une paire de nageoire pelviennes qui commencent dés la fin de la tête. Une paire de nageoires pectorales. Une nageoire anale de couleur un peu claire. Ligne latérale bien évidente. Absence d'estomac mais un intestin long avec plusieurs anses intestinales faisant des boucles complexes, ce qui traduit un régime herbivore (Figure 16).

Ecologie

La carpe commune fréquente les eaux stagnantes (lacs, étangs, réservoirs) aux fonds sableux ou vaseux riches en végétation aquatique, tièdes ou chaudes (27-32 °C). Elle a haute tolérance: température > 30°C, une salinité de 14-15 mg par lire et une faible concentration en oxygène : le degré létal < 1 mg par litre (Jacques & Jean-Pierre, 2013).

25

Figure 16 : Photographie de C. carpio.

I.3. Le Gardon, *Rutilus rutilus* (linnaeus, 1758)

> Classification de Gardon

Règne :	Animalia
Embranchement :	Chordés
Sous-embranchement :	Vertébrés
Super-classe :	Poisson
Classe:	Actinoptérygiens
Ordre:	Cypriniformes
Famille:	Cyprinidae
Genre:	Rutilus
Espèce :	Rutilus rutilus (Linnaeus, 1758)

> Description

Le gardon commun à un corps long et aplati qui atteint 25-30 cm de long et pèse 250-400 g jusqu'à1 kg. Caractérisé par un pédoncule caudal court, dos bombé et bord ventral arrondi entre les nageoires pelviennes et l'anus. L'ouverture buccale est étroite, les yeux à iris rouge. Grandes écailles arrondies solidement implantées dans la peau. Nageoires pectorales pelviennes et anale rouge. Dents pharyngiennes disposées en une seule rangée. Le dos et vert foncé à bleu, flancs argentés à reflets jaunâtres et ventre blanc (Figure 17).

26

> Ecologie

R. rutilus préfère les eaux stagnantes (lacs, étangs, réservoirs) mais il peut se trouver dans les eaux courantes. Cette espèce préfère les températures (28-30°C). Il localise le jour dans les eaux vives, dans le chenal principal et près des berges, et se réfugie dans les eaux calmes et tranquilles la nuit (Jacques & Jean-Pierre, 2013).

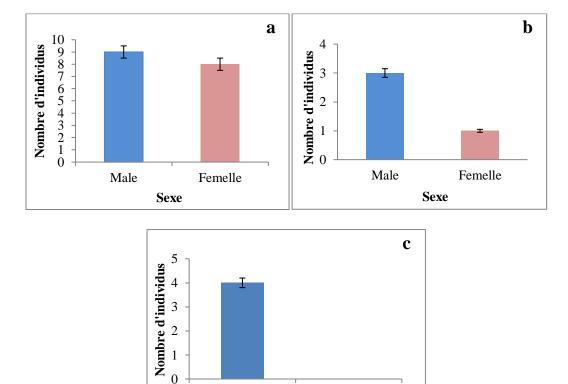
Figure 17 : Photographie de R. rutilus.

Le tableau ci-dessous (Tableau 06) représente les différences des critères morphologiques distinctifs des espèces identifiées.

Tableau 06 : Tableau démonstratif des différents critères distinctifs des espèces identifiées.

Carassius carassius	Cyprinus carpio	Rutilus rutilus
- Corps très haut et trapu.	- Corps massif.	- Corps aplati.
- Pédoncule caudal court.	- Nageoires de couleur sombre par rapport à la	- Pédoncule caudal long.
- Nageoire caudale développée et fourchue.	couleur du corps Présence des barbillons.	- Les yeux à iris rouge.

Nos résultats sont différents de ceux trouvé par **Belhadef et Berdamane** (2020) dans le barrage Ain Zada à (Bordj Bou Arreridj), où il a signalé la présence de 6 espèces (carassin commun, le carassin doré, le carpe commun, la carpe miroir, la carpe argentée et l'ablette). Ainsi que ceux trouvés par **Adamou-Djebraouiet** *al.*, (2018) dans trois barrages (Tiaret) où il a identifié 4 espèces (la Carpe miroir, la Carpe commune, la Carpe rouge et le Barbeau).


II. La variation de sex-ratio

II.1. Étude de sex-ratio (SR)

Tableau 07 : Taux de sex-ratio entre les mâles et les femelles des 3 espèces (*C. carassius, C. carpio, R. rutilus*).

