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Abstract

this work delves into the realm of artificial intelligence (Al) and its profound impact on civil
engineering practices. Through a meticulous review of existing Al algorithms, such as artificial
neural networks, genetic algorithms, random forests, and others, we explore their
implementation in civil engineering to evaluate and compute various parameters such as
bearing capacity, structural health monitoring, and more. Additionally multiple Al frameworks
are presented in this work, encompassing both open-source and commercial frameworks. A
case study is included, where the bearing capacity of a shallow foundation is evaluated using
the neural network algorithm. The bearing capacity is computed based solely on the outcomes
of the dynamic probing test and soil density.

Key words: Artificial Intelligence (Al), Civil Engineering, Bearing Capacity, Artificial Neural

Networks (ANN), Frameworks of artificial intelligence.
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General Introduction

The world is drowning in data. From the ceaseless hum of sensor networks monitoring our
cities to the colossal datasets generated by construction projects, the need for intelligent tools
to analyse and interpret this information has become paramount. This insatiable demand for
data mastery has propelled Artificial Intelligence (Al) to the forefront of innovation across

diverse disciplines.

Al's journey began as a glimmer in the minds of pioneering scientists like Alan Turing and John
McCarthy in the mid-20th century. Their vision laid the groundwork for a field that strives to
create intelligent machines capable of mimicking human cognitive abilities. Over the decades,
Al has experienced cycles of fervent optimism and disillusionment, punctuated by

breakthroughs in symbolic Al, expert systems, and the advent of machine learning.

Today, machine learning (ML) stands as the bedrock of contemporary Al. It empowers
algorithms to learn and improve from data without explicit programming. Deep learning (DL),
a subfield of ML, leverages artificial neural networks (ANNs) — complex structures inspired by
the human brain — to learn intricate patterns from massive datasets. These algorithms, the

workhorses of Al, are revolutionizing various industries

However, implementing Al in civil engineering presents unique challenges. Data availability,
quality, and security are paramount. Training Al models requires vast amounts of clean data,
and ensuring the security of infrastructure-related data is critical. Additionally, fostering
interdisciplinary collaboration between civil engineers and Al specialists is crucial to bridge the

gap between theoretical capabilities and real-world applications.

Despite these challenges, the potential benefits of Al in civil engineering are immense. Imagine
Al-powered predictive maintenance systems that anticipate infrastructure needs, smart
infrastructure design that optimizes efficiency and sustainability, and even autonomous

construction equipment that streamlines construction processes.



This study has a comprehensive set of objectives aimed at exploring the application of artificial

intelligence (Al) in civil engineering:

The primary objective is to educate and familiarize readers with various Al techniques and
algorithms, particularly focusing on machine learning models like neural networks, genetic
algorithms, and particle swarm optimization. By delving into these methodologies, the study
aims to enhance understanding of how Al can be utilized for predictive modelling and

optimization in civil engineering projects.

The study seeks to review and analyse current implementations of Al in civil engineering, with
a specific emphasis on practical applications in areas such as health monitoring, concrete
analysis, building information modelling (BIM), and geotechnical engineering. By examining
real-world use cases of Al in these domains, the research aims to showcase the benefits and

challenges associated with integrating Al into civil engineering practices.

In addition, a review of popular Al frameworks and libraries has been delivered to facilitate
the development of Al applications. By exploring frameworks like TensorFlow, PyTorch, and
scikit-learn, the study aims to demonstrate how these tools streamline the development

process, making it easier for engineers to implement Al solutions in civil engineering projects.

The final objective involves building a neural network Windows form application to calculate
the bearing capacity of soil. This application designed to compare its predictions with real
results obtained from penetrometer tests. By integrating Al into this specific task, the study
aims to showcase how neural networks can be utilized to predict soil bearing capacity
accurately, thereby enhancing the efficiency and accuracy of geotechnical engineering

assessments.
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.1 Introduction

Artificial intelligence (Al) is a branch of computer science focused on creating intelligent
machines that can mimic human cognitive abilities. These abilities include reasoning, learning
problem-solving, and decision-making. Think of Al as a giant information processor.it gathers
data from various sources in the real world, analyses it, and uses that knowledge to perform
practical tasks.in essence, Al provides a toolbox of methods, techniques, and tools to build
models and solution that simulate intelligent behaviour. This intelligent behaviour can be
modelled by natural processes.Al is rapidly developing field with the potential to revolutionize
many aspects of our lives. by automating repetitive takes and offering new perspectives on

complex problems, Al can boost our efficiency and deepen our understanding of the world[1].

