
        

 

Département de Génie des Procédés 

 

 
 

 

Principles and 

Practices of 

Experimental 

Designs 
 

  

 

 

Par : Dr ZIANI Salima 

 

          

 

 

 

 

 

 

Année : 2024/2025 

Polycopié de cours 
 
En : Génie des Procédés   

  

Spécialité : Génie Chimique et Génie de l’Environnement  

 

Niveau : Master II  



Table de matière 
 

Preface .................................................................................................................................................................................... 1 

Chapitre I: Concept and Approach of Experimental Design 

I. 1. I. 1. Introduction  ....................................................................................................................................................... 3 

I.2. Methodologies used for the optimal experimental strategy …………………………………………...........3 

I.2.1. Classical Gauss-Seidel method .......................................................................................................................... 3 

I.2.2. Modern Box-Wilson method : Experimental Design …………………………………………………  ...........4 

I.3. Experimental Design approach  ............................................................................................................................ 4 

I.4. Experimental design principle .............................................................................................................................. 4 

I.5. Chronological stages of experimental design …............................................................................... ............... 5 

 I.6. Terminology ……..…… ............................................................................................................................................... 6 

I.6.1. Factors or real variables………………………………………………………………………………………………………….6 

I.6.2.Response………………………………………………………………………………………………………………………...7 

I.6.3. Study domain (Experimental domain) …............................................................................... ........................ 7 

 I.6.4. Response surface…............................................................................... .................................................................. 7 

 I.6.5. Coded variables (centred variables) …............................................................................... ........................... 8 

 I.6.6. Experiment matrix …............................................................................... ........................................................... 10 

 I.6.7. Effects matrix …............................................................................... ..................................................................... 11 

 I.6.8. Factor effect …............................................................................... ........................................................................ 12 

 I.6.9. Notion of interaction …............................................................................... ....................................................... 13 

Chapitre II: Full Factoriel Design at Tow Level 2k  

 II.1. Introduction   .......................................................................................................................................................... 14 

 II.2. Concept of modeling and multiple linear regression ……………………………………………………….14 

II.3. Full factorial design at two levels 2k  ………….…………………………………………………………………..14 

II.4. Mathematical models associated to full factorial design..……………………………………………..….......15 

 II.5. Determination of model coefficients  ............................................................................................................ 16 

 II.6. Regression analysis in matrix form   ............................................................................................................. 17 

 II.7. Optimality of experimental designs  ............................................................................................................. 19 

 II.7.1. Unit matrix criterion (Hadamard matrix)  ............................................................................................. .19 

 II.7.2 Orthogonality criterion   .................................................................................................................................. 20 



 II.7.3. Minimum trace criterion   .............................................................................................................................. 20 

 II.8. Example of application   ..................................................................................................................................... 20 

 II.8.1. Problem statement   ......................................................................................................................................... 20 

 II.8.2. Problem formulation   ..................................................................................................................................... 20 

 II.8.3 Planning and experiments   ............................................................................................................................ 21 

 II.8.4. Results analysis   ................................................................................................................................................ 22 

Chapter III : Statistical Analysis : Significance testing and model 

validation 

III.1. Introduction ............................................................................................................................................................ 24 

 III. 2. Verification of the significance of the coefficients (effects)……......…………………………….……..24 

III.2.1. Each test is repeated m times………………………………….……..…………………………………………….24 

III.2.2. Central test is repeated no times………………………………………………………..................................25 

III. 3. Model validation .................................................................................................................................................. 27 

 III. 3.1. Lack of fit    ......................................................................................................................................................... 27 

 III.3.2. Regression verification (Analyse of variance : ANOVA).. ................................................................ 28 

 III.3.3. Coefficient of determination   ..................................................................................................................... 29 

 III.3.4. Residuals analysis.. .......................................................................................................................................... 30 

 III.4. Example of application  ..................................................................................................................................... 30 

 III.4.1. Statistical analysis of the regression equation.. .................................................................................. 31 

 III.4.1.1. Significance of the coefficients of the regression equation   ...................................................... 31 

 III.4.1.2. Model validation. .......................................................................................................................................... 31 

 III.4.1.3. Reliability assessment   .............................................................................................................................. 32 

Chapter IV: Fractional  Factoriel Design  
IV.1. . Introduction ……………………………………………………………………………………………….…………….…36 

IV .2. Two-level fractional factorial designs 2k-q ………..…….………………………………………………………36 

IV.3. Fractional plan design  ........................................................................................................................................ 37 

IV.3.1. Notion of contrasts and aliases.................................................................................................................... 37 

IV.3.2. Notion of alias generator ............................................................................................................................... 38 

IV. 3.3. Interpretation assumptions  ........................................................................................................................ 39 

IV. 4. Example of application ………………………………………………..……………………………………………….40 

                    Chapter V: Response surfaces methodology  

V.1. Introduction .............................................................................................................................................................. 48 

V.2. Response surfaces methodology  . ................................................................................................................... 48  



V.2.1. Centred composite designs. ............................................................................................................................ 48 

V.2.1.1.Properties of composite designs . .............................................................................................................. 49 

V.2.2.Plan Box- Behnken  . ........................................................................................................................................... 51 

V.3. Notions of response surfaces and isoresponse curves  .......................................................................... 53 

V.3.1. Response surfaces  ............................................................................................................................................. 54 

V.3.2. Iso-response curves  .......................................................................................................................................... 54 

V.4. Example of application………………………………………………………………………………………………..….55 

V.4.1. Problem to be solved………………………………………………………………………………………………..….55 

V.4.2. Problem formulation ………………………………………………………………………………………………..….55 

V.4.3. Planning and experimentation…………………………………………………………………………………..….56 

V.4.4. Analysis of results…….……………………………………..………………………………………………………..….57 

V.4.5. Optimisation…………………………………………………….……………………………..………………………..….60 

                         Chapter VI: Mixture Designs 

VI.1. Introduction ............................................................................................................................................................ 62 

VI.2. Fundamental constraint of mixtures. ........................................................................................................... 62 

VI.3. Mixing plans without constraints  ................................................................................................................. 62 

VI.3.1. Geometric representation.............................................................................................................................. 62 

VI.3.2. Location of experimental points  ................................................................................................................ 64 

VI.4. Mixture plans with constraints………...………………………………………………………………………... ….65 

VI.4.1. Low levels prohibiteds  ................................................................................................................................... 65 

VI.4.2. High levels prohibited………………………………………………...……………………………………………….65 

VI.4.3. High and low levels prohibited…………………………………...……………………………………………….65 

VI.4.4. Relational constraints………………………………………………...……………………………………………….66 

VI.4.5. Emplacement des points expérimentaux. …………………...……………………………………………….66 

VI.5. Mathematical models associated with mixing plans…………………………………………………….. ….66 

VI.5.1. First degree model……..……………………………………………………………………………………………….67 

VI.5.2. Second degree model …………………………………………………….……………………………………..…….67 

VI.5.3. Third degree model …………………………………………………….……………………………………….….….67 

 

References 

 

 



1 
 

Preface 
 

Although experimentation has existed as long as science itself, the concept of 

experimental design, specifically developed to optimize the process of data collection, 

only dates back to the 20th century. This modern methodology, refined over recent 

decades, has established itself as a reliable, universally applicable, and indispensable tool, 

allowing researchers to identify optimal conditions in data analysis with precision. The 

experimental design approach is, in fact, a structured methodology that facilitates 

planned experimental research. It assists researchers in organizing their investigations 

more systematically, validating their hypotheses with greater accuracy, achieving a 

clearer understanding of complex phenomena, and addressing specific research 

challenges effectively. 

Experimental design is a systematic, economical, and rational method for organizing 

experiments involving multiple parameters. It ensures reliability and quality of results 

while maximizing information from a minimal number of trials. This methodology has 

gained success due to competitive demands and evolving experimental practices. 

However, is important to note that experimental design is not primarily designed for 

fundamental research as it cannot fully explain the physico-chemical phenomena under 

study. 

This course document is designed for License's and Master's students, with a focus on 

Master's II students in Process Engineering (Chemical, Pharmaceutical and 

Environmental Engineering), Food Engineering, and Water Engineering and 

Management. It provides an in-depth analysis of experimental design, methodologies, 

statistical tools, and practical applications. The document also serves as a valuable 

resource for doctoral students, offering a solid theoretical framework and concrete 

examples for designing and analyzing experiments in their own research. However, it is 

recommended that students master mathematical and computational tools in order to 

effectively manage the statistical planning of experiments.  

This document untitled « Principles and Practices of Experimental Designs », divided into 

six chapters, covers fundamentals and main experimental designs in various disciplines. 

It aims to provide experimenters with a procedure to optimize information extraction 
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while minimizing trials, addressing challenges in the current economic context. This 

mastery is crucial for those undertaking laboratory tests or industrial processes. 
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Chapter I : Concept and Approach of Experimental Design 

 

I. 1. Introduction 

Experimentation is a fundamental tool across many scientific and engineering disciplines, 

providing researchers with the means to explore, deepen understanding, and address 

specific questions about various phenomena. In studying and monitoring the evolution of 

a process whether in Chemical Engineering, Environmental engineering, Polymer 

Engineering, Civil Engineering, Mechanical Engineering, Electrical Engineering, Physics, 

or Biological Engineering the experimenter can adopt a rigorous methodological 

approach that requires conducting a large number of trials. For example, when studying 

the impact of operational parameters on the yield of reactions in chemical engineering, or 

analysing the responses of materials subjected to various environmental conditions in 

civil engineering, the experimenter may have to carry out a number of tests based on two 

contradictory trends : 

1. on the one hand, it is necessary to include all the factors that influence the process 

and to study them at different levels in order to obtain a representative model; 

2. on the other hand, it is necessary to minimise the number of tests to reduce the 

duration and cost of the experiment. 

Under these conditions, the methodological approach necessarily involves a 

comprehensive experimental strategy, encompassing both the planning and execution 

stages of the experiments. 

I.2. Methodologies used for the optimal experimental strategy  

The optimal strategy is one that, with a minimum of trials, provides an experimental 

model indicating the path to follow to reach the optimum. There are two primary 

strategies for achieving optimal experimental modelling : 

I.2.1. Classical Gauss-Seidel method  

The classic strategy, based on the ‘one factor at a time’ principle, involves holding all but 

one of the experimental factors constant, and the response (or objective function) is 

measured as a function of the variation in this single factor. This method makes it possible 

to observe the individual effect of each parameter on the result, but it has severe 
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limitations such as involving multiple factors with multiple experimental points, 

sometimes exceeding reasonable limits, and using the same algorithm for each parameter 

separately. 

I.2.2. Modern Box-Wilson method : Experimental Design 

The modern method, based on the principle of ‘all factors at all times’, involves varying 

the levels of all the factors simultaneously, in a planned and considered way. This strategy 

developped by Ronald A. Fisher (in the early 20th century) enhances understanding, 

efficiency, and precision in experiment planning, especially in areas where factor 

interactions significantly impact system dynamics. Its advantages include minimizing trial 

number, studying a large number of factors, identifying possible interactions, optimizing 

operating parameters, improving results accuracy compared to conventional models, and 

modeling results through mathematical model design. 

I.3. Experimental Design approach 

Experimental design is a systematic, efficient method and optimised strategy aimed at 

predicting, with maximum accuracy, a response based on a minimum number of 

experimental trials in line with the chosen theoretical model. This methodology enables 

scientists and engineers to study the relationship between multiple input variables (𝒙𝒊) 

and key output variables (or responses : 𝒚𝒊), by modelling this relationship using a 

suitable mathematical. 

𝑦 = 𝑓(𝑥𝑗) 

With :  

𝑦  : measured response or output variable ; 

 𝑥𝑖: factors or system input variables. 

Constructing an experimental design involves selecting a sufficient number N of specific 

combinations from the experimental space to reliably estimate the M unknown 

parameters of the model. This approach minimizes and standardizes uncertainty while 

closely adhering to the technical and economic constraints of the study. 

I.4. Experimental design principle 

The application of experimental design to simple and complex systems provides insights 

into their behaviour by treating them as a black box (Figure I.1). This approach involves 
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systematically varying input factors, observing the resulting changes in output responses, 

and inferring the relationships between inputs and outputs. Using this method, it is 

possible to infer how the system works without needing complete knowledge of the 

internal mechanisms driving the phenomenon. This allows effective analysis even when 

the underlying processes are complex or only partially understood. 

 

Figure I.1. Context of the black box model. 

Input factors are controllable, uncontrollable and disturbance variables. Controllable 

factors are variables that can be directed, while uncontrollable factors are measured and 

controlled during the experiment but they cannot be changed at our wish. Non-controlled 

factors are disturbance variables, which are immeasurable and their values are randomly 

changed in time (e.g. deviations around the set points of the controllable factors, sampling 

and measurement error, system variability, etc.). 

I.5. Chronological stages of experimental design 

Experimental design emphasizes precise methodology programming through a sequence 

of stages to complete a study. The process involves formalizing the problem (defining 

objectives, factors, responses, experimental field), planning the experimental plan 

(construction of the experimental matrix), conducting experiments, analyzing the results, 

and optimizing the response by finding the optimal conditions for the study, ensuring that 

the objectives, factors, responses, and experimental field are clearly defined. 

Research subjectInvestigated factors

Uncontrollable Factors

Non-controlled Factors

Responses
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I.6. Terminology 

Experimental design, like any other scientific discipline, has its own methodology, subject 

of research and terminology. The following section, highlighting the most crucial 

terminologies in this field. 

I.6.1. Factors or real variables 

Variables that can be adjusted by the experimenter and are intended to influence the 

response. These variables noted 𝒛𝒋 can be of different types : 

• Continuous factors : they can take on any real numerical value in the range 

studied, for example: process operating parameters such as temperature (20, 30, 

40°C), pressure (0.5, 1, 1.5 atm), concentration (10, 50, 100 g/L), pH (2, 4, 6), flow 

rate (2, 3, 4L/min), etc. ; 

• Discrete factors : they can only take specific values, such as a name, a letter, or a 

particular attribute. These discrete variables include boolean factors, wich can 

only take two values (e.g. high or low, open or closed, white or black, etc.) and 

orderable factors, wich describe a logical order (e.g. large, medium, small, or first, 

second, third and fourth, etc.). 

The value assigned to a factor during an experimental trial is called a level. The study of 

the influence of a factor usually involves limiting its variations within two limits (Figure 

I.2).  

• the low limite, which represents the low level : 𝑧𝑗(𝑙𝑜𝑤) 

• the upper limit, which represents the high level : 𝑧𝑗(𝑢𝑝𝑝). 

However, the factor's domain refers to the set of values that a factor can take between low 

and high levels. 

 

 

 

 

 

Figure I.2. Factor’s domain of variation. 