Espèce	Sex-ratio	Taux de masculinité (%)	Taux de féminité (%)
Carassius carassius	1,125	52,94	47,05
Cyprinus carpio	3	75	25
Rutilus rutilus	-	100	0

La sex-ration est en faveur des mâles chez *Carassius carassius* et *Cyprinus carpio*. Chez *Rutilus rutilus* on signale l'absence des femelles dans notre échantillon (Figure 18).

Figure 18: Histogramme représentant la sex-ratio en fonction des espèces. a : *Carassius carassius* ; b : *Cyprinus carpio* ; c : *Rutilus rutilus*

Sexe

Femelle

Male

La figure N° 19 représente un diagramme en secteur de la variation de sex-ratio des 3 espèces. D'après cette figure, nous pouvons constater que la sex-ratio est en faveurs des mâles (64% de mâles, 36% de femelles).

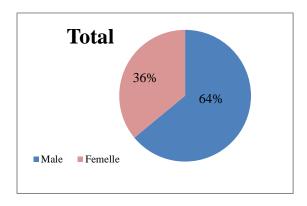


Figure 19: Diagramme en secteur représentant la variation de sex-ratio de l'échantillon

Le même résultat a été obtenu par **Mimech** (2015) dans le réservoir de k'sob (Msila) avec une sex-ratio en faveur des mâles (76% contre 24% femelles). Alors que **Boucenna et al.** (2015) a signalé une sex-ratio en faveur de femelles dans le barrage de Beni Haroun (Mila) (68,16% femelle, 31,83% mâle).

La dominance des mâles peut être dûe au nombre faible d'échantillons. La température est le principal facteur affectant le sexe, les basses températures entravent l'expression des facteurs de masculinité. La proportion de femelles augmente avec la diminution de l'acidité, si le pH est très acide (53-60%) les individus sont des mâles (**Baroiller**, **1998**).

II.2. Estimation de l'âge

L'âge des poissons a été estimé par la méthode d'otolithométrie. Les tableaux 07, 08 et 08 montrent l'âge de chaque espèce.

Pour *Carassius carrasius* (Tableau 07) l'âge de 2 ans est le mieux représenté avec un effectif de 7 individus (12 cm à 17 cm), suivi de l'âge de 3 ans avec un effectif de 5 individus (19 cm à 29 cm), puis l'âge de 1 ans avec un effectif de 4 individus (10 cm et 13 cm), puis de moins d'un an avec un effectif de 1 (10 cm à 11 cm).

Tableau 08 : clé âge-longueur obtenu par la lecture direct des otolithes de *Carassius Carassius*.

Age Taille	0	1	2	3
[9-10[1			
[10-11[2		
[12-13[2	1	
[13-14[2	
[14-15[3	
[15-17[1	
[17-20[1
[24-25[2
[25-26[2

[✓] Remarque : Nous avons éliminé les tranches d'âge [11-12[[15-16[[17-19[[20-24[en raison de l'absence d'échantillons.

L'âge de 3 ans est le mieux représenté par un effectif de 2 individus (24 cm à 26 cm) puis l'âge de 2 ans avec un effectif de 1 individu (17 cm à 18 cm) et l'âge 4 ans avec un effectif de 1 individu (27 cm à 28 cm) (Tableau 08).

Tableau 09 : clé âge-longueur obtenu par la lecture direct des otolithes de Cyprinus carpio.

Age Taille	0	1	2	3	4
[17-18[1		
[18-25[1	
[25-26[1	
[26-28[1

[✓] Remarque : Nous avons éliminé les tranches d'âge [18-24[en raison de l'absence d'échantillons.

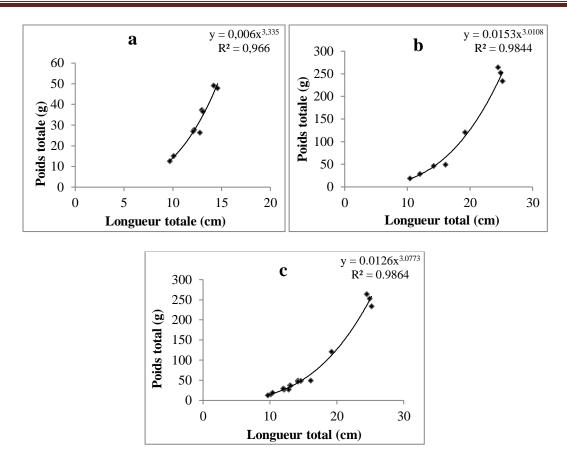
Pour *Rutilus rutilus* (Tableau 09) l'âge de 2 ans et le plus représenté par un effectif de 3 (16 cm à 20 cm) puis l'âge de 3 ans par un effectif de 1 individu (21cm)

