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Abstract: Prior studies have examined the ability of Moringa oleifera (MO) seed extract, among other
natural coagulants, to remove several types of dyes. MO has been proven to have a high capacity to
remove some anionic dyes. The aim of the present study is to explore the possible use of aqueous
and saline extracts of MO as biocoagulants for the removal of Mordant Black (MB11) from aqueous
solution. Their performances were compared to that of aluminum sulfate (alum). To do so, various
operating parameters were investigated such as coagulant dose (100–600 mg/L), pH (3–11), initial
dye concentration (100–350 mg/L), sodium chloride concentration (0.2–2 M), and sedimentation time
(15–90 min). The maximum percentages of MB11 removal were found to be 98.65%, 80.12%, and
95.02% for alum, aqueous extract of MO (MOPW), and saline extract of MO (MOPS), respectively, at
around pH 6.5 and for coagulant doses of 400 mg/L (alum) and 500 mg/L (MOPW and MOPS). The
coagulation-flocculation mechanism of biocoagulants was hypothesized to be adsorption and charge
neutralization. The two biocoagulants (MOPW and MOPS) showed an interesting versatility towards
pH counter to alum which was very sensitive to this parameter. pH variations were measured
for the three coagulants and proven to be negligible for the biocoagulants. Faster sedimentation
time was recorded when MOPW and MOPS were used, suggesting the existence of larger quickly
settleable flocs. Considering their high coagulative capacity, rapid and cost-effective preparation, and
eco-friendly character, MO extracts can be considered as powerful alternatives to aluminum sulfate
in the remediation of MB11 from wastewaters.

Keywords: Moringa oleifera; natural coagulant; mordant black 11; effective removal; adsorption and
charge neutralization; pH variation; quickly settleable flocs

1. Introduction

In light of a growing global population, a rise in urbanization, and the quest for
industrialization, water-based natural sources are under significant stress. This prompted
many water-scarce countries to seek renewable water sources or to purify used water,
including industrial and domestic effluents. Due to their vast availability, they are regarded
as one of the most significant renewable water sources on a worldwide scale. Concerns are
exacerbated by the high concentrations of medicines, heavy metals, dyes, fertilizers, and
other organic and inorganic contaminants found in industrial and household wastewater.
Therefore, their treatment results in the conservation of the environment and marine life, as
well as the supply of a new water source, thus achieving all sustainability standards [1].
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Due to their carcinogenic potential, non-biodegradability, and complex chemical
structure, dyes are regarded as posing a major threat to wastewater quality [2]. Currently,
there are more than 105 commercial dyes on the worldwide market, and their annual
production rate surpasses 7 × 108 kg. Therefore, the presence of colors in water complexes
significantly impacts human health and may cause skin irritation and kidney and liver
injury; moreover, the presence of dyes affects the photochemical processes of the marine
environment [3]. Mordant Black (MB11) is an anionic azo dye that is used to color nylon
fibers as well as other textiles. It is also utilized in several industries, including the cosmetics,
fabric, pulp, food, plastics, and leather sectors [4]. Furthermore, MB11 is carcinogenic and
may cause serious health issues [5]; MB11 also has a harmful influence on the marine
ecosystem. Consequently, this contaminant must be removed from wastewater prior to
release or recycling.

Numerous techniques, including ion exchange [6], ozonation [7], adsorption [8], mem-
brane separation [9], photocatalysis [10], and precipitation [11], have been employed to
remove MB11 from aqueous solutions; however, no earlier research has shown the elimina-
tion of this dye utilizing the coagulation-flocculation approach.

Because of its efficacy in eliminating organic matter, suspended particles, turbidity,
and color, the coagulation-flocculation method is widely used in water and wastewater
treatment [12]. The conventional coagulation technique involves the use of divalent posi-
tively charged chemical compounds such as aluminum sulfate and ferric chloride, both
of which have been linked to a number of detrimental health and environmental effects.
Extensive study has been conducted on the impacts of using chemical compounds as
coagulants, including high levels of chemical residuals, toxic sludge, and health issues with
prolonged usage [13,14].

