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2Plant Growth-Promoting Bacteria: 
Importance in Vegetable Production

Abdelwahab Rai and Elhafid Nabti

Abstract
A large number of soil bacteria are able to colonize the surface/interior of root 
system and stimulate plant growth and health. This group of bacteria, generally 
referred to as plant growth-promoting rhizobacteria (PGPR), enhances the 
growth of plants including vegetables in both conventional and stressed soil. In 
addition, many PGPR facilitate crop production indirectly by inhibiting various 
phytopathogens. Conclusively, PGPR affects plant growth via nitrogen fixation, 
phosphate solubilization and mineral uptake, siderophore production, antibiosis, 
and hydrolytic enzymes synthesis. Some of the notable PGPR capable of facili-
tating the growth of a varied range of vegetables such as potato, carrot, onion, 
etc. belong to genera Azotobacter, Azospirillum, Pseudomonas, and Bacillus. 
Vegetables play a major role in providing essential minerals, vitamins, and fiber, 
which are not present in significant quantities in staple starchy foods. Hence, to 
optimize vegetable production without chemical inputs, the use of PGPR in veg-
etable cultivation is recommended. Here, an attempt is made to highlight the role 
of PGPR in vegetable production under both normal and derelict soils.

2.1  Introduction

Human population is growing very rapidly, and according to the United Nations 
estimate, it is expected to be 8.9 billion by the end of 2050 (UN 2004, 2015; Ashraf 
et al. 2012). In order to feed the growing populations, there is an increasing food 
demand whose production needs to be augmented alarmingly in the next few years. 

mailto:elhnabti1977@yahoo.fr


24

In this regard, the Center for Study of Carbon Dioxide and Global Change indicated 
that 70–100% increase in agricultural production is required to feed the ever- 
increasing human populations. It also published a presumptive model estimating 
that only 34.5–51.5% increase will be achieved between 2009 and 2050. Of the 
various food items, vegetables play an important role in human dietary systems. 
And hence, among vegetables, total potato production is estimated to raise from 329 
to 416 million tons between 2009 and 2050 due to advancements in agricultural 
technology and scientific research (techno-intel effect) and to 466 million tons due 
to the combined consequences of techno-intel effect and CO2 aerial fertilization 
effect. Also, total bean production is estimated to increase from about 21 to 26 and 
32 million tons between 2009 and 2050 due to techno-intel effect alone or due to the 
combined techno-intel effect and CO2 aerial fertilization (Idso 2011). However, the 
average vegetable supply available per person in the world was about 102 kg per 
person by the year 2000. In addition, between 1979 and 2000, it augmented from 
45.4 to 52 kg in Africa and from 43.2 to 47.8 kg in South America, while the highest 
improvement was found in Asia (from 56.6 to 116.2 kg per person per year), noting 
that global vegetable production jumped from 326.616 to 691.894 million tons 
(Fresco and Baudoin 2002). However, due to environment degradation, biodiversity 
destruction, and soil fertility loses, considerable reduction in agricultural produc-
tion including those of vegetable production leading to inadequate food supply to 
human populations has been recorded (Shahbaz and Ashraf 2013).

2.2  Place of PGPR in Food Safety and Agricultural 
Challenges

Because of different factors threatening agriculture, scientists are searching for 
alternatives involving natural and eco-friendly solutions. Among these options, 
microbe-based (bacteria, fungi) ecological engineering strategies have been devel-
oped for ecological conservation and to improve agronomic practices for enhancing 
food production (Ashraf et al. 2012). Among soil microflora, the use of plant 
growth-promoting rhizobacteria (PGPR) began about 100 years ago where some 
countries like China, European countries, the former Soviet Union, and the United 
States started practical programs to develop PGPR inoculants at a larger scale for 
the use in agriculture. However, the term “rhizobacteria” was introduced first by 
Kloepper and Schroth (1978) to qualify bacterial community that aggressively colo-
nize roots and improve plant growth. The PGPR application is considered one of the 
most viable and inexpensive methods for increasing agricultural productivity 
through plant growth stimulation, plant pathogens control, and pollutant biodegra-
dation, bioremediation (Bhattacharyya and Jha 2012; Landa et al. 2013). In this 
chapter, different mechanisms by which beneficial soil bacteria improve plant 
growth, plant defenses against phytopathogens, and soil health and how they par-
ticipate in the interactive plant-soil-bacteria system are discussed. Furthermore, the 
importance of PGPR in vegetable production under different agroclimatic condi-
tions is highlighted. It is important to mention that vegetables play a major role in 
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providing essential minerals, vitamins, and fiber, which are not present in signifi-
cant quantities in starchy foods, and represent an important supply of proteins and 
carbohydrates (Nichols and Hilmi 2009).

