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Abstract

The introduction of kernel function in primal-dual interior point meth-
ods represents not only a measure of the distance between the iterate and
the central path, but also plays an important role in the amelioration of the
computational complexity of an interior point algorithm. In this paper,
we present a polynomial primal-dual interior-point algorithm for solving
convex quadratic programming based on a new kernel function with an
exponential barrier term. It is shown that in the interior-point methods
based on this function, the iteration bound enjoys O(

√
p3n (log pn)2 log n

ε
)

and O(
√
p3n log n

ε
) for large and small-update methods respectively. This

complexity generalizes the result obtained by Bai et al. and improves the
results obtained by Bouafia et al..
MSC: 90C05.90C51.
Keywords: Convex quadratic programming, Interior point methods,
Kernel function.

1 Introduction

Convex quadratic programs (CQP ) is a generalization of linear optimization
(LO) . These programs appear in many areas of applications, for example in
finance, agriculture, economics, optimal control, geometrics problems and also
as sub-problems in sequential quadratic programming (SQP ).

There are a variety of solution approaches for CQP which have been stud-
ied intensively. Among them, the interior point methods (IPMs) gained more
attention than others methods. Feasible primal-dual path following methods
are the most attractive methods of IPMs [11, 12]. Their derived algorithms
achieved important results such as polynomial complexity and numerical effi-
ciency. These algorithms trace approximately the so-called central-path which
is a curve that lies in the feasible region of the considered problem and they
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reach an optimal solution of it. However, in practice these methods don’t always
find a strictly feasible centered point to starting their algorithms. So, it is worth
analyzing other cases when the starting points are not centered. Thus leads to
define a new method which is bases on finding initial strictly feasible points not
necessarily centered.

These methods were studied extensively by many authors for linear opti-
mization (LO) . Recently, Peng et al. [8] introduced so-called self-regular barrier
functions for LO, the iteration bound for large-update methods was improved
from O(n log n

ε ) to O
(√
n log n log n

ε

)
, which almost closes the gap between the

iteration bounds for large and small-update methods. Bai et al. [1] presented
a large class of eligible kernel functions, which is fairly general and includes the
classical logarithmic functions and the self-regular functions, as well as many
non-self-regular functions as special cases. The best-known iteration bounds
obtained are as good as the ones in [8] for appropriate choices of the eligi-
ble kernel functions. For some other related kernel function IPMs we refer to
[2, 3, 4, 5, 6, 7, 10]. In 2016, Bouafia et al. [2] proposed a new parameterized
kernel function with an exponential barrier that generalizes the algorithmic com-
plexity obtained by Bai et al. [1], which has O(

√
p5n(log pn)2 log n

ε ) complexity

for large-update method and O(
√
p5n log n

ε ) for small-update method.
In this paper, we propose a primal-dual interior point method for solving

CQP based on a new kernel function with an exponential barrier term, this
function is used for determining the search directions and for measuring the
distance between the given iterate and the center. We present some complex-
ity results for the generic algorithm and prove that the bound for large and
small-update methods enjoys O(

√
p3n (log pn)

2
log n

ε ) and O(
√
p3n log n

ε ), re-
spectively. This complexity generalizes the result obtained by Bai et al. [1] and
improved the results obtained by Bouafia et al. [2]

The primal problem of CQP is given by min ctx+ 1
2x

tQx,
Ax = b,
x ≥ 0,

(P )

where Q is a given n × n real positive semidefinite matrix, A is a given m × n
real matrix, c ∈ Rn, b ∈ Rm, x ∈ Rn, z ∈ Rn and y ∈ Rm.

The dual problem of (P ) is given by max bty − 1
2x

tQx,
Aty + z −Qx = c,
z ≥ 0.

(D)

Throughout the paper, we make the following assumptions:

1. The matrix A has full row rank (rank(A) = m < n).

2. (P ) and (D) satisfy the interior-point condition (IPC), i.e.,
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there exist
(
x0, y0, z0

)
such that Ax0 = b,

Aty0 + z0 −Qx0 = c,
x0 > 0, z0 > 0.

(1)

It is well known that finding an optimal solution for (P) and (D) is equivalent
to solving the Karush-Khun-Tucker optimality conditions: Ax = b, x ≥ 0,

Aty + z −Qx = c, z ≥ 0,
xz = 0.