Transitioning from chemical to natural coagulants might be a realistic strategy for
minimizing environmental pollution and health risks related to chemical coagulants. Due
to their biodegradability and environmental friendliness, the use of natural coagulants in
water treatment has become essential. In recent years, there have been numerous reports
of natural coagulants derived from diverse plant species, including Jatropha curcas [15],
banana peels [16], bagasse [17], Aleppo pine seeds, prickly pear and Aloe vera mucilage [18].
In accordance with these results, natural coagulants have a high prospect of replacing the
traditional chemical coagulant, since they demonstrate promising treatment performance.

Moringa oleifera (MO), a cosmopolitan, tropical, drought-resistant tree that grows
year-round, is considered as a promising biocoagulant with a number of acknowledged
therapeutic benefits. MO seed has a natural organic polymer comprising 1% polyelec-
trolytes that neutralize colloidal particles. This cationic protein is a nonharmful natural
polypeptide that may be used in the treatment of water for the sedimentation of mineral
particles and organics. However, this molecule is not readily employable, requiring one or
more processing steps prior to use. Typical processes are the first (powder preparation),
second (extraction of edible oil), third (extraction of cationic protein), and fourth (purifying
these proteins). MO seeds may be used as a coagulant during any of the following stages.
The more advanced the treatment phase, the higher the costs, the greater the complexity,
and the more diverse the water treatment outputs. The primary and secondary phases
have been the subject of most works. A third purification stage, such as lyophilization, ion
exchange, or dialysis, is rarely used for plant-based coagulants due to their complexity and
expense. The most popular method is the aqueous extraction of the seed powder, since
the relevant cationic protein is soluble in water and this solvent is easily available and
inexpensive. [19]. Using in-line filtration of a synthetic water with low turbidity (25 NTU)
and aqueous extraction of the whole-seed powder, a turbidity reduction of up to 98%
was achieved. Nevertheless, research has shown that saline extraction (often NaCl, but
also NaNO3 and KCl) is preferable over aqueous extraction for turbidity reduction [20].
Okuda et al. [21] studied the turbidity removal after sedimentation of synthetic water
(50 NTU) using aqueous extract and compared it to the saline extract (1 M NaCl), obtaining
a turbidity reduction of 78% and 95%, respectively. Additionally, the dosage of saline extract
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was 7.4 times less than that of the aqueous extract. According to several studies [22,23], the
biocoagulant (MO seed extract) is nonhazardous, inexpensive, and ecologically friendly.
However, MO use as a biocoagulant for the removal of anionic dyes is more limited, the
vast majority of studies focused on the reduction of turbidity from wastewater (real or
synthetic) [24–26], and MB11 removal has not been attempted using this bio-based material
in prior studies.

In this perspective, the goal of our study is to assess the use of MO seed-based coagu-
lant in aqueous and saline extraction for the removal of synthetic solutions of MB11, the
performance of MO-based coagulant was compared with that of aluminum sulfate (alum),
an extensively used chemical coagulant, various operating parameters were studied includ-
ing sodium chloride concentration, initial pH of the dye solution, coagulant dosages, initial
dye concentrations, and sedimentation time, and a Fourier-transform infrared spectroscopy
(FTIR) characterization was also undertaken to highlight the composition of MO seeds and
its relationship with the coagulation efficiency.