Age Taille	0	1	2	3
[16-17[1	
[17-19[1	
[19-20[1	
[20-22[1

Tableau 10 : clé âge-longueur obtenu par la lecture direct des otolites de Rutilus rutilus.

Selon l'étude d'**Arabe** (2021) dans 3 Barages ; Ghrib, Guenitra et Sekak, l'âge de deux ans est le plus représenté avec des tailles de 16-17 cm, 13-14 cm et 14-16 cm respectivement.

Selon l'étude de **Labbaci** (2022) dans le barrage Lakhal, l'âge de 3 ans est le mieux représente avec plusieurs individus qui peuvent atteindre des taille de 20,10 cm et de 15.7 cm....


III. La variation des paramètres de croissance

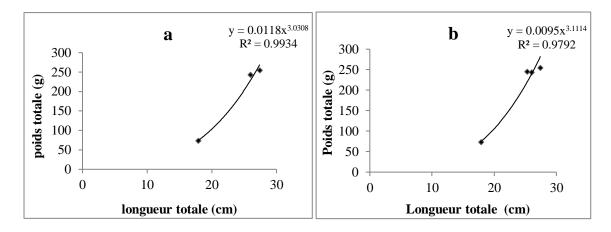
III.1. La relation taille-poids de Carassius carassius

La figure N° 20 représente la relation entre la longueur totale et le poids total chez le carassin commun. L'analyse des résultats montre que la valeur du coefficient d'allométrie (b) pour les mâles est supérieure à 3 (b = 3,33), ce qui signifie une allométrie majorante entre les deux variable, le poids croit plus vite que la longueur. Pour les femelles et l'ensemble de l'échantillon (sexes combinés) b = 3, ce qui exprime une allométrie isométrique (croissance isométrique) entre les deux variables, donc le poids et la taille croient de la même vitesse.

La valeur du coefficient de la corrélation (R²) entre la longueur totale et le poids total chez les mâles, les femelles et les sexes combinés de *Carassius carassius* est proche de 1, ceci traduit une forte corrélation entre les deux variables. Nos résultats différents de ceux trouvés par **Boucenna et al.** (2018) dans le barrage beni Haroun et Belhadef et Berdamane, (2020) dans le barrage Ain Zada où ils ont signalé une allométrie minorante pour l'ensemble des individus étudiés. Notre valeur du coefficient de la corrélation R² est similaire à celle trouvé par ces mêmes auteurs.

[✓] Remarque : Nous avons éliminé les tranches d'âge [17-18[[20-21[en raison de l'absence d'échantillons.

Figure 20 : Nuage de points représentant la relation entre le poids totale (g) et la longueur totale (cm) chez le carassin commun. a : Mâle ; b : Femelle ; c : Sexe combinés.


III.2. La relation taille-poids de Cyprinus carpio

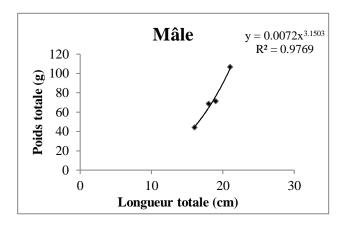
La figure N° 21 représente la relation entre la longueur totale et le poids total chez le Carpe commune. L'analyse des résultats montre que la valeur du coefficient d'allométrie (b) pour les mâles est égale à 3 (b = 3), ce qui signifie une allométrie isométrique de croissance entre le poids et la longueur, les deux variables ont le même taux de croissance, le poids croit comme la taille de poisson de même vitesse. Pour l'ensemble de l'échantillon (sexes combinés) (b = 3,11), donc il existe une allométrie majorante entre les deux variable, le poids croit plus vite que la longueur.

✓ Remarque : Vu la présence que d'un seul individu femelle, la relation taille poids a été calculer pour les mâles et le nombre total des individus.

