
 
 

Department of Physics 

 
 

 

 

 

 

 
Vibrations, Waves and Optics 

  

 

By: Dr. BOUHDJER Lazhar 

 

   

Reviewed by: 

Dr. ZAMOUM Radouane  

Dr. HAFDALLAH Abdelkader 

 

Year: 2024/2025

 
Course Handout : Vibrations, Waves and 

Optics 

 

Speciality: Fundamental Chemistry 

 

Level: 2nd year. 



 

 

 The content of program is approved by the National Pedagogical Committee of the Material 

Science Domain on 26/05/2018 

 

 

 

 
 
Content of the subject: 
1. Second-order differential equations with constant coefficients 

1. 1. Homogeneous equation: Highly damped regime, Critical regime, 
Pseudoperiodic regime. 
1.2 Equation with second member: General solution, special cases of a sinusoidal 
second member. 

 
2. Free oscillations of one-degree-of-freedom systems 

2.1 Undamped oscillations: Linear oscillator, differential equation of the simple 
harmonic oscillator, natural pulsation, energy. 
2.2 Free oscillations of damped systems with one degree of freedom. Special case 
of viscous friction: Differential equation of motion, logarithmic decrement, quality 
coefficient. 

 
3. Forced oscillations of one-degree-of-freedom systems 

3.1 Differential equation of the mass-spring-damper system in forced oscillation: 
3.2 Special case of the sinusoidal permanent regime. Mechanical impedance. 
Power. Resonance. Bandwidth. Quality coefficient. 

 
4. Free oscillations of two-degree-of-freedom systems 

4. 1 Mass-spring system in translation: Differential equations of motion. Concept 
of coupling. Proper pulsations. Proper modes. Beating phenomenon. 
4.2. Coupled pendulums 

 
5.  General information on propagation phenomena 

7.1 One-dimensional propagation: Propagation equation, Solution of the 
propagation equation, sinusoidal progressive wave, wavelength, wave number. 
7.2 Linear chain model 

 
6. Acoustic waves in fluids 

8.1 Equation of propagation of acoustic waves in fluids, speed of sound. 
8.2 Progressive sinusoidal wave: sound pressure, sound impedance, sound energy, 
sound intensity. 
8.3 Reflection-Transmission of acoustic waves at normal incidence. 

 
7. Principles and laws of geometric optics 

9.1 Reflection – Refraction 
9.2 Prism 

8. Construction of images 
10.1 Stigma 
10.2 Plane and spherical diopters 
10.3 Plane and spherical mirrors 
10.4 Thin lenses. 

UEF12 / F124  

Vibrations, Ondes and Optique 

 (1h30’ Course+1h30’ Tutorials / week) ; 45h00/Semester 

  

 



Table of contents 

 

Contents 

Foreword                                                                                                                                                               1 

General Introduction                                                                                                              2-3 

Chapter 1: Second-order differential equations with constant coefficients 

Introduction                                                                                                                            4 

Homogeneous equation                                                                                                        4-10 

Equation with second member                                                                                           10-13 

Test your comprehension                                                                                                    14-19             

Chapter 2: Free oscillations of one-degree-of-freedom systems 

Introduction                                                                                                                           20 

Lagrange Formalism 

Generalized coordinates and degrees of freedom                                                                  20-23 

Introduction to Lagrange's equations « Lagrange equations for a particle»:                         23 

Case of conservative systems                                                                                                 23-24 

Case of friction forces with velocity-dependent                                                                     24-29 

Dissipation function                                                                                                                29-32 

Examples                                                                                                                            32 

Logarithmic decrement                                                                                                       33 

Quality coefficient                                                                                                                   33-35 

Test your comprehension                                                                                                         35-41 

Chapter 3: Forced Oscillations of One-degree-of-freedom Systems 

Introduction                                                                                                                            42 

Case of a time-dependent external force                                                                                42-43 

Differential equation of the mass-spring-damper system in forced oscillation                      43-45 

Study of the variations of the amplitude and phase as a function of the excitation pulsation 46-47 

Speed study                                                                                                                              47-48 

Bandwidth                                                                                                                              49-50 

Mechanical impedance                                                                                                           51-53 

          Supplementry exercises                                                                                                                   53-58         

Chapter 4: Free Oscillations of Two-degree-of-freedom Systems 

Introduction                                                                                                                             59 

Mass-spring system in translation                                                                                      59-67 

Coupled pendulums                                                                                                            69-72 

Chapter 5: General Information on Propagation Phenomena 

Introduction                                                                                                                             73 

Propagation Equation (Wave Equation)                                                                              74-77 

Linear Chain Model                                                                                                             78-82 

Chapter 6: Acoustic Waves in Fluids 

Introduction                                                                                                                             83 

Equation of Propagation of Acoustic Waves in Fluids and Speed of Sound                          84 

Wave Equation in Fluids                                                                                                    84-87 

Examples                                                                                                                            87-89 

Chapter 7: Principles and Laws of Geometric Optics 

Reflection                                                                                                                               90 

Law of Reflection                                                                                                              91-93 

Snell’s Law                                                                                                                        93-94 

Refractive Index                                                                                                                    95 

Refraction through a Prism                                                                                                   95 

Dispersion of Light                                                                                                               95-97 

Chapter 8: Construction of Images 

Introduction                                                                                                                             98 

Stigma                                                                                                                                99-100 

Plane and Spherical Mirrors                                                                                               100-102 

Thin Lenses                                                                                                                        102-104 

References                                                                                                                            105 

 



Foreword 

 

1 

 

Foreword 

This course on Vibrations, Waves, and Optics is designed for second-year university 

students specializing in chemistry. The interplay of vibrational and wave phenomena is 

fundamental to a comprehensive understanding of both physical and chemical processes. As 

such, this course seeks to provide students with a rigorous foundation in the principles 

governing these phenomena, emphasizing their relevance to the field of chemistry. 

Vibrations, as a manifestation of oscillatory motion, are intrinsic to molecular 

behaviour and play a crucial role in determining the properties of materials. The study of 

waves extends this understanding, illustrating how energy propagates through various media. 

In conjunction with optical principles, these topics offer significant insights into spectroscopic 

techniques, molecular interactions, and the nature of light-matter interactions. 

The curriculum will cover essential theoretical frameworks, including harmonic 

motion, wave mechanics, and the principles of geometrical and physical optics. Students will 

engage with both theoretical and practical aspects of these topics through a blend of lectures, 

and problem-solving sessions. Additionally, these concepts will be applied in vibration 

spectroscopy during the third year. This comprehensive approach aims to cultivate critical 

thinking and analytical skills, which are vital for future research and professional pursuits in 

the field of chemistry. 

Students are encouraged to actively participate in discussions and collaborate with 

peers to enhance their learning experience. The knowledge and skills acquired in this course 

will serve as foundational elements for advanced studies and research in various subfields of 

chemistry. 

We anticipate that this course will not only deepen students’ understanding of 

vibrations, waves, and optics but also stimulate their interest in the broader applications of these 

concepts within the discipline of chemistry. 

Sincerely, 

 Dr  BOUHDJER Lazhar 

Departement of Physics University of Bouira                                                        02/10/2024
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General Introduction 

The course Vibrations, Ondes et Optique is tailored for second-year chemistry students, offering 

a thorough exploration of the physical phenomena that play crucial roles in understanding 

molecular behavior, energy transfer, and chemical analysis techniques. The curriculum is 

structured to provide a deep understanding of key topics in vibrations, wave propagation, and 

optics, all of which are essential to many areas of chemistry. 

The following chapters will be covered: 

1. Second-order Differential Equations with Constant Coefficients: 

This chapter introduces second-order differential equations, which are fundamental in 

describing the behavior of oscillatory systems. A solid grasp of these mathematical tools 

is essential for analyzing mechanical and molecular vibrations. 

2. Free Oscillations of One-degree-of-freedom Systems: 

We will explore free oscillations in systems with one degree of freedom, laying the 

foundation for understanding how molecules vibrate when undisturbed. This chapter 

will link oscillatory motion to energy levels in molecules and will be fundamental to 

topics such as infrared spectroscopy. 

3. Forced Oscillations of One-degree-of-freedom Systems: 

Forced oscillations occur when an external force acts on a system. This chapter will 

analyze how systems respond to periodic driving forces, with applications in resonance 

phenomena, which are critical in spectroscopic techniques and molecular excitation. 

4. Free Oscillations of Two-degree-of-freedom Systems: 

This chapter extends the concept of free oscillations to systems with two degrees of 

freedom, such as coupled oscillators, which serve as models for polyatomic molecular 

vibrations. Understanding these concepts is crucial for interpreting complex vibrational 

spectra. 
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5. General Information on Propagation Phenomena: 

Propagation of waves, whether mechanical or electromagnetic, is central to the 

transmission of energy. This chapter will cover the basic principles of wave propagation, 

including speed, wavelength, and frequency, which are vital in understanding both 

acoustic and optical phenomena. 

6. Acoustic Waves in Fluids: 

This section focuses on the behavior of acoustic waves in fluids, examining how sound 

propagates through gases and liquids. Understanding acoustic waves has applications in 

chemical sensing and reaction monitoring. 

7. Principles and Laws of Geometric Optics: 

Geometric optics is the study of light propagation in terms of rays. This chapter will 

cover key laws such as reflection and refraction, as well as the principles behind lenses 

and mirrors, which are essential for the design and understanding of optical instruments 

used in chemical analysis. 

8. Construction of Images: 

This chapter deals with the formation of images using optical systems, focusing on how 

lenses and mirrors are used to manipulate light. The construction of images is critical to 

techniques such as microscopy, which is widely used in chemistry to study the structure 

of materials. 

By the end of this course, students will have a firm grasp of the mathematical and physical 

principles underlying vibrations, wave propagation, and optics, as well as their applications in 

chemistry. The knowledge gained in these areas will be indispensable for further studies in 

molecular spectroscopy, reaction dynamics, and various chemical analysis techniques. 
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I-1. Introduction: 

Differential equations play a fundamental role in modeling a wide array of physical, 

chemical, and biological phenomena. In particular, second-order differential equations with 

constant coefficients are commonly encountered in the analysis of dynamic systems, including 

harmonic oscillators, electrical circuits, and mechanical systems. 

This chapter will focus on the methods used to solve linear second-order differential 

equations with constant coefficients. It begins with a formal definition of these equations and 

an exploration of their various forms. Subsequently, we will discuss both general and particular 

solutions, which depend on the values of the coefficients and the initial conditions. These 

concepts will then be illustrated through practical examples and real-world applications. 

The objective of this chapter is to provide a thorough understanding of the techniques 

for solving such equations and to demonstrate their applicability in modeling and analyzing 

real-world systems. 

I-2. Homogeneous equation: 

A homogeneous second-order differential equation is a differential equation in which 

the dependent variable and its derivatives are combined linearly and equated to zero. 

Such equations typically take the form: 

𝑥̈ + 𝑎𝑥̇ + 𝑏𝑥 = 0                               (1.1) 

where a and b are constants, and x is the unknown function. The general solution to this 

equation is determined by solving the characteristic equation: 

r2+ar+b=0                                         (1.2) 

Before proceeding with the solution, it is important to clarify the physical meaning of 

the various terms in equation (1.1) within the context of vibration theory. In the case of 

weak mechanical vibrations, the constants in equation (1.1) represent specific physical 

quantities: 2δ is the damping coefficient of the vibration, 𝑤0
2represents the natural 

frequency (or proper pulsation) of the vibration. 

Thus, the equation can be rewritten as: 

𝑥̈ + 2δ𝑥̇ + 𝑤0
2𝑥 = 0                       (1.3) 

and the corresponding characteristic equation becomes: 

𝑟2 + 2𝛿𝑟 + 𝜔0
2 = 0                           (1.4) 

The solution to equation (1.3) is directly related to the solutions of the characteristic equation 

(1.4). 

Calculation of the discriminant of the quadratic polynomial (1.4):   
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𝜟′ = 𝜹𝟐 −𝝎𝟎
𝟐                 (1.5) 

✓ if 𝛥′  ⟩  0that is to say 𝛿  ⟩  𝜔0, equation (4) has two real nigative solutions                

𝑟1 = −𝛿 − √𝛥′ et  𝑟2 = −𝛿 + √𝛥′                           (1.6) 

The solution 𝑥(𝑡) to the homogeneous equation 𝑥̈ + 2𝛿𝑥̇ + 𝜔0
2𝑥 = 0 will be: 

  

𝑥(𝑡) = 𝐶1𝑒
𝑟1𝑡 + 𝐶2𝑒

𝑟2𝑡                        (1.7) 

Where C1 and C2 are two real constants, and 𝑡is the independent variable. The constants C1 and 

C2 are determined from the initial or boundary conditions. 

✓ if 𝛥′ = 0that is 𝛿 = 𝜔0, equation (1.4) has a non-zero double real solution 𝑟 = −𝛿. 

The solution 𝑥(𝑡) to the homogeneous equation 𝑥̈ + 2𝛿𝑥̇ + 𝜔0
2𝑥 = 0 will be: 

𝑥(𝑡) = (𝐶1 + 𝐶2𝑡)𝑒
−𝛿𝑡 (8) 

where C 1 and C 2 are two real constants. 

✓ if 𝛥′  ⟨  0that is , 𝛿⟨𝜔0 equation (1.4) has two complex solutions         𝑟1 = 𝛼 −

𝑖𝛽 and  𝑟2 = 𝛼 + 𝑖𝛽  Or 𝛼 = −𝛿  and   𝛽 = √𝜔0
2 − 𝛿2             (1.9) 

The solution 𝑥(𝑡) to the homogeneous equation 𝑥̈ + 2𝛿𝑥̇ + 𝜔0
2𝑥 = 0 will be: 

𝑥(𝑡) = (𝐶1 𝑐𝑜𝑠( 𝛽𝑡) + 𝐶2 𝑠𝑖𝑛( 𝛽𝑡))𝑒
−𝛿𝑡 Or 𝑥(𝑡) = (𝐶 𝑐𝑜𝑠( 𝛽𝑡 + 𝜑))𝑒−𝛿𝑡       (1.10) 

Where C 1 , C2 and φ are real constants.  

Example 1: The elastic pendulum was designed using a spring with a constant k, a mass M, 

and a damping device (shock absorber) characterized by a friction coefficient α, as shown in 

figure 1. 

 

 

 

 

 

Fig.1: elastic pendulum with demping force. 

This system can be described by equation (3), as will be demonstrated in this chapter. Therefore, 

we can write: 𝑥̈ + 2𝛿𝑥̇ + 𝜔0
2𝑥 = 0 , It is important to recall that 𝑤0 = √

𝑘

𝑚
: 

I-2-1. Highly damped regime: 

❖ If 𝛥′  ⟩  0  that is mean 𝛿  ⟩  𝜔0 (meaning the frictional force is greater than the restoring 

force of the spring), the solution to the homogeneous equation                    𝑥̈ + 2𝛿𝑥̇ +

𝜔0
2𝑥 = 0 is given by: 𝑥(𝑡) = 𝐶1𝑒

𝑟1𝑡 + 𝐶2𝑒
𝑟2𝑡. 
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❖ Let us consider the following numerical example: 𝑥̈ + 8𝑥̇ + 7𝑥 = 0, The corresponding 

characteristic equation is: 𝑟2 +  8𝑟 + 7 = 0 , and the discriminant of this equation is:  

𝜟′ = 𝜹𝟐 −𝝎𝟎
𝟐 = 𝟏𝟔 − 𝟕 = 𝟗 ⇒ √𝜟′ = 𝟑, 𝒓𝟏 =

−𝟒−𝟑

𝟏
= −𝟕 𝒂𝒏𝒅 𝒓𝟐 =

−𝟒+𝟑

𝟏
= −𝟏 

𝑥(𝑡) = 𝐶1𝑒
−7𝑡 + 𝐶2𝑒

−𝑡 

Using the initial conditions x(t=0s)=1cm, and ẋ(t = 0s) = 0𝑐𝑚𝑠−1, the constants C1 and C2 

are found to be: 

{
x(t = 0s) = 1cm ⇒ 𝐶1 + 𝐶2 = 1

ẋ(t = 0s) = 0𝑐𝑚𝑠−1 ⇒ −7𝐶1 − 𝐶2 = 0
⇒ {

x(t = 0s) = 1cm ⇒ 𝐶1 =
−1

6⁄

ẋ(t = 0s) = 0𝑐𝑚𝑠−1 ⇒ 𝐶2 = +7 6⁄
 

𝑥(𝑡) = −
1

6
𝑒−7𝑡 +

7

6
𝑒−𝑡 

The graph of this function is shown in the following figure. In vibration physics, this system 

is classified as overdamped or aperiodic. 

 

 

 

 

 

 

 

 

Fig.2: Variation of X as a function of time for overdamped system. 

 

 

I-2-2. Critical regime: 

❖ if 𝛥′ = 0 that is mean 𝛿  =   𝜔0 (the damping force is of the same order as the restoring 

force of the spring), the solution to the homogeneous equation 𝑥̈ + 2𝛿𝑥̇ + 𝜔0
2𝑥 = 0 is 

given by: 𝑥(𝑡) = (𝐶1 + 𝐶2𝑡)𝑒
−𝛿𝑡. 

❖ Let us consider the following numerical example: 𝑥̈ + 4𝑥̇ + 4𝑥 = 0, The corresponding 

characteristic equation is: 𝑟2 +  8𝑟 + 4 = 0 , and the discriminant of this equation is: 

𝜟′ = 𝜹𝟐 −𝝎𝟎
𝟐 = 𝟒 − 𝟒 = 𝟎 ⇒ 𝒓𝟏 = 𝒓𝟐 = −𝜹 = −𝟐 ⇒  𝑥(𝑡) = (𝐶1 + 𝐶2𝑡)𝑒

−2𝑡 , To 

solve this equation using the initial conditions x(0)=1  cm and 𝑥̇(0) = 0𝑚/𝑠, follow 

these steps: 
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Step 1: Apply the initial condition x(0)=1 cm at t=0: 

x(0)=(C1+C2⋅0)e0=C1, thus, C1=1. 

Step 2: Apply the initial condition 𝑥̇(0) = 0𝑚/𝑠 

First, compute the derivative of x(t): 

ẋ =
d

dt
[(C1 + C2t)e

−2t] 

Using the product rule: 

ẋ(t) = e−2t
d

dt
[(C1 + C2t)] + [(C1 + C2t)]

d

dt
e−2t 

So ẋ(t) = 𝐶2e
−2t − 2[(C1 + C2t)e

−2t ] 

At t=0:  ẋ(t) = 𝐶2 − 2𝐶1 

Using 𝑥̇(0) = 0𝑚/𝑠 and C1=1: 

C2−2(1) =0 

C2=2 than 𝑥(𝑡) = (1 + 2𝑡)𝑒−2𝑡 

  

 

Fig.3: the displacement over time. 

Fig.3 illustrates how the displacement begins at 1 cm and gradually diminishes over time, 

governed by the damping factor e-2t. In the context of vibration physics, this system is classified 

as operating in the critical damping regime. Critical damping occurs when the damping is just 

sufficient to return the system to equilibrium without oscillation. The system returns to rest as 

quickly as possible without overshooting, as reflected in the smooth decay of the displacement 

in the figure. 
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I-2-3. Pseudoperiodic regime: 

❖ if 𝛥′  ⟨  0 that is , 𝛿⟨𝜔0 (meaning the restoring force of the spring is greater than the 

frictional force) in this cas   the solution to the homogeneous equation 𝑥̈ + 2𝛿𝑥̇ +

𝜔0
2𝑥 = 0 is given by: 𝑥(𝑡) = (𝐶 𝑐𝑜𝑠( 𝛽𝑡 + 𝜑))𝑒−𝛿𝑡. 