2. Materials and Methods
2.1. Chemicals and Materials

MO was purchased in a local herbal market. Seeds that were not deteriorated, old, or
contaminated with seed pests were selected. They were further dried for 24 h at 40 ◦C in
an oven (Memmert GmbH + Co.KG, Bavaria, Germany), then ground into powder using
a domestic blender. The obtained powder is referred to as MOP. A saline extraction was
performed according the method described earlier [18]; the resulting mixture is referred to
as MOPS. An aqueous extraction was also undertaken for comparison purposes (MOPW).
Preweight MOP was blended with 100 mL of distilled water (DW) [27], and both solutions
were freshly prepared for each set of experiments to prevent degradation or alteration of
the biocoagulant properties (Figure 1).
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Hydrochloric acid (HCl), sodium hydroxide (NaOH), sodium chloride (NaCl), alu-
minum sulfate octadecahydrate (AI (SO4)3 18H2O), molecular weight: 342.15 g/mol (anhy-
drous basis) g/mol, purity: 98% were all from Sigma Aldrich Chemical Company, Burling-
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ton, Massachusetts, USA, MB11 (Table 1) was purchased from Biochem-Chemopharma,
Cosne-Cours-sur-Loire, France.

Table 1. Characteristics of MB11 used in this study.

Characteristics MB11 Chemical Structure

General name/synonyms Mordant black 11/Eriochrome Black T
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Chemical formula C20H12N3O7SNa
Molecular weight (g/mol) 461.381

Maximum wavelength absorbance (λmax) 535 nm
Purity Indicator grade

Dye type Anionic (azo) dye

2.2. Preparation of the MB11 and Alum Solutions

In deionized water, a stock solution of MB11 dye with an initial concentration of
1000 mg/L was prepared. Using known concentrations of MB11 dye samples, the cali-
bration curves were plotted. The absorption value was measured at 535 nm for pH = 6.5
(natural pH) (λmax). A stock solution of alum (1 g/L) was prepared using deionized water;
it was then subsequently diluted to obtain solutions with the necessary concentrations.

2.3. Coagulation-Flocculation Experiments

Coagulation studies were conducted using jar-test equipment in 1 L beakers (VELP
Scientifica Srl, Italy). Each beaker was filled with 200 mL of MB11 solution with varying
concentrations and initial pH values (adjusted with 0.5 M HCl or 0.5 M NaOH) measured
by a pH meter (Mettler Toledo, Columbus, OH, USA), along with varying amounts of
freshly prepared MOP extracts (MOPS or MOPW) and alum. Each parameter’s optimum
value was determined using the one factor at a time (OFAT) approach. The mixture of
MOPS/MOPW and alum with MB11 was agitated at 200 rpm for 3 min, followed by
30 rpm for 20 min; flocs were allowed to settle for 60 min. Afterwards, samples (20 mL)
were extracted using a volumetric pipette 3 cm below the surface of the mixture and
centrifuged (3000 rpm for 10 min). Using a spectrophotometer (Agilent Cary 60 UV-Vis,
USA) at a wavelength corresponding to the maximum absorbance of 535 nm for MB11 dye,
the final concentrations of the dye were measured. All studies were undertaken at room
temperature (25 ◦C ± 2) and were repeated two times. The percent elimination of MB11
dye was determined using Equation (1):

Coagulation efficiency (%) =
C0 − Cf

C0
× 100 (1)

where C0 and Cf represent the initial and residual dye concentrations, respectively.

3. Results and Discussion
3.1. FTIR Spectrum of MOP Seeds

Infrared spectral analysis (Thermo Fisher Scientific, Waltham, MA, USA) was used to
identify the primary functional groups found in the seeds of MOP. As can be observed in
Figure 2, the bandwidth peak at 3290 cm−1 may be ascribed to the O-H stretching in the fatty
acids, protein, lignin, and carbohydrates units. Because of the seed’s substantial protein
composition, N–H stretching in amide bonding also makes a significant contribution to
this region [28]. The peaks at 2921 cm−1 and 2852 cm−1 coincide with the asymmetric and
symmetric bending of the C-H linkage in the CH2 group, respectively. Because of the high
intensity of these bands, they may be attributed to the primarily fatty component of the
seed, which is present in large proportions comparable to the fraction of protein [29]. The
C=O stretch of esters is represented at 1744 cm−1, while the O=C-O-C stretch at 1231 cm−1

represents another type of ester. The absorption at 1650 cm−1 and 1538 cm−1 correspond to
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the C=O stretch and N-H bending of amides, respectively [30]; these results confirm the
proteinaceous profile of MOP seeds.
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3.2. Effect of Coagulant Dosage