(2)

Now, by replacing the complementarity condition xz = 0 in (2) by the
perturbed equation xz = µe, one obtains the following perturbed system: Ax = b, x ≥ 0,

Aty + z −Qx = c, z ≥ 0,
xz = µe,

(3)

where µ is a positive parameter that is to be driven to zero explicitly. It is
shown that, under our assumptions the system (3) has a unique solution, for
each µ > 0, this solution is denoted by (x(µ), y(µ), z(µ)). x(µ) and (y(µ), z(µ))
are called the µ-center of (P) and (D), respectively. The set of all µ-centers
forms the so called central path for (P) and (D).

If µ −→ 0, then the limit of the central path exists and since the limit point
satisfies the complementarity condition, the limit yields an optimal solution for
(P) and (D).

2 Primal-dual interior point algorithm for CQP

2.1 The search directions

Primal-dual path-following interior point algorithms are iterative methods which
aim to trace approximately the central path, applying Newton’s method for (3)
for a given feasible point (x, y, z) then the Newton’s direction (∆x,∆y,∆z) at
this point is the unique solution of the following linear system of equations: A∆x = 0,

At∆y + ∆z −Q∆x = 0,
z∆x+ x∆z = µe− xz.

(4)

The result of a Newton step with step size α is denoted as

x+ = x+ α∆x, y+ = y + α∆y, z+ = z + α∆z, (5)

where α satisfies 0 < α ≤ 1.
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For convenience,we introduce the following notation. The vectors

v =

√
xz

µ
, d =

√
x

z
.

The scaled search directions dx and dz as follows:

dx =
v∆x

x
, dz =

v∆z

z
. (6)

System (4) can be rewritten as follows: Ādx = 0,
Āt∆y + dz − Q̄dx = 0,
dx + dz = v−1 − v,

(7)

where Ā = 1√
µAD, Q̄ = DQD with D = diag(d).

Note that the right-hand side of the third equation in (7) equals the negative
gradient of the logarithmic barrier function Φ(v), i.e., dx + dz = −OΦ(v), and
system (7) can be rewritten as follows: Ādx = 0,

Āt∆y + dz − Q̄dx = 0,
dx + dz = −OΦ(v),

(8)

where the barrier function Φ(v) : Rn++ → R+ is defined as follows:

Φ(v) = Φ(x, z;µ) =

n∑
i=1

ψ(vi), (9)

ψ(vi) =
v2
i − 1

2
− log vi. (10)

We use Φ(v) as the proximity function to measure the distance between the
current iterate and the µ-center for given µ > 0. We also define the norm-based
proximity measure, δ(v) : Rn++ → R+ , as follows:

δ(v) =
1

2
‖OΦ(v)‖ =

1

2
‖dx + dz‖. (11)

We call ψ(t) the kernel function of the logarithmic barrier function Φ(v). In
this paper, we propose a new kernel function ψ(t) non logarithmic and a new
barrier function Φ(v), which will be defined in the next section.

2.2 The generic interior-point algorithm

It is clear from the above description that the closeness of (x, z) to (x(µ), z(µ)) is
measured by the value of Φ(v) with τ > 0 as a threshold value. If Φ(v) ≤ τ , then
we start a new outer iteration by performing a µ-update; otherwise, we enter an
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inner iteration by computing the search directions at the current iterates with
respect to the current value of µ and apply (5) to get new iterates. If necessary,
we repeat the procedure until we find iterates that are in the neighborhood of
(x(µ), z(µ)). Then µ is again reduced by the factor 1−θ with 0 < θ < 1, and we
apply Newton’s method targeting the new µ-centers, and so on. This process is
repeated until µ is small enough, say until nµ ≤ε. At this stage, we have found
an ε-approximate solution of CQP .

The parameters τ, θ and the step size α should be chosen in such a way that
the algorithm is optimized in the sense that the number of iterations required
by algorithm is as small as possible.

The generic form of the algorithm is shown in Figure 1.

Generic primal-dual interior point algorithm for CQP

Input:
a proximity function Φ(v);
a threshold parameter τ > 1;
an accuracy parameter ε > 0;
a barrier update parameter θ, 0 < θ < 1;

begin

x = x0, y = y0, z = z0, µ = 1, v =
√

xz
µ .