 

High level Low level 

Factor 1  

Variation domain’s 

𝑧1𝑙𝑜𝑤  𝑧1𝑢𝑝𝑝  
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I.6.2. Response 

The response in an experimental design is the output variable or variable being studied. 

It represents the measurable event observed when the factors under investigation are 

varied. The response should be representative, quantifiable, and exhibit minimal 

dispersion for controlled and constant input variables. 

I.6.3. Study domain (Experimental domain) 

It represents the part of the experimental space chosen by the experimenter to carry out 

the trials. It is defined by the combination of the domains of the different factors studied 

and delimited by their lower and upper levels. Figure I.3a shows a study domain defined 

by two factors, while Figure I.3b illustrates one comprising three factors, thus extending 

the experimental space (the blue area). 

 

 

Figure I.3. Experimental space or study domain. 

 

I.6.4. Response surface 

Each point in the study domain, delimited by the levels of each factor, corresponds to a 

response. All the points in the study domain correspond to a set of responses which are 

located on a surface, thus defining the concept of a response surface (Figure I.4). 

Study
domain

Factor 2 (a)

Factor 1

Study
domain

Factor 2

Factor 1

Factor 3

(b)
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Figure I.4. Response surface presentation.  

Plotting these surfaces helps find optimal operating conditions for maximizing or 

minimizing characteristics like yield, product purity, and cost through successive 

approximations. 

I.6.5. Coded variables (centred variables)  

Coded variables are dimensionless variables. They are used in postulated models to 

facilitate data processing. Each real variable 𝒛𝒋 is associated with a coded variable 𝒙𝒋. The 

use of coded variables makes it possible to associate the real variables 𝑧𝑗(𝑙𝑜𝑤) and 𝑧𝑗(𝑢𝑝𝑝) 

with the normalized values -1 and +1, respectively. 

𝑧𝑗(𝑙𝑜𝑤)                     𝑥𝑗 = −1 

𝑧𝑗(𝑢𝑝𝑝)                     𝑥𝑗 = +1  

The transition from real variables (𝑧1, 𝑧2, … . . 𝑧𝑘) to coded variables (𝑥1, 𝑥2, … . . 𝑥𝑘), and 

vice versa, is given by the following coding formula : 

𝑥𝑗 =  (
𝑧𝑗 − 𝑧𝑗

0

∆𝑧𝑗
) ,     𝑗 = 1,2, … … , 𝑘                                                                                   𝑬𝒒. (𝑰 − 𝟏)   

with : 

 𝑧𝑗
0 =

 𝑧𝑗𝑢𝑝𝑝+ 𝑧𝑗𝑙𝑜𝑤

2
                𝑎𝑛𝑑             ∆𝑧𝑗 =

 𝑧𝑗𝑢𝑝𝑝− 𝑧𝑗𝑙𝑜𝑤

2
               

𝑧𝑗
0 : the real variable that represents the center of the study domain ; 

Factor 1

Factor 2

Response Response surface
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 ∆𝑧𝑗  : variation step size. 

Example I.1 

A researcher aims to extract bezacryl yellow (BY) from waste shoe soles using batch 

reactor. The operating parameters selected for this study are pHϵ[2, 10], initial 

concentration of JB, i.e. [BY]0ϵ[10, 50] mg/L, and dosage of shoe sole waste (SSW), i.e. SSW 

dosage ϵ[0.4, 4] g/L.   

1. Calculate the upper and lower levels of the factors in terms of coded values.  

2. Find the coded values corresponding to to real values of pH=8, [BY]0= 45 mg/L and SSW 

dosage =1.5g/L.  

3. What is the real pH if its coded value is estimated to be -0.7? 

Resolution  

1. Determination of coded values 

Let’s calculate the values at the centeral point of the investigating domains and the 

variation step size of the different factors: 

pH :    𝑧𝑗
0 =

 10+ 2

2
= 6 ;    ∆𝑧𝑗 =

 10−2

2
= 4 ;     {

𝑧1𝑢𝑝𝑝 = 10 →  𝑥1 =  (
10−6

4
) = +1

𝑧1𝑙𝑜𝑤 = 2 → 𝑥1 =  (
2−6

4
) = −1

      

[BY]0:    𝑧𝑗
0 =

 50+ 10

2
= 30 ;    ∆𝑧𝑗 =

 50−10

2
= 20 ;   {

𝑧2𝑢𝑝𝑝 = 50 →  𝑥2 =  (
50−30

20
) = +1

𝑧2𝑙𝑜𝑤 = 10 → 𝑥2 =  (
10−30

20
) = −1

 

SSW dosage : 𝑧𝑗
0 =

 4+ 0.4

2
= 2.2 ; ∆𝑧𝑗 =

4− 0.4

2
=

1.8 ;  {
𝑧3𝑢𝑝𝑝 = 4 →  𝑥3 =  (

4−2.2

1.8
) = +1

𝑧3𝑙𝑜𝑤 = 0.4 → 𝑥3 =  (
0.4−2.2

1.8
) = −1

 

All the calculations are summarised in the table below. 
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Table I.1. Natural factors, formula parameters and coded variables calculated from data in 

Example I.1. 

Factors Formula’s Parameters Coded variables 

Natural variables Intervall of variation 𝑧𝑗
0 ∆𝑧𝑗  𝑥𝑗  

𝑧1: pH solution [2, 10] 6 4 𝑥1 {
−1
+1

 

𝑧2: [𝐵𝑌]0 mg/L [ 10, 50] 30 20 𝑥2 {
−1
+1

 

𝑧3: SSW dosage g/L [0.4, 4] 2.2 1.8 𝑥3 {
−1
+1

 

 

2. The coded values corresponding to to real values of pH=8, [BY]0= 30 mg/L 

and SSW dosage=2 

Let’s calculate the coded values of each factors: 

pH = 8 : 𝑥1 =  (
8−6

4
) = 0.5 

[BY]0=45 mg/L:     𝑥2 =  (
45−30

20
) = 0.75 

SSW dosage = 1.5 g/L: 𝑥3 =  (
1.5−2.2

1.8
) = −0.39 

 

3. The real pH value when its coded value is estimated to be -0.7 

Let’s calculate the real value of pH using the folwing formula : 

 𝑧𝑗 = ∆𝑧𝑗 . 𝑥𝑗 +  𝑧𝑗
0    then  𝑧1 = ∆𝑧1. 𝑥1 +  𝑧1

0 

When 𝑥1 = −0.7 ;  𝑧1 = 4. (−0.7) +  6 = 3.2, then pH = 3.2 

I.6.6. Experiment matrix 

Experiment matrix is a table in which each row corresponds to an experiment or trial, and 

each column represents a factor. It is recommended for factors studied over three, as 

geometric representation becomes practically impossible in multidimensional spaces 

beyond three. The experiment matrix denoted T(N, k) lists all the experiments to be 

conducted, either in coded (+1, -1) or real form. 

N : number of rows, representing the number of experiments to be carried out ;  
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K : number of columns, indicating the number of factors studied. 

For example, a full factorial design study of pHϵ[2, 10] and [[BY]0ϵ[10, 50] mg/L 

necessitates a four-trial experiment matrix to examine a process involving two factors 

T(4,2) (see Chapitre II). 

Table I.2. Experiment matrix of full factorial design at two factors T(4,2). 

 Coded factors Real factors 

N 𝒙𝟏 𝒙𝟐 𝒛𝟏 𝒛𝟐 

1 -1 -1 2 10 

2 +1 -1 2 50 

3 -1 +1 10 10 

4 +1 +1 10 50 

 

I.6.7. Effects matrix 

Effects matrix (X) is a tool utilized for calculating all coefficients in a postulated model 

equation through matrix calculation. It is constructed by adding, to the left of the matrix 

of experiments, a column composed solely of values (+1), representing the ficitve variable 

𝒙𝟎. To the right of the matrix, columns are added corresponding to the various possible 

interactions between the factors. These interactions are determined using the 

mathematical model postulated for the study. The effects matrix is denoted: X (N, M). 

M : number of columns, indicating the number of unknowns in the model (number 

of coefficients). 

The effects matrix for the two-factor example provided previously is X(4, 4), consisting 4 

rows and 4 columns. 

Table I.3. Effects matrix of full factorial design at 2 factors X(4,4). 

 Effects 

N 𝒙𝟎 𝒙𝟏 𝒙𝟐 𝒙𝟏𝟐 

1 +1 -1 -1 +1 

2 +1 +1 -1 -1 

3 +1 -1 +1 -1 

4 +1 +1 +1 +1 
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I.6.8. Factor effect  

The impact of a factor 𝒙𝒋 on response y is determined by comparing the values taken by 

𝒙𝒋 as it moves from a lower level (𝑥𝑗= -1 →  𝑦1) to a higher level ((𝑥𝑗= +1 →  𝑦2). This effect 

or impact can be main (average) : (
𝑦2−𝑦1

2
) or global : (𝑦2 − 𝑦1) (Figure I.5).  

 

 

 

  

 

 

 

 

 

 

Figure I.5. Illustration of global effect and main effect. 

It should be noted that the direction of variation indicates whether the factor has a 

positive or negative effect on the response. A positive design variable effect indicates a 

higher main response at a higher parameter setting, while a negative effect indicates a 

higher main response at a lower parameter setting (Figure I.6). However, the slope's 

steepness allows for the quick identification of the most influential factors. 

Figure I.6. Graphical variation of factors main effect. 

-1 +10

Main effect

Global effect

Factor

Response

Factor 1
-1 +1

Factor 2
-1

Factor 3
-1

Factor 4
-1

Response Effect

0

+1 +1 +1

Positive

Negative
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I.6.9. Notion of interaction 

Factors 𝑥1 and 𝑥2  interact if their effect on response y depends on 𝑥2's level and vice versa.  

The effect 𝑎12  measures the variation in 𝑥1's effect as 𝑥2 increases from low to high level. 

Figure I.7 shows three types of interaction : (a) parallel lines, which indicate the abscence 

of interaction, and crossed lines, which indicate (b) low and (c) strong interactions. 

 

 

 

 

 

 

 

 

Figure I.7. Illustration of interactoion between 𝑥1 and  𝑥2.   

As shown in Figure I.7(a) factors 𝑥1 and 𝑥2 are independent, as their respective effects do 

not depend on the levels of the other (parallel lines). Figure I.7(b) and (c), on the other 

hand, reveal an interaction between 𝑥1 and 𝑥2, with non-parallel lines. In Figure I.7(c), the 

inversion of the effect of 𝑥1 according to the level of 𝑥2 highlights a particularly strong 

interaction. 

-1 +1

Hight intercation

(c)

-1 +1

Low intercation

(b)

-1 +1

Absence of intercation

(a)
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Chapter II: Full Factoriel Design at Tow Level 2k 

 

II. 1. Introduction 

Researchers are often interested in understanding the effects of multiple factors 

operating together. However, without a carefully thought-out and well-executed research 

design that considers all of those factors simultaneously, potentially misleading or biased 

estimates of the effects of the factors may be produced. The use of a full factorial design 

where the combination of all levels of the factors is thoroughly investigated can greatly 

enhance and improve the efficiency of statistical analysis as compared to other 

experimental methodologies. This approach offers a structured and rigorous study 

framework, making it possible to minimise experimental errors and optimise the 

reliability of the results obtained. It also provides a basis for the development of more 

advanced experimental designs, such as fractional factorial designs and response surface 

designs. These techniques build on the principles of full factorial design to efficiently 

explore complex systems and optimize processes. 

II.2. Concept of modeling and multiple linear regression 

Without prior knowledge of the functional relationship between the response and the 

factors, experimenters define an a priori evolutionary law as follow : 

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, . . . . . . . 𝑥𝑛) + 𝜀 

with : 

𝑦: experimental or measured response ; 

𝜀 : residue or experimental error ; 

𝑓(𝑥1, 𝑥2, 𝑥3, . . . . . . . 𝑥𝑛): unknown function which explains best the variations in 

response according to the different values given to factors. 

This unknown function is too complex to model precisely without making simplifying 

assumptions. To approximate it, polynomial smoothing functions are often used. This 

technique leverages Taylor’s theorem, which states that any smooth function can be 

locally approximated by a polynomial (Eq. II-1). By fitting a polynomial to the data, the 

underlying function’s behavior within a specific region can be estimated. 
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𝑦̂ = 𝑎0 + ∑𝑎𝑗𝑥𝑗

𝑘

𝑗=1

+ ∑ 𝑎𝑗𝑢

𝑘

𝑢,𝑗=1
𝑗≠𝑢

𝑥𝑗𝑥𝑢 + ∑ 𝑎𝑗𝑢𝑙…𝑘𝑥𝑗𝑥𝑢𝑥𝑙 …𝑥𝑘

𝑘

𝑙,𝑢,𝑗=1
𝑗≠𝑢≠𝑙

+ ∑𝑎𝑗𝑗

𝑘

𝑗=1

 𝑥𝑗
2           (𝑬𝒒. 𝐈 − 𝟏) 

with : 

 𝑦̂ : response calculated from the mathematical postulated model ; 

 𝑥𝑗  : coded variables ; 

 k : number of factors studied ; 

𝑎0, 𝑎𝑗 , 𝑎𝑗𝑢, 𝑎𝑗𝑢𝑙…𝑘, 𝑎𝑗𝑗  : coefficients of the mathematical postulated model: 

  𝑎0 : constant ; 

  𝑎𝑗  : linear effects ;  

  𝑎𝑗𝑢, 𝑎𝑗𝑢𝑙…𝑘 : interaction effects ; ; 

  𝑎𝑗𝑗  : quadratic effects. 

Experimental designs employ the multilinear regression technique to determine the 

coefficients of the postulated polynomial model, based on the method of least squares, 

which minimizes the sum of the squared differences between the experimental and 

mathematical variables. 

𝜑 = ∑(𝑦𝑖 − 𝑦̂𝑖)
2 = 𝑚𝑖𝑛

𝑁

𝑖=1

 

The advantage of modelling the measured response by a polynomial lies in the 

possibility of using all the results of matrix algebra. Although other mathematical 

functions can be used, experience has shown that polynomials solve most problems. 

II.3. Full factorial design at two levels 2k 

A full factorial design 2k (FFD) is a systematic experimental design technique that 

investigates the effects of multiple factors k on a response variable. It is widely used due 

to its simplicity and speed of implementation. FFD involves N= 2k experiments, testing all 

possible combinations of factor at two levels (low level -1 and high level +1), allowing 

researchers to identify the main effects of each factor and their interactions. 

In a full factorial design with three factors, each factor being at two levels, the 

experimental space is a cube with eight vertices (Figure II.1), i.e. eight experimental trials 

(N=2³). Each vertex corresponds to an experiment and its coordinates, expressed as 
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coded variables, define the levels of the three factors for this experiment. These 

coordinates are represented in the experimental design matrix (Table II.1). 

Figure II.1. Layout of experimental points in a full factorial design 23. 