❖ Let us consider the following numerical example: 𝑥̈ + 2𝑥̇ + 4𝑥 = 0, The corresponding 

characteristic equation is: 𝑟2 +  2𝑟 + 4 = 0 , and the discriminant of this equation is: 

𝜟′ = 𝒊𝜷 indicating complex roots. Thus, the two complex solutions are given by: 𝑟1 =

−𝛿 + 𝑖√𝜔0
2 − 𝛿2 and  𝑟2 = −𝛿 − 𝑖√𝜔0

2 − 𝛿2 ⇒ 𝑟1 = −1 + 𝑖√3 𝑎𝑛𝑑 𝑟2 = −1 − 𝑖√3 

so the general solution is: 𝑥(𝑡) = (𝐶 𝑐𝑜𝑠(√3𝑡 + 𝜑))𝑒−𝑡 or 𝑥(𝑡) =  𝑒−𝑡(𝐶1𝑐𝑜𝑠(√3𝑡) +

𝐶2𝑠𝑖𝑛(√3𝑡)) where C1=Ccos(φ) and C2=Csin(φ). To determine these constantes we 

take in concederation the folowing initial conditions x(0)=1  cm and 𝑥̇(0) = 0𝑚/𝑠.  

Step 1: Evaluate x(0) 

Substituting t=0: x(0)=(Ccos(φ))e0=Ccos(φ). Setting this equal to the initial condition: 

Ccos(φ)=1         (1) 

Step 2: Evaluate 𝑥̇(0), first, we need to find the derivative 𝑥̇(𝑡): 

We have: 𝑥̇(𝑡) =
𝑑

𝑑𝑡
[𝐶𝑐𝑜𝑠(√3𝑡 + 𝜑)𝑒−𝑡] applying the product rule:  

𝑥̇(𝑡) = −√3𝑒−𝑡[𝐶𝑠𝑖𝑛(√3𝑡 + 𝜑)] − [𝐶𝑐𝑜𝑠(√3𝑡 + 𝜑)𝑒−𝑡] 

Now, evaluating at t=0:  

𝑥̇(0) = −√3[𝐶𝑠𝑖𝑛(𝜑)] − [𝐶𝑐𝑜𝑠(𝜑)] = 0       (2) 

We now have two equations to 

solve:{
Ccos(φ) = 1                                   (1)         

𝑥̇(0) = −√3[𝐶𝑠𝑖𝑛(𝜑)] − [𝐶𝑐𝑜𝑠(𝜑)] = 0           (2)
 

Step 3: Solve the system of equations 

From (1), we can express C:  𝐶 =
1

𝑐𝑜𝑠(𝜑)
       (3) 

Substituting (3) into (2):    −√3 [
1

𝑐𝑜𝑠(𝜑)
𝑠𝑖𝑛(𝜑)] − [

1

𝑐𝑜𝑠(𝜑)
𝑐𝑜𝑠(𝜑)] = 0     

Multiplying through by cos(φ): 

−√3[𝑠𝑖𝑛(𝜑)] − [1] = 0 
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Rearranging gives:   √3[𝑠𝑖𝑛(𝜑)] = −1.Thus: 𝑠𝑖𝑛(𝜑) =
−1

√3
⇒ 𝜑 = −

𝜋

6
         (in the range of 

sine). 

Tep 4: Calculate C: Using 𝑐𝑜𝑠 (−
𝜋

6
) =

√3

2
, from (3): 𝐶 =

2

√3
 

 

So the general solution has this form: 𝑥(𝑡) = (
2

√3
𝑐𝑜𝑠(√3𝑡 −

𝜋

6
))𝑒−𝑡 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4: damped oscillations 

For small t: The solution starts with an initial displacement of 1 cm and oscillates. The 

amplitude of the oscillation is initially large, but the exponential decay e −t quickly reduces the 

size of the oscillations. As t→∞: The damping causes the oscillations to eventually fade out. 

The displacement x(t) asymptotically approaches zero as the term e−t decays to zero (Fig.4). In 

the context of vibration physics, this system is classified as operating in the Pseudoperiodic  

regime. 

I-2-4. Summary of three regimes: 

✓ In simple terms, the general equation of motion for a vibrating system, such as a mass-

spring-damper setup (see Fig.1), is often modeled by a homogene second-order 

differential equation. For undisturbed or “free” vibrations, the equation is homogeneous, 

meaning no external forces act on the system. 
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✓     Overdamped (𝜹  ⟩  𝝎𝟎): Slow, non-oscillatory return to equilibrium. 

 

✓     Critically Damped (𝜹=𝝎𝟎):  Fastest, non-oscillatory return to equilibrium. 

✓     Underdamped (Pseudoperiodic) (𝜹 <  𝝎𝟎): Oscillatory motion with exponentially 

decaying amplitude; the decay is slower than critical damping  

✓ Each regime describes how the damping influences the system’s ability to return to 

equilibrium, which is essential in applications like mechanical engineering, electronics 

(RLC circuits), and control systems where stable, rapid, or smooth behavior is needed. 

 

1-3. Equation with second member: 

1-3-1. Introduction:  

In the study of vibrations in physics, differential equations with a second member, often 

referred to as non-homogeneous differential equations, play a critical role in describing systems 

subject to external forces. These types of equations extend the analysis beyond natural 

oscillations by incorporating external influences, such as driving forces or damping, that impact 

the system’s behavior. In this cas the system is described by a non-homogeneous differential 

equation: 

𝑥̈ + 2𝛿𝑥̇ + 𝜔0
2𝑥 = 𝐹(𝑡)                                       (1.11) 

F(t) is the external force (the “second member”). 

 

1-3-2. General solution: 

We assume ( ) ( ) ( )G H Px t x t x t= + the general solution of equation (1.11) where ( )Hx t is the 

solution of the homogeneous equation  𝑥̈ + 2𝛿𝑥̇ + 𝜔0
2𝑥 = 0  and ( )Px t is the particular solution 

of equation (11). To determine the overall solution, we need to find both the homogeneous and 

particular solutions. The form of the particular solution ( )Px t of eq (1.11) depends on the form 

of the right-hand side ( F(t) ). 

a- If ( ) ( )e tF t P tn
= where ( )P tn is a polynomial of degree n 

✓ If  is not a solution of the characteristic equation (2) the solution ( )Px t sought will 

be of the form: ( ) ( )e tx t Q tp n
= where ( )Q tn is a polynomial of degree n 

✓ If  is a simple solution of the characteristic equation (2) the solution will be written 

as follows: ( )  ( )e tx t t Q tp n
= where ( )Q tn is a polynomial of degree n
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✓ If  is a double solution of the characteristic equation (III) the solution ( )Px t will 

be written as follows: 2( )  ( )en

tx t t Q tp
= where ( )Q tn is a polynomial of degree 

n 

b- If ( ) ( )e cos( ) ( )e sin( )t tF t P t t Q t t  = + where 𝑃(𝑡) and 𝑄(𝑡) are two 

polynomials. 

✓ If i + is not a solution of (2), the particular solution of  eq (11) is written

( ) ( )e cos( ) ( )e sin( )P

t tx t V t t U t t  = +   , 𝑉(𝑡) and  𝑈(𝑡) being polynomials 

whose degree is equal to the highest degree of 𝑃(𝑡) and 𝑄(𝑡). 

✓ If i + is a solution of (2), the particular solution of  eq (11) is written as

( ) ( )e cos( ) ( )e sin( )P

t tx t t V t t U t t   = +
 

  , 𝑉(𝑡)  and  𝑈(𝑡) being 

polynomials whose degree is equal to the highest degree of 𝑃(𝑡) and 𝑄(𝑡). 

c- 
 
Special case: ( )  et ( )  , 0P t M Q t N = = =  Or 𝑀  and  𝑁 are constants. 

( ) cos( ) sin( )F t M t N t = + . 

✓ If i  is not a solution of (2), the particular solution of eq (11) is written 

( ) cos( ) sin( )Px t A t B t = + , A and B being constants to be determined. 

✓ If i  is a solution of (2), the particular solution of eq (11) is written as

 ( ) cos( ) sin( )Px t t A t B t = +   , 𝐴  and  𝐵being constants to be determined. 

Noticed : 

 

The form ( ) cos( ) sin( )F t M t N t = + is the same with the form ( ) cos( )F t C t = + , in this 

case the solution is of the form: 

✓ If i  is not a solution of (2), the particular solution of eq (11) is written 

( ) cos( )Px t A t = + , A and ψ being constants to be determined. 

✓ i  is a solution of (2), the particular solution of eq (11) is written as:    

𝑥𝑃(𝑡) = 𝑡[𝐴 𝑐𝑜𝑠( 𝛽𝑡 + 𝜓)]  , 𝐴  and  𝜓  being constants to be determined. 

Example2: 

Solve the following differential equations: 

1) 𝑥̈ + 9𝑥 = (𝑡 − 2)𝑒𝑡.       (a) 

2) 𝑥̈ + 7𝑥̇ + 6𝑥 = (𝑡 − 2)𝑒𝑡.        (b) 

solution: 
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Equation (a): 

 

The analogy of equation (3) with the differential equation of a mechanical vibration allows us 

to say whether this system is forced, damped, forced damped or harmonic. 

We have: 

0  et  ( ) ( 2) tF t t e = = −  And 2

0 9 = So our system is in forced mode. 

The homogeneous equation of equation (1) represents a system in harmonic regime 

(undamped and unforced) 

 

The resolution of equation (1) is 1 1 1( ) ( ) ( )G H Px t x t x t= + . 

The homogeneous solution 1 ( )Hx t : 

The characteristic equation of (1) is:
2 9 0r r+ =  

The resolutions of characteristic eq are 𝑟1 = 3𝑖   and   𝑟2 = −3𝑖, we have two complex 

solutions where 0  et  3 = = therefore the homogeneous solution will be : 

0( ) cos(3 ) sin(3 )  ou ( ) cos(3 )
1 2

x t C t C t x t C t
H H

= + = + , the constants are a function of 

the initial conditions. 

 

The particular solution 1 ( )Px t : 

 We have: ( ) ( 2) tF t t e= − that is to say that ( ) ( )e tF t P tn
= where ( ) 2P t tn = − and 1 =

therefore our particular solution will be of the form: ( ) ( )e tx t Q tp n
= because  it is not a 

solution of the characteristic equation. 

Let’s look 1 ( ) (a )P

tx t t b e= + after treatment we found: 

0.1  et  0.22a b= = −  from where 1 ( ) (0.1 0.22)P

tx t t e= − . 

SO 1 ( ) cos(3 ) sin(3 ) (0.1 0.22)
1 2G

tx t C t C t t e= + + − . 

 

Equation (b): 

𝑥̈ + 7𝑥̇ + 6𝑥 = (𝑡 − 2)𝑒𝑡 

We have: 

𝛿 = 3.5  and  𝐹(𝑡) = (𝑡 − 2)𝑒𝑡 And 2

0 9 = So our system is in a forced damped regime. 
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Let us determine 2 ( )Hx t : 

The characteristic equation is : 
2 7 6 0r r+ + = . 

' 2 '3.5 6 6.25  0 2.5 = − =    =   

zero 𝑟1 = −9.5  and  𝑟2 = −4.5    real solutions , so equation (b) has a solution of the form

9.5 4.5 ( )
1 2

t tx t C e C e
H

− −= +  

 

 Let us determine 2 ( )Px t : 

 We have: ( ) ( 2) tF t t e= − that is to say that ( ) ( )e tF t P tn
= where ( ) 2P t tn = − and 1 =

therefore our particular solution will be of the form: ( ) ( )e tx t Q tp n
= because  it is not a 

solution of the characteristic equation. 

Let’s look 1 ( ) (a )P

tx t t b e= + after treatment we found. 

1 37
  et  

14 196
a b= = −  from where 

1 37
( ) (  ) 

2 14 196

tx t t e
P

= − and so 

1 379.5 4.5 ( ) (  ) 
2 1 2 14 196

t t tx t C e C e t e
G

− −= + + − , The constants are a function of the initial 

conditions.
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Test your comprehension 

Problem 1: 

A mass m=2  is attached to a spring with a spring constant k=8 N. It is displaced 0.1  from 

equilibrium and released without any damping or external force (see Fig.5). 

 

 

Fig.5: Ideal spring-mass system (harmounic oscillator) 

 

• (a) Write the differential equation for the motion. 

• (b) Solve the equation for the displacement x(t). 

• (c) Find the period and frequency of the oscillations. 

Problem 2:  

A damping force −𝑏
𝑑𝑥

𝑑𝑡
, with b=3 Ns/m, acts on a mass-spring system where m=2 kg and 

k=8 N/m. The system starts at x(0)=0.1 m with v(0)=0 m/s. 

 

Fig.6: spring-mass system with a damping force 

• (a) Classify the type of damping (overdamped, underdamped, or critically damped). 

• (b) Solve the differential equation for x(t). 

• (c) Plot x(t) for the three damping cases by varying b1=3Ns/m, b2=8Ns/m, b3=12Ns/m. 
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Problem 3:  

 

A forced oscillator satisfies the equation: 

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝛼

𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 = 𝐹0cos (𝑤𝑡) 

where m=1 kg, α=0.5 Ns/m, k=4 N/m, F0=1 N, and ω is variable. 

 

 

Fig.7: Forced Oscillator 

• (a) Find the steady-state solution for x(t). 

• (b) Determine the resonance frequency of the system. 

• (c) Plot the amplitude of the steady-state solution as a function of ω. 
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Solutions 

Problem 1: 

Summary solution: 

• The differential equation is x¨+ 4 x = 0. 

• The displacement is x(t)=0.1cos(2t). 

• The period is approximately 3.14 seconds and the frequency is approximately 0.318 

Hz. 

Problem 2: 

(a) Classify the type of damping 

The equation of motion for a damped harmonic oscillator is: 

mx¨+bx˙+kx=0 

Given: 

• Mass: m=2 kg 

• Damping coefficient: b=3 Ns/m 

• Spring constant: k=8 N/m 

The discriminant of the characteristic equation determines the type of damping: 

ζ =
𝑏

2√𝑚𝑘
 

ζ= 0.375 

Since ζ<1, the system is underdamped. 

(b) Solve the differential equation for x(t) 

The general solution for an underdamped system is: 

 

𝑥(𝑡) = 𝐴𝑒−ζ𝑤0𝑡cos (𝑤𝐷𝑡 + 𝜑) 

Damped angular frequency (ωD): 𝑤𝐷 = 𝑤0√1 − 𝜁2 = 2√1 − (0.375)2 ≈ 1.85 𝑟𝑎𝑑𝑠/𝑠 

Solve for A and 𝜑 using initial conditions: 

Final Solution: The displacement x(t) is: 

x(t)=0.11e−0.75tcos(1.85t−0.38) 

 

c) Plot x(t)x(t)x(t) for the three damping cases by varying bbb 

We will compute x(t) for three cases: 

1. Underdamped: b=3 Ns/m. 

2. Critically damped: b=2√𝑚𝑘=8 Ns/m 

3. Overdamped: b=12 Ns/m. 
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Problem 3: 

The differential equation for the forced oscillator is: 

𝑥̈ +
𝛼

𝑚
𝑥̇ +

𝑘

𝑚
𝑥 =

𝐹0
𝑚
cos(𝑤𝑡) 𝑜𝑟 𝑥̈ + 2𝛿𝑥̇ + 𝑤0

2𝑥 =
𝐹0
𝑚
cos(𝑤𝑡) 

(a) Find the steady-state solution x(t): 

The steady-state solution for a forced oscillator is given by: 

x(t)=Xcos(ωt−ϕ) 

where: 

• X is the amplitude of oscillation, 

• ϕ  is the phase lag. 

1. Amplitude X: 𝑋 =
𝐹0

𝑚⁄

√(𝑤0
2−𝑤2)2+4𝛿2𝑤2

 

2. Phase lag ϕ: ϕ = −actg
2𝛿𝑤

(𝑤0
2−𝑤2)

 

(b) Resonance Condition 

Resonance occurs when the system's response (amplitude X) is maximized. The amplitude X 

depends on the denominator of the formula: 𝐷(𝑤) = √(𝑤0
2 − 𝑤2)2 + 4𝛿2𝑤2 
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For X to be maximized, D(ω) must be minimized. 

Minimize D(ω): 

The denominator consists of two terms:  

(𝑤0
2 −𝑤2)2: Represents the detuning of the forcing frequency from the natural frequency. 

4𝛿2𝑤2: Represents the influence of damping. 

The minimum of D(ω) occurs when the first term and second term balance optimally. 

Differentiate D2(ω) with respect to ω to find the frequency ωr where D(ω) is minimized. 

Setting the derivative 
𝑑

𝑑𝑤
𝐷2(𝑤) = 0: 

𝑑

𝑑𝑤
[(𝑤0

2 − 𝑤2)2 + 4𝛿2𝑤2] = 0 

𝑤[−4(𝑤0
2 − 𝑤2) + 8𝛿2] = 0 

Since ω=0 is not meaningful for resonance, solve: 

𝑤𝑟 = √𝑤0
2 − 2𝛿2 

Special Cases 

1. Undamped System (δ=0): Resonance occurs at ωr=ω0, and the amplitude becomes 

infinite in theory. 

2. Heavily Damped System: For large δ where    𝛿 >
𝑤0

√2
, the resonance peak becomes 

broader and less pronounced. 
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2-1. Introduction: 

This chapter offers a detailed examination of free oscillations in one-degree-of-freedom 

systems, a fundamental concept in the field of mechanical vibrations. One-degree-of-freedom 

systems, defined by motion restricted to a single independent direction or degree of freedom, 

serve as simplified yet effective models for capturing the essential dynamics of oscillatory 

behavior. The analysis of free oscillations, occurring in the absence of external forces, is critical 

for determining key system parameters such as natural frequency and mode shapes, both of 

which play a significant role in influencing the system’s dynamic response and overall stability. 

By exploring the governing equations and the system’s response characteristics, this chapter 

seeks to develop a theoretical foundation essential for more advanced topics in vibration 

analysis. Prior to delving into these concepts, it is advisable to formalize the discussion within 

the framework of Lagrangian mechanics. 

2-2. Lagrange Formalism: 

2-2-1. Generalized coordinates and degrees of freedom: 

 To determine the position of a system of N material points in space, it is necessary to 

specify N radius vectors, which correspond to 3N coordinates. In general, the number of 

independent quantities that must be given to determine unequivocally the position of a system 

is called the number of degrees of freedom of the system. In this present case, this number is 

equal to 3N. These quantities are not necessarily the Cartesian coordinates of the point, and 

depending on the conditions of the problem, the choice of another coordinate system may be 

more convenient. 

 Any quantities q1 , q2 , ..., qs completely characterizing the position of the system (with S 

degrees of freedom) are called generalized coordinates. 

 The vibrational approach is considerably simplified to the extent that a set of independent 

geometric variables can be found, variables that can vary independently of each other and that 

allow to represent all configurations compatible with the system’s bonds. The number of 

degrees of freedom is equal to the number of coordinates that represent the position of [ N 

masses x (three demonstrations of space)] minus the number of bonds n . 

Then the number of degrees of freedom   S = 3N-n           (2.1) 

Where N : number of material points (or number of masses). 