In general, inadequate doses or overdoing would result in poor coagulating perfor-
mances. Therefore, it is essential to identify the optimal dose in order to reduce dosing
costs and sludge formation, as well as to achieve optimal treatment efficiency. Figure 3
illustrates the effect of the coagulants’ dosages (100-600 mg/L) on the removal of MB11
using MOPW, MOPS, and alum coagulants. As demonstrated in Figure 3, there is a con-
tinuous elimination of MB11 when increasing coagulant dosages up to 400 mg/L and
500 mg/L for alum and MOPW/MOPS, with color elimination percentages of 98.65%,
80.12%, and 95.02%, respectively, these performances are relatively high compared to that
of other bio-based materials for the removal of dye wastewaters (synthetic or real) (Table 2).
The two biocoagulants exhibit similar color reduction patterns, as they are observed to
increase and decrease constantly, indicating that both might follow adsorption and charge
neutralization mechanisms to neutralize the anionic portion of the MB11 [31,32], resulting
in an equivalent trend of color increase when overdosing occurs. The operating mechanism
of alum may be described as follows: the introduction of this coagulant to the synthetic
dye solution quickly hydrolyzes the salts, forming cationic species capable of gathering
the negatively charged portion of MB11 and neutralizing it. Particle destabilization may
then occur [33], entrapment is also a possible mechanism for this chemical coagulant. A
clear difference in the coagulation efficiency between MOPW and MOPS is also observed
through the whole pattern (Figure 3) and visually (Figure 4). This trend can be explained by
the fact that water purification by MO seed coagulant is predominantly due to the activity
of the seed’s protein. The latter represents around 37% of the MO seed kernel content [34].
The primary causes of flocculation are basic polypeptides with molecular weights ranging
from 6000 to 16,000 Daltons. The functional groups in the MO seed proteins’ side-chain
amino acids are expected to help with water clarification. Madrona et al. [35] established
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that these molecules found in MO do not dissolve properly in water without the addition
of salt, thus, explaining the better coagulation efficiency when MOPS is used.
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3.3. Effect of Initial pH

Because coagulants have their own suitable pH range that impacts the efficiency of
their activities, it is a crucial parameter to consider. The pH range of 3 to 11 was selected
for this investigation. As depicted in Figure 5, pH has little influence on the dye removal
effectiveness of MOPW and MOPS, whereas a clear fluctuation is observed concerning
the alum pattern. MB11 removal reduces with increasing pH, from 98.18%, 95.24%, and
85.12% at pH 6.5 to 89.18%, 87.32%, and 77.92% at pH 11 for alum, MOPS, and MOPW,
respectively. Optimal performances of all coagulants were shown to occur at around pH 6.5.
As mentioned in the previous section, MO is rich in protein content; these proteins have an
isoelectric point in the range of pH 6.5–7.5 [36]. Consequently, this protein is cationic at pH
< 6.5-7.5, which enables MOPS and MOPW to efficiently remove the anionic dye (MB11)
across a broad pH range (from 3 to 6.5). This offers a significant advantage over alum as
well as other natural coagulants, which are typically effective only within a limited pH
range (Table 2). According to Tiaiba et al. [37], the dominant aluminum species at this pH
range is Al3+. The interaction between the cationic charges of Al3+ and the anionic charges
of MB11 promotes a better coagulation efficiency; this is likely to explain the favorable
coagulation efficiency occurring at this pH range. An investigation on the pH solutions’
variation was also conducted for the three coagulants since the requirement for drinking
water is between 6.0 and 8.5. The results are presented in Figure 6. As can be observed, no
influence on the pH was recorded when MOPS and MOPW are applied to the synthetic dye
solutions; this is likely owing to the fact that MOPS and MOPW do not hydrolyze efficiently
in water due to their polymeric nature. Concerning alum, on the other hand, the final pH
values are below the acceptable limit of drinking water, drastically decreasing with the
increase of alum dosage (from 6.5 to 3.5 when the dosage increases from 200 to 600 mg/L).
This may be the result of alum consuming water alkalinity during the hydrolysis; indeed,
when alum is introduced to water, it first generates Al3+ and SO4