The genesis of Al can be traced back to the mid-20th century, with seminal contributions from
luminaries such as Alan Turing and John McCarthy. Turing's groundbreaking work laid the
conceptual groundwork for computational thinking and machine intelligence, while McCarthy
coined the term "artificial intelligence" in 1956, sparking a revolution in computing. Over the
ensuing decades, Al experienced cycles of fervent optimism and disillusionment, punctuated

by breakthroughs in symbolic Al, expert systems, and the advent of machine learning[2].

The resurgence of Al in the 21st century has been propelled by exponential advances in
computational power, algorithmic sophistication, and the proliferation of big data. From the
ascent of deep learning and neural networks to the proliferation of intelligent agents and
autonomous systems, Al has transcended the realm of science fiction to become an
indispensable force driving innovation and progress in virtually every sector of the global

economy|[2].

Within the vast landscape of Al techniques lie a plethora of methodologies, each tailored to
address specific challenges and domains. Machine learning, the bedrock of contemporary Al,
encompasses a spectrum of approaches, including supervised learning, unsupervised learning,
and reinforcement learning. Neural networks, inspired by the architecture of the human brain,
have emerged as the linchpin of deep learning, enabling machines to autonomously learn

hierarchical representations of data.
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Natural language processing (NLP) empowers machines to comprehend, generate, and
manipulate human language, fostering applications in virtual assistants, language translation,
and sentiment analysis. Computer vision algorithms endow machines with the ability to
interpret and analyze visual information, fueling advancements in autonomous navigation,

facial recognition, and medical imaging.

As we stand at the precipice of the Al revolution, we are confronted with boundless
opportunities for innovation, progress, and societal transformation. Yet, with great power
comes great responsibility. It behoves us, as stewards of this nascent discipline, to navigate the
ethical, societal, and existential implications of Al with prudence, foresight, and a steadfast
commitment to harnessing its power for the betterment of humanity. Only then can we unlock

the full potential of artificial intelligence as a force for good in the world.

.2 Top Artificial Intelligence Techniques
The rapid evolution of Al has spurred the development of a multitude of techniques,
fundamentally altering our interactions with technology. Below are some of the foremost Al

methodologies that have emerged from this evolution.

Artificial Intelligence

Machine that thinks and act like human

Machine Learning \\\

Deep Learning

Neural

network

Figure I. 1: The Artificial Intelligence Realm.
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1.2.1 Machine learning
machine learning is a subset of artificial intelligence and computer science, revolves around
leveraging data and algorithms to empower Al systems to emulate human learning processes,

thereby enhancing their precision over time[3].

Machine learning (ML) stands as a significant component within the field of artificial
intelligence (Al), focusing on the exploration, formulation, and refinement of algorithms
capable of self-learning from data and subsequently making predictions[4]. ML denotes the
capacity of computers to acquire knowledge autonomously, without explicit programming
instructions. These ML-based models exhibit both predictive and descriptive capabilities,
enabling the extraction of insights from data. While ML operates within the broader domain
of Al, its applicability spans diverse disciplines such as computer science, information theory,
control computational complexity, probability and statistics, financial markets, and theory and
philosophy[5].

Supervised
Learning

Machine Unsupervised
Learning Learning

Reinforcement
Learning

Figure I. 2: Machine learning categories.

1.2.2 Neural network

A neural network is a computational model inspired by the structure and functioning of the
human brain, consisting of interconnected nodes called neurons. These neurons are organized
into layers, including an input layer where data is introduced, one or more hidden layers where

computation occurs, and an output layer that produces the results. Neural networks are
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trained using a variety of algorithms, such as backpropagation, to adjust the weights of
connections between neurons, enabling the network to learn and make predictions or
decisions from input data. They are widely used in various fields, including machine learning,

pattern recognition, image and speech recognition, and natural language processing[5].

e The neural network architecture consists of several layers, each with its specific role:

a. Input Layer

Neurons in this layer are responsible for representing the various features present in the input

data[6].
b. Hidden Layers

Neurons within these layers carry out complex mathematical operations, often involving
weighted sums and activation functions[5]. The hidden layers play a crucial role in enabling

the network to comprehend intricate relationships within the data[6].
c. Activation Functions