((x0, y0, z0) is a strictly feasible solution for (P) and (D))
while nµ ≥ ε do

begin (outer iteration)
µ = (1− θ)µ;

while Φ(v) > τ do
begin (inner iteration)

compute the direction (∆x,∆y,∆z) using (8);
compute the step size α and put :
x = x+ α∆x;
y = y + α∆y;
z = z + α∆z;

v =
√

xz
µ ;

end
end

end.

Figure 1
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3 New kernel function and its properties

3.1 New kernel function

In this section, we introduce a new parametric kernel function with an exponen-
tial barrier term and develop some useful properties of the new kernel function
as well as the corresponding barrier function that are needed in the analysis of
the algorithm.

We call ψ : R++ → R+ a kernel function if ψ is twice differentiable and
satisfies the following conditions:

ψ(1) = ψ
′
(1) = 0,

ψ
′′

(t) > 0,∀t > 0,

lim
t→0+

ψ(t) = lim
t→+∞

ψ(t) = +∞.

Now, we define a new kernel function ψ(t) as follows:

ψ(t) =
p
(
t2 − 1

)
2

−
t∫

1

p

x
ep(

1
x−1)dx =

t∫
1

[
p

(
x− 1

x
ep(

1
x−1)

)]
dx, p ≥ 2. (12)

We give the first three derivatives with respect to t as follows:

ψ
′
(t) = pt− p

t
ep(

1
t−1), (13)

ψ
′′

(t) = p+ ep(
1
t−1)

(
p

t2
+
p2

t3

)
, (14)

ψ
′′′

(t) = −ep(
1
t−1)

(
2p

t3
+

4p2

t4
+
p3

t5

)
. (15)

Obviously, we have:
ψ
′′

(t) > p > 0 ,∀t > 0, (16)

ψ(1) = ψ
′
(1) = 0. (17)

It remains to show that ψ(t) is a barrier function. On the one hand:

lim
t→0+

ψ(t) = lim
t→0+

p (t2 − 1
)

2
−

t∫
1

p

x
ep(

1
x−1)dx

 =
−p
2

+ lim
t→0+

 1∫
t

p

x
ep(

1
x−1)dx

 .
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Since 0 < x ≤ 1 and p > 0, we have:

ep(
1
x−1) ≥ 1,

=⇒ p

x
ep(

1
x−1) ≥ p

x
,

=⇒
1∫
t

p

x
ep(

1
x−1)dx ≥

1∫
t

p

x
dx,

=⇒
1∫
t

p

x
ep(

1
x−1)dx ≥ p [log x]

1
t ,

=⇒ lim
t→0+

ψ(t) ≥ −p
2

+ lim
t→0+

(−p log t) = +∞,

so
lim
t→0+

ψ(t) = +∞. (18)

On the other hand:

lim
t→+∞

ψ(t) = lim
t→+∞

p (t2 − 1
)

2
−

t∫
1

p

x
ep(

1
x−1)dx

 = lim
t→+∞

 t∫
1

p

[
x− 1

x
ep(

1
x−1)

]
dx

 .
Since 1 ≤ x < +∞ and p > 0, we have:

ep(
1
x−1) ≤ 1,

=⇒ − 1

x
ep(

1
x−1) ≥ − 1

x
,

=⇒ x− 1

x
ep(

1
x−1) ≥ x− 1

x
,

=⇒ p

(
x− 1

x
ep(

1
x−1)

)
≥ p

(
x− 1

x

)
,

=⇒
t∫

1

p

(
x− 1

x
ep(

1
x−1)

)
dx ≥

t∫
1

p

(
x− 1

x

)
dx,

=⇒ ψ(t) ≥ p
[
x2

2
− log x

]t
1

,

=⇒ ψ(t) ≥ p
(
t2

2
− log t− 1

2

)
,

=⇒ lim
t→+∞

ψ(t) ≥ lim
t→+∞

pt

(
t

2
− log t

t
− 1

2t

)
= +∞,

so
lim

t→+∞
ψ(t) = +∞. (19)
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3.2 Eligibility of the new kernel function

Next lemma serves to prove the eligibility of our new kernel function (12).