Table II.1. Experiment matrix (N, k)= (8,8) of a full factorial design 23. 

Run 

N 

Real factors Coded factors Response 

𝒛𝟏 𝒛𝟐     𝒛𝟑 𝒙𝟏 𝒙𝟐       𝒙𝟑 𝒚𝒊 

1 𝑧1𝑙𝑜𝑤 𝑧2𝑙𝑜𝑤 𝑧3𝑙𝑜𝑤 -1 -1 -1 𝑦1 

2 𝑧1𝑢𝑝𝑝 𝑧2𝑙𝑜𝑤 𝑧3𝑙𝑜𝑤 +1 -1 -1 𝑦2 

3 𝑧1𝑙𝑜𝑤 𝑧2𝑢𝑝𝑝 𝑧3𝑙𝑜𝑤 -1 +1 -1 𝑦3 

4 𝑧1𝑢𝑝𝑝 𝑧2𝑢𝑝𝑝 𝑧3𝑙𝑜𝑤 +1 +1 -1 𝑦4 

5 𝑧1𝑙𝑜𝑤 𝑧2𝑙𝑜𝑤 𝑧3𝑢𝑝𝑝 -1 -1 +1 𝑦5 

6 𝑧1𝑢𝑝𝑝 𝑧2𝑙𝑜𝑤 𝑧3𝑢𝑝𝑝 +1 -1 +1 𝑦6 

7 𝑧1𝑙𝑜𝑤 𝑧2𝑢𝑝𝑝 𝑧3𝑢𝑝𝑝 -1 +1 +1 𝑦7 

8 𝑧1𝑢𝑝𝑝 𝑧2𝑢𝑝𝑝 𝑧3𝑢𝑝𝑝 +1 +1 +1 𝑦8 

Each experimental condition is termed a run, and the associated response measurement 

is referred to as an observation. The entire collection of runs is known as the design. 

II.4. Mathematical models associated to full factorial design 

A full factorial design at two level can be used for both continuous and discrete variables. 

7 8 

5 6 

3 4 

1 2 
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The mathematical model associated with it is generally a first-order synergistic 

polynomial model, integrating all the factors studied. It is generally expressed in the 

following form: 

𝑦̂ = 𝑎0 + ∑𝑎𝑗𝑥𝑗

𝑘

𝑗=1

+ ∑ 𝑎𝑗𝑢

𝑘

𝑢,𝑗=1
𝑗≠𝑢

𝑥𝑗𝑥𝑢 + ∑ 𝑎𝑗𝑢𝑙…𝑘𝑥𝑗𝑥𝑢𝑥𝑙 …𝑥𝑘

𝑘

𝑙,𝑢,𝑗=1
𝑗≠𝑢≠𝑙

                                    (𝑬𝒒. 𝐈 − 𝟐) 

or : 

ŷ  = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯𝑎𝑘𝑥𝑘 + 𝑎12𝑥1𝑥2 + 𝑎13𝑥1𝑥3  + ⋯+ 𝑎1..𝑘𝑥1. . 𝑥𝑘           (𝑬𝒒. 𝐈 − 𝟑) 

Depending on the number of factors k studied, the polynomial (Eq. II-3) can be formulated 

in a more or less complex way. It must essentially include 2k coefficients, which are the 

unknowns (M) and correspond to: 

• k main effects (linear) ; 

• (2k)-k-1  interactions ; 

• a constant representing the mean response. 

This polynomial model must clearly reflect the effect of each factor, whether it is 

individual (absolute effect) or the result of double, triple or even higher level interactions 

if they exist. The results of a full factorial design at two levels thus lead to a system of N= 2k 

equations for M= 2k unknowns, with. N=M. 

II.5. Determination of model coefficients 

The coefficients representing the linear effects and interactions in the polynomial model 

developed (Eq. II-3) are calculated by mathematically solving a system of 2k equations 

with 2k unknowns, using the following formula : 

𝐴 = 
1

𝑁
𝑋𝑇𝑌 

with : 

 A : model coefficients vector ; 

 𝑋𝑇 : transpose of the effects matrix X ; 

 X : effects matrix (N, M) ; 

 𝑌 : observations or responses vector. 
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However, it is preferable to solve the regression in matrix form, as this approach offers 

several advantages in terms of simplicity, efficiency and robustness. The matrix 

formulation enables simultaneous manipulation of all equations, making it beneficial for 

large systems and promoting the use of optimized numerical algorithms, thereby 

reducing calculation errors and problem solving time. 

II.6. Regression analysis in matrix form 

Regression analysis in matrix form is particularly well-suited to computerised resolution, 

offering an efficient method for dealing with complex problems. Using the method of least 

squares, it is possible to determine the coefficients of the regression equation (Eq. II-3). 

Various statistical tools can be extracted from this equation, including : 

1) Effects matrix X (N, M): 

      𝑋 =

[
 
 
 
 
𝑥01 𝑥11 𝑥21

𝑥02 𝑥12 𝑥22

⋮ ⋮  ⋮
 ⋮ ⋮ ⋮

𝑥0𝑁 𝑥1𝑁 𝑥2𝑁

… … 𝑥𝑀1

… … 𝑥𝑀2

… … ⋮
… … ⋮
… … 𝑥𝑀𝑁]

 
 
 
 

 

2) Model coefficients vector A (M, 1) : 

 𝐴 =

[
 
 
 
 

𝑎0

𝑎1

⋮
⋮

𝑎1..𝑘]
 
 
 
 

 

3) Vecteur des observations Y (N, 1) : 

 

𝑌 =

[
 
 
 
 
𝑦0

𝑦1

⋮
⋮

𝑦𝑁]
 
 
 
 

  

Thus, the postulated mathematical model (Eq. I-3) can be written in the following matrix 

form :  



                                                                Full Factoriel Design 
 

18 
 

[
 
 
 
 
𝑦0

𝑦1

⋮
⋮

𝑦𝑁]
 
 
 
 

=

[
 
 
 
 
𝑥01 𝑥11 𝑥21

𝑥02 𝑥12 𝑥22

⋮ ⋮  ⋮
 ⋮ ⋮ ⋮

𝑥0𝑁 𝑥1𝑁 𝑥2𝑁

⋯ … 𝑥𝑀1

… … 𝑥𝑀2

… … ⋮
… … ⋮
… … 𝑥𝑀𝑁]

 
 
 
 

×

[
 
 
 
 

𝑎0

𝑎1

⋮
⋮

𝑎1..𝑘]
 
 
 
 

                                                          (𝑬𝒒. 𝐈 − 𝟒)   

By introducing the transpose of the effects matrix X; i.e XT (M, N); to (Eq. II-4), we can have 

a system of normal equations designed to determine 𝑎0, 𝑎𝑗, 𝑎𝑗𝑢, 𝑎𝑗𝑢𝑙…𝑘 . 

∑𝑥0𝑖𝑦𝑖

𝑁

𝑖=1

= 𝑎0  ∑𝑥0𝑖
2

𝑁

𝑖=1

+ 𝑎1 ∑𝑥0𝑖𝑥1𝑖

𝑁

𝑖=1

+ ⋯+ 𝑎𝑀 ∑𝑥0𝑖𝑥𝑀𝑖

𝑁

𝑖=1

 

∑𝑥1𝑖𝑦𝑖

𝑁

𝑖=1

= 𝑎0 ∑𝑥1𝑖𝑥0𝑖

𝑁

𝑖=1

 + 𝑎1 ∑𝑥1𝑖
2

𝑁

𝑖=1

+ ⋯+ 𝑎𝑀 ∑𝑥1𝑖𝑥𝑀𝑖

𝑁

𝑖=1

 

                                 …..………………………………………………………………………… 

∑𝑥𝑀𝑖𝑦𝑖

𝑁

𝑖=1

= 𝑎0 ∑𝑥𝑀𝑖𝑥0𝑖

𝑁

𝑖=1

 + 𝑎1 ∑𝑥𝑀𝑖𝑥1𝑖

𝑁

𝑖=1

+ ⋯+ 𝑎𝑀 ∑ 𝑥𝑀𝑖
2

𝑁

𝑖=1

 

All these equations can be written in the following matrix form : 

𝑋𝑇 𝑌 = [𝑋𝑇𝑋] 𝐴 

with :  

𝑋𝑇 =

[
 
 
 
 
 

𝑥01 𝑥02 …
𝑥11 𝑥12 …
𝑥21 𝑥22 …

… 𝑥0𝑁

… 𝑥1𝑁

… 𝑥2𝑁

⋮ ⋮ ⋯
⋮ ⋮ …

𝑥𝑀1 𝑥𝑀2 …

… ⋮
… ⋮
… 𝑥𝑀𝑁]

 
 
 
 
 

  

XT (M, N) : is obtained by exchanging the rows and columns of X (N,M). 

[𝑋𝑇𝑋] : matrix of variances. 

[𝑋𝑇𝑋] =

[
 
 
 
 

∑ 𝑥0𝑖
2 ∑𝑥0𝑖𝑥1𝑖  …

∑𝑥1𝑖𝑥0𝑖 ∑𝑥1𝑖
2  …

⋮  ⋮  …

    
… ∑𝑥0𝑖𝑥𝑀𝑖 

… ∑𝑥1𝑖𝑥𝑀𝑖

… ⋮
⋮ ⋮ …

∑𝑥𝑀𝑖𝑥0𝑖 ∑𝑥𝑀𝑖𝑥1𝑖 …
…    ⋮
…   ∑ 𝑥𝑀𝑖

2 ]
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[𝑋𝑇𝑌] : column matrix. 

[𝑋𝑇𝑌] =  

[
 
 
 
 
∑ 𝑥0𝑖𝑦𝑖 

∑𝑥1𝑖𝑦𝑖

⋮
⋮

∑ 𝑥𝑀𝑖𝑦𝑖]
 
 
 
 

     

The vector of coefficients, A, is obtained from the product : 

𝐴 = [𝑋𝑇𝑋]−1 𝑋𝑇 𝑌                                                                                                                 (𝑬𝒒. 𝐈 − 𝟓) 

where : [XTX]-1  is the inverse matrix* of the matrix [XTX]. In the case of the full factorial 

design, the variance-covariance matrix [XTX]-1 is diagonal and is represented as follows: 

[XTX]−1 = [
1/𝑁 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 1/𝑁

]  

II.7. Optimality of experimental designs 

An optimal experimental design ensures the calculation of coefficients of the effects of 

factors (𝑎𝑗) with the best accuracy, minimizing model response error. To achieve this, 

several criteria must be met, including the most commonly used ones are : 

II.6.1. Unit matrix criterion (Hadamard matrix) 

To achieve the minimum variance in N experiments, the square matrix of effects X, 

consisting of +1 and -1 elements (Hadamard matrix), associated with factorial designs 

must satisfy the following relationship : 

[𝑋𝑇𝑋] =  𝑁[𝐼], I : unit matrix. 

The unit matrix criterion ensures that : 

• the factors are tested in a balanced and independent manner ; 

• the estimates of the effects are not biased by correlations between the columns 

of the matrix. 

 

* : a square matrix A is invertible if there is an inverse matrix A-1 such that A × A-1 = A-1 × A = I, and only 

square matrices can have inverses. 

 



                                                                Full Factoriel Design 
 

20 
 

II.7.2. Orthogonality criterion 

The effects matrix X is orthogonal if its column vectors are orthogonal in pairs, meaning 

the scalar product of two columns is zero. 

Let there be two column vectors𝑋1 and 𝑋2 of the effects matrix X :                               

         𝑋1 =

[
 
 
 
 
 
𝑥11

𝑥12

⋮
𝑥1𝑖

⋮
𝑥1𝑁]

 
 
 
 
 

                      𝑎𝑛𝑑              𝑋2 =

[
 
 
 
 
 
𝑥21

𝑥22

⋮
𝑥2𝑖

⋮
𝑥2𝑁]

 
 
 
 
 

 

The orthogonality of these two columns is expressed as: 

∑ 𝑥1𝑖 × 𝑥2𝑖  
𝑁
𝑖=1  = 0 

 

II.7.3. Minimum trace criterion 

The [𝑋𝑇𝑋]−1 matrix's trace, representing the sum of its main diagonal elements, must 

be as small as possible to minimize error, resulting in : 

𝑡𝑟([𝑋𝑇𝑋]−1) = ∑([𝑋𝑇𝑋]−1)𝑖𝑖

𝑁

𝑖=1

= 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 

II.8. Example of application 

II.8.1. Problem statement 

A manufacturer wants to recover the amoxicillin molecules (AMX) present in his 

industrial effluents using an adsorption process based on a mineral adsorbent 

(hydroxyaptite: HAP). He wanted to study the influence of certain parameters like the pH 

of the solution (pH∊[2-10]), the AMX initial concentration ([AMX]∊[50-300] mg/L) and 

the HAP dosage ([HAP]∊[0.125-1.25] g/250mL) on the adsorption efficiency of AMX onto 

HAP. To do this, he decided to adapt a full factorial design at two levels (FFD). 

II.8.2. Problem formulation 

• Objective of the study : study the effect of each operating parameter on the rate 

of adsorption of AMX. 

• Define the factors and the response : 
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Response y: adsorption rate calculated as follows: 

𝑦 (%) =  
[𝐴𝑀𝑋]0 − [𝐴𝑀𝑋]𝑡

[𝐴𝑀𝑋]0
 × 100  

with: 

[𝐴𝑀𝑋]0 and [𝐴𝑀𝑋]𝑡: are initial concentration of amoxicillin and its concentration 

at time t. 

Factors and their study domain : 

Factor 1 ⇒𝑧1: pH of the solution to be treated; pH∊[2-10] ; 

Factor 2 ⇒𝑧2: AMX concentration ; [AMX]∊[50-300]mg/L ; 

Factor 3 ⇒𝑧3: PAH concentration in the suspension ; [HAP]∊[0.125-1.25]g/250mL. 

A study using a full factoriel design at two-level and three-factor requires N = 23 = 8   

experiments, with a mathematical model with M = 8 unknown coefficients, as per the 

given form : 

ŷ  = 𝑎0   +   𝑎1𝑥1 + 𝑎2𝑥2  +  𝑎3𝑥3 + 𝑎12𝑥1𝑥2 + 𝑎13𝑥1𝑥3  +  𝑎23𝑥2𝑥3 + 𝑎123𝑥1𝑥2𝑥3 

II.8.3. Planning and experiments 

• construction of the experimental design: construct the experiment matrix in real 

and coded variables (Table II.2), which serves as a start-up tool for launching and 

facilitating the experiment's implementation 

Table II.2. Experiment matrix of full factorial design at two factors 23. 