2-, after which the Al3+

reacts with the OH in the water to form Al(OH)3. As a consequence, consuming hydroxyl
ions reduces the alkalinity and ultimately pH of the synthetic effluent. According to our
findings, appropriate pH of wastewater discharge may be reached without the need for
neutralization, representing a strong advantage to the use of MO as a replacement of
chemical coagulants.
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Table 2. Comparison of natural coagulants’ performances in the removal of color from water and
wastewater.

Biocoagulant Wastewater Type
Optimal Conditions Color Removal

Efficiency
References

pH Dose

Opuntia ficus indica Textile wastewater 7.25 40 mg/L 99% [38]

Ocimum basilicum Textile wastewater 8.5 1600 mg/L 69% [39]

Papaya seed Textile wastewater 2 570 mg/L 85% [40]

Cassia fistula Synthetic paint industry
wastewater 8.4 160 mg/L 96% [41]

Opuntia dillenii Highly turbid lake water - 1000 mg/L 15% [42]

Moringa oleifera
Reactive yellow

6.5 60 mL 89%
[43]

Strychnos potatorum 6.5 60 mL 93%

Okra mucilage Textile wastewater 6 3.20 mg/L +
88.0 mg/L Fe3+ 93.57% [44]

MOPW
MB11 ≤6.5 500 mg/L

80.12%
This study

MOPS 95.02%

3.4. Effect of Initial Dye Concentration

To assess the influence of the initial MB11 concentration on the coagulation efficiency,
different dye concentrations were auditioned (100–350 mg/L). According to Figure 7, we
can observe a significant drop in the coagulation efficiency when the dye concentration
rises from 100 mg/L to 350 mg/L for both MOPW and MOPW, with a notable disparity in
the removal efficiency of these two biocoagulants. This is imputable to the better protein
extractability when salt is used. As previously stated, adsorption and charge neutralization
of dye molecules are the key mechanisms of dye removal by MOPW and MOPS. As a
result, a given quantity of coagulant may neutralize the charge of a certain amount of dye
molecules. As the dye concentration increases, the quantity of coagulant in the solution is
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insufficient to neutralize the charge of all dye molecules; therefore, dye removal decreases.
Similar trends have been reported by previous studies [45,46]. Concerning alum, raising
the initial dye concentration from 100 to 350 mg/L reduced dye removal effectiveness
from 97.54% to 84.18%. According to the findings, the initial dye concentration had a weak
effect on dye removal effectiveness by alum. This can be attributed to the fact that alum
may react in numerous ways, resulting in coagulation. When employed at relatively low
dosages (<5 mg/L), charge neutralization (destabilization) is likely to be the principal
mechanism involved. At larger doses (such as in this case), the predominant coagulation
mechanism is believed to be entrapment, thus, the poorer influence on MB11 removal when
dye concentration increases.
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3.5. Effect of Salt Concentration

The influence of salt concentration is also one of the most important factors affecting
coagulant extraction. In order to study the effect of this parameter on coagulation efficiency,
the NaCl concentrations were adjusted from 0.25 to 2 M, while fixing the other parameters
at their optimum. Figure 8 illustrates the results. As can be seen, the increase in salt
concentration results in an improvement in the coagulation efficiency, suggesting the
extraction of more proteins (from 84.18% to 95.48%). Due to the dissolution of salt, the
maximum density of charges might increase coagulation. In addition, it is hypothesized
that the increase in protein solubility at higher NaCl concentrations was generated by
salting phenomenon, in which the interaction between the oppositely charged ions of salts
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and the hydrophilic functional groups of proteins generates a double layer. Therefore,
electrostatic interaction between protein molecules decreases, resulting in enhanced protein
solubility [47]. MOPS extracted with higher NaCl concentrations lowers the efficacy of
MB11 removal. This may be the “salting-out” effect, which is based on the idea that
increasing the intensity of an attractive protein–protein interaction decreases its solubility
at high concentrations [48]. Moreover, the addition of NaCl increases the amount of Na+

available to compete with the protein molecule for reaction. As a result, the MOPS particle
has less interaction to neutralize the negative charges of the dye [49], which diminishes the
removal efficiency.
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3.6. Effect of Sedimentation Time