2.3  Mechanism of Growth Promotion by PGPR: A General 
Perspective

2.3.1  Nitrogen Fixation

Nitrogen fixation, one of the most important means of adding N to soil nutrient pool 
(Reddy 2014), is mediated both by symbiotic prokaryotic microorganisms like 
Rhizobium, Mesorhizobium, Bradyrhizobium, Azorhizobium, Allorhizobium, and 
Sinorhizobium and asymbiotic/free-living organisms such as Azoarcus, Azospirillum, 
Burkholderia, Gluconacetobacter, Pseudomonas, Azotobacter, Arthrobacter, 
Acinetobacter, Bacillus, Enterobacter, Erwinia, Flavobacterium, Klebsiella, and 
Acetobacter. These bacterial genera and some others have been described as 
nitrogen- fixing PGPR with substantial ability to promote plant growth and yield 
(Gupta et al. 2015; Miao et al. 2014; Sivasakthi et al. 2014; Verma et al. 2013). 
Nitrogen fixation is carried out by a highly conserved and energetically expensive 
enzyme called nitrogenase. The conventional nitrogenase is composed of two metal-
loprotein subunits. The first one is composed of two heterodimers (250 kDa) and 
encoded by nifD and nifK genes; it contains the active site for nitrogen reduction. 
The second one (two identical subunits/70 kDa, encoded by nifH gene) ensures ATP 
hydrolysis and electron transfer between subunits that are coordinated by Fe-S con-
taining Mo. Mo is replaced by V (vnfH) in “alternative nitrogenase” and by Fe 
(anfH) in “second alternative nitrogenase” (Zehr et al. 2003). Of the various nitro-
gen fixers, bacteria belonging to group “rhizobia” are known to establish symbiotic 
relations with host-specific legumes and to provide a major plant nutrient N to 
plants. The species R. meliloti, R. trifolii, R. leguminosarum, R. phaseoli, R. japoni-
cum, etc. can supply N to plants such as lucerne, sweet clover, pea, lentil, bean, 
cowpea, etc. (Yamaguchi 1983). In addition, some other associative nitrogen fixers, 
for example, Azospirillum inoculation, have been reported to enhance growth and 
yield of several winter legumes such as pea and chickpea (Sarig et al. 1986). The 
role of two PGPR strains (Serratia liquefaciens 2-68 or S. proteamaculans 1-102) in 
increasing nodulation, nitrogen fixation, and total nitrogen yield of two soybean 
cultivars in a short season area was reported (Dashti et al. 1998). Strains increased 
soybean nodulation and accelerated nitrogen fixation onset. Fixed N, expressed as a 
percentage of total plant N, and protein and N yield were increased by PGPR inocu-
lation. Pishchik et al. (1998) on the other hand reported the inoculation effect of 
nitrogen-fixing Klebsiella on yield of nonlegumes such as potato. A significant 
increase in potato yield and N content was obtained after inoculation with K. mobi-
lis strains CIAM880 and CIAM853 when low doses of nitrogenous fertilizer were 
used. Recently, Naqqash et al. (2016) observed that inoculation of nitrogen-fixing 
bacteria, namely, Azospirillum, Enterobacter, and Rhizobium, under axenic 
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conditions resulted in differential growth responses of potato. Of these, Azospirillum 
sp. TN10 showed the highest increase in fresh and dry weight of potato over control 
plants. In addition, a significant augmentation in N contents of shoot and roots of 
Azospirillum sp.-inoculated potato plants was observed.

2.3.2  Nitrification

Bacterial nitrification is a biological process in which energy is extracted by sequen-
tial oxidation of nitrogen that occurs as ammonia. Complete oxidation of nitrate is 
carried out by two metabolically distinct groups of bacteria: (i) ammonia-oxidizing 
bacteria, for example, Nitrosomonas, Nitrosospira, Nitrosovibrio, Nitrosolobus, and 
Nitrosococcus, transform ammonia to nitrite, and (ii) nitrite is transformed to nitrate 
by nitrifying bacteria like Nitrobacter, Nitrococcus, Nitrospira, and Nitrospina. 
Nitrification is important for soil and ecosystem health because it completes the 
mineralization of organic nitrogen started with ammonification process (nitrogen 
fixation) (Ardisson et al. 2014; Cohen and Mazzola 2006; Cohen et al. 2010). 
Among others, nitrification is considered as an important trait to select beneficial 
bacteria able to improve plant growth and crop yield (Prasad et al. 2015). It is 
believed that nitrification is the principal source of nitric oxide (NO) emitted from 
the soil. However, recent works have described NO as a signal molecule in plant- 
PGPR interaction. For example, Azospirillum strains produced tenfold of NO than 
the amount found in plant. Nevertheless, when bacterial nitric oxide was seques-
tered with specific scavenger (cPTIO), results clearly showed that the ability of 
Azospirillum inoculation to induce lateral root development in tomato was lost sug-
gesting the involvement of NO in the Azospirillum-plant root association (Cohen 
et al. 2010; Skiba et al. 1993).

2.3.3  Denitrification

The first description of soil organic matter degradation that resulted in release of 
nitrogen gas into atmosphere was realized by Reyest in 1856. Later on, Gayon and 
Dupetit were the first to describe denitrification in 1886 (Elmerich 2007). 
Denitrification is defined as a microbial respiratory process during which soluble N 
oxides are used as alternative electron acceptor when O2 is not available for aerobic 
respiration. It involves sequential reduction of NO3− into dinitrogen in four steps 
coupled with energy conservation (NO to NO2, NO2 to NO, NO to N2O, and N2O to 
N2). Denitrification completes the N cycle and usually balances the total biological 
N fixation in the global N cycle (Hofstra and Bouwman 2005; Philippot et al. 2007). 
Among denitrifying bacteria, Agrobacterium, Aquaspirillum, Azoarcus, 
Azospirillum, Bradyrhizobium, Hyphomicrobium, Magnetospirillum, Paracoccus, 
Rhodobacter, Rhodopseudomonas, Cytophaga, Sinorhizobium, Flexibacter, 
Alcaligenes, Neisseria, Nitrosomonas, and Thiobacillus are the most commonly 
found in nature, especially in soil (Knowles 2004).
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Ecologically, denitrification is a key mechanism for biological elimination of 
N. In fact, 15–70% of ammonium derived from organic matter mineralization is 
reported to be eliminated through nitrification and denitrification process (Bertrand 
et al. 2015). In rhizosphere, oxygen concentration could be lowered because of root 
and microorganism’s respiration. In addition, organic compounds released by 
plants’ roots can be used as electron donors in denitrification process, suggesting 
that denitrifiers could constitute highly competitive microorganisms in rhizosphere 
(Fig. 2.1). Denitrifying bacteria may prevent nitrogen accumulation to toxic levels, 
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Fig. 2.1 Role of PGPR in nitrogen recycling and plant growth stimulation (modified from Cohen 
et al. 2010; Reddy 2014)
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reduce nitrate contents in groundwater, and maintain a balance between soil and 
atmospheric nitrogen avoiding serious problems that could occur if no alternative 
mechanism is available to return nitrogen to atmosphere (Antoun and Prévost 2005; 
Gupta et al. 2000; Philippot et al. 2007). Due to these and in addition to the presence 
of positive correlation between bacterial denitrification ability and rhizosphere col-
onization, Kumar et al. (2014) considered nitrification as an important trait to isolate 
and select fluorescent PGP Pseudomonas. Furthermore, in a recent work conducted 
by Muriel et al. (2015), denitrification was regarded as an important plant growth 
trait in PGP Pseudomonas fluorescens F113. Otherwise, denitrification in legumes 
may be a species-dependent mechanism to maintain optimum rates of N2 fixation 
within root nodule; hence, NO has been reported as inhibitor of nitrogenase activity 
(Williams et al. 2014). Denitrification in nodules could also ensure detoxification of 
cytotoxic compounds produced as intermediates during denitrification reactions or 
emerging from host plant such as nitrite and NO (O’Hara and Daniel 1985; Sánchez 
et al. 2011). In addition, Lombardo et al. (2006) reported that when lettuce plants 
were grown hydroponically, root epidermis did not form root hairs. The addition of 
10 μM sodium nitroprusside (a nitric oxide (NO) donor) resulted in almost all rhi-
zodermal cells differentiated into root hairs. They also found that treatment with 
synthetic auxin 1-naphthyl acetic acid exhibited a significant increase of root hair 
formation that was prevented by the specific NO scavenger carboxy-PTIO.