Run  

N 

Real factors Coded factors Response 

observed 

𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒙𝟏 𝒙𝟐 𝒙𝟑 y(%) 

1 2 50 0.125 -1 -1 -1 55.89 

2 10 50 0.125 +1 -1 -1 56.93 

3 2 300 0.125 -1 +1 -1 64.70 

4 10 300 0.125 +1 +1 -1 61.23 

5 2 50 1.25 -1 -1 +1 85.95 

6 10 50 1.25 +1 -1 +1 89.95 

7 2 300 1.25 -1 +1 +1 88.50 
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8 10 300 1.25 +1 +1 +1 96.55 

II.8.4. Results analysis 

To maximize information from experimental results, calculate the coefficients of the 

postulated model (𝑎𝑗), i.e. A vector, by determining the effects matrix X (N, M) (Tbele II.3). 

The vector A is calculated using the formula: 𝐴 =  [𝑋𝑇𝑋]−1 𝑋𝑇 𝑌, with the results listed 

in Table II.4. 

Table II.3. Effects matrix X (8, 8) 

N°d’essai 𝑥0 𝑥1 𝑥2 𝑥3 𝑥12 𝑥13 𝑥23 𝑥123 y(%) 

1 +1 -1 -1 -1 +1 +1 +1 -1 55.89 

2 +1 +1 -1 -1 -1 -1 +1 +1 56.93 

3 +1 -1 +1 -1 -1 +1 -1 +1 64.70 

4 +1 +1 +1 -1 +1 -1 -1 -1 61.23 

5 +1 -1 -1 +1 +1 -1 -1 +1 85.95 

6 +1 +1 -1 +1 -1 +1 -1 -1 89.95 

7 +1 -1 +1 +1 -1 -1 +1 -1 88.50 

8 +1 +1 +1 +1 +1 +1 +1 +1 96.55 

Table II.4. Coefficient values for the AMX adsorption model. 

Constant Linear effects Iinteraction effects 

𝒂𝟎 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟏𝟐 𝒂𝟏𝟑 𝒂𝟐𝟑 𝒂𝟏𝟐𝟑 

74.96 1.20 2.78 15.28 -0.06 1.81 -0.49 1.07 

The model obtained after calculation is then written : 

𝑦̂ (%) =  74.96 + 1.20𝑥1+2.78𝑥2 + 15.28𝑥3 − 0.06𝑥1𝑥2  + 1.81𝑥1𝑥3 − 0.49𝑥2𝑥3  

+                      1.07𝑥1𝑥2𝑥3 

This postulated model enables the differentiation of the three operating parameters 

studied on the rate of adsorption of AMX by PAHs, allowing for the determination of each 

factor's influence in absolute terms and the identification of the combined influence of 

two factors simultaneously. 



                                                                Full Factoriel Design 
 

23 
 

The final stage of the experimental design chronology, which is the optimisation of the 

response, can only be carried out once the postulated model has been validated by the static 

tests (Chapter III). 
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Chapter III : Statistical Analysis : Significance testing and model 

validation 

III.1. Introduction 

The use of regression and correlation analysis allows for the identification of dependence 

relationships between factors (variables) and optimal conditions in experimental data. 

After determining the regression equation, the results are statistically analyzed. To 

successfully conduct this analysis, the following conditions must be met: 

• the parameter 𝒙 is measured with negligible error. The observed error in the 

response y can be explained by the presence of variables not taken into account in 

the process, which do not appear in the regression equation (Non-controlled and 

uncontrolabe factors) ; 

• the observations on the output variables 𝒚𝟏, 𝒚𝟐 … …  are independent and follow a 

normal distribution. 

III. 2. Verification of the significance of the coefficients (effects) 

II.2.1. Each test is repeated m times 

When the experiments are repeated m times at the limits of the variation interval for each 

factor (level -1 and level +1), this following analysis is applied : 

The arithmetic mean of the parallel test results 𝒚𝒊̅ is determined [2, 11, 12] : 

𝑦𝑖̅ =  
∑ 𝑦𝑖𝑢

𝑚
𝑢=1

𝑚
                                                                                                            (𝑬𝒒. 𝑰𝑰𝑰 − 𝟏)                                                                                                                    

then the sampling variance 𝑺𝒊
² for trial (experiment) i : 

𝑆𝑖
²  =

 ∑ (𝑦𝑖𝑢 − 𝑦𝑖̅)
2𝑚

𝑢=1

𝑚 − 1
 ,   𝑖 = 1,2, … . 𝑁                                                                          (𝑬𝒒. 𝑰𝑰𝑰 − 𝟐) 

with : 

 m : number of replicates for each trial ; 

 N : number of experiments; 

 𝑦𝑖: experimental responses (observed/measured responses). 

The reproducibility variance is calculated if the sampling variances are homogeneous. 

that is presentes as : 
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𝑆𝑟𝑒𝑝
2 =  

∑ 𝑆i
2𝑁

𝑖=1

𝑁
                                                                                                                    (𝑬𝒒. 𝑰𝑰𝑰 − 𝟑) 

III.2.2. Central test is repeated no times 

When the experiments are repeated no at the centre of the experimental domain (level 0), 

the reproducibility variance is estimated by the variance calculated at the centre of the 

experimental domain. 

  𝑆𝑟𝑒𝑝
2 =

∑ (𝑦𝑖0−𝑦̅0)2𝑛0
𝑖=1

𝑛0−1
                                                                                              (𝑬𝒒. 𝑰𝑰𝑰 − 𝟒)  

with :  

 𝑓 = 𝑛0 − 1 : degrees of freedom ; 

 n0 : number of repetitions in the centre of the experimental domain ; 

𝑦𝑖0 : measured responses at the centre of the expérimental domain 

 𝑦̅0: arithmetic mean of the measurements taken at the centre of the domain,     

calculated by:   

            𝑦̅0 =  
∑ 𝑦𝑖0

𝑛0
𝑖=1

𝑛0
                                                                                                              (𝑬𝒒. 𝑰𝑰𝑰 − 𝟓)                                                                                                                            

The reproducibility variance is crucial for estimating the significance of coefficients in 

regression equations using Student's t-ratio. A coefficient is said to be significant if, for a 

given risk, it is significantly different from zero. In principle, two hypotheses are set up : 

                                   H0 = « 𝑏𝑗= 0 » 

against the hypothesis :  H1 = « 𝑏𝑗  ≠ 0 ». 

If we accept the null hypothesis H0 we automatically reject the alternative hypothesis H1. 

To do this, we calculate the Student’s 𝑡𝑗-ratio :  

𝑡𝑗  =
|𝑏𝑗|

𝑆𝑏𝑗
                                                                                                                             (𝑬𝒒. 𝑰𝑰𝑰 − 𝟔) 

where :  

 𝑏𝑗: jème coefficient of the regression equation ; 

 𝑠𝑏𝑗 : mean square deviation or standard deviation which, for a first-degree model        

is defined as follow: 
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𝑆𝑏𝑗 =  √
𝑆𝑟𝑒𝑝

2

𝑁
                                                                                                             (𝑬𝒒. 𝑰𝑰𝑰 − 𝟕)  

The theoretical value of 𝒕(𝒑, 𝒇) is determined using Student's table (Table III. A in the 

chapter Appendix) for the chosen significance level p and the number of degrees of 

freedom f=n0-1. The rule for this test is defined as follows :  

• if  𝑡𝑗  > tp(f), H0 is rejected at the accepted risk ; 

• if  𝑡𝑗  < tp(f), H0 is accepted at the accepted risk. 

The H0 hypothesis accepted states that the coefficient at the p risk is not significantly 

different from zero, indicating that the associated variable has no influence on the 

response. 

The software used for experimental design, such as Statistica, JMP, Minitab or Design-

Expert, is based on these assumptions and assesses the significance of the coefficients by 

calculating the probability p-value*. A p-value close to zero (p <0.05) indicates the 

coefficient's influence, while a p-value close to one (p >0.05) indicates the coefficient's 

inability to be distinguished from zero and thus not influential. 

Example III.1 

When examining the impact of a significant factor on a response at significance level of 

0.05, the null hypothesis H0 suggests no significant effect, while the alternative hypothesis 

H1 suggests a significant effect. So, in the results analysis, when we have for exexample: 

• a 𝑝-value of 0.03 (𝑝<0.05) : it means that there is a 3% probability of observing an 

effect as extreme as that measured, if the factor really had no effect at all. As 

conclusion, we could reject the null hypothesis (H0) and conclude that the factor is 

significant (accept H1). 

•  a 𝑝-value of 0.12 ((𝑝>0.05) : it means that there is a 12% probability of obtaining 

the observed data (or more extreme data) if the null hypothesis is true. As 

conclusion, we could accept the null hypothesis (H0) and conclude that the factor 

is not significant (reject H1). 

 

* : the p-value is a statistical measure used to assess the strength of the evidence against a null hypothesis 

(H₀) in a statistical test. It represents the probability of obtaining a result at least as extreme as the one 

observed, under the hypothesis that H₀ is true. 
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III. 3. Model validation 

The model validation tests described in the following sections can be applied to the 

equations of models established for the two cases previously mentioned: (1) when the 

repetitions are conducted in the experimental domain's center, and (2) when all the trials 

are repeated m times. To adapt the formulas to the second case, simply replace 𝒚𝒊 with 𝒚𝒊̅, 

which corresponds to the mean of each experiment's observations. 

III. 3.1. Lack of fit  

The lack of fit in experimental designs is a measure of the inability of a statistical model 

to correctly describe the relationships between the factors studied and the observed 

response. This indicates that the mathematical model chosen does not fully capture the 

structure of the underlying phenomenon. The lack of fit occurs when : 

• the model used is incorrect or incomplete (for example, important interactions or 

quadratic terms are omitted) ; 

• the assumptions about the relationship between variables (linear, quadratic, etc.) 

do not correspond to reality. 

The lack of fit compares the variation not explained by the model (residual variance 𝑆𝑟é𝑠 
2 ) 

with the variation inherent in the experimental errors (reproducibility variance 𝑆𝑟𝑒𝑝
2 ) : 

𝐹𝑐𝑎𝑙  =  
𝑆𝑟é𝑠

2

𝑆𝑟𝑒𝑝
2

                                                                                                                          (𝑬𝒒. 𝑰𝑰𝑰 − 𝟖) 

The residual variance 𝑆𝑟é𝑠 
2  is estimated as follows : 

𝑆𝑟é𝑠 
2 =

∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑁

𝑖=1

𝑁 − ℓ
                                                                                                        (𝑬𝒒. 𝑰𝑰𝑰 − 𝟗) 

with : 

𝑁 − ℓ : degrees of freedom ; 

ℓ : number of significant coefficients ; 

𝑦𝑖̂: responses calculated from the model (prédicted values). 

Remark  

A low p-value does not prove that the alternative hypothesis is true, only that there is 

sufficient evidence to reject H₀. 
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If the following inequality holds true : 

𝐹𝑐𝑎𝑙  < 𝐹0.95( 𝑁 − ℓ, 𝑛0 − 1)                                                                                          (𝑬𝒒. 𝑰𝑰𝑰 − 𝟏𝟎) 

𝐹0.95( 𝑁 − ℓ, 𝑛0 − 1) : tabulated value of Fisher-Snedecor test (Table III. B in the 

chapter Appendix) for the chosen significance level p(0.95) and the number of degrees of 

freedom  𝑓1 = 𝑁 − ℓ and 𝑓2 = 𝑛0 − 1. 

this confirms that the model chosen is consistent and that it can be used to interpret the 

results or make predictions. 

In the context of p-value analysis associated with the F-test in software used for 

experimental design, a lack-of-fit test producing a high p-value (for example, p>0.05) 

indicates that the statistical model fits the experimental data well. In other words, there 

is no statistically significant evidence to reject the null hypothesis that the proposed 

model is adequate to describe the relationship between the factors studied and the 

observed response. 

III.3.2. Regression verification (Analyse of variance : ANOVA)  

Checking the significance of the regression in the experimental designs means assessing 

whether the regression model obtained is globally relevant in explaining the variation in 

the experimental data. The Fisher test (F-test) is used to validate this analysis ; it is given 

by the following equation :  

𝐹𝑐𝑎𝑙 =

∑ (𝑦̂𝑖−𝑦̅𝑁
𝑖=1 )²

(ℓ−1)
⁄

∑ (𝑦𝑖−𝑁
𝑖=1 𝑦̂𝑖) ²

(𝑁−ℓ)
⁄

                                                                                     (𝑬𝒒. 𝑰𝑰𝑰 − 𝟏𝟏)  

with : 

𝑦 ̅ =
∑ 𝑦𝑖

𝑁
𝑖=1

𝑁
                                                                                                             (𝑬𝒒. 𝑰𝑰𝑰 − 𝟏𝟐)  

If the ratio 𝐹𝑐𝑎𝑙  is greater than the tabulated value 𝐹0,95( ℓ − 1, 𝑁 − ℓ) (Table III. B in the 

chapter Appendix) for the chosen significance level p(0.95) and the numbers of degrees 

of freedom 𝑓1 = ℓ − 1 and 𝑓2 = 𝑁 − ℓ, the equation is adequate. This F-test indicates how 

much the variance relative to the equation obtained is reduced in comparison with the 

variance relative to the mean. The efficiency of the regression equation is increased when 

the value of 𝐹𝑐𝑎𝑙  is greater than that of 𝐹0.95(ℓ − 1, 𝑁 − ℓ). 
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In the context of p-value analysis associated with the F-test in software used for 

experimental design, the regression verification or analyse of variance (ANOVA) tests the 

null hypothesis (H₀), which states that all the regression coefficients (except the y-

intercept) are equal to zero, against the alternative hypothesis (H₁), which asserts that all 

the regression coefficients are significantes. A low p-value (p>0.05) indicates that the 

overall model is significant, i.e. that at least one of the coefficients is different from zero. 

II.3.3. Coefficient of determination  

The coefficient of determination R² is a statistical measure used to assess the goodness of 

fit of a model to a set of data, particularly in experimental design. It quantifies the 

effectiveness of the model by showing the extent to which observed variations in the 

response (dependent variable) are linked to variations in the factors manipulated in the 

experiment. R² is calculated as follows : 

𝑅2 =
∑ (𝑦̂𝑖−𝑦̅)2𝑁

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑁
𝑖=1

                                                                                                                 (𝑬𝒒. 𝑰𝑰𝑰 − 𝟏𝟑)  

Depending on the value of R² obtained, several cases can be observed : 

• R² = 1 : this means that the model perfectly explains the variance in the data, i.e. 

all the variations in the response are explained by the factors in the model ; 

• R² = 0 : this means that the model does not explain any variance in the data, so the 

factors in the model are not related to the response at all ; 

• 𝟎 ≤ 𝑹𝟐 ≤ 𝟏 : this means that the model explains a partial proportion of the 

variance in the data. The closer R² is to 1, the better the model is at explaining 

variations in the dependent variable. 