La valeur du coefficient de la corrélation entre la longueur totale et le poids total chez les mâles, les sexes combinés de *Cyprinus carpio* est proche de 1 (Figure 01 et 03), et chez les femelles R²=1 (Figure 02), ceci traduit une forte corrélation entre les deux variables.

Nos résultats différents de ceux trouvés par Mimech Fateh, (2015) dans le barrage El l'ksob (Mila) il signalé une allométrie minorante pour l'ensemble des individus étudiés. Notre valeur du coefficient de la corrélation R² est similaire à celle trouvé par ces mêmes auteurs.

Figure 21 : Nuage de points représentant la relation entre le poids totale (g) et la longueur totale (cm) chez le Carpe commune. a : Mâle ; b : Sexe combinés.


III.3. La relation taille-poids de Rutilus rutilus

La figure N° 22 représente la relation entre la longueur totale et le poids total chez le Gardon. L'analyse des résultats montre que la valeur du coefficient d'allométrie (b) de la relation taille-poids pour les mâles est supérieure à 3 (b = 3,15), ce qui signifie une allométrie majorante entre les deux variable, le poids croit plus vite que la longueur.

✓ Remarque : Vu la présence que des individus mâles, la relation taille poids a été calculer uniquement pour les mâles.

La valeur du coefficient de la corrélation entre la longueur totale et le poids total chez les mâles de Rutilus rutilus est proche de 1 ($R^2 = 0.976$), ceci traduit une forte corrélation entre les deux variables.

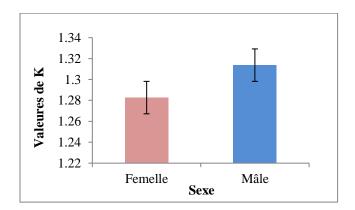

Nos résultats son déférents de ceux trouvés par **Arabe**, (2021) dans barrages de Ghrib, Guenitra et Sekkak où il signalé, une allométrie isométrique pour les femelles de 3 barrage et une allométrie minorant pour les mâles et le sexe combinés. Notre valeur du coefficient de la corrélation R² est similaire à celle trouvé par ces mêmes auteurs.

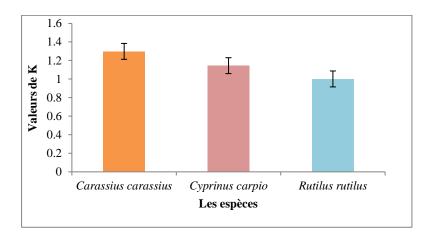
Figure 22 : Nuage de points montrant la relation entre le poids totale (g) et la longueur totale (cm) chez le mâle de Gardon.

IV. Variation de coefficient de condition (K)

La figure N° 23 représente les variations de coefficient de condition K en fonction de sexe chez le carassin commun. Le facteur de condition K des mâles égale à 1,31 et celui des femelles est de 1,28. Dans ce cas le coefficient de condition K est supérieur à 1, ce qui signifierait que les individus se portent bien dans cet écosystème.

Figure 23 : Histogramme représentant les valeurs de K en fonction de sexe chez le carassin commun.

Nos résultats sont proches de ceux trouvés par **Boucenna et** *al.* (2019) où K varie de 1,44 à 1,61 pour les femelles et de 1,47 à 1,48 pour les mâles. Ce qui signifierait que les individus se portent bien dans cet écosystème.


✓ NB : Vu l'absence des femelles chez R. rutilus et des mâles chez C. carpio, le coefficient de condition K a été calculé uniquement pour le nombre total des individus.

La figure N° 24 représente les variations de coefficient de condition K en fonction de sexe chez les 3 espèces étudiées. Le facteur de condition K est de 1,29, 1,14, 1 pour *C. carassius*, *C. cyprinus* et *R. rutilus* respectivement. Le coefficient de condition K chez les 3 espèces est supérieur à 1, ce qui signifierait que les individus se portent bien dans cet écosystème.

Chez le carassin commun, nos résultats ne sont pas similaires à ceux rapportés par (**Boudechiche et** *al.*, **2022**) dans le barrage de Hammam Debagh Guelma.

Chez le *C. carpio*, nos résultats ne sont pas similaires à ceux rapportés par **Tolba**, (2018) dans le barrage de Beni Haroun (Mila, Est d'Algérie).