2.3.4  Phosphate Solubilization

After nitrogen, phosphorus (P) is the most important macronutrient for biological 
processes, for example, cell division and development, energy transport, signal 
transduction, macromolecular biosynthesis, photosynthesis, and plant respiration. 
Phosphorus is present at levels of 400–1200 mg/kg of soil. However, only a very 
small amount (1 mg or less) of P is in soluble forms, while the rest is insoluble and, 
hence, not available for plant uptake (Khan et al. 2009). It is important to mention 
that a big part of P applied to agricultural fields as fertilizer is rapidly immobilized 
and, hence, becomes inaccessible for plants (Oteino et al. 2015). In addition, the 
process of traditional phosphorus fertilizer production is environmentally undesir-
able because of contaminants release into the main product, gas stream and by- 
products, and accumulation of Cd or other heavy metals in soil and crops because 
of repetitive use of phosphatic fertilizers (Sharma et al. 2013; Song et al. 2008). To 
avoid these problems, a group of soil microorganisms, called phosphate- solubilizing 
microorganisms (PSM), is considered as one of the best eco-friendly options for 
providing inexpensive P to plants. Through their activities, insoluble forms of P are 
hydrolyzed to soluble forms through solubilization (inorganic P) and mineralization 
(organic p) processes. On the contrary, immobilization is the reverse reaction of 
mineralization, during which, microorganisms convert inorganic forms to organic 
phosphate (Sharma et al. 2013; Khan et al. 2014). Some of the notable PGPR pos-
sessing P-solubilizing activity are Achromobacter xylosoxidans (Ma et al. 2009), 
Bacillus polymyxa (Nautiyal 1999), Pseudomonas putida (Malboobi et al. 2009), 
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Acetobacter diazotrophicus (Sashidhar and Podile 2010), Agrobacterium radio-
bacter (Leyval and Berthelin 1989), Bradyrhizobium mediterranium (Peix et al. 
2001), Enterobacter aerogenes, Pantoea agglomerans (Chung et al. 2005), 
Gluconacetobacter diazotrophicus (Crespo et al. 2011), and Rhizobium meliloti 
(Krishnaraj and Dahale 2014). Among non-symbiotic bacteria, Azotobacter has 
also been found as phosphate solubilizer and plant growth-enhancing bacterium 
(Nosrati et al. 2014). Malboobi et al. (2009) evaluated the performance of three PSB 
P. agglomerans strain P5, Microbacterium laevaniformans strain P7, and P. putida 
strain P13 in potato’s rhizosphere. All experiments proved that these isolates com-
pete well with naturally occurring soil microorganisms in potato’s rhizosphere. The 
combinations of strains P5 + P13 and P7 + P13 led to higher biomass and potato 
tuber in greenhouse and in field trials. The effect of other phosphate solubilizers 
such as B. megaterium var. phosphaticum, P. agglomerans, M. laevaniformans,  
P. putida, P. cepacia, P. fluorescens, Xanthomonas maltophilia, Enterobacter  
cloacae, Acidovorans delafieldii, Rhizobium sp., A. chroococcum, and Burkholderia 
anthina on some of the widely grown and consumed vegetables such as potato, 
tomato, pepper, cucumber, pea, brinjal, etc. has been reported by others (Bahena 
et al. 2015; Pastor et al. 2014; Rizvi et al. 2014 and Walpola and Yoon 2013).

2.3.5  Siderophores, a Powerful Tool for Antagonism 
and Competition

Iron is a central element for life on earth, especially for plant growth and develop-
ment. It participates in formation of several types of vegetable proteins such as fer-
redoxin, cytochrome, and leghemoglobin (Fukuyama 2004; Liu et al. 2014). This 
element is relatively insoluble in soil solution. So why plants secrete soluble organic 
compounds (binders) which bind to ferric ion (Fe3+) to form the chelator-Fe3+ com-
plex (Tokala et al. 2002; Vessey 2003)? Several studies on iron utilization by plants 
allowed scientists to distinguish two strategies used by plants for iron acquisition 
from soil (Bar-Ness et al. 1992). In the first one, iron chelators (siderophores: from 
the Greek “iron carriers”) secreted by plants are immediately absorbed with Fe3+ 
through the plasma lemma. In the second one, formed complex (chelator-Fe3+) helps 
to keep ferric ions in solution, then exposes to root surface where they are reduced 
to ferrous ions (Fe2+) and immediately absorbed (Neilands 1995; Vessey 2003). In 
addition to these two strategies, plants can also use microbial siderophores (fungi 
and bacteria) which are synthesized under iron-starved conditions. Broadly, sidero-
phores are defined as low-molecular-weight compounds (500–1500 daltons) pos-
sessing high affinity for ferric iron. They are mainly produced by bacteria (Kümmerli 
et al. 2014), fungi (Renshaw et al. 2002), and graminaceous plants (Hider and Kong 
2010) to scavenge iron from environment.