Elsewhere, a higher R² value does not necessarily indicate a good fit or a good regression 

model, as adding a new variable (either the variable is significant or not) can increase the 

R² value, leading to poor prediction. To address this issue, an adjusted R² (𝑅̅2) is 

introduced :  

𝑅̅2 = 𝑅2 − (1 − 𝑅2)
ℓ−1

𝑁−ℓ
                                                                                                 (𝑬𝒒. 𝑰𝑰𝑰 − 𝟏𝟒)  

𝑅̅2 is a more robust measure for assessing the quality of a regression model. It is used to 

correct the biases associated with adding variables to a statistical model. Furthermore,  

𝑅̅2 takes into account both the quality of the fit and the number of variables in the model. 
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Likewise, it is essential to note that if : 

• 𝑅̅2 is close to R², this indicates that the model is relatively simple and that the 

addition of variables has not introduced any over-fitting ; 

• 𝑅̅2 is much lower than R², this suggests that the model includes insignificant 

variables. The addition of these variables has increased the complexity of the 

model without substantially improving its ability to explain the variance of the 

dependent variable. 

III.3.4. Residuals analysis 

An analysis of the residuals in the experimental designs is an essential step in assessing 

the quality and validity of the statistical model fitted to the experimental data. The 

residuals are the differences between the observed values and the values predicted by the 

model (Eq. III-15). Analysing these residuals enables us to check whether the model's 

assumptions are respected and to identify any problems that could invalidate the 

conclusions. 

𝜀 = 𝑦𝑖 − 𝑦̂𝑖                                                                                                                           (𝑬𝒒. 𝑰𝑰𝑰 − 𝟏𝟓)  

There are several types of graphs and statistical tests used to analyse residuals, such as 

the residuals diagram (graph of residuals vs. predicted values, histogram or residual 

density, etc.)  or the residuals normality test (Kolmogorov-Smirnov, etc.). 

A good analysis of the residuals will confirm that the model's errors are random and not 

systematic, and that the factors studied do indeed influence the dependent variable 

without unobserved or biased effects. 

III.4. Example of application  

The validity of the statistical analysis presented in this chapter is checked by revisiting 

the example from Chapter II, paragraph II.8.1: Adsorption of AMX on HAP. 

The postulated model obtained after calculation is : 

𝑦̂ (%) =  74.96 + 1.20𝑥1+2.78𝑥2 + 15.28𝑥3 − 0.06𝑥1𝑥2  + 1.81𝑥1𝑥3 − 0.49𝑥2𝑥3

+ 1.07𝑥1𝑥2𝑥3 
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III.4.1. Statistical analysis of the regression equation 

To estimate the reproducibility variance, the test carried out in the centre of the 

experimental domain was repeated four times. The AMX adsorption efficiency for each of 

these tests are given in Table III.1. 

Table III.1. AMX adsorption efficiency at the centre of the experimental domain. 

n0 1 2 3 4 𝐲̅𝟎(%) 

𝒚𝟎(%) 97.78 97.75 97.74 97.99 97.81 

 

III.4.1.1. Significance of the coefficients of the regression equation 

The Student's t-test is used to determine whether there are any non-significant 

coefficients among the model's coefficients, which will be eliminated from the equation 

because their impact on the AMX adsorption efficiency is insignificant. To do this, we 

determine the reproducibility variance and the mean standard deviation of the tests : 

• Srep
2 = 3.757. 10−3;  

• Sbj
2 = 2.167. 10−2.     

then we calculate the tj corresponding to each effect. The results obtained are listed in 

Table III.2. 

TableI II.2. tj values. 

Constant Linear effects Interaction effects 

𝑡0 𝑡1 𝑡2 𝑡3 𝑡12 𝑡13 𝑡23 𝑡123 

3458,825 55,423 128,375 704,820 2,681 83,508 22,823 49,369 

For the significance level p=0.05 and the number of degrees of freedom f = n0 -1 = 3, the 

tabulated value of the bilateral Student's test (Student's Table) is equal to: 𝑡𝑝(𝑓) =

𝑡0.05(3) = 3,18. As the calculated value of 𝒕𝟏𝟐 is less than the tabulated value, the 

corresponding coefficient 𝒂𝟏𝟐 is not significant, which means that it is eliminated from the 

model equation. 

III.4.1.2. Model validation 

• Lack of fit  
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To confirm the validity of the postulated model, we calculated the representative residual 

variance (𝑆𝑟𝑒𝑠
² =1.70.10-²) and compared it with the reproducibility variance (Srep

2 ) using 

the Fisher-Snedecor test : F𝑐𝑎𝑙 =  
Srés

2

Srep
2  

As the calculated value of the F-test (F𝑐𝑎𝑙 = 7.18) is lower than the tabulated value for the 

p=0.05 significance level, i.e. 𝐹0;95( 𝑁 − ℓ, 𝑛0 − 1) = 𝐹0.95( 1, 3) = 10.1 (Fisher table), we 

can confirm that the model representing the adsorption efficiency of AMX onto HAP is not 

biased. 

• Significance test of the regression 

The model is unbiased, so we can check the significance of the regression using the Fisher 

𝐹𝑐𝑎𝑙test : =

∑ (𝑦̂𝑖−𝑦̅𝑁
𝑖=1 )²

(ℓ−1)
⁄

∑ (𝑦𝑖−𝑁
𝑖=1 𝑦̂𝑖) ²

(𝑁−ℓ)
⁄

 

The calculated F-test value is 12201.817, and the tabulated 𝐹0.95( 𝑁 − ℓ, 𝑛0 − 1) =

𝐹0.95( 6, 1) value is 234. As 𝐹𝑐𝑎𝑙 > 𝐹0.95, this indicates that the postulated regression 

equation is adequate and valid at 95%. Then, the equation for this model is written : 

𝑦̂ (%) =  74.96 + 1.20𝑥1+2.78𝑥2 + 15.28𝑥3 + 1.81𝑥1𝑥3 − 0.49𝑥2𝑥3 + 1.07𝑥1𝑥2𝑥3 

II.4.1.3. Reliability assessment 

• Coefficient of determination 

The postulated model's responses were evaluated against the measured responses using 

the coefficient of determination, which is of 0.999. Its value is practically close to 1, 

indicating that all variations in response within the experimental domain are explained 

by the postulated regression equation. 

• Residuals analysis 

The residuals analysis of the of the predicted model is shown in Figure III.1. As seen, the 

diagram reveals no relationship between the predicted values 𝒚̂𝒊 and the residuals ε, as 

the points appear to be arranged randomly. This result also reflects the absence of 

information in the residuals which allows us to assert that all response variations are 

explained by the chosen regression model. 
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Figure III.1. Residuals diagram. 
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Table III. A. Student's law table 

 

Unilatéral 

Bilatéral 

0,01 

0,20 

0,05 

0,10 

0,025 

0,05 

0,01 

0,02 

0,005 

0,01 

𝒇𝟏 

1 

2 

3 

4 

5 

 

6 

7 

8 

9 

10 

 

11 

12 

13 

14 

15 

 

16 

17 

18 

19 

20 

 

21 

22 

23 

24 

25 

 

26 

27 

28 

29 

30 

 

40 

∞ 

 

3,08 

1,89 

1,64 

1,53 

1,48 

 

1,44 

1,42 

1,40 

1,38 

1,37 

 

1,36 

1,36 

1,35 

1,35 

1,34 

 

1,34 

1,33 

1,33 

1,33 

1,33 

 

1,32 

1,32 

1,32 

1,32 

1,32 

 

1,32 

1,31 

1,31 

1,31 

1,31 

 

1,30 

1,28 

 

 

 

6,31 

2,92 

2,35 

2,13 

2,02 

 

1,94 

1,90 

1,86 

1,83 

1,81 

 

1,80 

1,78 

1,77 

1,76 

1,75 

 

1,75 

1,74 

1,73 

1,73 

1,73 

 

1,72 

1,72 

1,71 

1,71 

1,71 

 

1,71 

1,70 

1,70 

1,70 

1,70 

 

1,68 

1,65 

 

12,7 

4,30 

3,18 

2,78 

2,57 

 

2,45 

2,37 

2,31 

2,26 

2,23 

 

2,20 

2,18 

2,16 

2,15 

2,13 

 

2,12 

2,11 

2,10 

2,09 

2,09 

 

2,08 

2,07 

2,07 

2,06 

2,06 

 

2,06 

2,05 

2,05 

2,05 

2,04 

 

2,02 

1,96 

 

 

31,8 

6,97 

4,54 

3,75 

3,37 

 

3,14 

3,00 

2,90 

2,82 

2,76 

 

2,72 

2,68 

2,65 

2,62 

2,60 

 

2,58 

2,57 

2,55 

2,54 

2,53 

 

2,52 

2,51 

2,50 

2,49 

2,49 

 

2,48 

2,47 

2,47 

2,46 

2,46 

 

2,42 

2,33 

 

 

63,7 

9,92 

5,84 

4,60 

4,03 

 

3,71 

3,50 

3,36 

3,25 

3,17 

 

3,10 

3,06 

3,01 

2,98 

2,95 

 

2,92 

2,90 

2,88 

2,86 

2,85 

 

2,83 

2,82 

2,81 

2,80 

2,79 

 

2,78 

2,77 

2,76 

2,76 

2,75 

 

2,70 

2,58 
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Table III. B. Table of Fisher-Senedecor distribution for p = 0.95 

𝑓1 : degrees of freedom in numerator ; 

𝑓2 : degrees of freedom in the denominator. 

 

𝑓1 →   

𝑓2 ↓ 
1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120  

1 161 200 216 225 230 234 237 239 241 242 244 246 248 249 250 251 252 253 254 

2 18,5 19,00 19,2 19,20 19,3 19,3 19,4 19,4 19,4 19,4 19,4 19,4 19,4 19,5 19,5 19,5 19,5 19,5 19,5 

3 10,1 9,55 9,28 9,12 9,01 8,94 8,89 8,85 8,81 8,79 8,74 8,7 8,66 8,64 8,62 8,59 8,57 8,55 8,53 

4 7,71 6,94 6,59 6,39 6,26 6,16 6,09 6,04 6.00 5,96 5,91 5,86 5,80 5,77 5,75 5,72 5,69 5,66 5,63 

5 6,61 5,79 5,41 5,19 5,05 4,95 4,88 4,82 4,77 4,74 4,68 4,62 4,56 4,53 4,50 4,46 4,43 4,40 4,37 

6 5,99 5,14 4,76 4,53 4,39 4,28 4,21 4,15 4,10 4,06 4,00 3,94 3,87 3,84 3,81 3,77 3,74 3,70 3,67 

7 5,59 4,74 4,35 4,12 3,97 3,87 3,79 3,73 3,68 3,64 3,57 3,51 3,44 3,41 3,38 3,34 3,3 3,27 3,23 

8 5,32 4,46 4,07 3,84 3,69 3,58 3,50 3,44 3,39 3,35 3,28 3,22 3,15 3,12 3,08 3,04 3,01 2,97 2,93 

9 5,12 4,26 3,86 3,63 3,48 3,37 3,29 3,23 3,18 3,14 3,07 3,01 2,94 2,90 2,86 2,83 2,79 2,75 2,71 

10 4,96 4,10 3,71 3,48 3,33 3,22 3,14 3,07 3,02 2,98 2,91 2,85 2,77 2,74 2,70 2,66 2,62 2,58 2,54 

11 4,84 3,98 3,59 3,36 3,20 3,09 3,01 2,95 2,90 2,85 2,79 2,72 2,65 2,61 2,57 2,53 2,49 2,45 2,40 

12 4,75 3,89 3,49 3,26 3,11 3,00 2,91 2,85 2,8 2,75 2,69 2,62 2,54 2,51 2,47 2,43 2,38 2,34 2,30 

13 4,67 3,81 3,41 3,18 3,03 2,92 2,83 2,77 2,71 2,67 2,60 2,53 2,46 2,42 2,38 2,34 2,30 2,25 2,21 

14 4,60 3,74 3,34 3,11 2,96 2,85 2,76 2,7 2,65 2,60 2,53 2,46 2,39 2,35 2,31 2,27 2,22 2,18 2,13 

15 4,54 3,68 3,29 3,06 2,90 2,79 2,71 2,64 2,59 2,54 2,48 2,40 2,33 2,29 2,25 2,20 2,16 2,11 2,07 

16 4,49 3,63 3,24 3,01 2,85 2,74 2,66 2,59 2,54 2,49 2,42 2,35 2,28 2,24 2,19 2,15 2,11 2,06 2,01 

17 4,45 3,59 3,20 2,96 2,81 2,70 2,61 2,55 2,49 2,45 2,38 2,31 2,23 2,19 2,15 2,1 2,06 2,01 1,96 

18 4,41 3,55 3,16 2,93 2,77 2,66 2,58 2,51 2,46 2,41 2,34 2,27 2,19 2,15 2,11 2,06 2,02 1,97 1,92 

19 4,38 3,52 3,13 2,90 2,74 2,63 2,54 2,48 2,42 2,38 2,31 2,23 2,16 2,11 2,07 2,03 1,98 1,93 1,88 

20 4,35 3,49 3,10 2,87 2,71 2,60 2,51 2,45 2,39 2,35 2,28 2,20 2,12 2,08 2,04 1,99 1,95 1,90 1,84 

21 4,32 3,47 3,07 2,84 2,68 2,57 2,49 2,42 2,37 2,32 2,25 2,18 2,10 2,05 2,01 1,96 1,92 1,87 1,81 

22 4,30 3,44 3,05 2,82 2,66 2,55 2,46 2,40 2,34 2,30 2,23 2,15 2,07 2,03 1,98 1,94 1,89 1,84 1,78 

23 4,28 3,42 3,03 2,80 2,64 2,53 2,44 2,37 2,32 2,27 2,20 2,13 2,05 2,01 1,96 1,91 1,86 1,81 1,76 

24 4,26 3,40 3,01 2,78 2,62 2,51 2,42 2,36 2,30 2,25 2,18 2,11 2,03 1,98 1,94 1,89 1,84 1,79 1,73 

25 4,24 3,39 2,99 2,76 2,60 2,49 2,40 2,34 2,28 2,24 2,16 2,09 2,01 1,96 1,92 1,87 1,82 1,77 1,71 

26 4,23 3,37 2,98 2,74 2,59 2,47 2,39 2,32 2,27 2,22 2,15 2,07 1,99 1,95 1,9 1,85 1,8 1,75 1,69 

27 4,21 3,35 2,96 2,73 2,57 2,46 2,37 2,31 2,25 2,2 2,13 2,06 1,97 1,93 1,88 1,84 1,79 1,73 1,67 

28 4,20 3,34 2,95 2,71 2,56 2,45 2,36 2,29 2,24 2,19 2,12 2,04 1,96 1,91 1,87 1,82 1,77 1,71 1,65 

29 4,18 3,33 2,93 2,70 2,55 2,43 2,35 2,28 2,22 2,18 2,10 2,03 1,94 1,90 1,85 1,81 1,75 1,70 1,64 

30 4,17 3,32 2,92 2,69 2,53 2,42 2,33 2,27 2,21 2,16 2,09 2,01 1,93 1,89 1,84 1,79 1,74 1,68 1,62 

40 4,08 3,23 2,84 2,61 2,45 2,34 2,25 2,18 2,12 2,08 2,00 1,92 1,84 1,79 1,74 1,69 1,64 1,58 1,51 

60 4,00 3,15 2,76 2,53 2,37 2,25 2,17 2,10 2,04 1,99 1,92 1,84 1,75 1,70 1,65 1,59 1,53 1,47 1,39 

120 3,92 3,07 2,68 2,45 2,29 2,18 2,09 2,02 1,96 1,91 1,83 1,75 1,66 1,61 1,55 1,50 1,43 1,35 1,25 

 

 
3,84 3,00 2,60 2,37 2,21 2,10 2,01 1,94 1,88 1,83 1,75 1,67 1,57 1,52 1,46 1,39 1,32 1,22 1,00 




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Chapter IV : Fractional factoriel designs 

 

IV.1. Introduction 

In a full factorial design, the number of trials increases exponentially with the number of 

factors, rapidly making the experimental process impractical due to its complexity and 

high costs. For example, a full factorial design at two levels and six factors would require 

26 = 64 trials, while a ten factors design would require 210 = 1024  trials. As 𝑘 increases, 

this inflation makes it impractical to carry out full experiments, particularly in cost- or 

time-constrained environments. Therefore, fractional factorial designs have been 

developed to compensate for this exponential increase in the number of trials. Their main 

objective is to significantly reduce the number of experiments required while retaining 

sufficient information to analyse the main effects and, in some cases, certain critical 

interactions. 