      N : number of bonds or (geometric constraints). 
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Example 1: 

A particle of mass m is forced to move along a parabolic trajectory (y=ax 2 ) (Figure I). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 

Number of bonds n: {𝑦 =  𝑎𝑥
2

𝑧 = 0
; two bonds and the number of masses 1. 

So number of degrees of freedom S = 3 (1) – 2 =1. 

If we choose Y as the generalized coordinate, this choice would be wrong because: 

Y= X 2 = (-X) 2 , So, we cannot know whether the mass is in the positive or negative side of the 

X axis; but we can consider X as a generalized coordinate. 

2-2-2. Introduction to Lagrange’s equations « Lagrange equations for a particle»:  

Consider the special case of a particle with one degree of freedom. A variable q must 

be chosen to locate its position. This variable is called a generalized coordinate. The position 

vector of the particle can be expressed 𝑟as a function of the generalized coordinate q by the 

relation:                                                        𝑟 = 𝑟 (𝑞)                (2.2) 

Let be 𝐹⃗the resultant of all the forces acting on the particle. The fundamental relation of 

dynamics is written: 

                 𝐹⃗ = 𝑚
𝑑2𝑟

𝑑𝑡2
= 𝑚

𝑑𝑣⃗⃗

𝑑𝑡
           (2.3) 

 

X 

Y 

m 
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Where 𝑣⃗ =
𝜕𝑟

𝜕𝑡
    is the velocity of the particle. 

Let δW be the work provided by the force 𝐹⃗during an infinitesimal displacement δ 𝑟: 

                       δW =𝐹⃗. 𝛿𝑟              (2.4) 

The infinitesimal displacement δ 𝑟can be written as a function of the variation δq of the 

coordinate generalized q: 

δ 𝑟=
𝜕𝑟

𝜕𝑞
𝛿𝑞             (2.5) 

In this case the work δW can be given the form: 

 δw = F⃗⃗.
∂r⃗⃗

∂q
δq      (2.6) 

The generalized conjugate force of q, or q-component of the force, is called the quantity F q 

defined by:    

𝐹𝑞 =
𝛿𝑤

𝛿𝑞
= 𝐹⃗ ⋅

𝜕𝑟𝑞⃗⃗⃗⃗⃗

𝜕𝑞
        (2.7) 

Therefore δW is written:  

δW =  𝐹𝑞𝛿𝑞              (2.8) 

Taking into account the fundamental relationship of dynamics, this expression can also be 

written:                                          𝛿𝑊 = 𝑚
𝑑𝑣⃗⃗

𝑑𝑡
⋅
𝜕𝑟

𝜕𝑞
𝛿𝑞                  (2.9) 

On the other hand :
𝑑

𝑑𝑡
[𝑣⃗ ⋅

𝜕𝑟

𝜕𝑞
] =

𝑑𝑣⃗⃗  

𝑑𝑡
.
𝜕𝑟

𝜕𝑞
+ 𝑣⃗ ⋅

𝑑

𝑑𝑡
[
𝑑𝑟

𝑑𝑞
]        (2.10) 

Knowing that: 

𝑑

𝑑𝑡
[
𝜕𝑟

𝜕𝑞
] =

𝜕

𝜕𝑞
[
𝜕𝑟

𝜕𝑡
] =

𝜕𝑣⃗⃗

𝜕𝑞
          (2.11) 

We obtain:   

𝑑𝑣⃗⃗

𝑑𝑡
⋅
𝜕𝑟

𝜕𝑞
=

𝑑

𝑑𝑡
[𝑣⃗ ⋅

𝜕𝑟

𝜕𝑞
] − 𝑣⃗

𝜕𝑣⃗⃗

𝜕𝑞
              (2.12) 

The velocity vector 𝑣⃗, can also be written:𝑣⃗ =  
𝑑𝑟

𝑑𝑡
= 

𝑑𝑟⃗⃗⃗

𝑑𝑡
𝑑𝑞

𝑑𝑡

=
𝜕𝑣⃗⃗

𝜕𝑞̇
        (2.13) 

Hence the relationship:                              
𝜕𝑟

𝜕𝑞
=

𝜕𝑣⃗⃗

𝜕𝑞̇
                   (2.14) 

And 

𝑑𝑣⃗⃗

𝑑𝑡
⋅
𝜕𝑟

𝜕𝑞
=

𝑑

𝑑𝑡
[𝑣⃗ ⋅

𝜕𝑟

𝜕𝑞̇
] − 𝑣⃗

𝜕𝑣⃗⃗

𝜕𝑞
                 (2.15) 
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Knowing that :                
𝜕

𝜕𝑞̇
[
1

2
𝑣2] =

𝜕

𝜕𝑞̇
[
1

2
𝑣⃗ ⋅ 𝑣⃗] = 𝑣⃗ ⋅

𝜕𝑣⃗⃗

𝜕𝑞̇
           (2.16) 

and that: 

𝜕

𝜕𝑞
[
1

2
𝑣2] =

𝜕

𝜕𝑞
[
1

2
𝑣⃗ ⋅ 𝑣⃗] = 𝑣⃗ ⋅

𝜕𝑣⃗⃗

𝜕𝑞
                 (2.17) 

We obtain:                                   
𝑑𝑣⃗⃗

𝑑𝑡
⋅
𝜕𝑟

𝜕𝑞
=

𝑑

𝑑𝑡
[
𝜕

𝜕𝑞̇
[
1

2
𝑣2]] −

𝜕

𝜕𝑞
[
1

2
𝑣2]      (2.18) 

We now reformulate the expression for work δW, taking into consideration equation (2.18): 

𝛿𝑊 = 𝑚{
𝑑

𝑑𝑡
[
𝜕

𝜕𝑞̇
[
1

2
𝑣2]] −

𝜕

𝜕𝑞
[
1

2
𝑣2]} 𝛿𝑞                 (2.19) 

Let 𝑇 =
1

2
𝑚𝑣2 denote the kinetic energy of the mass m (assuming m is time-independent): 

𝛿𝑊 = {
𝑑

𝑑𝑡
[
𝜕𝑇

𝜕𝑞̇
] −

𝜕𝑇

𝜕𝑞
} 𝛿𝑞                                    (2.20) 

We finally obtain the two equivalent expressions (eq 2.8 and eq 2.20) of the work δW : 

 {
𝑑

𝑑𝑡
[
𝜕𝑇

𝜕𝑞̇
] −

𝜕𝑇

𝜕𝑞
} 𝛿𝑞 = 𝐹𝑞𝛿𝑞                (2.21) 

We deduce the d’Alembert equation for a system with one degree of freedom: 

𝑑

𝑑𝑡
[
𝜕𝑇

𝜕𝑞̇
] −

𝜕𝑇

𝜕𝑞
= 𝐹𝑞                    (2.22) 

2-2-3. Case of conservative systems 

In conservative systems, the applied force to the system derives from a potential U and it is 

written as: 

𝐹𝑞 = −
𝜕𝑈

𝜕𝑞
                             (2.23) 

Lagrange’s equation then becomes: 

𝑑

𝑑𝑡
[
𝜕𝑇

𝜕𝑞̇
] −

𝜕𝑇

𝜕𝑞
= −

𝜕𝑈

𝜕𝑞
              (2.24) 

 

Generally, the potential energy U does not depend on the velocity, which is to say that 

𝜕𝑈

𝜕𝑞̇
= 0. 

The Lagrange equation can then be written: 
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𝑑

𝑑𝑡
[
𝜕(𝑇−𝑈)

𝜕𝑞̇
] −

𝜕(𝑇−𝑈)

𝜕𝑞
= 0           (2.25) 

We introduce the Lagrange function (or Lagrangian of the system) which is the difference 

between the kinetic energy and the potential energy: 

𝐿 = 𝑇 − 𝑈                   (2.26) 

Hence the form of the Lagrange equation in the case of a conservative system: 

𝑑

𝑑𝑡
[
𝜕𝐿

𝜕𝑞̇
] −

𝜕𝐿

𝜕𝑞
= 0        (22.7) 

1.1.3 Case of friction forces with velocity-dependent  

Lagrange equation 

Consider a physical situation in which the particle is subjected to viscosity friction 

forces whose resultant is of the form:    𝑓 = −𝛼𝑣⃗           (2.28) 

To calculate the corresponding generalized force fq , we use the definition from the 

previous paragraph (see eq 2.7) : 

This last expression can be put in the form:𝑓𝑞 = 𝑓.
𝜕𝑟

𝜕𝑞
= −𝛼 [

𝜕𝑟

𝜕𝑞
]
2 𝜕𝑞

𝜕𝑡
       (2.29) 

Reformulate the eq 2.29 as : 𝑓𝑞 = −𝛽𝑞̇                               (2.30)  

where: 𝛽 = [
𝜕𝑟

𝜕𝑞
]
2

                      (2.31) 

If in addition to the forces that derive from a potential there are viscosity friction forces, 

Lagrange’s equation is written: 

𝑑

𝑑𝑡
[
𝜕𝑇

𝜕𝑞̇
] −

𝜕𝑇

𝜕𝑞
= 𝐹𝑈,𝑞 + 𝑓𝑞                            (2.32) 

Where  𝐹𝑈,𝑞 = −
𝜕𝑈

𝜕𝑞
   represents the forces that derive from a potential. Hence: 

𝑑

𝑑𝑡
[
𝜕𝐿

𝜕𝑞̇
] −

𝜕𝐿

𝜕𝑞
= −𝛽𝑞̇                    (2.33) 

Dissipation function 

Let us calculate the work δWf  provided by the friction force during a time interval δt for a 

displacement 𝛿𝑟: 

𝛿𝑊𝑓 = 𝑓. 𝛿𝑟 = −𝛼𝑣
2𝛿𝑡                            (2.34) 

The amount of heat δQ gained by the system is such that: 

                    𝑃𝑑 =
𝛿𝑄

𝛿𝑡
      and    𝛿𝑄 = 𝛼𝑣2𝛿𝑡      (2.35) 

Let the power dissipated by frictional forces in the form of heat be: 
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                         𝑃𝑑 = 𝛼𝑣
2                (2.36) 

This dissipated power can be expressed as a function of   𝑞̇, by: 

𝑃𝑑 = 𝛼 [
𝑑𝑟

𝑑𝑡
]
2

= 𝛼 [
𝜕𝑟

𝜕𝑞

𝜕𝑞

𝜕𝑡
]
2

= 𝛽𝑞̇2                 (2.37) 

By definition, the dissipation function is equal to half the dissipated power: 

𝐷 =
1

2
𝑃𝑑 =

1

2
𝛽𝑞̇2                   (2.38) 

The q-component f q of the friction force can then be written: 

𝑓𝑞 = −
𝜕𝐷

𝜕𝑞̇
              (2.39) 

The Lagrange equation is then written: 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞̇
) − (

𝜕𝐿

𝜕𝑞
) + (

𝜕𝐷

𝜕𝑞̇
) = 0            (2.40) 

 

 

Example 2: Undamped Oscillations ‘Ideal System’ 

Consider Example 1 from Chapter 1, where an elastic pendulum is modelled with a 

spring of constant k and a mass M. However, in this case, we neglect the effects of frictional 

forces, treating it as an ideal, “perfect system “, as illustrated in Fig. 2. 

 

Fig.2: elastic pendulum without demping force. 

1- Calculate the degrees of freedom of the system. 

2- Determine the kinetic and potential energy, and subsequently derive the Lagrangian of 

the system. 
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3- Formulate the differential equation of motion and determine the natural frequency of 

the system. 

 

Solution: 

1- degrees of freedom of the system: 

From eq (1) we have: S = 3N-n , in this cas N=1 and 𝑛 = {
𝑧 = 0

𝑦 = 𝑐𝑜𝑛𝑠𝑡
  𝑠𝑜 𝑛 = 2 as a resulte 

S =  3(1) − 2 = 1 Thus, this system possesses only one degree of freedom. 

2- The kinetic, potential energy, and the Lagrangian of the system: 

The kinetic energy: 

In the case of a system with one degree of freedom, consisting of a mass m whose 

position is identified by the generalized coordinate q, the kinetic energy is written: 

 

2 2 2

2 21 1 1 1

2 2 2 2

r r q r
T mv m m m q

t q t q

        
= = = =     

        
 

 

The kinetic energy of a one-degree-of-freedom system is a function of q and q . It can 

be written in the form: 

𝑇 =
1

2
𝑎(𝑞)𝑞̇2 

where a ( q ) is a function of the generalized coordinate q , defined in the case studied by: 

𝑎(𝑞) = 𝑚 [
𝜕𝑟

𝜕𝑞
]

2

 

By expanding a(q) to the second order around q=0, the kinetic energy T(q,𝑞̇) can be expressed 

as: 

𝑇(𝑞, 𝑞̇) =
1

2
[𝑎(0) +

𝜕𝑎

𝜕𝑞
|
𝑞=0

𝑞 +
1

2

𝜕2𝑎

𝜕2𝑞
|
𝑞=0

𝑞2 +©] 𝑞̇2 

Limiting the approximation to the second order of velocity 𝑞̇, we obtain: 

𝑇 =
1

2
𝑎0𝑞̇

2 

where a 0 is a constant equal to a (0) . 
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Returning to our example, since x is the generalized coordinate, the kinetic energy is given 

by: 

 

𝑇 =
1

2
𝑎(𝑥)𝑥̇2 

We then have: 

𝑎(𝑥) = 𝑚 [
𝜕𝑟

𝜕𝑥
]
2

as 𝑟 = 𝑥𝑖 + 𝑦𝑗 with y being constant and independent of x. 

Consequently:                                     a (0) = m. 

Thus, the kinetic energy simplifies to the familiar form: 𝑻 =
𝟏

𝟐
𝒎𝒙̇𝟐 

 

 

 

Potential energy 

 

The oscillations occur around the stable equilibrium position q = qeq , which is characterized by 

the condition: 

𝜕𝑈

𝜕𝑞
|
𝑞=𝑞𝑒𝑞

= 0 

For small deviations from the equilibrium position, it is possible to expand the potential 

energy function U ( q ) using a Taylor series around q = qeq. Neglecting terms of order higher 

than q2 , we obtain: 

𝑈(𝑞) = 𝑈(0) +
𝜕𝑈

𝜕𝑞
|
𝑞=𝑞𝑒𝑞

𝑞 +
1

2

𝜕2𝑈

𝜕2𝑞
|
𝑞=𝑞𝑒𝑞

𝑞2 +©  

 

Since q = qeq corresponds to the minimum of U(q), we know that:  

 

𝜕𝑈

𝜕𝑞
|
𝑞=𝑞𝑒𝑞

= 0    and     
𝜕2𝑈

𝜕2𝑞
|
𝑞=𝑞𝑒𝑞

> 0 

 

By choosing the origin of potential energy such that U ( q eq ) = 0, the potential energy 

near the equilibrium position can be expressed in its quadratic form as:  

𝑈(𝑞) ≈
1

2
𝑏0𝑞

2 
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With    𝑏0 =
𝜕2𝑈

𝜕2𝑞2
|
𝑞=𝑞𝑒𝑞

 

So b0 is a positive constant, reflecting the curvature of the potential energy at the equilibrium. 

Returning to our example:  Since the center of mass is at the same horizontal level as the origin 

of potential energy, the gravitational potential energy is zero. Therefore, the total potential 

energy of the system is purely due to the elastic energy of the spring: 

𝑈(𝑞) =
1

2
𝑏0𝑥

2 

where 𝑏0 =
𝜕2𝑈

𝜕2𝑥2
|
𝑞=0

= 𝑘, with k being the spring constant.  

As a result, the potential energy takes the form:    𝑼(𝒒) =
𝟏

𝟐
𝒌𝒙𝟐 

Lagrangian of the system:  

As metioned in the eq (26): L = T − U =
1

2
(𝑚𝑥̇2 − 𝑘𝑥2) 

Differential equation of motion and the natural frequency of the system: 

Usig the eq (27), we have:  

𝑑

𝑑𝑡
[
𝜕𝐿

𝜕𝑥̇
] −

𝜕𝐿

𝜕𝑥
= 0 ⇒ 𝑚𝑥̈ + 𝑘𝑥 = 0 ⇒ 𝑥̈ + 𝑤0

2𝑥 = 0, 𝑤0
2 =

𝑘

𝑚
 is the natural frequency of the 

system 

This differential equation corespends the simple harmonic oscillator, where the solution takes 

this fome:  

𝑥(𝑡) =  𝑥0𝑐𝑜𝑠(𝑤0𝑡 + 𝜑) 

 

Fig.3: the graph illustrating the curve of the simple harmonic motion 
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Exercise: 

Consider the system of a simple pendulum opposite. 

- We have one degree of freedom. 

- We choose θ as the generalized coordinate. 

 

 

- The displacement vector sin( ) cos( )rr l u l i l j 
→ → → →

= = +  

 

1. Determine the kinetic and potential energy, and subsequently derive the 

Lagrangian of the system. 

2. Formulate the differential equation of motion and determine the natural 

frequency of the system. 

Free oscillations of damped systems with one degree of freedom: 

 

 In this case, we will take into account the friction forces which are at the origin of the 

loss of mechanical energy of the system in the form of heat, while limiting ourselves however 

to the simple case where the losses are due to viscous friction for which the friction forces, 

which oppose the movement, are proportional to the speed. 

 

1. Lagrange equation for dissipative systems: 

 

Let us recall the Lagrange equation associated with a system with one degree of freedom 

whose evolution over time is reduced to the study of the generalized coordinate q 

 

q

d L L
F

dt q q

  
− = 

  
 

Fq represents the component along q of the resultant of the generalized forces which do 

not derive from a potential. 

We are interested in the special case of friction forces defined by the generalized force 

q q

D
F f q

q



= = − = −


Or  

21

2
D q=   

where α is a positive real constant. 

The Lagrange equation is then written in this case: 

 

l

θ

x

y

O

U=0
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d L L D
q

dt q q q


   
− = − = − 

   
 

 

In the case of low amplitude oscillations, the Lagrange function was written in the 

form: 

 

2 2

0 0

1 1

2 2
L a q b q= −  

 

The differential equation of motion is then written: 

 

0 0 0a q b q q+ + =  

 

It is a second-order differential equation with constant coefficients which can be put in 

the form: 

 

2

02 0q q q + + =   

 

where δ is a positive coefficient, called the damping factor (or coefficient) and defined by: 

 

02a


 =  

ω 0 is the natural pulsation defined by 

0
0

0

b

a
 =   

 

2. Solving the differential equation: 

 

The solution to the differential equation depends on the value of  compared to 0  : 

- If 0   , the system is said to be overdamped or aperiodic. 

– If 0 = , we say that we have critical damping. 
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– If 0  , we say that the system is pseudoperiodic. 

 

Case where the system is overdamped ( 0  ) 

The solution to the differential equation is written in this case: 

 

𝑞(𝑡) = 𝐴1𝑒
[−𝛿−√𝛿2−𝜔0

2]𝑡
+ 𝐴2𝑒

[−𝛿+√𝛿2−𝜔0
2]𝑡

 
 

A 1 and A 2 are constants of integration defined by the initial conditions. The figure below 

represents q as a function of time in the special case where 0(0)q q=   And (0) 0q = . Q ( t ) is a 

function that tends exponentially (without oscillation) towards zero 

 

 

 

 

 

 

 

 

 

 

 

Fig.4. Overdamped regime: variation of q as a function of time 

Case of critical damping ( 0 = ): 

The general solution of the differential equation is of the form: 

 

( ) ( t)
1 2

tq t A A e −= +  

In the particular case where 0(0)q q=   And (0) 0q = .  