According to the chemical nature, siderophores are divided into five classes, (1) 
catecholates, (2) phenolates, (3) hydroxamates, (4) carboxylates, and (5) mixed sid-
erophores, which contain at least two of the abovementioned classes. In agriculture, 
the secretion of bacterial siderophores is important for two reasons: (1) it provides 
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iron to plants, and (2) it limits the availability of iron to plant pathogens (Miethke 
and Marahiel 2007; Tailor and Joshi 2012). Additionally, siderophores may stimu-
late biosynthesis of other antimicrobial compounds (Beneduzi et al. 2012; Laslo 
et al. 2011). Impressively, it has been reported that some nodule bacteria, for exam-
ple, Rhizobium, can require an intact siderophore system to express some vital 
activities such as nitrogenase (Neilands 1995).

Until 2014, more than 500 siderophore-type molecules have been identified 
(Kannahi and Senbagam 2014). Genera like Azotobacter (Fekete et al. 1983), 
Azospirillum (Tortora et al. 2011), Pseudomonas (Tailor and Joshi 2012), 
Agrobacterium (Rondon et al. 2014), Alcaligenes (Sayyed and Chincholkar 2010), 
Serratia (Seyedsayamdost et al. 2012), Enterobacter and Achromobacter (Tian 
et al. 2009), Rhizobium (Datta and Chakrabartty 2014), Bradyrhizobium (Abd-Alla 
1998), etc. are known to promote growth of many crops through siderophore pro-
duction. Therefore, siderophores secreted by many PGPR are used as a specific trait 
for selection and application of effective bacteria in crop production. For example, 
the indigenous isolate B. subtilis CTS-G24 producing a hydroxamate type of sidero-
phore was found to be efficient in inhibiting wilt and dry root rot disease caused by 
both Fusarium oxysporum f. sp. ciceri and Macrophomina phaseolina in chickpea 
(Patil et al. 2014). In other study, a yellow-green pigment (pseudobactin) exhibiting 
properties typical of a siderophore was isolated from broth cultures of fluorescent 
Pseudomonas strain B10, grown in iron-deficient medium (Kloepper et al. 1980). 
The application of B10 as inoculant and pure pseudobactin significantly improved 
potato growth in greenhouse assay compared to water-treated controls. In addition, 
strain B10 and pseudobactin significantly reduced fungal population in potato’s rhi-
zoplane (control, 5.5; B10, 2.3; pseudobactin, 1.4 CFU per 10 cm roots) suggesting 
that bacterial siderophores play a crucial role in enhancing plant growth by seques-
tering iron in root zone and by antagonism to potentially deleterious phytopatho-
gens. The role of siderophore-producing bacteria in enhancing potato growth has 
also been reported by others (Bakker et al. 1986; Weisbeek et al. 1987). Moreover, 
in a hydroponic culture experiment, siderophores from bacterial strain 
Chryseobacterium C138 were found effective in supplying Fe to iron-starved 
tomato plants by roots inoculated with or without bacteria (Radzki et al. 2013). 
Similarly, the role of fluorescent siderophore (pyoverdin) in suppression of Pythium- 
induced damping-off in tomato by Pseudomonas aeruginosa RBL 101 has been 
reported by Jagadeesh et al. (2001). Thus, hyperactive mutants (Flu++ Sid++) (RBL 
1015 and 1011) with higher siderophore production suppressed wilt disease more 
efficiently (75 and 37%, respectively) than the wild type (12.5%). In a follow-up 
study, Valencia-Cantero et al. (2007) observed a significant increase Fe content and 
growth of bean plants inoculated with B. megaterium UMCV1, Arthrobacter spp. 
UMCV2, S. maltophilia UMCV3, and S. maltophilia UMCV4, compared to unin-
oculated plants grown in sterilized soil. Similarly, the role of bacteria such as 
Pseudomonas aeruginosa, P. fluorescens, P. putida, and S. marcescens in inducing 
siderophore-dependent resistance in vegetables such as bean, tomato, radish, and 
cucumber against plant pathogens like Colletotrichum lindemuthianum, C. orbicu-
lare, Botrytis cinerea, and Fusarium was also reported (Höfte and Bakker 2007).
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2.3.6  Bacterial Phytohormones and Plant Growth Regulation

Phytohormones or “plant growth hormones” are naturally occurring organic 
substances that exert, at low concentrations, a major influence on plant growth 
and upregulation of physiological process. Among phytohormones, auxin, the 
term derived from Greek word αυξειν (auxein means “grow or increase”), was 
the first plant hormone discovered by Kende and Zeevaart (1997). Auxin 
remained the only synonym of phytohormone until 1973, when Went and 
Thimann published their book Phytohormones. Since then, other phytohor-
mones such as gibberellin, ethylene, cytokinin, and abscisic acid have been dis-
covered (Tran and Pal 2014). Phytohormones are produced by plants (Bari and 
Jones 2009), by microorganisms (Narayanasamy 2013), and even by algae 
(Kiseleva et al. 2012). Among microbes, PGPR can also modulate phytohor-
mone levels in plant tissues affecting hormonal balance of host plant (Figueiredo 
et al. 2016). Some of the most common phytohormones affecting plant growth 
are discussed in the following section.

2.3.6.1  Auxins: Biosynthesis and Their Place in the Plant-PGPR 
Interaction

Among phytohormones, auxins have the ability to affect, practically, all plant 
physiological aspects from promotion of cell enlargement and division, apical 
dominance, root initiation, and differentiation of vascular tissue to modulation of 
reactive oxygen species (Tomić et al. 1998). Recently, it has been reviewed that 
auxins affect other plant hormone activities, such as cytokinin, abscisic acid, eth-
ylene, jasmonate, and salicylic acid, and modulates various plant defense-signal-
ing pathways (Vidhyasekaran 2015). Indole acetic acid (IAA) is the major 
naturally occurring phytohormone which is also produced by bacteria involved in 
plant growth and health enhancement (Gao and Zhao 2014; Etesami et al. 2015; 
Spaepen and Vanderleyden 2010). In most cases, tryptophan (Trp) serves as phys-
iological precursor in IAA synthesis (Spaepen et al. 2007a). IAA biosynthesis in 
bacteria involves five Trp- dependent pathways: indole-3-acetamide pathway, 
indole-3-pyruvic acid pathway, tryptamine pathway, indole-3-acetonitrile path-
way and Trp side chain oxidase pathway, and one Trp-independent pathway 
(Spaepen et al. 2007b; Di et al. 2016).