IV.2. Fractional factorial designs at two-level 𝟐𝒌−𝒒 

Fractional factorial designs are an optimised experimental approach designed to 

minimise the number of trials while still allowing main effects to be estimated. These 

designs offer the possibility of conducting a study involving 𝑘 factors with a significantly 

smaller number of experiments than the 2𝑘 trials required by a full factorial design, while 

preserving an essential amount of statistical information. A fractional factoriel design has 

: 𝑵 = 𝟐𝒌−𝒒 trials. 

 

{
 
 

 
 
𝑞 = 1:𝑁 = 2𝑘−1𝑡𝑟𝑖𝑎𝑙𝑠 → 21 𝑡𝑖𝑚𝑒𝑠 𝑓𝑒𝑤𝑒𝑟 𝑡𝑒𝑠𝑡𝑠 𝑡ℎ𝑎𝑛 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝐹𝐹𝐷;

𝑞 = 1:𝑁 = 2𝑘−2𝑡𝑟𝑖𝑎𝑙𝑠 → 22 𝑡𝑖𝑚𝑒𝑠 𝑓𝑒𝑤𝑒𝑟 𝑡𝑒𝑠𝑡𝑠 𝑡ℎ𝑎𝑛 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝐹𝐹𝐷;
……… .
……… .

𝑞 ∶ 𝑁 = 2𝑘−𝑞𝑡𝑟𝑖𝑎𝑙𝑠 → 2𝑞  𝑡𝑖𝑚𝑒𝑠 𝑓𝑒𝑤𝑒𝑟 𝑡𝑒𝑠𝑡𝑠 𝑡ℎ𝑎𝑛 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝐹𝐹𝐷.    

 

with : 

  k : number of factors ;  

 2 : each factor takes on two levels (-1) and (+1); 

 q : means that the number of trials in the plan has been divided by 2𝑞 . 

Example IV. 1 
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A 25-2 fractional design studies 5 factors at 2 levels and is completed in only 8 trials 

compared to a full factorial design (FFP: 25 =32 trials). This means that the PFC has been 

divided by 22 = 4.d. 

 

IV.3. Design of a fractional factorial experiment 

As with full factorial designs, fractional designs are presented by mathematical models of 

polynomial form containing 2k coefficients: a constant, main effects and interactions. If we 

carry out N=2k-q experiments, we obtain a system of N equations with M unknowns, with 

M > N . 

Let be the matrix system : 𝑌 = 𝑋. 𝐴                                                                                 (𝑬𝒒. 𝐈𝐕 − 𝟏)                                                                                     

with :   {

𝑌 (𝑁, 1)

𝑋 (𝑁,𝑀)
𝐴 (𝑀, 1)

             et       M > N                

Mathematically, this system of equations is impossible to solve and in order to find its 

solution, we recommend adapting another model containing only N unknowns. So, how 

can this be done? 

IV.3.1. Notion of contrasts and aliases 

To reduce the number of unknowns M to N, it is advisable to group the coefficients of the 

initial model into new unknowns called contrasts (contrast theory). By definition, a 

contrast represents an apparent effect 𝑳𝒊, of the reduced mathematical model which 

groups and combines two real effects (a main effect 𝒂𝒊and an interaction 𝒂𝒊𝒋). These 

effects are said to be merged or aliased in the contrast. The use of contrast theory leads 

us to a new matrix system written in this form:  

Remark  

As q increases, the experimental load decreases, but at the expense of an increasing risk to 

the quality of the information obtained from the design. It is therefore necessary to assess 

the risks before starting the experiment and to minimise them by constructing the 

appropriate fractional design. 
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𝑌 = 𝑋𝑠. 𝐿                                                                                                                                  (𝑬𝒒. 𝐈𝐕 − 𝟐)                                                                                                                                           

with :   {

𝑌 (𝑁, 1);                                                                      
𝑋𝑠 (𝑁, 𝑁): 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝐻𝑎𝑑𝑎𝑚𝑎𝑟𝑑

𝐿 (𝑁, 1): 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑒𝑠 𝑣𝑒𝑐𝑡𝑜𝑟.                        

; 

The transition from the system (Eq. IV-1) to the system (Eq. IV-2) generates a matrix 

calculation which makes it possible to determine the contrasts 𝑳𝒊 of the reduced model as 

a function of the coefficients of the initial model (starting model). To do this, the effects 

matrix X(N, M) is decomposed into two sub-matrices: 𝑋𝑆(N, N) et 𝑋𝐼(N, M-N) 

We have :  𝑋 = [𝑋𝑆 ⋮  𝑋𝐼]        et           𝐴 = [
𝐴𝑆
𝐴𝐼
]    

Equation (Eq. IV-1) can then be written as :  

𝑌 = 𝑋. 𝐴 = [𝑋𝑆 ⋮  𝑋𝐼] × [
𝐴𝑆
𝐴𝐼
] = 𝑋𝑆. 𝐴𝑆 + 𝑋𝐼 . 𝐴𝐼                                                            (𝑬𝒒. 𝐈𝐕 − 𝟑)                                                              

Combining (Eq. IV-2) and (Eq. IV-3), we obtainrons :   

𝑌 = 𝑋𝑠. 𝐿 = 𝑋𝑆. 𝐴𝑆 + 𝑋𝐼 . 𝐴𝐼                                                                                                 (𝑬𝒒. 𝐈𝐕 − 𝟒)                                                                                                    

The contrast vector L is obtained from the following equation: : 

𝐿 = 𝐴𝑆 + [𝑋𝑆
𝑇𝑋𝑆]

−1𝑋𝑆
𝑇𝑋𝐼 . 𝐴𝐼                                                                                                (𝑬𝒒. 𝐈𝐕 − 𝟓)                                                                                                  

with : [𝑋𝑆
𝑇𝑋𝑆]

−1𝑋𝑆
𝑇𝑋𝐼 aliases matrix. 

As mentioned above, a fractional design certainly saves on experimental costs, but it does 

have its drawbacks. Ambiguities can arise when interpreting the results, essentially due 

to the pairing of the coefficients in the initial model, which does not allow us to obtain the 

exact information or to extract the information we are looking for about the phenomenon 

under study. So how can these ambiguities be resolved and the mathematical model 

postulated in this type of plan interpreted properly? 

IV.3.2. Notion of alias generator 

To overcome this problem of interpretation, we recommend the use of the Box calculation, 

which uses an alias generator and a definition relation to quickly predict the pairs of 
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aliases of the coefficients of the initial model and the way in which they are aliased in the 

contrasts, without using the alias matrix. 

By definition, an alias generator represents the highest order interaction of the initial 

model 𝒙𝒊…𝒌 which, after a selective and successive sorting of (+1) and (-1) in the FFD's 

effects matrix, makes it possible to determine the set of aliases thanks to the definition 

relation which associates it with the 𝒙𝟎 column (noted I: element signifying +1), useful for 

calculating the average of the responses  𝒂𝟎. The definition relation is written in the form: 

𝑰 = 𝒙𝒊…𝒌. 

Generally speaking, Box's calculation leads us to the following relationship: 

𝐿𝑖 = 𝑎𝑖 ±∑𝑎

𝑘

𝑖 𝑖..𝑘

 

Remark : 

The Box calculation is used to find columns with identical signs. It is only valid for two-

level fractional factorial designs whose experimental points are located exactly at the 

vertices of the study domain. 

IV.3.3. Interpretation assumptions 

As we do not carry out all the experiments in the complete design, we cannot obtain the 

value of all the interactions. We have to create additional replacement information 

ourselves. This information must be realistic and compatible with the study being carried 

out. It is introduced in the form of hypotheses and needs to be verified before the study is 

concluded. These hypotheses are : 

1. interactions of order 3 or higher are considered negligible; 

2. if a contrast is zero, this may mean that : 

- the aliased effects and interactions are all zero ; 

- the aliased effects and interactions compensate each other; 

3. if two contrasts are small, it is assumed that their interaction is also small; 

4. if one contrast is weak and the other is strong, their interaction is assumed to be weak; 

5. if two contrasts are strong, be wary of their interaction, which may also be strong; 



                Fractional Factoriel Designs 

40 
 

6. if two interactions of order two are aliased in a contrast of significant value (in which 

case it is not known which interaction is responsible for the observed effect, or whether 

the two interactions each have an effect), it will be essential to carry out additional tests. 

IV.4 Application example  

Consider the matrix of the example used to study complete factorial design 23 (adsorption 

of amoxicillin by a hydroxyapatite). 

Table IV.1. Experiment matrix of full factorial design at two factors 23. 

Run N 𝒙𝟎 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟏𝟐 𝒙𝟏𝟑 𝒙𝟐𝟑 𝒙𝟏𝟐𝟑 y(%) 

1 +1 -1 -1 -1 +1 +1 +1 -1 55.89 

2 +1 +1 -1 -1 -1 -1 +1 +1 56.93 

3 +1 -1 +1 -1 -1 +1 -1 +1 64.70 

4 +1 +1 +1 -1 +1 -1 -1 -1 61.23 

5 +1 -1 -1 +1 +1 -1 -1 +1 85.95 

6 +1 +1 -1 +1 -1 +1 -1 -1 89.95 

7 +1 -1 +1 +1 -1 -1 +1 -1 88.50 

8 +1 +1 +1 +1 +1 +1 +1 +1 96.55 

 

Table IV.2. Coefficient values for the AMX adsorption model. 

constant Effets linéaires Effets d’interactions 

𝑎0 𝑎1 𝑎2 𝑎3 𝑎12 𝑎13 𝑎23 𝑎123 

74.96 1.20 2.78 15.28 -0.06 1.81 -0.49 1.07 

To split this complete factorial design into two parts in order to obtain a fractional 23-1 

design, it is necessary to : 

1. sort the rows of this design according to the values in the highest interaction column 

(Box calculation). In this case, the alias generator is the triple interaction 123 ;  

The sorting is done in relation to the (+1) and (-1) in order to obtain a part of the upper 

half-plane containing only (+1) in the number of 4 rows in column 123 and a part of the 

lower half-plane containing only (-1) in the number of 4 (Table III.2). 
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Table IV.3. Matrix of X (N, M) effects sorted by FFD 

  N 𝒙𝟎 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟏𝟐 𝒙𝟏𝟑 𝒙𝟐𝟑 𝒙𝟏𝟐𝟑 y 

2 +1 +1 -1 -1 -1 -1 +1 +1 55.89 

3 +1 -1 +1 -1 -1 +1 -1 +1 56.93 

5 +1 -1 -1 +1 +1 -1 -1 +1 64.70 

8 +1 +1 +1 +1 +1 +1 +1 +1 61.23 

1 +1 -1 -1 -1 +1 +1 +1 -1 85.95 

4 +1 +1 +1 -1 +1 -1 -1 -1 89.95 

6 +1 +1 -1 +1 -1 +1 -1 -1 88.50 

7 +1 -1 +1 +1 -1 -1 +1 -1 96.55 

 

2. Choose an upper or lower half-plane and carry out the study in relation to this part 

(carry out the experiments based on the chosen part). In the following, we will use the 

upper half-plane in our calculations;  

3. Determine the aliased columns of the new effects matrix which have a sequence of 

signs (+1) and (-1) which are identical 2 by 2 (Example: column 1 and column 123, which 

is equivalent to writing 1=123); 

4. Determine the contrasts (apparent effects resulting from the fact that the effects 

are merged 2 by 2). 

• Upper half-plane: 

Aliases generator is: column 123.  

Definition relationship: I=123 

According to Box, its calculation is based on the following relationships: 

- multiplying a column by itself gives a sign column (+); I: 1⨯1= 1²= I ; 

- multiplying a column by a column of signs (+); I, gives back the initial column: 1⨯I= 

I⨯1=1. 

 

Multiply the 2 members of the definition relation I = 123 by 1; we obtain 1⨯I = 1⨯123 = 

1⨯1⨯23 = 1²⨯23 and simplifying according to the rules above (Box algebra): 1 = 23; 

which means that the main effect 1 is therefore aliased with the interaction 23. 
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Doing the same with all the factors, we obtain : 

 2 = 13; the main effect 2 is aliased with the interaction 13; 

 3 = 12; main effect 3 is aliased with interaction 12. 

Once the aliases have been found, we determine the 𝐿𝑖 contrasts: 

𝐿1 = 𝐿23 = 𝑎1 + 𝑎23
𝐿2 = 𝐿13 = 𝑎2 + 𝑎13
𝐿3 = 𝐿12 = 𝑎3 + 𝑎12
𝐿0 = 𝐿123 = 𝑎0 + 𝑎123

 

The system obtained after reducing the number of unknowns M is as follows: 

Table IV.4. Matrix of X (N, N) effects  

N  𝒙𝟎 𝒙𝟏 𝒙𝟐 𝒙𝟑 y 

2  +1 +1 -1 -1 55.89 

3  +1 -1 +1 -1 56.93 

5  +1 -1 -1 +1 64.70 

8  +1 +1 +1 +1 61.23 

 

Table IV.5. Apparent coefficient values for the AMX adsorption model. 