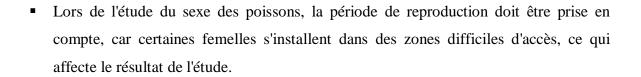
Chez le R. rutilus, nos résultats sont similaires à ceux rapportés par **d'Arabe**, (2021) dans les barrages du Ghrib, Guenitra et Sekkak en Algérie.

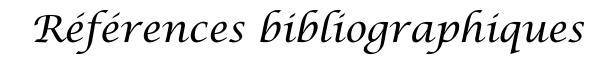
Figure 24 : Histogramme représentant les valeurs de K en fonction des espèces (*C. carassius* ; *C. carpio* ; *R. rutilus*).

A travers cette étude, nous avons identifié trois espèces de poissons peuplant le Barrage koudiat Asserdoune (*Carassius carassius, Cyprinus carpio, Rutilus rutilus*). Quoi que la période d'échantillonnage ne suffisait pas pour induire de quelles espèce est formée cette ichtyofaune.

La sex-ratio est en faveur des mâles avec un taux de masculinité de 64 % par rapport aux femelles qui présentent un taux de féminité de 36%.

La lecture des otolithes nous a permis d'identifier 5 groupes d'âge (1 an jusqu'à 4 ans). La classe d'âge 2 est la plus représentée avec 11 individus.


Les résultats de la relation taille / poids montre que l'ensemble des individus de *C. Carassius* présente une allométrie isométrique, donc le poids croit de la même vitesse que la longueur. Et pour *C. carpio* et *R. rutilus*, la croissance est majorante (le poids croit plus vite que la taille). Les valeurs de coefficient de corrélation R² est proche de 1 chez l'ensemble des échantillons, ce qui traduit une forte corrélation entre la longueur totale et le poids total des individus.


Le coefficient de condition du Fulton k a montré que les trois espèces de poisson sont dans des conditions environnementales favorables (K> 1).

✓ Perspectives :

Au la fin, nous suggérons de :

- Mener des études à chaque année dans le domaine aquatique, notamment en ce qui concerne l'estimation de l'âge des poissons,
- Accorder plus d'intérêt à ce domaine d'aquatique, en Algérie en général et au barrage koudiat asserdoun en particulier, en raison à la présence de nombreuses carences, notamment des pêcheurs et des outils de pêche, qui affectent les chercheurs qui ont du mal à trouver des échantillons.
- La période d'échantillonnage doit être d'au moins trois mois pour obtenir un nombre suffisant d'individus pour mener à bien l'étude et obtenir de bons résultats.
- Les échantillons doivent être prélevés dans différentes zones pour obtenir différentes espèces, car chaque espèce vit d'un endroit spécifique, certains préfèrent la rive et certains préfèrent les profondeurs.

Références bibliographiques :

- A -

- Adamou-Djerbaoui, M., Selem, T., Djemel, H., & Farez, S. (2018). Diversité des poissons des barrages de la région de Tiaret.
- **Arab, I. Y. (2021)**. Statut écologique du Cyprinidé invasif Rutilus rutilus (Linnaeus, 1758) en Algérie.
- Albergel J., Nasri S. et Lamachere J.M., (2006) Les lacs et barrages collinaires : infrastructures hydrauliques d'aménagement et de conservation des terres agricoles en zone semi aride méditerranéenne. Sciences Planétaires /Sécheresse, John LibbeyEurotext ed., Volume 15, Numéro 1, pp.78-86.

- B -

- **Bacha, M., & Amara, R.** (2007). Les poissons des eaux continentales d'Algérie. Étude de l'ichtyofaune de la Soummam. *Cybium, 31*(3), 351-358.
- **Baroiller, J.-F.** (1998). Le déterminisme environnemental du sexe chez les poissons gonochoriques. *La Pisciculture Française*, *133*, 51-59.
- Berra, T. M. (2001). Freshwater fish distribution: Academic press.
- Boet, P., & Le Louarn, H. (1985). La croissance du poisson. Techniques d'étude. Gestion piscicole des lacs et retenues artificielles, 125-142.
- **Bolger, T., & Connolly, P.** (1989). The selection of suitable indices for the measurement and analysis of fish condition. *Journal of Fish Biology, 34*(2), 171-182.
- Boucenna, I., Boualle, C., Kaouachi, N., Sahtout, F., & Bensouillah, M. (2018).