𝑞(𝑡) = 𝑞0(1 + 𝛿 𝑡) 𝑒
−𝛿𝑡 
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( )q t  is still a function that tends to zero without oscillation as time increases. 

 

 

 

 

 

 

 

 

 

Fig.5. Critically-damped: variation of q as a function of time 

Case where the system is underdamped ( 0  ): 

The general solution of the differential equation is of the form: 

 

𝑞(𝑡) = 𝐴 𝑒−𝛿𝑡 𝑐𝑜𝑠  (𝜔𝐴𝑡 + 𝜑) 

Or
2 2

0A  = −  A and   are two constants of integration determined from the initial 

conditions. In the particular case where 0(0)q q=   and (0) 0q = , we obtain: 

0
0

0

arctan

A

A q









=

 
= −  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5. Weakly damped system: variation of q as a function of time 
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2-3-3. Logarithmic decrement: 

In the study of oscillatory systems, particularly free oscillators subjected to weak frictional 

forces, the concept of logarithmic decrement becomes an essential tool for characterizing the 

damping behavior of these systems. Logarithmic decrement quantifies the rate at which the 

amplitude of oscillations decreases over time due to damping. 

 

Definition of Logarithmic Decrement 

The logarithmic decrement (δ) is defined as the natural logarithm of the ratio of two successive 

amplitudes of the oscillation. Mathematically, it can be expressed as: 

𝛿 = 𝑙𝑛 (
𝑞(𝑡)

𝑞(𝑡 + 𝑇)
) 

Where: q(t) is the amplitude at time t and q(t+T) is the amplitude at the subsequent oscillation 

cycle. This ratio reflects how much the amplitude decreases from one cycle to the next due to 

the damping effect. 

Physical Interpretation 

In the context of a free oscillator with weak friction, the system experiences a gradual loss of 

energy with each oscillation cycle, leading to a reduction in amplitude. The logarithmic 

decrement provides a convenient way to quantify this damping effect. A larger logarithmic 

decrement indicates more significant energy loss and faster decay of amplitude, while a smaller 

decrement suggests lighter damping and a more prolonged oscillation. 

2-3-4. Quality coefficient: 

 

The Quality Factor (or Quality Coefficient, denoted as Q) is a dimensionless parameter that 

describes the damping of an oscillator, particularly in systems that exhibit oscillatory motion. 

It provides a measure of how underdamped an oscillator is and relates to the sharpness of 

resonance in the system. 
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Definition 

The Quality Factor Q is defined as the ratio of the energy stored in the system to the energy 

dissipated per cycle of oscillation. In other words, it quantifies how many oscillations a system 

can perform before the amplitude decreases significantly due to energy loss. Mathematically, it 

can be expressed as: 

Q = 2π ×
Energy stored

Energy dissipated per cycle
 

Alternatively, for a system undergoing harmonic oscillation, the Quality Factor is related to the 

natural frequency and the damping coefficient and can be expressed as: 

𝑄 =
𝜔0
𝐵
=
𝜔0
2𝛿

 

Physical Interpretation 

• High-Q Oscillators: If the Q-factor is large, the system is lightly damped and oscillates 

for many cycles before its amplitude diminishes significantly. These systems exhibit 

sharp resonance peaks and are typically efficient at storing energy. 

• Low-Q Oscillators: If Q is small, the system is heavily damped, meaning the 

oscillations die out quickly due to energy loss. These systems have broad resonance 

peaks and lose energy rapidly. 

Quality Factor and Resonance 

The Quality Factor plays a crucial role in resonance phenomena. A higher Q-factor corresponds 

to a more selective system that exhibits stronger and sharper resonances. For example, in a 

high-Q system, a small range of external forcing frequencies will generate a large amplitude of 

oscillation, while frequencies outside this range will have minimal effect. 

Applications 

• Mechanical Systems: In mechanical oscillators (e.g., springs and masses), Q 

determines how long a system can oscillate before coming to rest. A high-Q mechanical 

oscillator retains its motion for longer durations. 
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• Electrical Circuits: In circuits containing inductors and capacitors, Q measures how 

well the circuit resonates at a given frequency. A high-Q circuit is efficient in filtering 

signals at a specific frequency. 

• Optical Cavities: In lasers and optical systems, the Q-factor of an optical cavity 

determines how well it stores light, with high-Q cavities providing better performance. 

 

 

 

Test your comprhension 

Problem 1: Damped Free Oscillations 

Consider a damped system with parameters m=1 kg, k=25 N/m, and b=3 Ns/m. The initial 

displacement is x0=0.1 m, and the initial velocity is v0=0 m/s. 

• (a) Derive the equation of motion for the system. 

• (b) Solve for x(t). 

• (c) Find the damping ratio ζ and classify the type of motion. 

• (d) Plot x(t) and discuss how the damping affects the oscillations. 

 

Problem 2: 

➢ Simple Pendulum Derivation 

• Derive the equation of motion for a simple pendulum (mass m, length l) using the 

Lagrangian method. Assume small oscillations and verify the linearized solution. 

➢ Mass-Spring System 

• A block of mass mmm is attached to a spring of stiffness k and moves on a frictionless 

surface. Use the Lagrangian method to derive the equation of motion. Show that the 

system undergoes simple harmonic motion and find its angular frequency. 

➢ Rotational Oscillator 

• A rigid rod of length 2l and mass m pivots at one end. Derive the equation of motion 

for small angular displacements using the Lagrangian method. What is the natural 

frequency of oscillation? 



Chapter 2: Free oscillations of one-degree-of-freedom systems 

 

36 

 

Problem 3: 

For Small Amplitudes of the Given Systems, Determine the Following: 

1. The number of degrees of freedom of the system. 

2. The kinetic energy, potential energy, and Lagrangian of the system. 

3. Derive the differential equation of motion and calculate the system's natural 

frequency. 

 

 

System 1 

 

 

 

System 2 
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Problem 4:  

The mechanical system shown in the figure opposite consists of a mass m fixed to the end of a 

rod of mass M and length 3a . This can 

oscillate without friction, in a vertical 

plane, around a fixed axis perpendicular to 

the plane of movement in '' O ''. 

Two dampers with a viscous friction 

coefficient of α/2 connect point A 

(OA=2a) of the rod. Two identical springs 

with a stiffness constant of K/2 , placed 

horizontally, connect point B (OB=a) of 

the rod. The position of the mass will be 

identified by the nail θ that the rod makes 

with the vertical. At equilibrium, the rod is in a vertical position and the two springs are at rest. 

Only low amplitude movements will be considered 

1- Calculate the number of degrees of freedom of the system. 

2- Determine the differential equation of motion of the system. 

3- When the rod is moved away from its equilibrium position by a fingernail θ 0 = π/60 , 

then released without initial speed, it takes on a damped oscillatory motion of pseudo-

period T a = 0.11s . It is noted that after 40T a the elongation of the oscillations reaches 

80% of the initial elongation. Calculate the value of the damping coefficient and deduce 

the values of α and K . Knowing that M = 2m, m = 111g, a = 10cm and g = 10m/S 2 . 

4- A moment is applied to the rod 𝑀(𝑡) = 𝑀0 cos(𝜔𝑡). 

a) Write the differential equation of motion of the system. 

b) Deduce the steady-state solution. 

c) Give the resonance pulsation and deduce the amplitude at this pulsation. 
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Solution: 

Problem3: System 1 

Number of degrees of freedom of the system: 

 

S=3N-n, N=2 and 𝑛 =

{
 
 

 
 

𝑍𝑚 = 0
𝑍𝑀 = 0
𝑥𝑀 = 𝑐𝑡𝑒

𝑓(𝑥𝑚, 𝑦𝑚) = 0

𝑓(𝑥𝑚, 𝑦𝑚, 𝑦𝑀) = 0

⟹ 𝑛 = 5 ⇒ 𝑆 = 1 

Kinetic energy, potential energy, and Lagrangian of the system: 

𝑈 =
1

2
(𝑘𝑅2 −𝑚𝑔𝑙)𝜃2 

𝑇 =
1

2
[
3

2
𝑀𝑅2 +𝑚(𝑅 + 𝑙)2] 𝜃̇2 

Dissipation function  

𝐷 =
1

2
𝛼(𝑅𝜃̇)2 

 

Lagrangian of the system 

L=T-U 

𝐿 =
1

2
[
3

2
𝑀𝑅2 +𝑚(𝑅 + 𝑙)2] 𝜃̇2 −

1

2
(𝑘𝑅2 −𝑚𝑔𝑙)𝜃2 

 

Differential equation of motion and the system's natural frequency 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝜃̇
) − (

𝜕𝐿

𝜕𝜃
) + (

𝜕𝐷

𝜕𝜃̇
) = 0 

 

[
3

2
𝑀𝑅2 +𝑚(𝑅 + 𝑙)2] 𝜃̈ + 𝛼(𝑅)2𝜃̇ + (𝑘𝑅2 −𝑚𝑔𝑙)𝜃 = 0 

 

Natural frequency:  

𝑤0 = √
(𝑘𝑅2 −𝑚𝑔𝑙)

[
3
2𝑀𝑅

2 +𝑚(𝑅 + 𝑙)2]
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System 2: 

Number of degrees of freedom of the system: 

 

S=3N-n, N=2 and 𝑛 =

{
 
 

 
 
𝑍𝑚 = 0
𝑍𝑀 = 0
𝑥𝑀 = 𝑐𝑡𝑒
𝑦𝑀 = 𝑐𝑡𝑒
𝑥𝑚 = 𝑐𝑡𝑒

⟹ 𝑛 = 5 ⇒ 𝑆 = 1 

 

Kinetic energy, potential energy, and Lagrangian of the system: 

𝑈 =
1

2
𝑘(𝑅𝜃)2 

𝑇 =
1

2
(𝑚 +

𝑀

2
)𝑅2𝜃̇2 

𝐿 =
1

2
(𝑚 +

𝑀

2
)𝑅2𝜃̇2 −

1

2
𝑘(𝑅𝜃)2 

Dissipation function  

𝐷 =
1

2
𝛼(𝑅𝜃̇)2 

Differential equation of motion and the system's natural frequency 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝜃̇
) − (

𝜕𝐿

𝜕𝜃
) + (

𝜕𝐷

𝜕𝜃̇
) = 0 

(𝑚 +
𝑀

2
)𝑅2𝜃̈ + 𝛼(𝑅)2𝜃̇ + 𝑘(𝑅)2𝜃 = 0 

Natural frequency:  

𝑤0 = √
𝑘

[𝑚 +
𝑀
2 ]
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Problem 4: 

 

𝑺 = 𝟑𝑵 − 𝒏 𝒐𝒏 𝒂 𝑵 = 𝟑, 𝒏

{
 
 

 
 

𝒁𝟏 = 𝟎
𝒁𝟐 = 𝟎

𝒇(𝑿𝟏, 𝒀𝟏) = 𝟎

𝒇(𝑿𝟐, 𝒀𝟐) = 𝟎

𝒇(𝑿𝟏, 𝒀𝟏, 𝑿𝟐, 𝒀𝟐) = 𝟎

=> 𝒏 = 𝟓 𝒅𝒐𝒏𝒄 𝑺 = 𝟏one degree of 

freedom; a generalized coordinate θ. 

Potentilla energy 

U= mg 
3𝑎

2
(1 − cos 𝜃)+ Mg 

𝑎

2
(1 − cos 𝜃)+

1

2
(
𝐾

2
) (a sin 𝜃)2 +

1

2
(
𝐾

2
) (𝑎 𝑠𝑖𝑛 𝜃)2 

We have M=m, for low amplitudes.  

U =  𝑚𝑔𝑎𝜃2 + 
1

2
𝐾𝑎2𝜃2 

Kinetic energy  

T=
1

2
𝑚(3𝑎)2𝜃̇2 +

1

2
𝐼𝜃̇2𝑜ù 𝐼 =

1

3
𝑚(3𝑎)2 => 𝑇 =  6𝑚𝑎2𝜃̇2 

L= TU= 6𝑚𝑎2𝜃̇2-(𝑚𝑔𝑎 + 
1

2
𝐾𝑎2)𝜃2 

The dissipated energy D=
1

2
(
𝛼

2
) (2𝑎𝜃)̇2 +

1

2
(
𝛼

2
) (2𝑎𝜃)̇2 = 2𝛼𝑎2𝜃̇2  

𝜕

𝜕𝑡
(
𝜕𝐿

𝜕𝜃̇
) − (

𝜕𝐿

𝜕𝜃
) +

𝜕𝐷

𝜕𝜃̇
= 0 => 12𝑚𝑎2𝜃̈ + 2 (𝑚𝑔𝑎 + 

1

2
𝐾𝑎2) 𝜃 + 4𝛼𝑎2𝜃̇ = 0 

=> 𝜃̈ + 𝜃̇ + ( 
𝑔

6𝑎
+

𝐾

12𝑚
) 𝜃=0 

We have: 2𝛿 =
𝛼

3𝑚
, 𝜔0

2 = ( 
𝑔

6𝑎
+

𝐾

12𝑚
), T a =0.11S,

𝜃(𝑡+40𝑇𝑎)

𝜃(𝑡)
= 0,8 => ln(0,8) = −40𝛿𝑇𝑎 =

> 𝛿 = 5. 10−2𝑆−1 

𝜔𝐷
2 = 𝜔0

2 − 𝛿2𝑒𝑡 𝜔𝐷 =
2𝜋

𝑇𝑎
=> 𝜔0

2 = 𝜔𝐷
2 + 𝛿2 = ( 

𝑔

6𝑎
+

𝐾

12𝑚
) => 𝐾

= 12𝑚 [ 𝜔𝐷
2 + 𝛿2 −

𝑔

6𝑎
] => 
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𝐾 = 54,23𝑁𝑚−1 

 

 
∂

∂t
(
∂L

∂θ̇
) − (

∂L

∂θ
) +

∂D

∂θ̇
= M0 cos(ωt) => 𝜃̈ + 𝜃̇ + ( 

𝑔

6𝑎
+

𝐾

12𝑚
) 𝜃 =

𝑀0 𝑐𝑜𝑠(𝜔𝑡)

12𝑚𝑎2
  

In steady state 

𝜃𝑝(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜑) 𝑜ù 𝐴 =

𝑀0

12𝑚𝑎2

√(𝜔0
2−𝜔2)2 + 4𝛿2𝜔2

 𝑒𝑡 𝜑 = −𝑎𝑟𝑐𝑡𝑔 
2𝛿𝜔

𝜔0
2 − 𝜔2

 

The resonance pulse𝜔 = 𝜔0 

𝐴 =
𝑀0

24𝛿𝜔0𝑚𝑎2
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4-1. Introduction: 

 

In the study of physical chemistry, the principles of oscillatory motion are essential for 

understanding a wide range of phenomena, from molecular vibrations to macroscopic 

mechanical systems. Chapter 3 focuses on the topic of forced oscillations in one-degree-of-

freedom systems, where external periodic forces influence the motion of these systems. 

Forced oscillations are crucial in various chemical and physical applications, including 

spectroscopy techniques, where the interaction between light and matter can induce oscillatory 

behavior in molecular systems. Understanding how systems respond to external forces is vital 

for predicting their behavior in different environments, particularly when resonance occurs, 

which can lead to significant amplitude increases and altered reaction rates. 

This chapter will begin with the basic concepts of forced oscillations, establishing the 

mathematical framework necessary to describe the dynamics of one-degree-of-freedom systems 

under external influences. We will examine the response of these systems to harmonic forces, 

focusing on both the steady-state and transient responses. The effects of damping, which plays 

a critical role in determining the amplitude and phase of oscillations, will also be discussed. 

Real-world applications in chemistry, such as vibrational spectroscopy and molecular 

interactions, will be highlighted to illustrate the relevance of these concepts. By the end of this 

chapter, students will have a solid understanding of forced oscillations, empowering them to 

analyze and predict the behavior of systems influenced by external periodic forces. 

1.4 Case of a time-dependent external force 

In the more general case where a time-dependent external force acts on a system, 

alongside frictional forces derived from a dissipation function D, let Feq denote the q-component 

of the external force or Feq is the generalized component of the external non-conservative force. 

Under these conditions, Lagrange’s equation can be formulated in either of the following two 

equivalent forms: 
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𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞̇
) − (

𝜕𝐿

𝜕𝑞
) = 𝐹𝑒𝑞 − 𝛽𝑞̇                         (3.1) 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞̇
) − (

𝜕𝐿

𝜕𝑞
) + (

𝜕𝐷

𝜕𝑞̇
) =  𝐹𝑒𝑞                 (3.2) 

Eq (3.2) called the generalized Lagrange equation in the presence of non-conservative 

forces. 

 

3-2. Differential equation of the mass-spring-damper system in forced oscillation: 

3.1 Differential equation: 

 

 The general form of the Lagrange equation for systems with one degree of freedom 

 

qext

d L L D
F

dt q q q

   
− + = 

   
        (3.3) 

 

Or F qext is the generalized force associated with F ext and where the dissipation function is 

21

2
D q= . 

 For small amplitude oscillations, the Lagrange function could be put into a 

quadratic form of  et q q   

2 2

0 0

1 1

2 2
L T U a q b q= − = −    (3.4) 

Hence the differential equation of motion 

 

𝑎0 𝑞̈ + 𝛼 𝑞̇ + 𝑏0 𝑞 = 𝐹𝑞𝑒𝑥𝑡 (3.5) 

This equation can be put in the form of a second-order differential equation with constant 

coefficients, with second member. 

𝑞̈ + 2𝛿 𝑞̇ + 𝑤0
2 𝑞 = 𝐴(𝑡)    (3.6) 

Where: 2𝛿 =
𝛼

𝑎0
, 𝑤0

2  =
𝑏0

𝑎0
, and 𝐴(𝑡) =

𝐹𝑞𝑒𝑥𝑡

𝑎0
 

 

 

 

 
Fig.1: Mass-spring-shock 

absorber system 
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3.2 Mass-spring-shock absorber system: 

 

Consider the mechanical example in the figure opposite. 

Subjected to an external force F
→

 applied to the mass m . 

 

Let us calculate xF the generalized conjugate force. 

We have the position r x i
→ →

= vector and F F i
→ →

= therefore
x qext

r
F F F

x

→
→ 

=  =


  

 

The differential equation of motion is: 2

02   ( ) x x x A t + + = …………… .( 3.7 )  

with  2𝛿 =
𝛼

2𝑚
 

𝜔0
2 =

𝑘

𝑚
        and     𝐴(𝑡) =

𝐹𝑞𝑒𝑥𝑡

𝑚
 

3.3. Solution of the differential equation: 

 

The solution to the equation: 

2

02    
qextF

x x x
m

 + + = is  ( ) ( ) ( )G H Px t x t x t= +  (3.8) 

Where ( )Gx t : is the general solution, ( )Hx t : is the homogeneous solution and ( )Px t : is the 

particular solution which is related to the second member of the equation; the homogeneous 

solution vanishes for some time and only the particular solution remains, so the general 

solution of the equation will be the particular solution ( ) ( )G Px t x t .  

The time interval during which the homogeneous solution is non-negligible is called the 

transient regime. At the end of this transient regime begins the time interval for which the 

homogeneous solution is quasi-zero and for which the solution ( ) ( )G Px t x t ; this regime is 

called the permanent or stationary regime. 