Lemma 1 Let ψ(t) be as defined in (12). Then,

ψ
′′′

(t) < 0,∀t > 0, (20)

tψ
′′

(t)− ψ
′
(t) > 0,∀t > 0, (21)

tψ
′′

(t) + ψ
′
(t) > 0,∀t > 0, (22)

ψ
′′

(t)ψ
′
(βt)− βψ

′
(t)ψ

′′
(βt) > 0,∀β > 1,∀t > 1. (23)

Proof. For (20) we use (15), we obtain ψ
′′′

(t) < 0,∀t > 0. For (21) and (22),

we use (13), (14) and the positivity of t, p and ep(
1
t−1), we obtain:

tψ
′′

(t)− ψ
′
(t) = t

(
p+ ep(

1
t−1)

(
p

t2
+
p2

t3

))
− pt+

p

t
ep(

1
t−1),

= ep(
1
t−1)

(
2p

t
+
p2

t2

)
> 0.

And

tψ
′′

(t) + ψ
′
(t) = t

(
p+ ep(

1
t−1)

(
p

t2
+
p2

t3

))
+ pt− p

t
ep(

1
t−1),

= 2tp+ ep(
1
t−1)

(
p2

t2

)
> 0.

For (23), ψ check(20) and (21). Let t > 1 be considered

f(β) = ψ
′′

(t)ψ
′
(βt)− βψ

′
(t)ψ

′′
(βt) ,∀β > 1,

we have:

f
′
(β) = ψ

′′
(βt)

[
tψ
′′

(t)− ψ
′
(t)
]
− βtψ

′
(t)ψ

′′′
(βt) ,∀β > 1,

therefore the function f is strictly increasing and f(1) = 0 then f(β) > 0.
This completes the proof.

Lemma 2 [9] Given a function ψ that is twice differentiable, then the following
properties are equivalent

(i) ψ(
√
t1t2) ≤ ψ(t1)+ψ(t2)

2 .

(ii) the function φ defined by φ(ξ) = ψ(eξ) is convex.

(iii) tψ
′′

(t) + ψ
′
(t) > 0, t > 0.
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As a preparation for later, we present some technical results of the new
kernel function.

Lemma 3 For ψ(t), we have

p

2
(t− 1)

2 ≤ ψ(t) ≤ 1

2p

[
ψ
′
(t)
]2
, t > 0. (24)

ψ(t) ≤ 1

2
ψ
′′

(1) (t− 1)2 =
p2 + 2p

2
(t− 1)

2
, t ≥ 1. (25)

Proof. For (24), using (16), we have:

ψ(t) =

t∫
1

x∫
1

ψ
′′

(y) dydx ≥
t∫

1

x∫
1

pdydx =
p

2
(t− 1)2,

and

ψ (t) =

t∫
1

x∫
1

ψ
′′

(y) dydx,

≤
t∫

1

x∫
1

ψ
′′

(y)
ψ
′′

(x)

p
dydx,

≤ 1

p

t∫
1

ψ
′′

(x)ψ
′
(x) dx =

1

2p

[
ψ
′
(t)
]2
.

For(25), since ψ (1) = 0, ψ
′
(1) = 0, ψ

′′′
(t) < 0, ψ

′′
(1) = p2 + 2p, using Taylor’s

development we have for some ζ (1 ≤ ζ ≤ t) :

ψ (t) = ψ (1) + ψ
′
(1) (t− 1) +

1

2
ψ
′′

(1) (t− 1)2 +
1

6
ψ
′′′

(ζ) (ζ − 1)3,

≤ 1

2
ψ
′′

(1) (t− 1)2 =
p2 + 2p

2
(t− 1)2.

This completes the proof.
Let σ : [0,+∞[→ [1,+∞[ be the inverse function of ψ(t) for t ≥ 1 and

ρ : [0,+∞[→]0, 1] be the inverse function of −1
2 ψ

′
(t) for all t ∈]0, 1], ρ is a

decreasing function. Then we have the following lemma.

Lemma 4 For ψ(t), we have:

1 +

√
2

p2 + 2p
s ≤ σ(s) ≤ 1 +

√
2

p
s, s ≥ 0. (26)

ρ(z) ≥ 1
2z
p + 1

, z ≥ 0. (27)
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Proof. For (26), let ψ (t) = s, t ≥ 1, i.e., t = σ(s), t ≥ 1. By (24), we have
p
2 (t− 1)

2 ≤ ψ (t). Then p
2 (t− 1)

2 ≤ s this implies that t = σ(s) ≤ 1 +
√

2
ps.