Beyeler et al. (1999) reported that a genetically modified strain of P. fluorescens 
CHA0, which overproduced IAA, was more effective for cucumber growth 
improvement than the wild strain. Accordingly, mutant strain CHA0/pME3468 
increased fresh root weight of cucumber by 17–36%, compared to the effect of 
wild CHA0 strain; Gravel et al. (2007) found that IAA (10 μg/ml) application by 
drenching to the growing medium or by spraying on shoots reduced symptoms 
caused by P. ultimum on tomato plants. Furthermore, Khan et al. (2016) reported 
that among other tested strains, endophyte B. subtilis LK14 produced the highest 
(8.7 μM) amount of IAA on the fourteenth day of growth and significantly increased 
shoot and root biomass and chlorophyll (a and b) contents in tomato as compared 
to control plants.
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2.3.6.2  Gibberellins: Miraculous Molecules for Plant Growth 
Regulation

Gibberellins were first isolated in 1962 from fungus Fusarium moniliforme 
(Gibberella fujikuroi in sexual form) by Kurosawa (Japan). In 1938, two other 
Japanese workers (Yakutat and Sumiki) isolated active principles as crystals from 
culture medium and named them gibberellins A and B (Takahashi et al. 1991). 
Macmillan and Suter (1958) identified the first plant gibberellin (GA1) from 
Phaseolus coccineus seeds. However, gibberellins are synthesized not only by 
plants and fungi but also by bacteria (Morrone et al. 2009). In this context, 
Maheshwari et al. (2015) mentioned that the bacterial gibberellins were reported 
first time in 1988 in R. meliloti. Later on, based on gibberellins pathways synthesis 
occurring in plant and fungi, it was suggested that its synthesis in bacteria started 
with geranyl-PP conversion into ent-kaurene via ent-copalyl diphosphate. After 
this, ent-kaurene is converted into GA12-aldehyde through ent-kaurene oxidase and 
ent-kaurenoic acid oxidase synthesis. GA12-aldehyde is then oxidized into GA12 
and metabolized into other GA (Kang et al. 2014). Morrone et al. (2009) described 
an operon in Bradyrhizobium japonicum genome, whose enzymatic composition 
indicates that gibberellin biosynthesis in bacteria represents a third independently 
assembled pathway relative to plants and fungi.

Currently, gibberellins include a wide range of tetracyclic diterpene acids that 
regulate, in combination with other phytohormones, diverse processes in plant 
growth such as germination, stem elongation, flowering, fruiting, root growth pro-
motion, root hair abundance, vegetative/reproductive bud dormancy, and delay of 
senescence in many plant organs (Cassán et al. 2014; Kang et al. 2012; Niranjana 
and Hariprasad 2014). Bacteria such as Acetobacter diazotrophicus (Bastian et al. 
1998), Azospirillum lipoferum (Bottini et al. 1989), A. brasilense (Janzen et al. 
1992), Bacillus pumilus (Joo et al. 2005), B. cereus (Joo et al. 2005), B. macroides 
(Joo et al. 2005), Herbaspirillum seropedicae (Kang et al. 2014), Acinetobacter 
calcoaceticus (Kang et al. 2009), Burkholderia cepacia (Joo et al. 2009), and 
Promicromonospora sp. (Kang et al. 2012) have been reported as gibberellin pro-
ducers. In addition, Kang et al. (2012) described the role of gibberellin-producing 
Promicromonospora sp. SE188 in Solanum lycopersicum plant growth improve-
ment. Promicromonospora sp. produced physiologically active (GA1 and GA4) and 
inactive (GA9, GA12, GA19, GA20, GA24, GA34, and GA53) gibberellins. In 
addition to plant growth improvement, tomato inoculated with this bacterium 
resulted in a downregulation of the stress hormone abscisic acid, while salicylic acid 
was significantly higher compared to control plants. Joo et al. (2004, 2005) reported 
the positive effect of gibberellin-producing bacteria (B. cereus MJ-1, B. macroides 
CJ-29, and B. pumilus CJ-69) on red pepper growth and its endogenous gibberellins 
content. Inoculation with B. cereus MJ-1 improved shoots and roots fresh weight of 
red pepper by 1.38- and 1.28-fold, respectively. Among 864 bacterial isolates tested 
on cucumber and crown daisy for growth promotion, the most efficient strain for 
plant growth enhancement, Burkholderia sp. KCTC 11096BP, was found to pro-
duce physiologically active gibberellins (GA1, 0.23; GA3, 5.11; and GA4 
2.65 ng/100 ml) and inactive gibberellins (GA12, GA15, GA20, and GA24) (Joo et al. 
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2009). Moreover, Khan et al. (2014) reported tomato growth-promoting activity of 
IAA and gibberellin-producing bacteria Sphingomonas sp. LK11 isolated from 
leaves of Tephrosia apollinea. In culture broth, the strain LK11 released active 
(GA4, 2.97 ng/ml) and inactive gibberellins (GA9, 0.98 and GA20, 2.41 ng/ml). 
Tomato plants inoculated with endophytic Sphingomonas sp. LK11 had signifi-
cantly higher shoot length, chlorophyll contents, and dry matter accumulation in 
shoot and root compared to control suggesting the potential role of phytohormones 
in crop growth improvement.

2.3.6.3  Cytokinins and Plant Growth Regulation
Cytokinins are N6-substituted aminopurines or adenine compounds with an iso-
prene, modified isoprene, aromatic side chain attached to the N6-amino group, or 
zeatin and trans-zeatin. These molecules have the ability to influence physiological 
and developmental processes of plants. Cytokinins affect cell division, cell cycle, 
leaf senescence, nutrient mobilization, apical dominance, shoot apical meristems 
formation and activity, floral development, breaking of bud dormancy and seed ger-
mination, chloroplast differentiation, autotrophic metabolism, and leaf and cotyle-
don expansion (Maheshwari et al. 2015; Wong et al. 2015). Apart from plant roots, 
cytokinins can also be derived from microalgae, bacteria, mycorrhizal fungi, and 
nematodes in rhizosphere (Reddy 2014). For a long time, cytokinins have been con-
sidered as an important plant growth regulator. Hence, several works reported the 
role of cytokinin-producing bacteria like Azotobacter (Taller and Wong 1989), 
Azospirillum (Conard et al. 1992), Agrobacterium (Akiyoshi et al. 1987), 
Pseudomonas (Akiyoshi et al. 1987), Paenibacillus (Timmusk et al. 1999), Bacillus 
(Ortíz Castro et al. 2008), Achromobacter (Donderski and Głuchowska 2000), 
Enterobacter (Kämpfer et al. 2005), and Klebsiella (Conard et al. 1992) in plant 
growth regulation.