 

3.3.1 Special case where A ( t ) = A 0 cos ( Ω t ) : 

 

The particular solution ( )Px t is of the same form as the right-hand side, so we are 

looking ( )Px t for the form ( ) Acos( t )Px t =  + . 
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We have: 

 

2

( ) A sin( t )

( ) A cos( t )

P

P

x t

x t





•

••

= −   +

= −   +

 

Substituting into the equation ( T ) we will have . 

 

2 2

0 0A cos( t ) 2 A sin( t ) Acos( t ) A cos( t)    −   + −   + +  + =   (3.9) 

 

We pose 

  

0 0A cos( t) A cos( t )  =  + −         (3.10) 

 We will have 

 

 0 0A cos( t) A cos( t )cos( ) sin( t )sin( )    =  + +  +     (3.11) 

 

From where 

 

( )

( )

2 2

0 0 0

2 2
2 2

0 0
0

2 2 2 2 2 2 2 2 20
0 0

2 2

0

( ) cos( ) 2 sin( ) A cos( )cos( t ) A sin( )sin( t )

2  
tan( )A cos( )

     
2 A sin( )

cos ( ) sin ( ) 4 ( )

2  
arctan

    

T A A t A t

A A

A
A A

       


  

 
   






 −   + −   + =  + +  +


= −  =   −  

−  =   + =  + − 

 
=

 −


0

2 2 2 2 2

04 ( )

A
A

 

 
  
  

 =
  + −

 

So the solution is: ( ) Acos( t )Px t =  + with

2 2

0

0

2 2 2 2 2

0

2  
arctan

4 ( )

A
A






 

  
=  

 −  

 =
  + −

     (3.12) 
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3. Study of the variations of the amplitude and phase as a function of the excitation 

pulsation: 

 

 The amplitude A has a maximum if 0
dA

d
=


  

We have: 

  

 2 2 2

0 2 2

03/2
2 2 2 2 2

0

8 4 4
0 0 2

4 ( )
R

AdA

d

 
 

 

− + 
=  =  = −

   + − 

   (3.13) 

There is a maximum at the pulsation 
2 2

0 2R   = − only if the damping is sufficiently 

low so that 𝛿 <
𝜔0

√2
. At this pulsation, called the resonance pulsation, the system is said to enter 

resonance and the amplitude A is maximum; it is worth 

0

2 2

02

A
A

  
=

−
   (3.14) 

 

The figure representing the variations of A as a function of the excitation pulsation Ω is called 

the amplitude resonance curve. It is noted that at the pulsation 0  , the phase shift  is equal 

to 
2


− , and that at resonance

2 2

0 2
arctan

 




 −
 = −
  

 (3.15) 

  

 

 

 

 

 

 

 

 

 

 

 

 
Fig.2.a: Amplitude A as a function of Ω Fig.2.b: Phase shift φ as a function of Ω 



Chapter 3: Forced Oscillations of One-degree-of-freedom Systems 

 

47 

 

For low damping 0  , the resonance frequency is very little different from the 

natural pulsation, 0    In this case, the vibration amplitude at resonance A max is equal to: 

0

02

A


    (3.16) 

 

Behavior of Amplitude and Phase 

• Amplitude A(ω)A: 

o At low frequencies (ω≪ω0 ): The amplitude increases as the frequency 

increases. 

o At resonance (ω=ω0 ): The amplitude reaches a maximum, provided the 

damping is small. 

o At high frequencies (ω≫ω0 ): The amplitude decreases, and the system can no 

longer keep up with the fast-driving force. 

• Phase ϕ(ω): 

o At low frequencies (ω≪ω0): The phase shift is near zero, meaning the 

displacement is almost in phase with the driving force. 

o At resonance (ω=ω0): The phase shift is π/2, meaning the displacement lags the 

driving force by a quarter cycle. 

o At high frequencies (ω≫ω0): The phase shift approaches π\piπ, meaning the 

displacement is out of phase with the driving force. 

b. Speed study 

The velocity v(t) is the time derivative of the displacement x(t): 

𝑣(𝑡) =
𝑑𝑥

𝑑𝑡
         (3.17) 

For x(t)=Acos(ωt−ϕ), the velocity is:  

v(t)=−Aωsin(ωt−ϕ)       (3.18) 

The amplitude of the velocity is then: 

V=Aω         (3.19) 

To express V in terms of the parameters of the system, we first recall that the amplitude of the 

displacement A is given by: 
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𝐴 =
𝐹0/𝑚

√(ω0
2−ω2)2+(2𝛿ω)2

          (3.20) 

Now, the velocity amplitude V is: 

 

𝑉 =
𝐹0ω/𝑚

√(ω0
2−ω2)2+(2𝛿ω)2

    (3.21) 

 

 

 

 

 

 

 

 

 

 

 

Behavior of Velocity as a Function of Driving Frequency (see Fig.3.a) 

The amplitude of the velocity V depends on the driving frequency ω in the following way: 

• At low frequencies (ω≪ω0 ): The term (ω0
2 −ω2) dominates, so Vis small because the 

system is slow to respond to the external force. 

• At resonance (ω0
2 ≈ ω2): The velocity amplitude V reaches a maximum because the 

driving frequency matches the natural frequency of the system. This is when the system 

oscillates with maximum energy, and the velocity becomes largest. 

• t high frequencies (ω≫ω0): The damping term (2𝛿ω) and the ω2 terms dominate, and 

the velocity amplitude V decreases, because the system can no longer respond quickly 

enough to the high-frequency driving force. 

Behavior of the Phase Shift (see Fig.3.a) 

• At low frequencies (ω≪ω0 ): The velocity is almost in phase with the driving force, so 

the phase shift ϕ is close to 0. 

 

Fig.3.a:Velocity resonance curve 

 

Fig.3.b:Phase shift φ of the velocity as a 

function of Ω 

. 
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• At resonance (ω=ω0): The phase shift is π/2 (90°), meaning the velocity lags the driving 

force by a quarter cycle. 

• At high frequencies (ω≫ω0): The phase shift approaches π (180°), meaning the 

velocity is almost completely out of phase with the driving force (the system moves in 

the opposite direction of the force). 

Energy balance: 

 

P F (t) be the instantaneous power supplied by the external force F ( t ) to the system. In 

steady state, we obtain: 

𝑃𝐹(𝑡) = 𝐹(𝑡)𝑥̇(𝑡) = 𝐹0𝐴𝛺 𝑐𝑜𝑠(𝛺𝑡) 𝑠𝑖𝑛(𝛺𝑡 + 𝜑)   (3.21)  

 

 

 

 

Let < P F > be the average value over a period of P F ( t ) : 

 ⟨𝑃𝐹⟩ =
1

𝑇
∫ 𝑃𝐹(𝑡)𝑑𝑡
𝑇

0
  ⇒ ⟨𝑃𝐹⟩ = −

𝛺

2
𝐹0𝐴 𝑠𝑖𝑛(𝜑) =

1

2
𝛼 𝛺2𝐴2     (3.22) 

car  𝑠𝑖𝑛(𝜑) =
−2𝛿𝐴𝛺

𝐴0
   and 𝛼 = 2𝑚𝛿               (3.23) 

Let us compare this value with the average value < PD > of the power dissipated by the 

viscosity friction forces. The instantaneous value of this dissipated power is written as: 

𝑃𝐷(𝑡) = 𝛼𝑥̇(𝑡)𝑥̇(𝑡) = 𝛼(𝐴𝛺)2  𝑠𝑖𝑛2( 𝛺𝑡 + 𝜑) (3.24) 

⟨𝑃𝐷⟩ =
1

𝑇
∫ 𝐷𝐹(𝑡)𝑑𝑡 ⇒
𝑇

0
⟨𝐷𝐹⟩ =

1

2
𝛼 𝛺2𝐴2  (3.24) 

The study of the variations of the mean value of the power < P > = < PF > = < PD > as 

a function of the excitation pulsation shows that the maximum value of the mean power is 

obtained for 0 = whatever the value of  The maximum value of the mean power dissipated 

or supplied is in this case:                     
2

0

2Max

F
P


=          (3.25) 

The figure below represents the variations, as a function of , of the average power 

dissipated by the friction forces (or equivalently the average power provided by the external 

force ). 
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Bandwidth 

We define bandwidth as the band of pulsations around 0 = which
1

2 Max
P P  . 

The two pulsations 1 2  et     , located on either side of the pulsation 0 and for which 

1

2 Max
P P , are called cut-off pulsations. The bandwidth B is written: 

2 1B = −      (3.26) 

The calculation of B consists of finding the two pulsations for which
1

2 Max
P P  . 

We obtain the expression for the bandwidth B : 

 

2 1B = − =        (3.27) 

 

Quality coefficient of an oscillator 

 

The quality coefficient of an oscillator is defined by the ratio of the natural pulsation 0

to the bandwidth B : 

0Q
B


=    (3.28) 

 

 

Fig.4. Resonance curve for power as function of 

frequencies 
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3.4 Mechanical impedance: 

3.4.1 Definition: 

Consider a mechanical system subjected to a sinusoidal force ( ) ( )0   F t F cos t= . In 

steady state, the point of application of this force moves with a speed . The ratio of the complex 

amplitudes of the force ( ) ( )0   v t V cos t = + F and the speed v is called the input mechanical 

impedance of the mechanical system. 

 

F
Z

V
=  Or 0 0 0

.0      et    j jF F F V Ve e = = =      (3.29) 

We note that F is real on the other hand V can be imaginary to the real according to the 

phase shift φ. 

 

3.4.2 Mechanical impedances: 

 

Shock absorber : 

 

In the case of a shock absorber, the applied force is related to the speed by 

 

 F v=    (3.30) 

 

We deduce the complex impedance of a shock absorber 

 

Z  =    (3.31) 

Mass 

In the case of a mass, the fundamental relation of dynamics is written 

 

dv
F m

dt
= (3.32) 

We deduce the complex impedance of a mass 

2 
j

mZ im m e


=  =    (3.33) 

Spring 
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In the case of a spring of stiffness k , the applied force f applied to the spring is 

expressed as a function of the elongation by 

 

F kx=  (3.34) 

We deduce the complex impedance of a spring 

2
j

k

k k k
Z i

i
e


−

= = − =
  

  (3.35) 

3.4.3 Power 

The average value, over a period, of the power supplied is 

  2

0

1
sin( ) Re

2 2
EFP F A Z A


= − =    (3.36) 

3.4.4 Applications: 

Resonant mechanical system 

Consider a mechanical system consisting of a spring of stiffness k , a damper with 

viscous friction coefficient 𝛼 and a mass m subjected to a sinusoidal force F ( t ) = F 0 cos ( t ). 

The input impedance of this system is 

 

𝑍𝐸 = 𝛼 + 𝑖(𝑚 𝛺 −
𝑘

𝛺
) (3.37) 

At the resonance 0

k

m


 
 = =  
 

, the impedance module is EZ =  When the pulsation 

→ , the impedance  EZ im  . 

  

 

 

 

 

 

 

Anti-resonant system: 

 

Consider a mechanical system consisting of a spring of stiffness k one end of which is 

connected to a mass m and the other of which is subjected to a sinusoidal force F ( t ) . Let x 

the displacement of mass m and let y the displacement of the point of application of the force 
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F ( t ) . To calculate the input impedance of this system, we must first write the differential 

equations of motion: 

 

( )

( )

mx k x y

F k x y

= −

= −
(3.38) 

Using complex notation, we obtain the input impedance: 

 

 
E

F km
Z i

kY
m

= = −
 

−  

(3.39) 

 

The antiresonance pulsation is 0

k

m
 = . When 0 = , the velocity Y is zero while the 

impedance modulus is ∞ . When the pulsation → , the impedance 0EZ →  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Exercises 

Problem 1:  

For the given systems, determine the following: 

1. The number of degrees of freedom of the system. 
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2. The kinetic energy, potential energy, and Lagrangian of the system. 

3. Derive the differential equation of motion and calculate the system's natural 

frequency. 

 

 

 

 

System 1 
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System 2 

 

  

 
 

Problem 2: 

A simple pendulum of length L and mass M, suspended from a point A, the latter undergoes a 

displacement ξ(t)=ξ 0 cos Ωt [mm]. 

If the expression of the friction force (air-mass) 𝐹𝑓𝑟⃗⃗ ⃗⃗ ⃗⃗ = − 𝛼 𝑥̇ ⃗⃗⃗ ⃗. 

For low amplitudes. 

1) What is the nature of the movement? 

2) Calculate kinetic energy? 

3) Calculate potential energy? 

4) Deduce the Lagrangian of the system, and the differential equation of motion? 

5) Give the equation of motion if δ ‹ ω 0 ? 
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Problem 3: 

 

M=8kg, m=2kg, k 1 =2x10 3 N/m, k 2 =k 1 /2, α =200N.s /m, g=10N/s 2 , L=1m. 

1- Determine the number of degrees of freedom. 

By moving the mass m away from its equilibrium angle γ, by an angle𝜃0 = 0.15𝑟𝑑 

2- Calculate the angle γ that the bar makes with the horizontal axis for a stable 

equilibrium? 

3- For small amplitudes: Find the kinetic and potential energy, and deduce the 

Lagrangian of the system. 

4- Give its pseudo-period T a ? 

If the mass m is subjected to a vertical and harmonic force:𝐹⃗(𝑡) = 𝐹0cos (9.26𝑡)𝑗  
5- Find the differential equation of motion. 

6- For the steady state, find the solution to the differential equation of motion. 

7- Study the average power provided by the external force.  

 

 

 

 

 

 

 

 

 

 
Solution: 

Problem 1: 

 

x
0
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System 1: 

 

Number of degrees of freedom of the system: 

 

S=3N-n, N=2 and 𝑛 =

{
 
 

 
 
𝑍𝑚1 = 0
𝑍𝑚2 = 0
𝑦𝑚1 = 𝑐𝑡𝑒
𝑥𝑚2 = 0
𝑥𝑚1 = 𝑦𝑚2

⟹ 𝑛 = 5 ⇒ 𝑆 = 1 

 

 
Kinetic energy, potential energy, and Lagrangian of the system: 

𝑈 =
1

2
(𝑘1 + 𝐾2)𝑥

2 

𝑇 =
1

2
[𝑚1 +𝑚2]𝑥̇

2 

Dissipation function  

𝐷 =
1

2
𝛼(𝑥̇)2 

 

Lagrangian of the system 

L=T-U 

𝐿 =
1

2
[𝑚1 +𝑚2]𝑥̇

2 −
1

2
(𝑘1 + 𝐾2)𝑥

2 

 

Differential equation of motion and the system's natural frequency 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑥̇
) − (

𝜕𝐿

𝜕𝑥
) + (

𝜕𝐷

𝜕𝑥̇
) = 𝐹𝐺

𝑥 

 

𝐹𝐺
𝑥 = 𝐹𝑒𝑥⃗⃗ ⃗⃗ ⃗⃗

𝜕𝑟

𝜕𝑥
= 𝐹𝑒𝑥  

[𝑚1 +𝑚2]𝑥̈ + 𝛼𝑥̇ + (𝑘1 + 𝐾2)𝑥 = 𝐹𝑒𝑥 

 

Natural frequency:  

𝑤0 = √
(𝑘1 + 𝐾2)

[𝑚1 +𝑚2]
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System 2: 

Number of degrees of freedom of the system: 

 

S=3N-n, N=2 and 𝑛 =

{
 
 

 
 
𝑍𝑚 = 0
𝑍𝑀 = 0
𝑦𝑀 = 𝑐𝑡𝑒
𝑥𝑀 = 𝑐𝑡𝑒
𝑦𝑚 = 𝑐𝑡𝑒

⟹ 𝑛 = 5 ⇒ 𝑆 = 1 

 

 
Kinetic energy, potential energy, and Lagrangian of the system: 

𝑈 =
1

2
𝑘𝑥2 + 𝑈𝑒𝑞 

𝑇 =
1

2
[𝑚 +

𝑀

2
] 𝑥̇2 

Dissipation function  

𝐷 =
1

2
𝛼(𝑥̇)2 

 

Lagrangian of the system 

L=T-U 

𝐿 =
1

2
[𝑚 +

𝑀

2
] 𝑥̇2 −

1

2
𝑘𝑥2 + 𝑈𝑒𝑞 

 

Differential equation of motion and the system's natural frequency 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑥̇
) − (

𝜕𝐿

𝜕𝑥
) + (

𝜕𝐷

𝜕𝑥̇
) = 𝐹𝐺

𝑥 

 

𝐹𝐺
𝑥 = 𝐹𝑒𝑥⃗⃗ ⃗⃗ ⃗⃗

𝜕𝑟

𝜕𝑥
= 𝐹𝑒𝑥𝑅 

[𝑚 +
𝑀

2
] 𝑥̈ + 𝛼𝑥̇ + 𝑘𝑥 = 𝐹𝑒𝑥𝑅 

 

Natural frequency:  

𝑤0 = √
𝑘

[𝑚 +
𝑀
2 ]

 



 

 

 

 

 

 

 

 

Chapter 4: Free Oscillations of Two-degree-of-

freedom Systems 
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4-1. Introduction: 

In this chapter, we delve into the study of free oscillations in two-degree-of-freedom systems, 

a key concept that extends our understanding of vibrational systems beyond the simpler single-

degree-of-freedom cases. For chemistry students, this is particularly important, as molecular 

structures and interactions often involve multiple degrees of vibrational freedom, and the 

principles learned here apply directly to the study of molecular vibrations and spectroscopy. 

A two-degree-of-freedom system refers to a system where two independent variables, or 

coordinates, are required to fully describe its motion. Unlike simpler systems, these can vibrate 

in more complex patterns, often displaying interactions between the different parts of the 

system, leading to phenomena such as normal modes and natural frequencies. Understanding 

these behaviors helps explain how molecules oscillate and how energy is distributed in chemical 

systems. 

In this chapter, we will: 

1. Derive the equations of motion for two-degree-of-freedom systems. 

2. Explore normal modes, which describe how the system naturally vibrates. 

3. Identify the natural frequencies of the system, which are key to understanding 

resonance and energy behavior. 

4. Apply this knowledge to practical examples in molecular vibrations and spectroscopy, 

which you will encounter more deeply in later studies. 

By mastering these concepts, you’ll gain a solid foundation that will be critical when you 

analyze more complex molecular systems and interpret vibrational spectroscopy data in your 

future chemistry courses. 

 

4-2. Mass-spring system in translation: 

 

Systems that require two independent coordinates q1 , q2 to specify their positions are called 

two-degree-of-freedom systems. 