By (25), we have:

s = ψ (t) ≤ p2 + 2p

2
(t− 1)

2
, t ≥ 1,

this implies

1 +

√
2

p2 + 2p
s ≤ σ(s) = t.

For (27), let z = −1
2 ψ

′
(t) , t ∈]0, 1], i.e., ρ(z) = t, t ∈]0, 1], we have: ep(

1
t−1) ≥ 1.

By the definition of ψ
′
(t), we have:

z = −1
2 ψ

′
(t) = −1

2

(
pt− p

t e
p( 1

t−1)
)
,

≥ −1
2 pt+ 1

2
p
t = p

2

[
(1− t) +

(
1
t − 1

)]
,

≥ p
2

(
1
t − 1

)
.

This implies that

t = ρ(z) ≥ 1(
2z
p + 1

) , z ≥ 0.

This completes the proof.

Let ψ1 (t) = p
t e
p( 1

t−1), p > 0, t ∈]0, 1] and let ρ∗ :]0,+∞[→]0, 1] the inverse
function of ψ1, ρ∗ is a decreasing function. Then we have the following lemma:

Lemma 5 For ψ1 (t), we have:

ρ∗(z) ≥ 1

log( zp )
1
p + 1

, z > 0. (28)

ρ∗(p+ 2z) ≤ ρ (z) , z ≥ 0. (29)

Proof. To show (28), let ρ∗(z) = t, i.e., z = ψ1 (t) = p
t e
p( 1

t−1), p > 0, for all
t ∈]0, 1]. We have:

ep(
1
t−1) =

tz

p
≤ z

p
,

which implies

t = ρ∗(z) ≥ 1

log( zp )
1
p + 1

, z > 0.
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To show (29), let ρ(z) = t, i.e., z = −1
2 ψ

′
(t) = −1

2 (pt− ψ1 (t)), for all t ∈]0, 1].
We have:

z =
−1

2
(pt− ψ1 (t)) , z ≥ 0,

z ≥ −1

2
(p− ψ1 (t)) , t ∈]0, 1],

p+ 2z ≥ ψ1 (t) ,

ρ∗(p+ 2z) ≤ t = ρ∗ (ψ1 (t)) (ρ∗ is decreasing),

ρ∗(p+ 2z) ≤ ρ (z) .

This completes the proof.
We offer important theorem, which is valid for all kernel functions that

satisfy (23)(Lemma 2.4 [1]).

Theorem 6 [1] Let σ : [0,+∞[→ [1,+∞[ be the inverse function of ψ(t) for
t ≥ 1. Then we have:

Φ(βv) ≤ nψ(βσ(
Φ(v)

n
)), v ∈ Rn++, β > 1.

Corollary 7 For any positive vector v, if Φ(v) ≤ τ and β > 1, we have:

Φ(βv) ≤ n

2
ψ
′′

(1)
(
βσ
( τ
n

)
− 1
)2

.

Proof. For any positive vector v, If Φ(v) ≤ τ and β > 1 then by the theorem
6, we have:

Φ(βv) ≤ nψ(βσ(
Φ(v)

n
)) ≤ nψ(βσ(

τ

n
)).

ψ satisfies (25) and βσ( τn ) > 1 then ψ(βσ( τn )) ≤ ψ
′′

(1)
2

(
βσ( τn )− 1

)2
. So

Φ(βv) ≤ n
2ψ
′′

(1)
(
βσ
(
τ
n

)
− 1
)2
.

This completes the proof.
Now let v+ be the variance vector of (x, y, z) with respect to µ. Then

one easily understands that the variance vector v+ of (x, y, z) with respect to
µ+ = (1− θ)µ is given by v+ = v√

1−θ .