 EtudedelacroissanceduCarassincommunCarassius carasius (Linnaeus, 1758) dubarrage
 Beni Haroun (MILA, ALGÉRIE). *Bull. Soc. zool. Fr.*, 2018, 143(4).
- **Bouhbouh, S. (2002)**. Bio-ecologie de Barbus callensis (VALENCIENNE 1842) & Barbus fritschi (GÜNTHER 1874) au niveau du reservoir Allal el Fassi (Maroc).
- **Baroiller, J.-F.** (1998). Le déterminisme environnemental du sexe chez les poissons gonochoriques. *La Pisciculture Française*, *133*, 51-59.
- **Boudechiche, R., & Boufekane Chayma, M. S. (2022)**. Contribution à l'étude de la biologie du Carassin commun carassius carassius (Linnaeus 1758) dans le barrage de Hammam Debagh Guelma.

- C -

CARATINI R., 1984. Les animaux. Edition Paris Bordas. 169p

Cauvet D., 1869. Nouveaux éléments d'histoire naturelle médicale. Tome1. Edition : Librairie de l'académie impériale de médecine. J.P. Baillière et fils. Paris. 118p

Coyne, & Bellier. (2010). Barrage Koudiat Acerdoune monographie, 3-22.

- D -

Daufresne, M. e. (2011). 40 poissons d'eau douce. Edition Gléant, 8-50.

- **Desroches Jean-François., Picard Isabelle. (2017)**. Poissons d'eau douce du Québec et des Maritimes. Éditions Michel Quintin.
- **DIOP, R., KONATE, A., SANOGO, Y., TRAORE, D., & CAMARA, M. (2019)**. Relation taille-poids et facteur de condition des espèces de silures (Genre Clarias) utilisées en pisciculture dans la zone Périurbaine de Bamako. *Revue Malienne de Science et de Technologie*(22), 83-93.
- Direction des Communications Ministère des Pêches et des Oceans Ottawa (Ontario). Ministre des Approvisionnements et Services Canada 1983 No de cat Fs 41-33 / 23-1983F ISBN 0-662-91896-7.

- E -

Elleboode, R., Oudard, C., Bellamy, E., Penil, C., & Mahe, K. (2015). Suivi 2014 des captures d'anguilles pour la DCF: analyse des otolithes.

- F -

Freon, P. (1991). Les poissons pélagiques côtiers au Sénégal: relations taille-poids des principales espèces d'intérêt commercial. Orstom Fonds Documentaire No:3/53,4- Cote 6 b , 171 p

- J -

Jacques, B., & Jean-Pierre, Q. (2013). *Biologie des poissons d'eau douce européens (2e éd.)*: Lavoisier, 9-177.

- K -

- **Kara, H. M.** (2012). Freshwater fish diversity in Algeria with emphasis on alien species. *European journal of wildlife research*, 58(1), 243-253.
- Kartas F. & Quignard J.P., 1984. La fécondité des poissons téléostéens. Coll. Biol. Milieux

marins. Ed. Masson, Paris: 121p.

- L -

- Labbaci, A., & Haddouche, C. (2022)Etude de la biologie et de la physiologie de la reproduction du Carassin commun (Carassius carassius) au niveau du barrage Lekhal (Bouira)
- **Le Cren, E. D.** (1951). The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). *The Journal of Animal Ecology*, 201-219.
- Lounaci Daoudi , D. , & Lounasi , A. (2019). Introduction et production despoissons d'eau douce en Algérie.

- M -

- Mimeche, F., Belhamra, M., & Mimeche, H. (2015). ROWTH PARAMETERS OF CYPRINUS Carpi Linnaeus, 1758 (Cyprinidae) in thé K'sob preservoir in M'sila (Algeria) croissance de Cyprinus carpio Linnaeus, 1758 (Cyprinidae) dans le barrage El K'sob dans la wilaya de M'sila (Algérie).
- MORSI, A. (2016). Ecologie du barbeau de l'Algérie, Luciobarbus callensis (Valenciennes, 1842)(Cyprinidae) dans Oued El-Harrach et de ses affluents (nord de l'Algérie). ENSA.
- **Muus B.J. et Nielsen J.G., 2000.** Guides des poissons de mer et pêche. Cinquième édition Delachaux et Niestlé. (1998). S.A ; Lausanne (Switzerland)-Paris.335pp.