One of the crucial parameters of a treatment plant is the settling time. Due to its
significant effect on the overall cost and coagulation efficiency of the purification process,
its appropriate level must be investigated and established. In this study, the sedimentation
time was chosen between 15 and 90 min. As depicted in Figure 9, it can be observed that
the proportion of MB11 removed rises as settling time increases when the three coagulants
were used. The removal effectiveness was high from 15 to 60 min; then, at a settling
period of 60 min, equilibrium was reached. There was little or no substantial increase
in MB11 removal beyond the equilibrium settling time (60 min). Concerning alum, the
sedimentation of the flocs formed by the use of MOPW and MOPS is faster than that formed
by using alum (45 min); this may be a good indication of the fact that larger flocs are formed
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when MO extracts are applied as biocoagulants. Both results show that once equilibrium is
reached, no additional increase in settling time is required.
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4. Conclusions

This study examined the effectiveness of MB11 dye removal with naturally derived
coagulants, MOPW and MOPS, as well as alum for comparative purposes. The primary
outcomes obtained can be described as follows:

â The coagulant dose had a substantial impact on the effectiveness of MOPW and
MOPS in removing MB11 dye. With an increase in dosage, the removal efficiency of
both biocoagulants increased until the optimal dosage of 500 mg/L was recorded.
Thereafter, an increase in coagulant dosage led to a decrease in dye removal effi-
ciency, indicating that adsorption and charge neutralization might be the primary
mechanisms occurring in this study.

â Within the pH range of 3 to 6.5, a minimal impact on the removal efficiency of MB11
was noticed when the biocoagulants were used. This was in contrast to alum, for
which removal rates fluctuated significantly, indicating the versatility of biocoagulants
to function effectively over a wide pH range. Tests on pH variations have shown
that biocoagulants have a negligible effect on pH, enabling us to establish that the
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neutralization step often needed when chemical coagulants are employed is no longer
required.

â In contrast to MOPW and MOPS, increasing the initial concentration of MB11 had less
of an effect on the proper functioning of alum as a coagulant. Indicating that distinct
processes govern the coagulation-flocculation of this anionic dye.

â Despite the similar patterns of the two biocoagulants, MOPS outperformed MOPW.
This was attributed to the proteinaceous structure of MO, which necessitates salt for
increased extractability; nevertheless, this is not regarded as a disadvantage due to
the accessibility and cost-effectiveness of NaCl salt.

â The removal efficiencies of MOPS and alum were comparable (95 and 98%), with
decreased sedimentation time reported when the two biocoagulants were applied,
indicating that the flocs generated by MOPS and MOPW may be larger and, hence,
settle more quickly, which is a considerable advantage.

Based on the above findings, we can assume that MO extract is very efficient at
eliminating MB11, with comparable performances to that of alum. In spite the higher
dosage requirements (400 mg/L for alum and 500 mg/L for MO extracts to obtain an
equivalent removal rate), reduced sedimentation times and pH stability were noticed when
the biocoagulant was used. One of the constraints that exists, however, is the restriction of
this plant to tropical environments, despite the fact that the species has been introduced
successfully in numerous locations of Algeria, providing a positive outlook on the use of
this biomaterial. Furthermore, additional investigation of the molecules responsible for the
coagulation activity of Moringa oleifera and its possible isolation in reducing the quantity of
organic matter associated with the raw MO extracts, which raises BOD and DOC levels
in treated water, is required. Additionally, exploration of a synergistic usage of the MO
extracts and the chemical coagulant in order to reduce the latter’s use while benefiting
from both of their advantages and minimizing their downsides might also be an interesting
subject.
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