Lemma 8 Let 0 < θ < 1, v+ = v√
1−θ . If Φ(v) ≤ τ , then we have:

Φ(v+) ≤ (p2 + 2p)

2(1− θ)
(θ
√
n+

√
2

p
τ)2.
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Proof. By the corollary 7, with β = 1√
1−θ > 1 and (26) , we obtain:

Φ(v+) ≤ n

2
ψ
′′

(1)

(
σ
(
τ
n

)
√

1− θ
− 1

)2

,

=
n
(
p2 + 2p

)
2

(
σ
(
τ
n

)
√

1− θ
− 1

)2

,

=
n
(
p2 + 2p

)
2 (1− θ)

(
σ
( τ
n

)
−
√

1− θ
)2

,

≤
n
(
p2 + 2p

)
2 (1− θ)

(
1 +

√
2

p

( τ
n

)
−
√

1− θ
)2

,

≤
n
(
p2 + 2p

)
2 (1− θ)

(
θ +

√
2

p

( τ
n

))2

, (1−
√

1− θ ≤ θ, 0 < θ < 1),

≤
(
p2 + 2p

)
2 (1− θ)

(
θ
√
n+

√
2

p
τ

)2

.

This completes the proof.
Denote

(Φ)0 =

(
p2 + 2p

)
2 (1− θ)

(
θ
√
n+

√
2

p
τ

)2

, (30)

then (Φ)0 is an upper bound for Φ(v+) during the process of the algorithm. Note
that this bound depends only on the parameters n, τ and θ.

3.3 An estimation for the step size

In each inner iteration we first compute the search direction ∆x,∆y,∆z then a
step size α. Recall that during an inner iteration the parameter µ is fixed. After
a damped step, we have:

x+ = x+ α∆x, y+ = y + α∆y, z+ = z + α∆z.

Using (6), we obtain:

x+ = x

(
e+ α

∆x

x

)
= x

(
e+ α

dx
v

)
=
x

v
(v + αdx) ,

z+ = z

(
e+ α

∆z

z

)
= z

(
e+ α

dz
v

)
=
z

v
(v + αdz) .

So, we have:

v+ =

√
x+z+

µ
=
√

(v + αdx) (v + αdz).
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Define, for α > 0, f(α) = Φ(v+)−Φ(v). Then f(α) is the difference of proximities
between a new iterate and a current iterate for fixed µ. By (22) and lemma 2,
we have:

Φ(v+) = Φ(
√

(v + αdx) (v + αdz)) ≤
1

2
(Φ (v + αdx) + Φ (v + αdz)) .

Therefore, we have:

f(α) ≤ f1(α) =
1

2
(Φ (v + αdx) + Φ (v + αdz))− Φ(v). (31)

Obviously, f(0) = f1(0) = 0. Taking the first two derivatives of f1(α) with
respect to α, we have:

f
′

1(α) =
1

2

n∑
i=1

(
ψ
′
(vi + α [dx]i) [dx]i + ψ

′
(vi + α [dz]i) [dz]i

)
,

f
′′

1 (α) =
1

2

n∑
i=1

(
ψ
′′
(vi + α [dx]i) [dx]

2
i + ψ

′′
(vi + α [dz]i) [dz]

2
i

)
. (32)

Using (8) and (11), we have

f
′

1(0) =
1

2
〈OΦ(v), (dx + dz)〉 = −1

2
〈OΦ(v),OΦ(v)〉 = −2 (δ(v))

2
.

Lemma 9 Let δ(v) be as defined in (11). Then we have:

δ(v) ≥
√
p

2
Φ(v). (33)

Proof. Using (24), we have:

Φ(v) =

n∑
i=1

ψ (vi) ≤
n∑
i=1

1

2p

[
ψ
′
(vi)

]2
=

1

2p
‖ 5 Φ(v)‖2 =

4

2p
δ(v)2,

so

δ(v) ≥
√
p

2
Φ(v).

This completes the proof.

Remark 10 Throughout the paper, we assume that τ ≥ 1. Using Lemma 9,
the assumption that Φ(v) ≥ τ and p ≥ 2, we have δ(v) ≥

√
p
2 ≥ 1.

For convenience, we denote vmin = mini(vi), δ = δ(v) and Φ = Φ(v).

Lemma 11 Let f1(α) be as defined in (31) and δ be as defined in (11). Then
we have:

f
′′

1 (α) ≤ 2δ2ψ
′′

(vmin − 2αδ) .

13



Proof. According to the system (8), we observe that

(dx)
t
dz = dtx

(
Q̄dx − Āt∆y

)
= dtxQ̄dx ≥ 0,

this implies that

4δ2 = ‖dx + dz‖2 = ‖dx‖2 + ‖dz‖2 + (dx)
t
dz,

≥ ‖dx‖2 + ‖dz‖2,

so
‖dx‖ ≤ 2δ, ‖dz‖ ≤ 2δ.