Examples:  
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Fig.1: Systems with two degrees of freedom 

For the study of systems with two degrees of freedom, it is necessary to write two differential 

equations of motion which can be obtained from Lagrange’s equations: 

{

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞̇1
) − (

𝜕𝐿

𝜕𝑞1
) = 0

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞̇2
) − (

𝜕𝐿

𝜕𝑞2
) = 0

    (4.1) 

 

 

Fig.2: Mass-spring system in translation 
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4-2-1. Differential equations of motion: 

 

Kinetic and potential energies of the system: 

𝑇 = 𝑇1 + 𝑇2 

𝑈 = 𝑈𝑒 + 𝑈𝑔 

𝑈𝑒 = 𝑈𝑒1 + 𝑈𝑒2 + 𝑈𝑒3  et 𝑈𝑔 = 0 

𝑇1 =
1

2
𝑚1𝑥̇1

2  et  𝑇2 =
1

2
𝑚2𝑥̇2

2 ⇒ 𝑇 =
1

2
𝑚1𝑥̇1

2 +
1

2
𝑚2𝑥̇2

2      (4.2) 

𝑈𝑒1 =
1

2
𝑘1𝑥1

2 ,  𝑈𝑒2 =
1

2
𝐾(𝑥2 − 𝑥1)

2 et  𝑈𝑒3 =
1

2
𝑘2𝑥2

2      (4.3) 

⇒ U=
1

2
𝑘1𝑥1

2 +
1

2
𝐾(𝑥2 − 𝑥1)

2 +
1

2
𝑘2𝑥2

2= 
1

2
(𝑘1 + 𝐾)𝑥1

2 +
1

2
(𝑘2 + 𝐾)𝑥2

2 −
1

2
𝐾𝑥1𝑥2 

𝐿 = 𝑇 − 𝑈 ⇒ 𝐿 =
1

2
𝑚1𝑥̇1

2 +
1

2
𝑚2𝑥̇2

2 − (
1

2
𝑘1𝑥1

2 +
1

2
𝐾(𝑥2 − 𝑥1)

2 +
1

2
𝑘2𝑥2

2 ) 

{
 

 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑥̇1
) − (

𝜕𝐿

𝜕𝑥1
) = 0

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑥̇2
) − (

𝜕𝐿

𝜕𝑥2
) = 0

©. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4.4) 

(𝑇) ⇒ {
𝑚1𝑥̈1 + 𝑘1𝑥1 + 𝐾(𝑥1 − 𝑥2) = 0
𝑚2𝑥̈2 + 𝑘2𝑥2 + 𝐾(𝑥2 − 𝑥1) = 0

⇒ {
𝑚1𝑥̈1 + (𝑘1 + 𝐾)𝑥1 − 𝐾𝑥2 = 0

𝑚2𝑥̈2 + (𝑘1 + 𝐾)𝑥2 − 𝐾𝑥1 = 0
    (4.5) 

 

Coupling concept: 

The terms −Kx 2 and −Kx 1 which appear respectively in the first and second equation are called 

coupling terms, and the two differential equations are said to be coupled. 

Solving the system of differential equations 

Let us look for a particular solution of the form: 

𝑥1(𝑡) = 𝐴1 𝑐𝑜𝑠(𝜔 𝑡 + 𝜑) 

𝑥2(𝑡) = 𝐴2 𝑐𝑜𝑠(𝜔 𝑡 + 𝜑) 
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where A 1 , A 2 and φ are constants and ω one of the natural pulsations of the system . 

We find: 

{
[𝑘1 + 𝐾 −𝑚1𝜔

2]𝐴1 − 𝐾 𝐴2 = 0

−𝐾 𝐴1 + [𝑘2 + 𝐾 −𝑚2𝜔
2]𝐴2 = 0

     (4.6) 

 

Which constitutes a system of homogeneous linear equations whose unknowns are A 1 and A 2 . 

This system admits a non-identically zero solution only if the determinant Δ( ω ) of the 

coefficients of A 1 and A 2 is equal to zero. 

𝛥(𝜔) = |
(𝑘1 + 𝐾 −𝑚1𝜔

2)                − 𝐾         

            − 𝐾            (𝑘2 + 𝐾 −𝑚2𝜔
2)
|   (4.7) 

 

Δ(ω) is called the characteristic determinant. 

The equation Δ(ω) = 0 is called the characteristic equation or the natural pulsation equation. It 

is written: 

(𝑘1 + 𝐾 −𝑚1𝜔
2)(𝑘2 + 𝐾 −𝑚2𝜔

2) − 𝐾2 =0   (4.8) 

⇒ 𝜔4 − 𝜔2 (
𝑘1+𝐾

𝑚1
+
𝑘2+𝐾

𝑚2
) +

𝑘1𝑘2+𝑘1𝐾+𝑘2𝐾

𝑚1𝑚2
= 0   (4.9) 

This equation admits two positive real solutions ω 1 and ω 2 called the proper pulsations of the 

system. Each of the coordinates, x 1 and x 2 , has two harmonic components of pulsations ω1 and 

ω2 

𝑥1 = 𝐴11 𝑐𝑜𝑠(𝜔1 𝑡 +𝜙1) + 𝐴12 𝑐𝑜𝑠(𝜔2 𝑡 +𝜙2)     (4.10) 

𝑥2 = 𝐴21 𝑐𝑜𝑠(𝜔1 𝑡 +𝜙1) + 𝐴22 𝑐𝑜𝑠(𝜔2 𝑡 +𝜙2)   (4.11) 

Where  𝐴11, 𝐴12, 𝐴21, 𝐴22, 𝜙1 et 𝜙2 are  constantes  

 

ω 1 corresponds to the smallest pulsation and ω 2 corresponds to the largest, the lowest frequency 

term is called the fundamental . The other term is called the harmonic. 
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When A 12 = A 22 = 0, x 1 and x 2 corresponding to the first particular solution are sinusoidal 

functions, in phase, of pulsation ω 1 ; the system is said to oscillate in the first mode. In this 

case:  

𝑥1 = 𝐴11 𝑐𝑜𝑠(𝜔1 𝑡 +𝜙1)      (4.12) 

𝑥2 = 𝐴21 𝑐𝑜𝑠(𝜔1 𝑡 +𝜙1)  (4.13) 

Let us study the particularities of these two particular solutions: 

The first particular solution is written: 

𝑥1 = 𝐴11 𝑐𝑜𝑠(𝜔1 𝑡 +𝜙1)
𝑥2 = 𝐴21 𝑐𝑜𝑠(𝜔1 𝑡 +𝜙1)

} ⇒ {
(𝑘1 +𝐾 −𝑚1𝜔1

2)𝐴11 − 𝐾𝐴21 = 0

−𝐾𝐴11 + (𝑘2 + 𝐾 −𝑚2𝜔1
2)𝐴21 = 0

     (4.14)   

⇒ 𝜇1 =
𝐴21
𝐴11

=
𝑘1 + 𝐾 −𝑚1𝜔1

2

𝐾
=

𝐾

𝑘2 + 𝐾 −𝑚2𝜔1
2 

  The second particular solution is written: 

𝑥1 = 𝐴12 𝑐𝑜𝑠(𝜔2 𝑡 +𝜙2)

𝑥2 = 𝐴22 𝑐𝑜𝑠(𝜔2 𝑡 +𝜙2)
} ⇒ {

(𝑘1 + 𝐾 −𝑚1𝜔2
2)𝐴12 −𝐾𝐴22 = 0

−𝐾𝐴12 + (𝑘2 + 𝐾 −𝑚2𝜔2
2)𝐴22 = 0

     (4.15) 

⇒ 𝜇2 =
𝐴22

𝐴12
=

𝑘1+𝐾−𝑚1𝜔2
2

𝐾
=

𝐾

𝑘2+𝐾−𝑚2𝜔2
2       (4.16) 

The general solution ( x 1 , x 2 ) is a linear combination of these two solutions 

particular. X 1 and x 2 are then written: 

 

𝑥1 = 𝐴11 𝑐𝑜𝑠(𝜔1 𝑡 +𝜙1) + 𝐴12 𝑐𝑜𝑠(𝜔2 𝑡 +𝜙2)        (4.17) 

𝑥2 = 𝜇1𝐴11 𝑐𝑜𝑠(𝜔1 𝑡 +𝜙1) + 𝜇2𝐴12 𝑐𝑜𝑠(𝜔2 𝑡 +𝜙2)    (4.18) 

Where  𝐴11, 𝐴12, 𝐴21, 𝐴22, 𝜙2 et 𝜙2 are constantes . 

 

4.2.2 Special case of two identical coupled pendulums 

For this case:  m 1 = m 2 = m, and k 1 = k 2 = k. 
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We obtaine: 𝜔1 = √
𝑘

𝑚
    ,𝜔2 = √

𝑘+2𝐾

𝑚
= 𝜔1√1 +

2𝐾

𝑘
  , 𝜇1 = +1  and 𝜇 = −1  (4.19) 

we take 𝑥10, 𝑥20, 𝑥̇10 and 𝑥̇20 as 64odelled valeurs.  

These initial conditions into account , we obtain the following system of equations: 

{

𝐴11 𝑐𝑜𝑠(𝜙1) + 𝐴12 𝑐𝑜𝑠( 𝜙2) = 𝑥10
𝐴11 𝑐𝑜𝑠(𝜙1) − 𝐴12 𝑐𝑜𝑠( 𝜙2) = 𝑥20
−𝜔1𝐴11 𝑠𝑖𝑛(𝜙1) − 𝜔2𝐴12 𝑠𝑖𝑛(𝜙2) = 𝑥̇10
−𝜔1𝐴11 𝑠𝑖𝑛(𝜙1) + 𝜔2𝐴12 𝑠𝑖𝑛(𝜙2) = 𝑥̇20

     (4.20) 

The solutions to this system of equations are: 

𝐴11 =
𝑥10 + 𝑥20
2 𝑐𝑜𝑠(𝜙1)

  and A12 =
𝑥10 − 𝑥20
2 𝑐𝑜𝑠(𝜙2)

  or 𝐴11 = −
𝑥̇10 + 𝑥̇20

2𝜔1 𝑠𝑖𝑛(𝜙1)
 and    

𝐴12 = −
𝑥̇10 − 𝑥̇20

2𝜔1 𝑠𝑖𝑛(𝜙2)
 

1- For a particular case  𝑥10 = 𝑥20 = 𝑥0 et 𝑥̇10 = 𝑥̇20 = 0  we have : 𝜙1 = 𝜙2=0   et  𝐴12 =

0 et A11=x0. 

𝑥1 = 𝑥0 𝑐𝑜𝑠(𝜔1 𝑡)     (4.21) 

𝑥2 = 𝑥0 𝑐𝑜𝑠(𝜔1 𝑡)    (4.21) 

 

Fig.3: The system oscillates in the first mode. 

For these particular initial conditions, the two masses oscillate in phase at the same pulsation 

ω1. The system is said to oscillate in the first mode. 
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4. For a particular case  𝑥10 = −𝑥20 = 𝑥0 et 𝑥̇10 = 𝑥̇20=0: 

we obtain: 𝜙1 = 𝜙2=0   et  𝐴11 = 0 et A12=x0, which means 

𝑥1 = 𝑥0 𝑐𝑜𝑠(𝜔2 𝑡)  (4.23) 

𝑥2 = −𝑥0 𝑐𝑜𝑠(𝜔2 𝑡) (4.24) 

 

Fig.4: The system oscillates in the second mode. 

For these particular initial conditions, the two masses oscillate in phase opposition at the same 

pulsation ω 2 . The system is said to oscillate in the second mode. 

 

3- Finally, let us consider the following special case:  

If   𝑥10 = 𝑥0, 𝑥20 =0 et 𝑥̇10 = 𝑥̇20=0  

We obtain 𝜙1 = 𝜙2=0   et  A11=A12 =
𝑥0
2

 

{
𝑥1 =

𝑥0

2
𝑐𝑜𝑠(𝜔1 𝑡) +

𝑥0

2
𝑐𝑜𝑠(𝜔2 𝑡)

𝑥2 =
𝑥0

2
𝑐𝑜𝑠(𝜔1 𝑡) −

𝑥0

2
𝑐𝑜𝑠(𝜔2 𝑡)

⇒ {
𝑥1 = 𝑥0 𝑐𝑜𝑠(

𝜔2−𝜔1

2
𝑡) 𝑐𝑜𝑠(

𝜔2+𝜔1

2
𝑡)

𝑥2 = 𝑥0 𝑠𝑖𝑛(
𝜔2−𝜔1

2
𝑡) 𝑠𝑖𝑛(

𝜔2+𝜔1

2
𝑡)

        (4.25) 

For K>>k 
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Fig.5: Oscillation of two masses when K>>k 

 

For K<<k 

 

 

Fig.6: The beating phenomenon 

The beating phenomenon demonstrates the concept of coupled modes and how energy can 

oscillate between different parts of a system. In real-world applications, this concept is 

significant in various areas, such as molecular vibrations in chemistry, musical instruments, and 

engineering structures, where coupled oscillators are common. 

In chemistry, for example, molecular vibrational modes can couple and exhibit energy transfer 

similar to that of coupled pendulums. Understanding the beating phenomenon helps in 
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analyzing the dynamics of such systems and how energy distributes between different 

vibrational modes. 

Conditions for Beating: 

1. Frequency Difference: The two angular frequencies ω1 and ω2 must be close to each 

other but not identical. This means: 

∣ω1−ω2∣≪ω1,ω2 (4.26) 

In other words, the difference between ω1and ω2 should be much smaller than the 

individual frequencies. 

2. Resulting Beat Frequency: The beat frequency is the difference between the two 

frequencies: 

fbeat=∣ω1−ω2∣/2π   (4.27) 

This represents the rate at which the amplitude of the resultant wave varies due to 

constructive and destructive interference. 

3. Amplitude Modulation: The amplitude of the resulting wave oscillates between 

maximum (constructive interference) and minimum (destructive interference). The 

amplitude modulation occurs at a frequency fbeat. 

The resulting wave has two components: 

• Fast oscillation at the average frequency ω1+ω2, which determines the main oscillatory 

motion. 

• Slow amplitude modulation at the difference frequency ω1−ω2, which causes the 

beating effect. 
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4.2.3 Coupled pendulums 

 

Fig.6. Coupled pendulums 

Kinetic energy      𝑇 =
1

2
𝑚𝑙2𝜃̇1

2 +
1

2
𝑚𝑙2𝜃̇2

2            (4.28) 

Potential energy    𝑈 =
1

2
(𝐾𝑙2 +𝑚𝑔𝑙)𝜃1

2 +
1

2
(𝐾𝑙2 +𝑚𝑔𝑙)𝜃2

2 − 𝐾𝑙2𝜃1𝜃2    (4.29) 

We note the presence of the coupling term (− K l 2 θ 1 θ 2 ) in the expression of the potential 

energy. As in the previous example, we say that the coupling is elastic. If the coupling term 

only exists in the expression of the kinetic energy, we say that the coupling is of the inertial 

type . 

𝐿 = 𝑇 − 𝑈 ⇒ 𝐿 =
1

2
𝑚𝑙2𝜃̇1

2 +
1

2
𝑚𝑙2𝜃̇2

2 −
1

2
(𝐾𝑙2 +𝑚𝑔𝑙)𝜃1

2 −
1

2
(𝐾𝑙2 +𝑚𝑔𝑙)𝜃2

2 + 𝐾𝑙2𝜃1𝜃2  

Equations of motion: 

{
 
 

 
 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝜃̇1
) − (

𝜕𝐿

𝜕𝜃1
) = 0

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝜃̇2
) − (

𝜕𝐿

𝜕𝜃2
) = 0

⇒ {
𝑚𝑙2𝜃̈1

2 + (𝐾𝑙2 +𝑚𝑔𝑙)𝜃1 − 𝐾𝑙
2𝜃2 = 0

𝑚𝑙2𝜃̈2
2 + (𝐾𝑙2 +𝑚𝑔𝑙)𝜃2 − 𝐾𝑙

2𝜃1 = 0
  (4.30) 

𝜃1(𝑡) = 𝐴1 𝑐𝑜𝑠(𝜔 𝑡 + 𝜑)  (4.31) 

𝜃2(𝑡) = 𝐴2 𝑐𝑜𝑠(𝜔 𝑡 + 𝜑)  (4.32) 
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These two expressions must satisfy the system of differential equations, hence: 

{
(𝐾𝑙2 +𝑚𝑔𝑙 − 𝑚𝑙2𝜔2)𝐴1 − 𝐾𝑙

2𝐴2 = 0

−𝐾𝑙2𝐴1 + (𝐾𝑙
2 +𝑚𝑔𝑙 − 𝑚𝑙2𝜔2)𝐴1 = 0

       (4.35) 

This system of equations admits non-zero solutions only if ω is the solution to the equation at 

frequencies: 

(𝐾𝑙2 +𝑚𝑔𝑙 − 𝑚𝑙2𝜔2)2 − (𝐾𝑙2)2 = 0 ⇒

{
 

 𝜔1 = √
𝑔

𝑙

𝜔2 = √
𝑔

𝑙
+
2𝐾

𝑚

   (4.36) 

The solution to the system of differential equations is therefore: 

𝜃1 = 𝐴11 𝑐𝑜𝑠(𝜔1 𝑡 +𝜙1) + 𝐴12 𝑐𝑜𝑠(𝜔2 𝑡 +𝜙2)         (4.37) 

𝜃2 = 𝜇1𝐴11 𝑐𝑜𝑠(𝜔1 𝑡 +𝜙1) + 𝜇22𝐴12 𝑐𝑜𝑠(𝜔2 𝑡 +𝜙2)    (4.38) 

After the calculation we find:        𝝁𝟏𝟏 = 𝟏,       𝝁𝟐𝟐 = −𝟏        (4.39) 

As a result, 

𝜃1 = 𝐴11 𝑐𝑜𝑠(𝜔1 𝑡 +𝜙1) + 𝐴12 𝑐𝑜𝑠(𝜔2 𝑡 +𝜙2)      (4.40) 

𝜃2 = 𝐴11 𝑐𝑜𝑠(𝜔1 𝑡 +𝜙1) − 𝐴12 𝑐𝑜𝑠(𝜔2 𝑡 +𝜙2)      (4.41) 

 Supplementary Exercises 

Problem 1:  

We consider the system in the figure below consisting of two identical elastic pendulums where the mass M is a 

solid disk of radius R connected by a spring of stiffness k. The two disks roll without sliding on a horizontal plane, 

a spring of stiffness K couples the two disks. At equilibrium the three springs are at rest. 

1- How many degrees of freedom are there? 

2- Give the formula of 

2-a- Kinetic energy. 

2-b- Potential energy. 

3-c- Lagrangian of the system. 

3- Establish the differential equations of motion. 

4- Give the expression of 𝜇 =
𝐴2

𝐴1
. 

5- Calculate 𝜔1    𝑒𝑡      𝜔2. 
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6- Give the equations of motion as a function of A 11 , A 12, 𝜔1    𝑒𝑡      𝜔2. 

7- What is the phase shift between the two masses if the system oscillates in the second mode? 

We recall that the moment of inertia of a solid disk is I CM = 
1

2
𝑀𝑅2. 

 

 

 

 

 

Solution: 

𝑠 = 3𝑁 − 𝑛 𝑂𝑛 𝑎 𝑁 = 2, 𝑛 {

𝑍1 = 0
𝑍2 = 0
𝑌1 = 0
𝑌2 = 0

=> 𝑛 = 4 𝑑𝑜𝑛𝑐: 𝑆 = 2,

𝑡𝑤𝑜 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 𝑎𝑛𝑑 𝑡𝑤𝑜 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑋1, 𝑋2 𝑜𝑢 𝜃1, 𝜃2 . 