The impact of cytokinins produced by some bacterial strains isolated from rhizo-
sphere on growth and cell division in cucumber cotyledons have been reported 
(Hussain and Hasnain 2009). Chlorophyll contents, cell division, and fresh weight 
were increased in cucumber cotyledons placed at 2 mm distance from cytokinin- 
producing B. licheniformis Am2, B. subtilis BC1, and P. aeruginosa E2 cultures 
under green light. Major cytokinin species detected were zeatin and zeatin riboside. 
Arkhipova et al. (2007) followed the consequences of inoculating growing medium 
with cytokinin-producing Bacillus (strain IB-22) under conditions of water suffi-
ciency and deficit on 12-day-old lettuce seedlings. Inoculation increased shoot cyto-
kinins, shoot abscisic acid, accumulation of shoot mass, and shortened roots, while 
it showed a smaller effect on root mass and root/shoot ratios by stimulating shoot 
growth, but did not raise stomatal conductance. Likewise, Arkhipova et al. (2005) 
evaluated the ability of cytokinin-producing B. subtilis in influencing growth and 
endogenous hormone content of lettuce plants. Recently, the osmotolerant cytokinin- 
producing Citricoccus zhacaiensis and B. amyloliquefaciens were found to enhance 
tomato growth under irrigation deficit conditions (Selvakumar et al. 2016). They 
observed that microbial inoculation significantly enhanced stomatal conductivity, 
transpiration rates, photosynthesis, and relative water contents of tomato plants 
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across stress levels. Moreover, C. zhacaiensis enhanced the yield by 24 and 9%, 
while B. amyloliquefaciens increased the yield by 42 and 12.7%, at 50 and 25% 
water holding capacity, respectively. Ortiz Castro et al. (2008) described the impor-
tant role played by cytokinin receptors in plant growth promotion by B. megaterium, 
initially isolated from bean plants rhizosphere. Inoculation with B. megaterium pro-
moted biomass production of bean plants. This effect is related to altered root sys-
tem architecture in inoculated plants (inhibition in primary root growth followed by 
an increase in lateral root formation and root hair length). These promoting effects 
on plant development were found to be independent of auxin and ethylene 
signaling.

2.3.6.4  Ethylene
Ethylene is a gaseous hormone produced by plants and plays an important role in 
various developmental processes, such as leaf senescence, leaf abscission, epinasty, 
and fruit ripening (Gray and Smith 2004; Vogel et al. 1998). Ethylene is synthesized 
from methionine in three steps that starts with methionine activation to S-adenosyl- 
L-methionine by the enzyme SAM synthetase. The second step consists to convert 
S-adenosyl-L-methionine to 1-aminocyclopropane-1-carboxylic acid (ACC), which 
is catalyzed by ACC synthase. After that, the enzyme ACC oxidase ensures ACC 
conversion to ethylene via an oxygenation reaction (Ma et al. 2014). At the begin-
ning, ethylene was considered as a stress hormone because under stress conditions 
(salinity, drought, water logging, heavy metals, and pathogenicity), plants synthe-
size high amount of ethylene, leading to the alteration of their physiological perfor-
mance and, consequently, to the reductions in root and shoot growth. Later, other 
vital functions such as seed germination, root hair development, adventitious root 
formation, nodulation, leaf and fruit abscission, and flower and leaf senescence have 
been found to be influenced by ethylene (Bakshi et al. 2015; Shrivastava and Kumar 
2015).

2.3.6.5  Abscisic Acid
Abscisic acid (ABA) is a sesquiterpene phytohormone, synthesized by plants, bac-
teria, fungi, algae, and animals (Gomez-Cadenas et al. 2015; Karadeniz et al. 2006; 
Tuomi and Rosenquist 1995). ABA affects many physiological processes of plants 
including vegetables (Porcel et al. 2014). For example, ABA regulates several 
events during late seed development and plays an important role in circumventing 
environmental stresses such as desiccation, salt, and cold. Abscisic acid also con-
trols plant growth and inhibits root elongation (Pilet and Chanson 1981) suggesting 
that a negative correlation exists between growth and the endogenous ABA plants 
content (Pilet and Saugy 1987). The prokaryotic pathway for abscisic acid biosyn-
thesis originates from isoprene known as isopentenyl pyrophosphate that is synthe-
sized from mevalonate pathway (Endo et al. 2014). Abscisic acid is the main 
hormone that balances many plant physiological responses to abiotic stress. 
However, its signaling pathways act in a complex interconnection with other hor-
mone signal (Gomez-Cadenas et al. 2015).
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2.3.6.6  Bacterial ACC Deaminase: A Hormone Balancing Signal 
Molecule

The enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase synthesized by 
a wide range of rhizospheric bacteria (Glick et al. 2007) decreases the deleterious 
ethylene amounts and balances ABA levels in stressed plants. Enzyme ACC deami-
nase degrades ACC into α-ketobutyrate and ammonia to supply N and energy and, 
hence, lowers the ethylene levels in plant (Glick et al. 2007; Penrose and Glick 
2003). It has been reviewed that many biotic (viruses, bacteria, fungi, and insects) 
and abiotic (salt, heavy metals, drought, radiation, etc.) stresses could be relieved 
by ACC deaminase-producing bacteria (Lugtenberg and Kamilova 2009; 
Shaharoona et al. 2012). Among microorganisms, soil bacteria belonging to 
genera Agrobacterium, Azospirillum, Alcaligenes, Bacillus, Burkholderia, 
Enterobacter, Methylobacterium, Pseudomonas, Ralstonia, Rhizobium, 
Rhodococcus, Sinorhizobium, Kluyvera, Variovorax, and Paradoxus have been 
reported to produce ACC deaminase (Barnawal et al. 2012; Glick 2014; Hao et al. 
2010; Saleem et al. 2007; Toklikishvili et al. 2010).