We have:

vi + α [dx]i ≥ vmin − 2αδ, vi + α [dz]i ≥ vmin − 2αδ, i = 1, .., n.

According to (20) (ψ
′′

is strictly decreasing) and (32), we obtain:

f
′′

1 (α) ≤ 1

2
ψ
′′

(vmin − 2αδ)

n∑
i=1

(
[dx]

2
i + [dz]

2
i

)
,

≤ 1

2
ψ
′′

(vmin − 2αδ)

n∑
i=1

([dx]i + [dz]i)
2

= 2δ2ψ
′′

(vmin − 2αδ) .

This completes the proof.

Lemma 12 [1] If α satisfies the inequality

−ψ
′
(vmin − 2αδ) + ψ

′
(vmin) ≤ 2δ, (34)

then
f
′

1 (α) ≤ 0.

Lemma 13 [1] The largest step size ᾱ holding (34) is given by

ᾱ =
(ρ (δ)− ρ (2δ))

2δ
.

Lemma 14 [1] Let ᾱ be as defined in Lemma 13. Then

ᾱ ≥ 1

ψ′′ (ρ (2δ))
.

Lemma 15 Let ᾱ be that defined in Lemma 13. If

Φ = Φ(v) ≥ τ ≥ 1,

so we have:

ᾱ ≥ 1

p+ (1 + p) (p+ 4)δ
(

1 + log(p+4δ
p )

1
p

)2 .

14



Proof. Using Lemma 14, we have ᾱ ≥ 1
ψ′′ (ρ(2δ))

. According to (29) and the

increase of the function 1
ψ′′
, we obtain 1

ψ′′ (ρ(2δ))
≥ 1

ψ′′ (ρ∗(p+2(2δ)))
.

So

ᾱ ≥ 1

ψ′′(ρ∗(p+ 4δ))
.

Let t = ρ∗(p+ 4δ) then we get t ≤ 1 and

ψ
′′

(t) = p+ ep(
1
t−1)

(
p

t2
+
p2

t3

)
,

= p+
p

t
ep(

1
t−1)

(
1

t
+
p

t2

)
,

= p+ ψ1 (t)

(
t+ p

t2

)
,

≤ p+ ψ1 (t)

(
1 + p

t2

)
, t ≤ 1.

We have also according to (28) :

1

t2
=

1

(ρ∗(p+ 4δ))
2 ,

≤
(

1 + log(
p+ 4δ

p
)

1
p

)2

,

and
ψ1 (t) = ψ1 (ρ∗(p+ 4δ)) = p+ 4δ.

Finally, we get

ψ
′′

(ρ∗(p+ 4δ)) ≤ p+ ψ1 (t)

(
1 + p

t2

)
,

≤ p+ (1 + p) (p+ 4δ)

(
1 + log(

p+ 4δ

p
)

1
p

)2

.

So we take

ᾱ ≥ 1

ψ′′(ρ∗(p+ 4δ))
,

≥ 1

p+ (1 + p) (p+ 4δ)
(

1 + log(p+4δ
p )

1
p

)2 ,

=
1

p+ (1 + p)
(
p 1
δ + 4

)
δ
(

1 + log(p+4δ
p )

1
p

)2 ,

≥ 1

p+ (1 + p) (p+ 4)δ
(

1 + log(p+4δ
p )

1
p

)2 , δ ≥ 1.

15



This completes the proof.
Denoting

α̃ =
1

p+ (1 + p) (p+ 4)δ
(

1 + log(p+4δ
p )

1
p

)2 . (35)

α̃ is the step of displacement and α̃ ≤ ᾱ.

Lemma 16 [1] If the step size α satisfies α ≤ ᾱ, then f(α) ≤ −αδ2.

Lemma 17 For the displacement step, defined in (35), and taking

Φ(v) ≥ 1.