Potential energy:  

𝑈 =  
1

2
𝑘(2𝑋1)

2 +
1

2
𝑘(2𝑋2)

2 +
1

2
𝐾(𝑋1 − 𝑋2)

2  𝑜𝑢 𝑈

=  
1

2
𝑘(2𝑅𝜃1)

2 +
1

2
𝑘(2𝑅𝜃2)

2 +
1

2
𝐾(𝑅𝜃1 − 𝑅𝜃2)

2 

Kinetic energy:  

𝑇 =  
1

2
𝑚𝑋̇1

2
+
1

2
𝑚𝑅2𝜃̇1

2
 +  

1

2
𝑚𝑋̇2

2
+ 
1

2
𝑚𝑅2𝜃̇2

2
 

𝑇 = 𝑚𝑋̇1
2
+  𝑚𝑋̇2

2
 𝑜𝑢 𝑇 =  𝑚𝑅2𝜃̇1

2
+  𝑚𝑅2𝜃̇2

2
  

Lagrangian of the system:  

𝐿 =  𝑚𝑋̇1
2
+  𝑚𝑋̇2

2
−
1

2
(4𝑘 + 𝐾)𝑋1

2 −
1

2
(4𝑘 + 𝐾)𝑋2

2 + 𝐾𝑋1𝑋2 𝑜𝑢 

 𝐿 =  𝑚𝑅2𝜃̇1
2
+  𝑚𝑅2𝜃̇2

2
−
1

2
(4𝑘 + 𝐾)𝑅2𝜃1

2 −
1

2
(4𝑘 + 𝐾)𝑅2𝜃2

2 + 𝐾𝑅2𝜃1𝜃2  
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The differential equations of motion:  

{
 
 

 
 
𝜕

𝜕𝑡
(
𝜕𝐿

𝜕𝑋̇1
) − (

𝜕𝐿

𝜕𝑋1
) = 0

𝜕

𝜕𝑡
(
𝜕𝐿

𝜕𝑋̇2
) − (

𝜕𝐿

𝜕𝑋2
) = 0

=

> {
2𝑚𝑋̈1 + (4𝑘 + 𝐾)𝑋1 − 𝐾𝑋2 = 0

2𝑚𝑋̈2 + (4𝑘 + 𝐾)𝑋2 − 𝐾𝑋1 = 0
  𝑜𝑟 {

2𝑚𝜃̈1 + (4𝑘 + 𝐾)𝜃1 −𝐾𝜃2 = 0… . . (1)

2𝑚𝜃̈2 + (4𝑘 + 𝐾)𝜃2 − 𝐾𝜃1 = 0… . . (2)
 

 

𝜃1(𝑡) =  𝐴1 cos(𝜔𝑡 + 𝜑)  𝑒𝑡 𝜃2(𝑡) =  𝐴2 cos(𝜔𝑡 + 𝜑) 

 

 (1) => −2𝑚𝜔2𝐴1 𝑐𝑜𝑠(𝜔𝑡 + 𝜑) + (4𝑘 + 𝐾)𝐴1 𝑐𝑜𝑠(𝜔𝑡 + 𝜑) − 𝐾𝐴2 𝑐𝑜𝑠(𝜔𝑡 + 𝜑) = 0 

=> [(4𝑘 + 𝐾) − 2𝑚𝜔2]𝐴1 𝑐𝑜𝑠(𝜔𝑡 + 𝜑) − 𝐾𝑋2 = 0 => 𝑋2

=
[(4𝑘 + 𝐾) − 2𝑚𝜔2]

𝐾
𝐴1 𝑐𝑜𝑠(𝜔𝑡 + 𝜑) 

𝜇 =
[(4𝑘 + 𝐾) − 2𝑚𝜔2]

𝐾
 

=> {
[(4𝑘 + 𝐾) − 2𝑚𝜔2]𝐴1 − 𝐾𝐴2 = 0

−𝐾𝐴1 + [(4𝑘 + 𝐾) − 2𝑚𝜔
2]𝐴2 = 0

 

=> 𝑑𝑒𝑡 |
[(4𝑘 + 𝐾) − 2𝑚𝜔2]                      − 𝐾

−𝐾                               [(4𝑘 + 𝐾) − 2𝑚𝜔2]
| = 0 => {

𝜔1
2 =

2𝑘

𝑚

𝜔2
2 =

2𝑘 + 𝐾

𝑚

 

 

=>

{
 

 𝜇1 =
[(4𝑘 + 𝐾) − 2𝑚𝜔1

2]

𝐾

𝜇2 =
[(4𝑘 + 𝐾) − 2𝑚𝜔2

2]

𝐾

=>

{
 

 𝜇1 =
𝐴21
𝐴11

= 1

𝜇2 =
𝐴22
𝐴21

= −1
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⟹ {
𝑋1(𝑡) =  𝐴11 cos(𝜔1𝑡 + 𝜑1) + 𝐴12 𝑐𝑜𝑠(𝜔2𝑡 + 𝜑2)

𝑋2(𝑡) =  𝐴11 𝑐𝑜𝑠(𝜔1𝑡 + 𝜑1) − 𝐴12 𝑐𝑜𝑠(𝜔2𝑡 + 𝜑2)
  

𝑜𝑟 {
𝜃1(𝑡) =  𝐴11 cos(𝜔1𝑡 + 𝜑1) + 𝐴12 𝑐𝑜𝑠(𝜔2𝑡 + 𝜑2)

𝜃2(𝑡) =  𝐴11 𝑐𝑜𝑠(𝜔1𝑡 + 𝜑1) − 𝐴12 𝑐𝑜𝑠(𝜔2𝑡 + 𝜑2)
 

The phase shift if the system oscillated in second mode W 2  

=> {
𝑋1(𝑡) =  𝐴12 𝑐𝑜𝑠(𝜔2𝑡 + 𝜑2)

𝑋2(𝑡) =  −𝐴12 𝑐𝑜𝑠(𝜔2𝑡 + 𝜑2)
=> {

𝑋1(𝑡) =  𝐴12 𝑐𝑜𝑠(𝜔2𝑡 + 𝜑2)

𝑋2(𝑡) =  𝐴12 𝑐𝑜𝑠(𝜔2𝑡 + 𝜑2 + 𝜋)
 

The phase shift between X 1 and X 2 = π 
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1. Introduction 

 In this chapter, we will explore the fundamental principles governing the 

propagation of waves, a phenomenon that is central to many physical processes. Wave 

propagation describes how disturbances travel through various media, transferring energy 

without permanent displacement of the medium itself. Understanding these principles is 

essential for comprehending a wide array of chemical and physical phenomena, including sound 

waves in fluids, light waves in optics, and molecular vibrations. 

The chapter will introduce key concepts such as wave speed, wavelength, frequency, and 

amplitude, as well as the different types of waves-mechanical and electromagnetic. Special 

attention will be given to the mathematical representation of waves using wave equations, 

which serve as powerful tools for analyzing wave behavior in different contexts. 

In the context of chemistry, wave propagation plays a significant role in understanding how 

energy moves through molecules, how sound waves are used in analytical techniques, and how 

light interacts with matter. Whether studying acoustic waves in liquids or electromagnetic 

waves in spectroscopy, the ability to understand and model wave behavior is crucial to 

interpreting experimental data and advancing chemical research. 

Through this chapter, students will gain a foundational understanding of the mechanisms behind 

wave propagation, preparing them for more specific discussions of acoustic waves and optical 

phenomena in subsequent sections. 

 

  

 

 

 

 

 

 

Fig.1: propagation wave along a string 
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2. Propagation Equation (Wave Equation) 

The fundamental equation governing wave propagation in one dimension is the wave 

equation. For a wave traveling along the xx-axis, this equation can be written as: 

∂2u(x,t)

∂x2
=

1

𝑣2
𝜕2u(x,t)

∂𝑡2
 (5.1) 

where: u(x,t) is the wave function representing the displacement of the wave at position x and 

time t, v is the speed of wave propagation. 

This is a second-order partial differential equation, describing how the wave’s shape evolves 

over time and space. 

3. Simple case propagation wave along a string: 

Consider a taut rope, straight along the x coordinate, and of infinite length . We will 

study the propagation of a weak shock along the rope. Let us suppose that this shock 

occurs along the Oy axis  (see Fig1). 

∑ 𝐹⃗ = 𝑇1⃗⃗ ⃗⃗ + 𝑇2⃗⃗ ⃗⃗       (5.2) 

We have no movement along the Ox axis, 

So:  𝐹𝑦 = −𝑇 𝑠𝑖𝑛( 𝜃) + 𝑇 𝑠𝑖𝑛( 𝜃 + 𝛥𝜃) = 𝑇𝛥𝜃    (5.3) 

𝑑𝑚. 𝑦̈ = 𝑇𝛥𝜃   𝑂𝑟  𝑑𝑚 = 𝜇.Δ𝑥             (5.4)      

𝑤ℎ𝑒𝑟𝑒 𝜇 is the mass density of the string 

In the other side 𝑡𝑎𝑛( 𝜃) =
𝜕𝑦

𝜕𝑥
⇒

1

𝑐𝑜𝑠2(𝜃)

𝜕𝜃

𝜕𝑥
=

𝜕2𝑦

𝜕𝑥2
⇒ 𝛥𝜃 =

𝜕2𝑦

𝜕𝑥2
𝛥𝑥        (5.4) 

𝜇𝛥𝑥
𝜕2𝑦

𝜕𝑡2
= 𝑇

𝜕2𝑦

𝜕𝑥2
𝛥𝑥 ⇒

1

𝑣2
𝜕2𝑦

𝜕𝑡2
=

𝜕2𝑦

𝜕𝑥2
 où 𝑣 = √

𝑇

𝜇
            (5.5) 

𝜕2𝑦

𝜕𝑥2
−

1

𝑣2
𝜕2𝑦

𝜕𝑡2
= 0 (5.6) 

Equation (5.6) is the wave equation of the string or wave propagation 
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4. Solution of the Propagation Equation 

A general solution to the one-dimensional wave equation can be written as: 

u(x,t)=f(x−vt)+g(x+vt) (5.7) 

where: 

f(x−vt) represents a wave traveling to the right (in the positive x-direction) with velocity v, 

g(x+vt) represents a wave traveling to the left (in the negative xx-direction) with velocity v. 

These are known as progressive waves. Depending on the initial conditions, one of these terms 

may dominate or both may coexist, representing waves moving in both directions. 

5. Sinusoidal Progressive Wave 

A specific and important type of solution is the sinusoidal progressive wave, which describes 

a wave with a harmonic (sinusoidal) form. A sinusoidal wave traveling to the right can be 

expressed as: 

u(x,t)=Asin(kx−ωt+ϕ) (5.8) 

where: 

A is the amplitude of the wave (maximum displacement), 

k is the wave number (related to the wavelength), 

ω is the angular frequency (related to the frequency), 

ϕ is the phase constant, determining the initial phase of the wave. 



Chapter 5: General Information on Propagation Phenomena 

 

76 

 

 

Fig.2. Sinusoidal progressive wave 

5.1.Wavelength and Wave Number 

The wavelength λ is the distance between successive points of the wave that are in phase (e.g., 

between two peaks or troughs). It is related to the wave number k by the following relationship: 

𝑘 =
2𝜋

𝜆
 (5.9) 

The wave number k represents the number of wavelengths per unit distance and is measured 

in radians per meter. 

5.2.Frequency and Angular Frequency 

The frequency f of the wave, which is the number of oscillations per second, is related to the 

angular frequency ω by: 

ω=2πf    (5.10) 

The relationship between wave speed v, frequency f, and wavelength λ is given by: 

v=fλ    (5.11) 

This equation expresses that the wave speed is the product of the frequency and the 

wavelength. 
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5.3.Example: Sinusoidal Wave Propagation 

Consider a specific example of a wave traveling along a string with a wave speed v=300 m/s, 

a wavelength λ=0.5 m, and a frequency f=600 Hz. The wave equation can be written as: 

u(x,t)=Asin(2π(0.5−600t)) 

For this wave: 

A is the amplitude, 

k=2π/λ=2π/0.5=12.57 rad/ m, 

ω=2πf=2π×600=3769.91 rad/s 

The wave travels to the right at 300 m/s and repeats every 0.5 malong the x-axis. 

 

6. Linear Chain Model: Study and Mathematical Development 

The Linear Chain Model is commonly used in physics and chemistry to describe the 

vibrational properties of atoms or molecules arranged in a periodic structure, such as atoms in 

a solid or a polymer chain. The model assumes that particles are connected by harmonic springs, 

which mimic interatomic or intermolecular forces. This simplified model provides insights into 

collective vibrational behavior (phonons) and is essential for understanding the dynamics of 

solids, molecular vibrations, and crystal lattices. 

Below is a detailed study of the Linear Chain Model, focusing on its mathematical formulation 

and key concepts. 

7.1.Physical Model 

Consider a linear chain of N identical particles (atoms or molecules), each with mass mm, 

connected by identical springs with spring constant k. The particles can oscillate along the x-

axis, and the restoring force between adjacent particles obeys Hooke’s law. 

For simplicity, we assume that: 

• The particles are constrained to move in one dimension (along the chain), 
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• The displacements of the particles from their equilibrium positions are small, allowing 

us to treat the system as harmonic. 

Let un(t) represent the displacement of the n-th particle from its equilibrium position at time t. 

7.2.Equation of Motion 

For each particle in the chain, Newton’s second law applies. The force on the nn
-th particle due 

to its two nearest neighbors is given by Hooke’s law, assuming linear restoring forces. The 

equation of motion for the nn
-th particle is: 

𝑚
𝑑2𝑢𝑛(𝑡)

𝑑𝑡2
= 𝑘[𝑢𝑛+1(𝑡) − 𝑢𝑛(𝑡)] − 𝑘[𝑢𝑛(𝑡) − 𝑢𝑛−1(𝑡)]    (5.12) 

This equation expresses the net force on the n-th particle as the difference between the forces 

from its right neighbor (n+1) and left neighbor (n−1). 

 

Fig.3. Linear chain model 

Equation (5.12) is a second-order difference equation in space and a second-order differential 

equation in time, representing the collective motion of the chain. 

7.3.Solution by Traveling Waves 

To solve the equation of motion, we assume that the displacements un(t) take the form of a plane 

wave solution, which is common for periodic systems. The wave-like solution is: 

𝑢𝑛(𝑡) = 𝐴𝑒𝑖(𝑞𝑛−𝜔𝑡)     (5.13) 

where: 
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A is the amplitude of oscillation, 

q is the wave vector, related to the wavelength of the wave, 

n indexes the particle along the chain, and, 

ω is the angular frequency of oscillation. 

 

7.4.Dispersion Relation 

Substituting the assumed solution 𝑢𝑛(𝑡) = 𝐴𝑒
𝑖(𝑞𝑛−𝜔𝑡) into the equation of motion, we get: 

𝑚
𝑑2

𝑑𝑡2
(𝐴𝑒𝑖(𝑞𝑛−𝜔𝑡)) = 𝑘𝐴(𝑒𝑖(𝑞(𝑛+1)−𝜔𝑡) + 𝑒𝑖(𝑞(𝑛−1)−𝜔𝑡) − 2𝑒𝑖(𝑞𝑛−𝜔𝑡))      (5.14) 

• The left-hand side becomes: 

−𝑚𝜔2𝐴𝑒𝑖(𝑞𝑛−𝜔𝑡)     (5.15) 

The right-hand side involves displacements of the neighboring particles: 

𝑘𝐴(𝑒𝑖𝑞 + 𝑒−𝑖𝑞 − 2)𝑒𝑖(𝑞𝑛−𝜔𝑡)   (5.16) 

Since 𝑒𝑖𝑞 + 𝑒−𝑖𝑞 = 2𝑐𝑜𝑠(𝑞), the equation becomes: 

−𝑚𝜔2𝐴𝑒𝑖(𝑞𝑛−𝜔𝑡) = 𝑘𝐴(2𝑐𝑜𝑠(𝑞) − 2)𝑒𝑖(𝑞𝑛−𝜔𝑡)     (5.17) 

Canceling out the common factors (including the exponential terms), we get the following 

relation between ω and q: 

−𝑚𝜔2 = 𝑘𝐴(2𝑐𝑜𝑠(𝑞) − 2) 

𝜔2 =
2𝑘𝐴

𝑚
(1 − 𝑐𝑜𝑠(𝑞))                  (5.18) 

 

Finally, we can express the angular frequency ω as: 
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𝜔(𝑞) = 2√
𝑘

𝑚
|sin (

𝑞

2
)|           (5.19) 

 

 

 

 

Fig.4. Curve of dispersion relation 

This is the key result for the linear chain model, showing how the angular frequency ω of the 

wave depends on the wave vector q. The dispersion relation tells us how the frequency of the 

normal modes varies with the wave vector q. 

7.5.Normal Modes and Phonons 

Each value of q corresponds to a normal mode of the system, representing a collective 

oscillation of all the particles in the chain. These normal modes are the vibrational states of the 

system, and in the quantum mechanical description, they correspond to quantized vibrations 

called phonons.  Phonons are crucial in understanding thermal properties, heat conduction, and 

vibrational spectroscopy in solid-state systems. 
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Test your comrhension: 

A source of vibration at one end of a string under tension has a displacement given by the 

equation 

S(0,t)= 0.1sin(6t) , where S is in meters and t is in seconds. The tension of the rope is 4N and 

its mass per unit length is µ= 0.01Kg.m -1 . 

- What is the speed of propagation of the wave in the rope? 

- What is the frequency of the wave? 

- What is its wavelength? 

- What is the equation for the displacement of a point located at 1 meter from the source? 

- What is the particle speed of a point located at 3 meters from the source? 

Solution: 

A source of vibration at one end of a string under tension has a displacement given by the 

equation 

S (0, t) = 0.1 sin (6t) , where S is in meters and t is in seconds. The tension in the rope is 4N 

and its mass per unit length is µ = 0.01Kg.m -1 . 

- What is the speed of propagation of the wave in the rope?  

Answer: V=√
𝑻

µ
= 20m/S. 

- What is the frequency of the wave?  

Answer: f = 𝟐𝝅𝝎 =0.95 Hz. 

- What is its wavelength?  

Answer: λ=20/(0.95)=20.93m. 

- What is the equation for the displacement of a point located 1 meter from the source?  

S (1, t) = 0.1 sin[6( t - 
𝟏

𝟐𝟎
)] 

- What is the particle speed of a point located 3 meters from the source?  
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𝑺̇(𝟑, 𝒕)= 0.6 cos [6 (t - 
𝟑

𝟐𝟎
  )] 



 

 

 

 

 

 

 

 

Chapter 6: Acoustic Waves in Fluids 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6: Acoustic Waves in Fluids 

83 

 

1. Introduction 

Acoustic waves, commonly known as sound waves, are mechanical disturbances that propagate 

through a medium by inducing vibrations of the particles within it. In fluids (gases and liquids), 

these waves travel by compressing and expanding regions of the medium, generating alternating 

high and low-pressure zones that move in the direction of wave propagation. The study of 

acoustic waves in fluids is fundamental to understanding a variety of physical phenomena, from 

sound transmission in air and water to pressure waves in gases during industrial and chemical 

processes. 

Acoustic waves in fluids can be described as longitudinal waves, where the motion of fluid 

particles occurs in the same direction as the wave. Unlike transverse waves, where displacement 

occurs perpendicular to the direction of propagation, acoustic waves in fluids are governed by 

compressions and rarefactions along the wave’s path. This chapter focuses on the mathematical 

and physical principles governing acoustic wave propagation in fluids, including the derivation 

of the wave equation, wave speed, and key characteristics such as frequency, wavelength, and 

pressure variations. 

We will begin by exploring the fundamental equations that describe fluid dynamics, such as the 

continuity equation and the Euler equation, and how they combine to form the acoustic wave 

equation. The chapter also covers important concepts such as the speed of sound in various 

fluids, the nature of pressure variations in acoustic waves, and the effects of factors like 

temperature and fluid density on wave propagation. Additionally, we will examine the practical 

applications of acoustic waves, ranging from sound wave transmission in air to sonar in 

underwater exploration. 

By the end of this chapter, students will have a comprehensive understanding of how acoustic 

waves propagate in fluids, the mathematical tools used to analyze these waves, and their 

practical relevance in fields such as acoustics, engineering, and environmental sciences. 