 

 

Remark : 

In the lower half-plane, column 123 contains only (-1) values, whereas column I contains 

only (+1) values, giving us the defining relationship: I = - 123. From here, we can find all 

the aliases by posing: 1⨯I = -1⨯123 = -1²⨯23, or 1 = -23 for example. 

Once the contrast values have been determined, a statistical analysis is run to validate the 

postulated mathematical model before it is interpreted. 

Apparent effects 𝑳𝟎 𝑳𝟏 𝑳𝟐 𝑳𝟑 

vales 76.03  0.71  4.59  15.22  
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Chapter V : Response surfaces methodology 

 

V.1. Introduction 

The first experimental designs published in the literature were designed to estimate the 

effects of factors. However, from an industrial point of view, not all the problems 

encountered consist solely of estimating and then comparing the effects of factors. Many 

studies involve finding an optimum, if any, in a field of study known as the experimental 

field. For this purpose, the methodology of experimental design for response surfaces was 

created in order to determine quantitatively the variations in response with respect to the 

factors of significant influence, identified if necessary during an initial screening study. 

V.2. Response surfaces methodology 

The study of response surfaces is associated with the use of second-degree polynomials, 

which can be written in the following general form : 

𝑦̂ = 𝑏0 +∑𝑏𝑗𝑥𝑗

𝑘

𝑗=1

+∑∑𝑏𝑗𝑢

𝑘

𝑢≠𝑗

𝑘

𝑗=1

𝑥𝑗𝑥𝑢 +∑𝑏𝑗𝑗

𝑘

𝑗=1

 𝑥𝑗
2                                                         (𝑬𝒒. 𝐕 − 𝟏) 

The plans corresponding to this type of model must : 

• allow each of the factors to be studied on at least three levels ; 

• include a reasonable number of trials ; 

• satisfy the optimality criteria, given that the matrix X can no longer be orthogonal. 

There are several types of second-degree design, the main ones being : 

V.2.1. Central composite design 

Centred composite design consists of carrying out the tests of a factorial design 

supplemented by experiments at the centre of the field of study and star tests (Figure V.1). 

The total number of trials N to be carried out is the sum of : 

• 𝒏𝒇 full factorial design trials ; 

• 𝒏𝜶 = 𝟐𝒌 star tests on axes at a distance α from the centre of the domain ; 

• 𝒏𝟎 trials at the centre of the domain. 
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Figure V.1. Representative diagram of a centred composite design for two factors 

The figure above illustrates the study domain of a two-factor composite design. Points A, 

B, C and D are the experimental points of a full 22 factorial design. Point E is the central 

point. This point can be repeated one or more times. Points F, G, H and I are the axial points 

located at a particular distance α from the centre of the study domain (α plays an 

important role in the quality of the model and should not be chosen at random). These 

last four points form what is known as the star plane. 

Furthermore, the classical mathematical model derived from the general model (Eq. V-1) 

and representing the two-factor composite design is written as : 

ŷ = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2  +  𝑎12𝑥1𝑥2 + 𝑎₁₁𝑥1
2 +  𝑎₂₂ 𝑥2

2 

V.2.1.1. Properties of composite designs 

• Orthogonality of the calculation matrix 

For a two-factor composite design, 9 experiments are required to determine the 

values of the 6 coefficients of the equation of the postulated second-degree model. 

Thus, the effects matrix is as follows: 
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                              X = 

 

 

As the matrix X is not orthogonal, the matrix [𝑋𝑇𝑋]−1 is no longer diagonal. The variances 

of the model coefficients are obtained by multiplying the elements 𝑪𝒋𝒋 of the diagonal of 

this dispersion matrix by the reproducibility variance : 

𝑆𝑏𝑗
2 = 𝐶𝑗𝑗 . 𝑆𝑟𝑒𝑝

2                                                                                                                          (𝑬𝒒. 𝐕 − 𝟐)   

The solution vector is calculated in the same way as for the factorial plane using the 

following equation : 

 𝐴 =  [𝑋𝑇𝑋]−1 𝑋𝑇 𝑌           

• Optimality criteria 

✓ Rotational isovariance criterion: for the composite design to satisfy this 

criterion, the star points must be placed at a distance α equal to the fourth 

root of the number of points in the factorial design: 𝛼 = 𝑛𝑓
1/4

 ; 

✓ Uniform precision criterion: obtained by increasing the number of 

central points. Its purpose is to ensure the same predicted response 

accuracy throughout the domain; 

✓ Orthogonality criterion: the orthogonality criterion is met if the matrix 

[𝑋𝑇𝑋]−1 is diagonal. In the case of centred composite planes, this criterion 

is met if α chosen satisfies the following condition : 

✓ 𝛼 = (
𝑛𝑓(√𝑁−√𝑛𝑓)

2

 

4
)

1

4

 

+ - - + + + 
+ + - - + + 
+ - + + + + 
+ + + - + + 
+ 0 0 0 0 0 
+ -α 0 0 +α² 0 
+ +α 0 0 +α² 0 
+ 0 -α          0 0 +α² 
+ 0 +α     0 0 +α² 
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The values of the parameter α and the number of points at the centre 𝑛0 depend on the 

number of factors k in the basic factorial design and the optimality criterion fulfilled by 

the design (Table V.1). 

Table V.1. Values of α and 𝑛0 according to the properties equired for CCD. 

Remark :  

The major disadvantage of the composite design strategy is that it requires more 

experimental points than coefficients to be determined. 

V.2.2. Box-Behnken design 

The Box-Behnken design is economical and requires only 3 levels per factor, unlike the 

composite design, which requires 5 levels. The Box-Behnken design is a second-degree 

design which does not rely on the full factorial design stage. It is used when the researcher 

is sure of knowing all the factors influencing the phenomenon being studied. He starts 

with three factors, but can use four, five or more. 

The Box-Behnken plan has the property of sequentiality with respect to the factors, i.e. it 

is possible to study k factors while reserving the possibility of adding others, while 

retaining the results of tests already carried out.    

For a number of three factors, the Box-Behnken design is constructed as follows (Figure 

V.2): 

✓ write a 22 design on two factors and set the remaining k-2 variables to level 0 (in 

this case k-2= 3-2=1) ; 

k  2 3 4 5 2(5-1) 6 2(6-1) 

𝑛𝑓 2k (ou 2k-p) 4 8 16 32 16 64 32 

𝑛𝛼   4 6 8 10 10 12 12 

 Rotational isovariance ≥1 ≥1 ≥1 ≥1 ≥1 ≥1 ≥1 

𝑛0 Uniform precision 5 6 7 10 6 15 9 

 ortogonality   8 12 12 17 10 24 15 

α  1,41 1,68 2 2,38 2 2,83 2,38 
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✓ repeat the operation for all possible combinations of factors (in this case, repeat 

twice); 

✓ add points to the centre. 

 

 

 

 

 

 

Figure V.2. Box-Behnken design for three factors 

Figure V.2 illustrates the study domain of a three-factor Box-Behnken design. The 

experimental points (points 1 to 12) are all placed at equal distances from the centre of 

the study area: the middle of the edges of the cube. Point 13, on the other hand, represents 

the test at the centre that Messrs Box and Behnken recommend repeating three times.  

This design therefore comprises twelve trials, to which we can add one (or more) central 

point(s). Table IV.2 shows these twelve trials with 3 central points.  The construction of 

the matrix of the Box-Behnken plane gives it the particularity of being isovariant by 

rotation (spherical symmetry). 

As with the composite plane, the classical mathematical model derived from the general 

model (Eq. V-1) and representing the three-factor Box-Behnken plane is written : 

ŷ = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎12𝑥1𝑥2 + 𝑎13𝑥1𝑥3 + 𝑎23𝑥2𝑥3 + 𝑎₁₁𝑥1
2 + 𝑎₂₂ 𝑥2

2 + 𝑎₃₃ 𝑥3
2 

Combining the study area schematised in Figure V.2 (Table V.2) and the representative 

mathematical model for a number of factors equal to three, it emerges that a Box-Behnken 

design requires 13 to 15 trials to determine 10 coefficients. It is therefore necessary to 

solve a system of 13 to 15 equations with 10 unknowns. 
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Table V.2. Box-Behnken matrix for 3 factors. 

N 𝑥1 𝑥2 𝑥3 

1 -1 -1 0 

2 +1 -1 0 

3 -1 +1 0 

4 +1 +1 0 

5 -1 0 -1 

6 +1 0 -1 

7 -1 0 +1 

8 +1 0 +1 

9 0 -1 -1 

10 0 +1 -1 

11 0 -1 +1 

12 0 +1 +1 

13 0 0 0 

14 0 0 0 

15 0 0 0 

Remark : 

To determine the total number of trials N to be carried out, it is preferable to first adopt 

the second-degree mathematical model corresponding to the number of factors studied, 

and then count the number of interactions in this model. 

As the matrix X of the Box-Behnken design is not orthogonal, the matrix [𝑋𝑇𝑋]−1 is no 

longer diagonal. This amounts to doing the same calculation as the composite plane to 

determine the coefficients of the postulated model. 

V.3. Notions of response surfaces and isoresponse curves 

Once the second degree mathematical model has been established, it is used to find the 

optimum combination of operating parameters leading to the best response y. The 

optimum can be found either by mathematically solving the equation representing the 

phenomenon under study, or by graphically solving it using response surfaces and 

isoresponse curves. 
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V.3.1. Response surfaces  

The second degree model obtained after experimentation can be used to plot the 

relationship 𝑦̂ = 𝑓(𝑥1, 𝑥2, … . . 𝑥𝑘) in the space of the variables 𝑥1, 𝑥2, … . . 𝑥𝑘. This 

relationship is therefore illustrated by a surface called the response surfaces, which is 

nothing other than a set of graphs represented in a three-dimensional space (Figure IV.3); 

two dimensions for the factors and one for the response. Thus, the horizontal plane of the 

figure represents the range of variation of two factors and the vertical axis represents the 

variation of the response based on the postulated model. It should be noted that the shape 

of the response surfaces (paraboloid or hyperboloid) can tell us whether there is a 

maximum or a minimum, or both. However, their curvatures are due to the presence of 

square terms in the model. 

 

 

 

 

 

 

 

 

 

Figure V.3. Response surface curve. 

V.3.2. Isoresponse curves  

The isoresponse curves interpret the projection of all the points making up the response 

surface in the horizontal plane of the variables 𝑥1, 𝑥2, … . . 𝑥𝑘 (Figure V.4). They can be 

interpreted as contour lines onto which the value of the response is projected. 
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Figure V.4.Isoresponse curve. 

V.4 Application example  

V.4.1. Problem to be solved 

A researcher wants to use shoe sole waste to recover an organic pollutant: bezacryl yellow 

(JB) in a closed stirred reactor. His main interest is in obtaining the optimum conditions 

for pH, JB concentration and shoe sole waste concentration (in the form of a suspension), 

which will give a better adsorption rate for bezacryl yellow.  The researcher used a 

centred composite design for this study. The ranges of variation for each of the 

parameters studied are : [JB]∊[ 10-50]mg/L , [susp]∊[0.1-1] g/250mL) and pH∊[2-10]. 

V.4.2. Problem formulation  

✓ objective of the study: optimisation of the operating parameters for a better 

adsorption yield of bezacryl yellow by the waste shoe soles ; 

✓ define the factors and the response : 

Response y: rate of adsorption of bezacryl yellow by the adsorption process, 

calculated as follows:  

𝑦 (%) =  
[𝐽𝐵]0   − [𝐽𝐵]𝑡

[𝐽𝐵]0
 × 100 
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With : 

 [𝐽𝐵]0: initial concentration of bezacryl yellow ;  

        [𝐽𝐵]𝑡: concentration of the bezacryl yellow solution at time t. 

Factors and ranges of variation :   

 Factor 1 ⇒ z_1: concentration of bezacryl yellow, [JB]∊[10-50]mg/L ; 

 Factor 2 ⇒ z_2: concentration of shoe sole suspension; [susp]∊[0.1-1] g/250mL ; 

 Factor 3 ⇒ z_3: pH of the solution; pH∊[2-10]   

To conduct a study based on a three-factor centred composite design with uniform 

precision, we need 𝑁 = 𝑛𝑓 + 𝑛𝛼 + 𝑛0 = 8 + 6 + 6 = 20 experiments to be performed.  The 

mathematical model associated with this design is a model with M =10 coefficients which 

is written in the following form: 

ŷ = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎12𝑥1𝑥2 + 𝑎13𝑥1𝑥3 + 𝑎23𝑥2𝑥3 + 𝑎₁₁𝑥1
2 + 𝑎₂₂ 𝑥2

2 + 𝑎₃₃ 𝑥3
2 

The levels of the factors and their correspondence in coded variables are listed in Table 

V.3. 

Table V.3. Values of operating parameters at different levels. 

Real variables 
Coded 

variables  

Low level  Central High level 

-1.68 -1 0 +1 1.68 

𝑧1 : [𝐽𝐵]0 (mg/L) 𝑥1 10 18.1 30 41.9 50 

𝑧2 : [𝑆𝑢𝑠𝑝]0 (g/250mL) 𝑥2 0.1 0.29 0.55 0.81 1 

𝑧3: 𝑝𝐻   𝑥3 2 3.62 6 8.38 10 

The values -1.68 and +1.68 are respectively, the low and high level for the axial α points 

for a number of factors k=3. 

V.4.3. Planning and experimentation  

• Construction of the design of experiments: construct the matrix of experiments in 

real and coded units (Table V.4) in order to use it as a start-up tool to launch and 

facilitate the implementation of the experiment.  
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Table V.4. Matrix of experiments for a centred composite design. 

N 𝑧1 𝑧2 𝑧3 𝑥0 𝑥1 𝑥2 𝑥3 y (%) 

1 18,1 0,29 3,62 +1 -1 -1 -1 93,92 

2 18,1 0,29 8,38 +1 +1 -1 -1 82,45 

3 18,1 0,81 3,62 +1 -1 +1 -1 70,11 

4 18,1 0,81 8,38 +1 +1 +1 -1 97,70 

5 41,9 0,29 3,62 +1 -1 -1 +1 85,52 

6 41,9 0,29 8,38 +1 +1 -1 +1 87,85 

7 41,9 0,81 3,62 +1 -1 +1 +1 87,40 

8 41,9 0,81 8,38 +1 +1 +1 +1 86,42 

9 30 0,55 6 +1 0 0 0 88,26 

10 30 0,55 6 +1 0 0 0 91,63 

11 30 0,55 6 +1 0 0 0 89,30 

12 30 0,55 6 +1 0 0 0 87,40 

13 30 0,55 6 +1 0 0 0 90,50 

14 30 0,55 6 +1 0 0 0 90,00 

15 10 0,55 6 +1 -1,68 0 0 81,20 

16 50 0,55 6 +1 +1,68 0 0 85,82 

17 30 0,1 6 +1 0 -1,68 0 94,30 

18 30 1 6 +1 0 +1,68 0 90,00 

19 30 0,55 2 +1 0 0 -1,68 23,43 

20     30 0,55 10 +1 0 0 +1,68 80,36 

 

V.4.4. Analysis of the results 

• Calculation of model coefficients 

As mentioned previously, the coefficients of the regression equation are estimated by 

calculating the following matrix product: 𝐵 = [𝑋𝑇𝑋]−1 𝑋𝑇 𝑌. The results of this calculation 

are shown in Table V.5. 
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Table V.5. Values of the coefficients of the second-degree model. 