So

f(α̃) ≤
−
√

p
2 Φ[√

2p+ (1 + p) (p+ 4)
](

1 + log(
p+4
√

p
2 (Φ)0
p )

1
p

)2 . (36)

Proof. Using Lemma 16 with α = α̃ and (35). We obtain

f(α̃) ≤ −α̃δ2,

=
−δ2

p+ (1 + p) (p+ 4)δ
(

1 + log(p+4δ
p )

1
p

)2 ,

because log(1 + 4δ
p ) ≥ 0 and δ ≥

√
p
2 , we have

f(α̃) ≤ −δ

[p
√

2
p + (1 + p) (p+ 4)]

(
1 + log(p+4δ

p )
1
p

)2 .

Let the increasing function g1(x) = x(
1+log( p+4x

p )
1
p

)2 ,∀x ∈ R++ and we have

δ ≥
√

p
2 Φ then

f(α̃) ≤
−
√

p
2 Φ

[
√

2p+ (1 + p) (p+ 4)]

(
1 + log(

p+4
√

p
2 Φ

p )
1
p

)2 ,

let the decreasing function g2(x) = 1(
1+log( p+4x

p )
1
p

)2 ,∀x ∈ R++ and since

Φ ≤ (Φ)0, we obtain

f(α̃) ≤
−
√

p
2 Φ[√

2p+ (1 + p) (p+ 4)
](

1 + log(
p+4
√

p
2 (Φ)0
p )

1
p

)2 .

This completes the proof.
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4 Complexity of the algorithm

4.1 Inner iteration bound

After the update of µ to (1− θ)µ, we have:

Φ
(
v+
)
≤
(
p2 + 2p

)
2 (1− θ)

(
θ
√
n+

√
2

p
τ

)2

= (Φ)0 .

We need to count how many inner iterations are required to return to the
situation where Φ ≤ τ . We denote the value of Φ(v) after the µ update as
(Φ)0; the subsequent values in the same outer iteration are denoted as (Φ)k,
k = 1, 2, ..,K, where K denotes the total number of inner iterations in the outer
iteration. The decrease in each inner iteration is given by (36). In [1], we can
find the appropriate values of κ̄ > 0 and γ ∈]0, 1] as:

γ =
1

2
, κ̄ =

2
√
p[

4
√
p+ 2

√
2 (1 + p) (p+ 4)

](
1 + log(

p+4
√

p
2 (Φ)0
p )

1
p

)2 .

Lemma 18 Let K be the total number of inner iterations in the outer iteration.
Then we have:

K ≤
[
4
√
p+ 2

√
2 (1 + p) (p+ 4)

]
√
p

(
1 + log(

p+ 4
√

p
2 (Φ)0

p
)

1
p

)2

(Φ)
1/2
0 .

Proof. By Lemma 1.3.2 in [1]

K ≤ ((Φ)0)
γ

κ̄γ ,

=
[4
√
p+2
√

2(1+p)(p+4)]√
p

(
1 + log(

p+4
√

p
2 (Φ)0
p )

1
p

)2

(Φ)
1/2
0 .

This completes the proof.

4.2 Total iteration bound

The number of outer iterations is bounded above by
log n

ε

θ (see [11] Lemma
II.17). Through multiplying the number of outer iterations by the number of
inner iterations, we get an upper bound for the total number of iterations,
namely:[

4
√
p+ 2

√
2 (1 + p) (p+ 4)

]
√
p

(
1 + log(

p+ 4
√

p
2

(Φ)0
p

)
1
p

)2 (
(Φ)0

)1/2 log n
ε

θ
. (37)

For large-update methods with τ = O(n) and θ = Θ(1), we have:

O
(√

p3n (log pn)
2

log n
ε

)
iterations complexity.

For small-update methods with τ = O(1) and θ = Θ( 1√
n

), we have:

O
(√

p3n log n
ε

)
iterations complexity.
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5 Conclusions

In this paper we present a polynomial primal-dual interior-point algorithm
for convex quadratic programming based on a new kernel function. This ap-
proach has the advantage of starting with any point (x0, y0, z0) satisfying the
condition IPC not necessary centred. The proposed kernel function has an
exponential barrier term, witch is not logarithmic and not self-regular. We
proved that the iteration bound of interior point method based on this function
is O(

√
p3n (log pn)

2
log n

ε ) iterations complexity for large-update method and

O(
√
p3n log n

ε ) iterations complexity for small-update method. Our approach
has generalized the result obtained by Bai et al. [1] and improved the results
obtained by Bouafia et al. in [2].
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