This chapter delves into the behavior and mathematical description of acoustic waves 

propagating through fluids (gases and liquids). The principles of wave propagation are essential 

in understanding sound dynamics, which have practical applications in fields like chemical 

sensing and reaction monitoring. The chapter is structured around three key topics: the 

propagation equation for acoustic waves, characteristics of progressive sinusoidal waves, and 

reflection-transmission phenomena at normal incidence. 
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2. Equation of Propagation of Acoustic Waves in Fluids and Speed of Sound 

The propagation of sound waves in fluids is governed by the wave equation, which is derived 

from the fundamental principles of fluid dynamics and thermodynamics. Sound is a mechanical 

wave that results from oscillations in pressure and density, transmitted through the medium due 

to particle interactions. 

3. Wave Equation in Fluids 

 

Fig.1:Fluid at rest and subjected to a compression wave. At equilibrium (a), the molecules of 

the fluid are randomly distributed throughout the available volume, and the density r(x) = r0 is 

homogeneous. When a wave passes (b), high density areas and low density areas are created 

Acoustic waves in fluids can be described by the wave equation, which is derived from three 

basic equations: 

3.1.Continuity equation (mass conservation), 

𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑣) = 0     (6.1) 

For small perturbations, we approximate this as: 

𝜕𝜌̀

𝜕𝑡
+ 𝜌0∇. (𝑣) = 0     (6.2) 

Where:  
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𝜌̀ is the small change in the density from the equilibrium density 𝜌0, and v is the fluid 

velocity due to the wave. 

3.2.Euler’s equation (momentum conservation), 

Euler’s equation describes momentum conservation in the fluid. For small perturbations, it 

is written as:  

𝑝0
𝜕𝑣

𝜕𝑡
= −∇𝑝̀      (6.3) 

Where 𝑝̀ is the small perturbation in pressure from the equilibrium pressure 𝑝0. 

3.3.Equation of state (thermodynamic relation between pressure and density) 

The equation of state relates the pressure perturbation 𝑝̀ to the density perturbation 𝜌̀. For 

an ideal gas, this is often written as: 

𝑝̀ = 𝑐𝑠
2𝜌̀     (6.4) 

Where cs is the speed of sound in the fluid. 

 

3.4.Derivation of the Wave Equation 

To derive the wave equation for pressure or density perturbations, we combine the continuity 

and Euler equations. Taking the time derivative of the continuity equation and substituting the 

velocity v from Euler’s equation: 

3.4.a. Differentiate the continuity equation with respect to time: 

𝜕2𝜌̀

𝜕𝑡2
= −𝜌0∇.

𝜕𝑣

𝜕𝑡
             (6.5) 

 

Use Euler s equation: 
𝜕𝑣

𝜕𝑡
= −

1

𝜌0
∇𝑝̀ to substitude for 

𝜕𝑣

𝜕𝑡
  : 

𝜕2𝜌̀

𝜕𝑡2
= ∇2𝑝̀    (6.6) 
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Using the equation of state 𝑝̀ = 𝑐𝑠
2𝜌̀, substitute for 𝑝̀ to get 

𝜕2𝜌̀

𝜕𝑡2
= 𝑐𝑠

2∇2𝜌̀    (6.7) 

This is the acoustic wave equation for density perturbations: 

𝜕2𝜌̀

𝜕𝑡2
− 𝑐𝑠

2∇2𝜌̀ = 0      (6.8) 

A similar equation can be written for pressure perturbations: 

𝜕2𝑝̀

𝜕𝑡2
− 𝑐𝑠

2∇2𝑝̀ = 0 (6.9) 

4. Speed of sound cs 

The speed pf sound cs in fluid depends on both the compressibility and the density of 

the fluid. In general, the speed of sound is given by: 

𝑐𝑠 = √
𝛾𝑝0

𝜌0
         (6.10) 

Where: 

𝛾 is the adiabatic index (the ratio of specific heats Cp/Cv) 

P0 is the equilibrium pressure, 

𝜌0 is the equilibrium density 

4.a. Speed of sound in gases 

For an ideal gas, the speed of sound is commonly expressed as: 

𝑐𝑠 = √𝛾
𝑅𝑇

𝑀
    (6.11) 

Where: 

R is the universal gas constant, T is the temperature of the gas, and M is the molar mass of the 

gas. 

For dry air at room temperature ( approximately 20°C), the speed of sound is about 343m/s. 
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4.b. Speed of sound in liquids 

In liquids, the speed of sound depends on the bulk modulus B and the density 𝜌0 : 

𝑐𝑠 = √
𝐵

𝜌0
       (6.12) 

The bulk modulus B is measure of the fluid’s resistance to compression. For water at room 

temperature, the speed of sound is about 1480 m/s. 

Let’s work through a couple of examples to calculate the speed of sound in different media 

Examples:  

Example 1: Speed of sound in air ( at 20°C) 

At room temperature, air behaves like an ideal gas. We can use the formula for the speed of 

sound in ideal gas: 

𝑐𝑠 = √𝛾
𝑅𝑇

𝑀
 

Where  

𝛾 = 1.4 (adiabatic index for air) 

R=8.314 J/mol (universal gas constant) 

T = 293K ( temperature, 20°C) 

M=0.029kg/mol (molar mass of air). 

Now, plug in the values: 

𝑐𝑠 = √1.4𝑥
8.314𝑥293

0.029
≈ 342.89𝑚/𝑠 

Thus, the speed of sound in air at 20°C is approximately 343 m/s. 
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Example 2: Speed of sound in water ( at 25°C) 

For liquids like water, the speed of sound depends on the bulk modulus B and the density 𝜌0 : 

𝑐𝑠 = √
𝐵

𝜌0
 

At 25 °C: 

The bulk modulus of water 𝐵 ≈ 2.2𝑥109Pa, and the density of water 𝜌0 ≈ 1000𝑘𝑔/𝑚
3. 

Now, plug in the values:  

𝑐𝑠 = √
2.2𝑥109

103
≈ 1483𝑚/𝑠 

Example 3: Speed of sound in steel ( at 25°C) 

For solids like steel, the speed of sound is determined by the Young’s modulus E and the 

density 𝜌 of the material:  

𝑐𝑠 = √
𝐸

𝜌
       (6.13) 

For steel in 25°C: Young’s modulus𝐸 ≈ 2.1𝑥1011𝑃𝑎, Density 𝜌 ≈ 7850𝑘𝑔/𝑚3 

𝑐𝑠 = √
2.1𝑥1011

7850
≈ 5174𝑚/𝑠 

Thus, the speed of sound in steel is approximately 5174m/s. 

These examples highlight how the speed of sound varies significantly across different media 

due to defferences in their density and elastic properties. 
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1. Introduction:  

Geometric optics is a branch of optics that describes the propagation of light as rays, enabling 

a simplified analysis of light behavior as it interacts with various optical elements, such as 

lenses, mirrors, and apertures. This approach is particularly useful for understanding how light 

travels in a straight line, reflects off surfaces, and refracts through different media. Unlike wave 

optics, which accounts for the wave nature of light and its associated phenomena such as 

interference and diffraction, geometric optics operates under the assumption that light travels 

in linear paths, known as rays. 

This chapter delves into the fundamental principles and laws governing geometric optics, 

beginning with the concept of light propagation and the characteristics of light rays. We will 

explore Snell’s Law, which describes how light bends when transitioning between media of 

different refractive indices, and the law of reflection, which states that the angle of incidence 

equals the angle of reflection. These principles form the foundation for understanding optical 

phenomena in various applications, from simple magnifying glasses to complex optical systems 

used in modern technologies. 

Furthermore, this chapter and the next chapter will cover critical optical devices such as mirrors 

and lenses, elucidating how they manipulate light to form images. We will analyze the behavior 

of converging and diverging lenses, including the construction of ray diagrams to illustrate 

image formation and the concepts of focal length and magnification. 

By the end of this chapter, students will have a thorough understanding of the principles and 

laws of geometric optics, equipping them with the knowledge to analyze and design optical  

 

2. Reflection 

The reflection of light occurs when a light ray strikes a surface and bounces back into the 

original medium. The behavior of reflected light can be described using two main principles: 

the law of reflection and the geometry of ray diagrams. 
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3. Law of Reflection 

 

Fig1. Law of reflection: Angle B equals angle A. 

The law of reflection states that: 

The angle of incidence (θi) is equal to the angle of reflection (θr). 

Mathematically, this can be expressed as: 

θi=θr (7.1) 

Where: 

θi is the angle between the incident ray and the normal (perpendicular) to the surface. 

θr is the angle between the reflected ray and the normal (see Fig1). 

4. Refraction 
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Refraction is the bending of light as it passes from one medium into another with a different 

refractive index. The law of refraction, commonly known as Snell’s Law, governs this 

phenomenon. 

 

(a) Snell’s Law 

Snell’s Law relates the angles of incidence and refraction to the refractive indices of the two 

media. It is mathematically expressed as: 

n1sin(θi)=n2sin(θr)    (7.2) 

Where: 

n1 is the refractive index of the first medium. 

N2 is the refractive index of the second medium. 

θi is the angle of incidence. 

θr is the angle of refraction. 

(b) Refractive Index 

 

The refractive index n of a medium is defined as: 

n=c/v 

Where: 

c is the speed of light in a vacuum (approximately 3×108 m/s). 

v is the speed of light in the medium. 

For example, the refractive index of water is approximately nwater≈1.33nmeaning light travels 

slower in water than in a vacuum. 
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(c) Ray Diagram for Refraction 

To illustrate refraction using a ray diagram: 

 

Fig2. Ray Diagram for Refraction 

Draw the incident ray approaching the interface between the two media at angle θi. 

Draw the normal line at the point of incidence. Measure the angle θr in the second medium, 

ensuring that it follows Snell’s Law. 

5. Refraction through a Prism 

Definition of Prisms 

Prisms are optical elements that refract light, causing it to disperse into its constituent colors. 

The behavior of light passing through a prism can be analyzed using Snell’s Law and geometric 

principles. 

 

Fig3. Refraction through a Prism 
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When light enters and exits a prism, it undergoes two refractions. For a prism with an apex 

angle A, the following relationships can be derived: 

 

Angle of Incidence at the First Surface: Let θ1 be the angle of incidence at the first face of 

the prism, and n be the refractive index of the prism material. 

Using Snell’s Law at the first interface: 

n1sin(θ1)=nsin(θ2) 

Where: 

n1 is the refractive index of the incident medium (usually air, where n1≈1). 

θ2 is the angle of refraction into the prism. 

Angle of Refraction at the Second Surface: When the light exits the prism, let θ3 be the 

angle of incidence at the second face, and θ4 be the angle of refraction in the air. 

Using Snell’s Law at the second interface: 

nsin(θ3)=n1sin(θ4) 

Relating Angles in the Prism: 

The relationship between the angles can be expressed as: 

θ1+θ2+θ4=A 

 

Using these equations, one can calculate the angles of incidence and refraction as light passes 

through the prism. 
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(b) Dispersion of Light 

Prisms can also be used to demonstrate dispersion, which occurs when different wavelengths 

of light are refracted by different amounts due to their varying speeds in the prism material. The 

relationship between the angles of refraction and wavelength can be expressed as: 

Δθ=θr(violet)−θr(red) 

This angle difference leads to the separation of white light into its constituent colors when 

passed through a prism, creating a spectrum. 

Example 1: Refraction (Air to Water) 

Problem: A light ray passes from air into water at an angle of incidence of 45°. The refractive 

index of air is approximately n1=1.0and for water, n2=1.33. What is the angle of refraction? 

Solution: Using Snell’s Law: 

 n1sin(θi)=n2sin(θr)  

 

Substituting the known values: 

1.0⋅sin(45°)=1.33⋅sin(θr) 

Calculating sin(45∘): 

sin(45°)=22≈0.707 

So: 

sin(θr)=1.330.707≈0.532 

 

Now calculating θrθr: 

θr≈arcsin (0.532)≈32.1∘ 
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Conclusion: The angle of refraction is approximately 32.1∘. 

Example 2: Refraction Through a Prism 

Problem: A light ray enters a prism with a refractive index of n=1.5 at an angle of incidence of 

60∘. The apex angle of the prism is A=45°. What is the angle of refraction as the light exits the 

prism? 

 

 

 

Solution: 

Refraction at the First Face: Using Snell’s Law: 

n1sin(θ1)=n2sin(θ2) 

        Where n1=1.0, θ1=60∘, and n2=1.5. 

1.0⋅sin(60∘)=1.5⋅sin(θ2) 

     Calculating sin(60∘): 

sin(60∘)=32≈0.866 

So: 

0.866=1.5⋅sin(θ2) 

sin(θ2)=0.8661.5≈0.577 

Now calculating θ2θ2: 

θ2≈arcsin(0.577)≈35.0° 

Refraction at the Second Face: The angle of incidence at the second face can be calculated 

as: 

θ3=θ2+A=35.0°+45°=80° 
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       Using Snell’s Law again for the exit face: 

     

n2sin(θ3)=n1sin(θ4) 

Where n1=1.0 (air) and n2=1.5: 

1.5⋅sin(80°)=1.0⋅sin(θ4) 

Calculating sin(80°): 

sin(80°)≈0.985 

So: 

1.5⋅0.985=sin(θ4) 

     

sin(θ4)≈1.477 

 

Since sin (θ4)>1, this means total internal reflection occurs, and the light will not exit the 

prism. 

Conclusion: The light does not exit the prism due to total internal reflection. 
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1. Introduction:  

The construction of images is a fundamental concept in optics that pertains to how optical 

systems, such as lenses and mirrors, form visual representations of objects. Understanding the 

principles governing image formation is essential for students of optics, as it lays the 

groundwork for numerous applications in fields ranging from photography and microscopy to 

optical engineering and vision science. 

In this chapter, we will explore the various types of optical elements—particularly concave and 

convex lenses, as well as concave and convex mirrors—and their roles in image formation. We 

will begin by establishing the basic concepts of object distance, image distance, and focal 

length, which are critical to the understanding of how images are constructed. 

The chapter will delve into the use of ray diagrams, a graphical method for predicting the 

location and characteristics of images formed by optical devices. We will analyze the behavior 

of light rays as they interact with different surfaces and media, applying the principles of 

reflection and refraction to illustrate the formation of real and virtual images. 

Additionally, we will explore the characteristics of images, including size, orientation, and type 

(real or virtual), while also considering the magnification produced by optical systems. 

Understanding these characteristics is crucial for practical applications, such as in the design of 

lenses for cameras, microscopes, and corrective eyewear. 

Through mathematical models and practical examples, this chapter will provide a 

comprehensive overview of how images are constructed in optical systems, equipping students 

with the knowledge to analyze and design various optical instruments. By the end of this 

chapter, students will have a solid grasp of the principles of image formation, enabling them to 

apply these concepts to real-world scenarios in science and technology. 
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Theoretical Background for the Chapter: Construction of Images 

This chapter explores the fundamental principles of image formation through various optical 

elements. We will cover stigma, plane and spherical diopters, plane and spherical mirrors, and 

thin lenses. Each section will provide detailed explanations alongside visual aids to facilitate 

understanding. 

2. Stigma 

Stigma refers to the quality of an optical system in producing clear and sharp images. The main 

objective in optics is to minimize aberrations to achieve optimal stigma. 

3. Types of Aberrations 

Spherical Aberration: Occurs when light rays that strike a spherical lens or mirror at different 

distances from the optical axis converge at different points. This causes the image to become 

blurred, as not all rays focus at the same point. 

 

Figure 1: Spherical Aberration 

        This diagram illustrates how parallel rays of light converge at various points due to their 

different distances from the optical axis, leading to a blurred image. 

4. Spherical Aberration Diagram 

Chromatic Aberration: This type occurs because different wavelengths of light are refracted 

by varying amounts when passing through a lens. This results in color fringing, where different 

colors focus at different points. 
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Figure 2: Chromatic Aberration 

        This diagram demonstrates how a lens disperses different wavelengths of light, showing 

the varying focal points for each color. 

5. Chromatic Aberration Diagram 

To achieve optimal stigma, various techniques, such as using aspheric lenses or multi-element 

systems, can be employed to minimize these aberrations. 

6. Plane and Spherical Diopters 

Diopters are optical elements that bend light rays. The power D of a lens or mirror is defined 

as: 

D=1/f    (8.1) 

Where:  

    D is the power in diopters (D). 

    f is the focal length in meters (m). 

(a) Plane Diopters 

    Plane Mirrors: These reflect light without changing the convergence of rays. The image 

formed by a plane mirror is virtual, upright, and the same size as the object. The distance from 

the object to the mirror is equal to the distance from the image to the mirror. 
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Figure 3: Reflection in a Plane Mirror 

        This ray diagram illustrates how incoming light rays reflect off a plane mirror, 

demonstrating the law of reflection, where the angle of incidence equals the angle of reflection. 

 

(b) Spherical Diopters 

    Spherical Mirrors: These can be concave or convex. The focal length f for spherical mirrors 

is related to their radius of curvature R: 

f=R/2     (8.2) 

    Concave Mirrors: These mirrors converge light rays. When the object is placed outside the 

focal length, real and inverted images are formed. 

 

Figure 4: Concave Mirror Diagram 

        This diagram shows how a concave mirror converges light rays to a focal point, resulting 

in the formation of a real image. 

    Convex Mirrors: These mirrors diverge light rays, forming virtual images that are smaller 

and upright. The image appears behind the mirror. 
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Figure 5: Convex Mirror Diagram 

        This ray diagram illustrates how a convex mirror diverges incoming light rays, leading to 

the formation of a virtual image. 

(C) Plane and Spherical Mirrors 

Mirrors are classified into two main categories: plane mirrors and spherical mirrors. 

(a) Plane Mirrors 

    Reflection Principle: The law of reflection states that the angle of incidence equals the 

angle of reflection. As a result, the image formed by a plane mirror is virtual, upright, and of 

the same size as the object. The distance from the object to the mirror is equal to the distance 

from the image to the mirror. 

 

Figure 6: relationship between the object, the plane mirror, and the virtual image formed 

 

    This diagram highlights the relationship between the object, the plane mirror, and the 

virtual image formed. 
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(D) Spherical Mirrors 

    Concave Mirrors: These mirrors can form both real and virtual images depending on the 

object's distance relative to the focal point. 

 

Figure 7: Real Image Formation by Concave Mirror 

        This diagram shows the process of image formation by a concave mirror, indicating how 

a real image is produced when the object is beyond the focal point. 

 

    Convex Mirrors: Form virtual images that appear smaller and upright. 

 

Figure 8: Virtual Image Formation by Convex Mirror 

        This diagram demonstrates how a convex mirror diverges light rays, leading to a virtual 

image behind the mirror. 

(E)Thin Lenses 

Thin lenses are critical components in optical systems, utilized to either converge or diverge 

light rays. They can be categorized as convex lenses or concave lenses. 

(a) Convex Lenses 
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    Convergence: Convex lenses converge parallel rays of light to a single focal point. 

Depending on the object's position relative to the focal length, a real inverted image or a 

virtual upright image can be formed. 

 

Figure 9: Convex Lens Diagram 

        This ray diagram illustrates how a convex lens focuses parallel rays to a focal point, 

leading to the formation of a real image. 

    The thin lens formula is given by: 

1/f=1/do+1/di     (8.4) 

Where: 

    (do) is the object distance (positive when measured from the lens). 

    (di) is the image distance (positive for real images and negative for virtual images).
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