- N -

- Nedelec, C., Portier, M., & Prado, J. (1979). Techniques de pêches. Revue des Travaux de l'Institut des Pêches Maritimes, 42(2-3), 147-288.
- N'Guessan, Y., N'Guessan, C. D., Amande, J. M., Kouame, J.-P. A., Abekan, E., Assan, F. N. D., & N'Da, K. (2017). Sex-ratio, stades de maturité, taille de première maturité et facteur de condition de Canthidermis maculata capturé dans l'océan Atlantique Est. *International Journal of Biological and Chemical Sciences*, 11(6), 2876-2886.

- O -

Ouedraogo, R. B., Sanogo, S., Palenfo, J. S., & Kabre, J. A. T. (2019). Etude comparée de l'âge et de la croissance du dipneuste africain Protopterus annectens (Owen 1839, Protopteridea) en état d'hibernation et de non hibernation au Burkina Faso. *International Journal of Biological and Chemical Sciences*, 13(2), 759-775.

-P-

Picaud J.L., Baehr J.C. et Maissiat J., 2006. Biologie Animale (Vertébrés). Edition DUNOD. Paris. 298pp.

- T -

Teletchea, F. (2020). Guide des poissons de France: cours d'eau, lacs et étangs: Belin éditeur.

Tolba, M., & Kaouachi, N. (2019). L'effet des Helminthes parasites sur la biologie de quelques poissons d'eau douce (Cyprinus carpio, Luciobarbus callensis et Abramis brama) peuplant le Barrage de Beni Haroun (Wilaya de Mila, Est d'Algérie).

- Y -

Yaragina, N., & Marshall, C. (2000). Trophic influences on interannual and seasonal variation in the liver condition index of Northeast Arctic cod (Gadus morhua). *ICES Journal of Marine Science*, 57(1), 42-55.

Référence webographie:

www.fishbase.com www.fousdetoc.com

www.buz.isfad-gn.org

www.infoclimat.fr

Résumé : Durant ce travail, nous avons étudié les poissons d'eau douce algériens peuplant le barrage de Koudiat Asserdoune (Maala) durant la période d'Avril à Mai. En déterminant l'espèce, l'âge et le sexe pour 25 individus, nous avons identifié trois espèces (*Carassius carassius, Cyprinus carpio* et *Rutilus rutilus*). La sex-ratio est en faveur des mâles (64%). L'âge des poissons varie entre 1 an et 4 ans pour des tailles allant de 9,7 à 27,4 cm. Chez *C. Carassius*, l'ensemble des individus présente une allométrie isométrique, alors que *C. Carpio* et *R. Rutilus*, présente une croissance majorante. Le coefficient de condition de Fulton K indique que les poissons sont dans des conditions environnementales convenables (K > 1).

Les mots clés : Barrage de koudiat Asserdoune, Carassius carassius, Cyprinus carpio, Rutilus rutilus, croissance.

Abstract: During this work, we studied Algerian freshwater fish found in the Koudiat Asserdoune dam (Maala) during the period from April to May. Determining the species, age and sex for 25 individuals, we idenified three species (*Carassius carassius*, *Cyprinus carpio* and *Rutilus rutilus*). The sex ratio is in favor of males (64%). The age of the fish varies between 1 and 4 years, with sizes ranging from 9.7 to 27.4 cm. In *C. Carassius*, all individuals show isometric allometry, whereas *C. Carpio* and *R. Rutilus* show a major growth. The Fulton condition coefficient K indicates that the fish are in suitable environmental conditions (K > 1).

Key words: koudiat Asserdoune dam, *Carassius carassius*, *Cyprinus carpio*, *Rutilus rutilus*, growth.

الملخص

خلال هذا العمل درسنا أسماك المياه العذبة الجزائرية الموجودة في سد كودية أسرذون) معالة (في الفترة الممتدة من أفريل , Cyprinus carpio في يون العمل بتحديد الأنواع، العمر والجنس ل 25 فرد، حيث تمكنا من تشخيص ثلاث (3) أنواع , Rutilus rutilus Carassius ,

نسبة الجنس في صالح الذكور . (64%) عمر الأسماك يتراوح بين سنة و 4 سنوات للأفراد بطول 7 ، 9 إلى 4 ، 4 سم . 4 سم . 4 سنوات للأفراد 4 4 سنوات 4 سم . 4 سنوات الأسماك يتراوح بين سنة و 4 سنوات 4 سن

النمو، Cyprinus carpio, Rutilus rutilus Carassius مالنمو، النمو، النمو،