 Constant  Linear effects 

𝑎0 𝑎1 𝑎2 𝑎3 

89.13 1.85 -1.12 7.23 

Interaction effects 

𝑎12 𝑎13 𝑎23 𝑎11 𝑎22 𝑎33 

4.47 -1.85 1.13 0.30 3.35 -10.91 

• Statistical analysis of the regression equation  

• Checking the significance of the coefficients 

The value of the reproducibility variance is S2rep= 2.35. However, to determine the 

variance of the model coefficients, we simply multiply the elements Cjj of the diagonal of 

the dispersion matrix [𝑋𝑇𝑋]−1 (EXCEL) by the reproducibility variance : 𝑆𝑏𝑗
2 = 𝐶𝑗𝑗𝑆𝑟𝑒𝑝

2 . 

The tj values obtained for each effect are shown in Table V.6. 

Table V.6. Values of tj 

 Constant  Linear effects 

𝑡0 𝑡1 𝑡2 𝑡3 

227.61 10.73 6.51 41.90 

Interaction effects 

𝑡12 𝑡13 𝑡23 𝑡11 𝑡22 𝑡33 

15.18 6.27 3.83 1.80 20.46 66.56 

 

For the significance level α = 0.05 and the number of degrees of freedom f = (n0 - 1) = 5, 

the tabulated value of Student's tα (f) is equal to 2.57. As the value of t11 is less than tα (f), 

the coefficient a11 is therefore insignificant and therefore eliminated from the regression 

equation. 

• Validation test of the regression equation  

Search for bias 
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The calculated value of the residual variance for N = 20 and ℓ = 9 is equal to Sres2 = 142.26, 

which gives: F = 1.59. The tabulated value of the Fisher Snedecor test for significance level 

α = 0.05 and numbers of degrees of freedom (N - ℓ) = 11 and (n0 - 1) = 5 varies between 

4.74 and 4.68. As this interval is greater than the calculated value, the model is considered 

unbiased. 

 

Significance test for regression  

For the significance level α = 0.05 and the numbers of degrees of freedom (ℓ -1) = 8 and 

(N-ℓ) = 11, the value of the tabulated Fisher test is 2.95. Since the calculated value of F is 

greater than the tabulated value, the regression equation is adequate and the model is 

validated at 95%. The equation used for the model is therefore written as : 

ŷ  = 89,13 +  1,85 𝑥1 − 1,12𝑥2  +  7,23𝑥3 +  4,74𝑥1𝑥2 − 1,85𝑥1𝑥3  +  1,13𝑥2𝑥3  

+  3,35 𝑥2
2 − 10,91 𝑥3

2 

Model analysis indicates that the most influential parameters are initial dye concentration 

and solution pH with positive effects of 1.85 and 7.23 respectively. Suspension 

concentration had a negative effect of -1.12. 

 

• Analysis of residuals 

 The quality of the second-order model can be assessed by analysing the residuals 

(Figure V.5). 
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Figure V.5. Residuals diagram 

The diagram in Figure IV.5 shows no relationship between the predicted values and the 

residuals, as the points appear to be arranged randomly. This result reflects the absence 

of information in the residuals, so all the information is explained by the regression model 

used. In conclusion, the second-order model obtained simulates perfectly the JB 

adsorption process on the sole waste; it will therefore be used to optimise the operating 

parameters. 

V.4.5. Optimisation  

After the validation stage, which enabled us to arrive at a second degree model translating 

the effect of the variation of the three operating parameters studied on the rate of 

adsorption of JB by the shoe sole waste, the search for the optimum values of these 

parameters can then be carried out either by : 

• Mathematical resolution  

It should be remembered that the modelling of the process studied led to the following 

equation: 

ŷ  = 89,13 +  1,85 𝑥1 − 1,12𝑥2  +  7,23𝑥3 +  4,74𝑥1𝑥2 − 1,85𝑥1𝑥3  +  1,13𝑥2𝑥3  

+  3,35 𝑥2
2 − 10,91 𝑥3

2 

This predictive mathematical equation is used to calculate the optimum values of the 

operating parameters leading to the optimum response in the field of study. Simply derive 

the function with respect to each of the variables 𝒙𝟏,  𝒙𝟐 and , 𝒙𝟑. The system of equations 

obtained after derivation is represented as follows : 

{
  
 

  
 
𝜕𝑦̂

𝜕𝑥1
=  1,85 +  4,74𝑥2 − 1,85𝑥3 = 0                    

𝜕𝑦̂

𝜕𝑥2
= −1,12 +  4,74𝑥1  +  1,13𝑥3  +  6,70 𝑥2

𝜕𝑦̂

𝜕𝑥3
=  7,23 − 1,85𝑥1  +  1,13𝑥2 − 21,82 𝑥3 = 0

= 0  

This system cannot be solved analytically, so a numerical solution is required.  

• Graphical resolution 

 The response surface curves plotted using the STASTICA software show a maximum, 

which indicates the existence of a maximum efficiency. 
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Figure V.6. Response surface curves. 

 

According to these curves, a JB adsorption rate of around 98% (red zone) is obtained 

when working with a JB concentration equal to 30 mg/L, a shoe sole suspension 

concentration equal to 0.1 g/250 mL and a pH equal to 6. This combination of three 

parameters represents the optimum conditions sought.   
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Chapter VI : Mixture Design 

 

VI.1. Introduction 

Unlike conventional experimental designs (complete and fractional factorial designs, 

response surface designs, etc.) which are based on the study of the influence of 

independent factors on the measured response, mixture designs are special designs, 

adapted to dependent factors.  

VI.2. Fundamental constraint of mixtures  

If we denote by x_i the content of constituent i in any mixture, the sum of the contents of 

all the constituents in the mixture satisfies the relation/ 

∑𝑥𝑖 = 100% 

𝑁

𝑖=1

             or             ∑𝑥𝑖 = 1                                                                  (𝑬𝒒. 𝐕𝐈 − 𝟏)

𝑁

𝑖=1

 

In this way, the content of each component remains between 0 and 100%. When the 

content of one of the constituents is increased, the other contents automatically decrease 

so that the sum of all the contents remains equal to 100%. 

This relationship, known as the fundamental constraint of mixtures, has important 

consequences for the geometric and matrix representations of these planes. It also has 

repercussions on the modelling of results. 

VI.3. Unconstrained mixture designs 

In this type of design, the mixtures studied are made up of products whose contents can 

vary from 0 to 1. 

VI.3.1. Geometric representation  

As with experimental designs, Cartesian axes can be used to graphically present the 

composition of the mixture studied. The first axis is assigned to the first component 

(factor 1: 𝑥1). The second axis, orthogonal to the first, is assigned to the second component 

(factor 2: 𝑥2) and so on.  Figure V.1 illustrates the Cartesian representation of a mixture 

of three components A, B and C. Figure VI.1.(a) shows the location of a point in a three-

component mixture, while Figure VI.1.(b) reveals the set of three-component mixtures in 

the Cartesian space of the three components A, B and C. 
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Figure VI.1. Representation of three-component mixtures in Cartesian space. 

 

It should be noted that the geometric representation of a mixture must also take into 

account the fundamental constraint of mixtures (Eq. VI-1,). This causes a dimension to 

disappear in the x_i space. Thus, to define a study domain for a mixture composed of two 

constituents A and B (binary), we use a straight line segment (Figure VI.2.(a)) and for a 

mixture with three constituents A, B and C (ternary), we adopt the representation of an 

equilateral triangle whose vertices are the three points with abscissae 1 (Figure VI.2.(b)). 

In fact, the pure constituents are represented by the ends of the right-hand segment for 

the binary and the vertices of the equilateral triangle in the case of the ternary. For 

example, a binary blend with 50% A is located in the middle of the segment delimited by 

components A and B. Point M with coordinates  𝑥𝑎, 𝑥𝑏et 𝑥𝑐 on the other hand, corresponds 

to a tertiary blend. 

Reamark : 

The vertices of the equilateral triangle correspond to pure components; 

The sides of the triangle correspond to binary mixtures; 

The inside of the triangle corresponds to all ternary mixtures. 
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Figure VI.2. Study area for compound mixtures: (a): two constituents and (b): three 

constituents. 

Beyond four constituents, the geometric representation becomes difficult, which 

necessitates the use of a table (matrix of tests) to group all the mixtures studied, as for 

classic experimental designs. 

III.3.2. Location of experimental points  

For a three-component mixture and when there are no constraints, the experimental 

points are distributed throughout the study area (Figure VI.3). 

 

 

 

 

 

 

 

Figure III.3: Network mixing plane (left), centred mixing plane (middle), augmented 

centred mixing plane (right). 

Depending on the arrangement of these points, several types of mixing scheme can be 

distinguished: 

• Simplex lattice designs: these include the three pure components and half-and-half 

mixtures; 
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• centred designs (Simplex-Centroid Designs): these are distinguished from lattice 

designs by the systematic presence of a central point made up of 1/3 A, 1/3 B and 

1/3 C ; 

• Augmented Simplex-Centroid Designs: these are centred mixing designs to which 

the centres of gravity of the unit simplexes are added. 

VI.4. Mixture designs with constraints 

In this type of design, the mixtures are characterised by numerous constraints (low, high 

or relational constraints) which may affect the choice of constituent proportions. 

Depending on these constraints, the planning of the study is modified and must be 

adapted to each case. 

VI.4.1. Prohibited low levels  

This case reflects the fact that the composition of one or more constituents may not be 

lower than a given value: this is the lower limit noted L_i. This condition reduces the field 

of study while retaining its original shape (for a three-component mixture, we have an 

equilateral triangle: Figure VI.4.(a)). 

VI.4.2. High prohibited contents  

In this case, the composition of one or more constituents may not exceed a given value: 

this is the upper limit noted U_i. In this case, the field of study is reduced, but the shape of 

the field is completely modified (for a three-component mixture, it is no longer a triangle 

but a polygon: Figure VI.4.(b)).  

III.4.3 Prohibited high and low contents  

This constraint reveals the possibility that any composition of one or more constituents 

may be subject to both lower and higher constraints. The introduction of dual constraints 

generally has the effect of modifying the shape of the experimental domain. It can be an 

equilateral triangle, a trapezoid, a pentagon (Figure VI.4.(c)).   
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Figure VI.4. Representation of the study domains of mixtures with constraints. 

VI.4.4 Relational constraints 

In addition to the high and low forbidden content constraints, mixtures present other 

relational constraints linked either to :  

• maintaining a constant ratio between the proportions of two constituents ; 

• respecting an addition relationship between the proportions of two or more 

constituents. 

 These new constraints lead to new restrictions on the field of study and modify the 

location of the experimental points. 

VI.4.5. Location of experimental points  

The general approach adopted for selecting the experimental points of a domain of any 

shape follows from Scheffé's proposal for regular domains; the informative points are 

located at the vertices of the domain, at the midpoints of the edges, at the centres of the 

faces or hyperfaces and at the centre of gravity of the volume or hypervolume.  

VI.5. Mathematical models associated with mixing designs 
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Like all classical experimental designs, to translate the variations of the property y ̂ as a 

function of the composition of the mixture, the experimenters choose classical polynomial 

models which can be written in a simplified form called the canonical form and which 

results from the existence of the equality constraint on the fractions of constituents in the 

mixture.  

VI.5.1. First degree model  

For the study of a three-component mixture, the postulated first-degree mathematical 

model is obtained from a classical polynomial of order one, i.e. : 

ŷ = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3                                                                                         (𝑬𝒒. 𝐕𝐈 − 𝟐) 

to which we apply the fundamental constraint of mixtures :  

𝑥1 + 𝑥2 + 𝑥3 = 1                                                                                                                                             

with :  

 ŷ : response calculated from the model at the chosen composition point ; 

The relationship (Eq.III-2) can then be written as : 

ŷ = 𝑎0(𝑥1 + 𝑥2 + 𝑥3) + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3                                                           (𝑬𝒒. 𝐕𝐈 − 𝟑) 

By grouping the coefficients : 

ŷ = (𝑎0 + 𝑎1)𝑥1 + (𝑎0 + 𝑎2)𝑥2 + (𝑎0 + 𝑎3)𝑥3         

the model then takes the following form : 

ŷ = 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3                                                                                                     (𝑬𝒒. 𝐕𝐈 − 𝟒) 

with :  

 {

𝑏1 = 𝑎0 + 𝑎1
𝑏2 = 𝑎0 + 𝑎2
𝑏3 = 𝑎0 + 𝑎3

 : coefficients linéaires du modèle. 

VI.5.2. Second degree model  

The second-degree model with interactions (synergistic) is written in the form : 
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ŷ = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎12𝑥1𝑥2 + 𝑎13𝑥1𝑥3 + 𝑎23𝑥2𝑥3 + 𝑎11𝑥1
2 + 𝑎22𝑥2

2 +

                 𝑎₃₃ 𝑥3
2                                                                                                                     (𝑬𝒒. 𝐕𝐈 − 𝟓)     

becomes , after application of the fundamental constraint for mixtures  : 

ŷ = 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏12𝑥1𝑥2 + 𝑏13𝑥1𝑥3 + 𝑏23𝑥2𝑥3                                        (𝑬𝒒. 𝐕𝐈 − 𝟔) 

with : 

 {

𝑥1 = (1 − 𝑥2 − 𝑥3)     

𝑥1
2 = 𝑥1(1 − 𝑥2 − 𝑥3)   

𝑥1
2 = 𝑥1 − 𝑥1𝑥2 − 𝑥1𝑥3)

   

and  

 

{
 
 
 

 
 
 
𝑏1 = 𝑎0 + 𝑎1 + 𝑎11   

𝑏2 = 𝑎0 + 𝑎2 + 𝑎22    

𝑏3 = 𝑎0 + 𝑎3 + 𝑎33    

𝑏12 = 𝑎12 − 𝑎11 − 𝑎22

𝑏13 = 𝑎13 − 𝑎11 − 𝑎33

𝑏23 = 𝑎23 − 𝑎22 − 𝑎33

  

The fundamental constraint of the mixtures makes the constant disappear and the second 

degree terms are reduced to the rectangular terms (double and triple interactions).  

The coefficients of the postulated model are calculated from the regression relation 

applied in the case of classical experimental designs. 
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