The bacterial strain M. ciceri LMS-1 was transformed by triparental mating 
with plasmid pRKACC containing ACC deaminase gene (acdS) of P. putida 
UW4 cloned in pRK415. By expressing ACC deaminase under free-living condi-
tions, ACC deaminase-producing mutant Mesorhizobium LMS-1 (pRKACC) 
increased chickpea nodulation performance and plant total biomass compared to 
LMS-1 wild-type strain (127 and 125%, respectively). These results suggest that 
the use of bacteria with improved ACC deaminase activity might be very impor-
tant to develop microbial inocula for agricultural purposes (Nascimento et al. 
2012). Like other crops, the role of ACC deaminase positive bacteria in vegetable 
growth is reported. As an example, Mayak et al. (2004) described the role of 
ACC deaminase-producing Achromobacter piechaudii in conferring resistance in 
tomato plants to salt stress. This bacterium significantly reduced ethylene levels 
in seedlings and increased fresh and dry weights of tomato grown in presence of 
up to 172 mM NaCl. Under salt stress, the bacterium also increased water use 
efficiency by plants compared to the control, suggesting the usefulness of such 
ACC deaminase-producing bacteria in alleviating salt stress. Similarly, ACC 
deaminase-producing and halotolerant Brevibacterium iodinum, B. lichenifor-
mis, and Zhihengliuela alba were found to regulate ethylene levels and conse-
quently enhanced growth and salt tolerance of red pepper, grown in salt-stressed 
conditions (Siddikee et al. 2011). The inoculation with B. licheniformis RS656, 
Z. alba RS111, and B. iodinum RS16 reduced ethylene production by 44, 53 and 
57%, respectively. In addition, when red pepper was grown in salt-stressed con-
dition, salt stress caused 1.3-fold reduction in root/shoot dry weight ratio, while 
bacterial inoculation on the contrary relieved the stress, and the red pepper plants 
grew normally similar to those of control plants. Numerous other studies have 
also been conducted to validate the role of PGPR in vegetable improvement 
across many production systems (Ali et al. 2014; Belimov et al. 2015; Husen 
et al. 2011).
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2.4  PGPR Hydrolytic Enzymes

Bacterial lytic enzymes such as urease, esterase, lipase, protease, chitinase, amy-
lase, and cellulase are key protagonists in the biological transformation processes of 
N, H, and C (Rana et al. 2012; Reddy 2013; Xun et al. 2015). Enzymes like chitin-
ase and cellulase play a major role as biocontrol agents by degrading fungal cell 
walls (Sindhu and Dadarwal 2001). Kathiresan et al. (2011) reported that an 
Azotobacter sp. produced high amounts of amylase, cellulase, lipase, chitinase, and 
protease and participated in biodegradation process of soil organic matter. Bacteria 
belonging to Bacillus and Pseudomonas sp. reduced growth of filamentous fungi by 
secreting lytic enzymes such as chitinases and glucanase. The application of such 
bacteria for biological protection of crops from pathogens, especially those that 
contain chitin and glucans within their cell wall structure, is widely assumed (Prasad 
et al. 2015). Kohler et al. (2007) observed that inoculation of lettuce plants with B. 
subtilis increased significantly urease, protease, and phosphatase activity in rhizo-
sphere, hence participated in plant growth enhancement and potassium/calcium 
uptake. A bacterial isolate (MIC 3) produced lytic enzymes (protease, amylase, 
cellulase, chitinase, and pectinase) and exhibited high in vitro antagonistic activity 
against F. oxysporum and Phoma sp. (Avinash and Rai 2014). Recently, the role of 
chitinolytic Streptomyces vinaceusdrappus S5MW2 in enhancing tomato plant 
growth and biocontrol efficacy through chitin supplementation against Rhizoctonia 
solani is reported (Yandigeri et al. 2015). Under greenhouse experiment, chitin sup-
plementation with S5MW2 showed a significant growth of tomato plants and supe-
rior disease reduction as compared to untreated control and without CC-treated 
plants. The role of chitinase-producing S. maltophilia and Chromobacterium sp. in 
inhibiting egg hatch of potato cyst nematode Globodera rostochiensis was reported 
by Cronin et al. (1997). Xu and Kim (2016) evaluated the role of cellulase-/protease- 
producing Paenibacillus polymyxa strain SC09-21 as biocontrol agent of 
Phytophthora blight and growth stimulation in pepper plants. Strain SC09-21 sig-
nificantly reduced Phytophthora blight severity and increased phenylalanine 
ammonia- lyase, peroxidase, polyphenol oxidase, and superoxide dismutase activi-
ties. In addition, SC09-21 boosted pathogenesis-related protein gene expression in 
pepper plants. Singh et al. (1999) observed that two chitinolytic bacterial strains, 
Paenibacillus sp. 300 and Streptomyces sp. 385, suppressed Fusarium wilt of 
cucumber caused by F. oxysporum f. sp. cucumerinum in non-sterile, soilless pot-
ting medium.

2.5  Systemic Tolerance and Systemic Resistance Induction 
by PGPR

Apart from extreme temperatures, salinity, drought, unfavorable pH, heavy metals, 
and organic pollutants that hit the vegetable production hardest around the world, 
losses due to phytopathogens are equally substantial in many countries. As an 
example, about 28–40% of potatoes, cotton, wheat, rice, and maize yields loss are 
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reported due to biotic factors, where the highest loss (40%) was observed in potato 
due to pathogen diseases (Ashraf et al. 2012; Schwarz et al. 2010). Recently, several 
works have been published highlighting the PGPR role as enhancers of plant toler-
ance to abiotic stress. PGPR-induced physiological and biochemical changes in 
plants that result in enhanced tolerance to environmental stress (drought, salinity, 
heavy metals, etc.) is known as induced systemic tolerance (IST) (Choudhary and 
Varma 2016; Nadeem et al. 2015). Species belonging to the genera Bacillus, 
Halomonas, Planococcus, Azospirillum, Azotobacter, Rhizobium, Achromobacter, 
and Pseudomonas can promote potato, chickpea, tomato, bean, lettuce, and cucum-
ber growth under high salinities (Egamberdieva and Lugtenberg 2014; Gururani 
et al. 2013; Qurashi and Sabri 2012). In growth chamber experiment, Barassi et al. 
(2006) reported that lettuce seeds inoculated with Azospirillum had better germina-
tion and vegetative growth than non-inoculated plants exposed to varying levels of 
NaCl. Several other workers have also reported that Bacillus, Pseudomonas, 
Achromobacter, Variovorax, Citrobacter, Bacillus, and Mesorhizobium could be 
used to improve potato and tomato growth under drought stress (Belimov et al. 
2015; Bensalim et al. 1998; Gururani et al. 2013; Ullah et al. 2016). Also, a novel 
osmotolerant plant growth-promoting Actinobacterium citricoccus zhacaiensis B-4 
(MTCC 12119) was found to enhance onion seed germination under osmotic stress 
conditions (Selvakumar et al. 2015). On the other hand, Wang et al. (2015) evalu-
ated the effect of a bacterial consortium (Bacillus cereus AR156, B. subtilis SM21, 
and Serratia sp. XY21) on alleviating cold stress in tomato seeds after 7 days of 
chilling treatment (4 °C) and 1 week recovery at normal 28 °C. Treated tomato 
plants had a survival rate of 93% on average six times more than control plants 
(16%). The same consortium (B. cereus AR156, B. subtilis SM21, and Serratia sp. 
XY21) was previously reported to be an efficient eco-friendly tool to induce drought 
tolerance in cucumber plants (Wang et al. 2012).

There are numerous reports where PGPR have been found to stimulate plant 
defense by inhibiting phytopathogens. They induce physical or chemical changes 
in plants and, hence, improve plant resistance, which is designated by induced 
systemic resistance (ISR) (Nadeem et al. 2015; Niranjana and Hariprasad 2014). 
For instance, Bacillus subtilis B4 and B. subtilis B5 when tested in pot trials against 
Sclerotium cepivorum, causing onion white rot, decreased disease incidence by 
33.33% and 41.67%, respectively, compared with the control. In contrast, under 
field conditions, disease incidence was declined by 25% (B. subtilis B5) and 
16.67% (B. subtilis B4) compared with the control. Due to their disease-reducing 
ability, strains of Bacillus were considered suitable for enhancing growth and pro-
ductivity of onion plants (Shalaby et al. 2013). Furthermore, the ability of endo-
phytic Pseudomonas sp. strain to promote growth and resistance of potato plants 
toward infection by necrotroph Pectobacterium atrosepticum is also reported 
(Pavlo et al. 2011). Apart from its ability to promote potato shoots growth, 
Pseudomonas sp. increased plant resistance toward soft rot disease. Disease inhibi-
tion was inversely proportional to the size of inoculated bacterial population. 
Raupach et al. (1996) studied the effect of two bacterial strains P. fluorescens 89B-
27 and S. marcescens 90–166 to protect cucumber and tomato against cucumber 
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mosaic Cucumovirus (CMV). The two strains showed high ability to stimulate 
tomato and cucumber defenses against phytopathogen virus CMV, and the results 
suggest that the two strains should be evaluated for their potential to contribute 
toward management of viral plant diseases. Equally, PGPR such as Pseudomonas, 
Alcaligenes, Paenibacillus, and Chryseobacterium have been reported as systemic 
resistance inducers in potato, tomato, pea, bean, and Chinese cabbage against 
pathogens like Bemisia tabaci, Fusarium, Macrophomina phaseolina, Rhizoctonia, 
Ralstonia solanacearum, C. orbiculare, Botrytis cinerea, and Pectobacterium car-
otovorum (Ben Abdallah et al. 2016; Lee et al. 2014; Moradi et al. 2012; Murthy 
et al. 2014; Valenzuela-Soto et al. 2010). Recently, Konappa et al. (2016) reported 
the role of lactic acid bacterium Lactobacillus paracasei in mediating induction of 
defense enzymes to enhance resistance against Ralstonia solanacearum causing 
bacterial wilt in tomato. Inoculation of tomato seedlings with bacterial isolate 
induced a significant amount of peroxidase, polyphenol oxidase, phenylalanine 
ammonia-lyase, total phenolics, and β-1,3-glucanase activities. In field experi-
ment, treatment with lactic acid bacteria increased the yield by 15% (8.2 kg/m2), 
and pathogen-infected plants as well as pretreated with bacteria gave an average of 
55% yield (28.3 kg/m2 compared to infected plots). The results indicated that bac-
terial inoculation reduced the bacterial wilt by 61% in tomato.

 Conclusion

Vegetables constitute an important part of human healthy foods. They provide 
many important nutrient elements such as calcium, magnesium, potassium, iron, 
beta- carotene, vitamin B complex, vitamin C, vitamin A, vitamin K, and antioxi-
dants. Vegetables also provide soluble as well as insoluble dietary fiber collec-
tively known as non-starch polysaccharides (NSP) such as cellulose, mucilage, 
hemicellulose, gums, pectin, etc. Like many other crops, vegetables are threat-
ened by biotic and abiotic stresses. Thus, scientists and vegetable growers are 
working hard to develop different strategies to overcome these problems. Among 
various strategies, the use of PGPR in agricultural practices has received greater 
attention. It is clear that until now, there is no clear antithesis about beneficial and 
eco-friendly effect of PGPR in a sustainable agriculture establishment worldwide. 
However, there are many challenges that need to be addressed in order to make 
full use of this technology. Among various reasons, the lack of uniformity and 
variation in responses are of prime concern. Moreover, the detection of vegetable-
specific PGPR and understanding the interactive relationship between PGPR and 
vegetable require special attention so that vegetable-specific inoculant is devel-
oped. In addition to these, the difficulties encountered in inoculum production, 
storage, delivery, viability, and its competitiveness in the new environment after 
application are some of the other major challenges that require immediate and 
considerable attention of both scientists and farmers to make full use of this tech-
nology for enhancing the vegetable production in different agroecological niches.
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