Neurons utilize activation functions to introduce nonlinearity into the network. Among the

commonly used functions are sigmoid, RelLU, and tanh[5].
d. Output Layer

Positioned at the end of the network, the final hidden layer connects to the output layer, where
predictions are generated. The number of output neurons varies depending on the specific

task at hand, such as regression or classification[6].
e. Training Process

Artificial neural networks (ANNs) learn by adjusting the connection. weights to minimize a
designated loss function[4]. Through backpropagation, gradients of the loss with respect to
the weights are computed, guiding the updates of the weights using optimization techniques
like gradient descent. The primary aim is to identify weights that minimize the loss, which
involves iteratively updating the weights to refine the predictions. Techniques such as

stochastic gradient descent are commonly employed in this process[7].
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Artificial neural networks demonstrate proficiency in modelling both linear and nonlinear
relationships, offering flexibility for addressing complex tasks. Deep neural networks (DNNs),
equipped with multiple hidden layers, excel particularly in capturing intricate patterns within
the data. The design and training of ANNs require meticulous attention to architecture,

hyperparameters, and data characteristics to mitigate challenges such as overfitting.

Deep neural network

Input layer Multiple hidden layer Output layer

Figure I. 3: Basic structure of neural network.

1.2.3 Deep learning

Deep learning is a technique within the realm of artificial intelligence, which instructs
computers to analyse data in a manner reminiscent of human cognitive processes[7]. Through
deep learning, computers can discern intricate patterns within various types of data such as

images, text, audio, and more, enabling them to generate precise analyses and predictions[4].

1.2.4 Bigdata

The term "big data" refers to datasets that surpass the capacities of conventional tools for
management[8]. This concept is characterized by three primary factors often referred to as the
three Vs: diversity, quantity, and speed. The diversity of data sources is expanding, arriving in

larger quantities and at a faster pace, necessitating prompt processing and action[9].
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1.2.5 Data mining /science

Data mining is a rapidly expanding field that constitutes a component of the knowledge
discovery in databases (KDD) process. This process encompasses various preliminary steps
such as data selection, data cleaning, preprocessing, and transformation before engaging in
data mining activities[10]. Data mining entails the utilization of computer algorithms to unveil
concealed patterns and unexpected associations within extensive datasets. Artificial
intelligence (Al) encompasses a broader domain than machine learning. Al systems function
as knowledge processing systems, incorporating fundamental techniques such as knowledge
representation, knowledge acquisition, and inference, which includes search and control

mechanisms.

Artificial

Intelligence

Machine
Learning
Data Deep
Mining/Science Learning
Big Data

Figure I. 4: lllustration of the interrelation of different intelligent computational technique.

1.3 Al algorithms

An algorithm is a set of defined steps designed to perform a specific objective. This can be a
simple process, such as a recipe to bake a cake, or a complex series of operations used in
machine learning to analyze large datasets and make predictions. In the context of machine
learning, algorithms are vital as they facilitate the learning process for machines, helping them

to identify patterns and make decisions based on data.

And here’s a multiple algorithm:
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1.3.1 Genetic algorithm

The genetic algorithm (GA) is a metaheuristic technique, drawing inspiration from natural
selection, and is categorized within the broader class of evolutionary algorithms (EA)[11]. GAs
is frequently utilized to derive optimal solutions for optimization and search tasks, employing
biologically inspired mechanisms like mutation, crossover, and selection. Various applications
of GAs span domains such as enhancing decision tree efficacy, solving sudoku puzzles,
optimizing hyperparameters, and conducting causal inference[12].

Vs Fitness

Initialization of

Population Function
\\,
Coverenges Selection
.“x
\ v
Reproduction

Figure I. 5: Genetic algorithm procedure.

Methodology of genetic algorithms
The methodology of a genetic algorithm (GA) typically involves several steps:
o Initialization:

Begin by creating a population of potential solutions (often referred to as individuals or

chromosomes) randomly or using some heuristic method[12].
o Evaluation:

Everyone in the population is evaluated based on a fitness function, which quantifies how well
it performs in solving the given problem[13]. The fitness function guides the selection process

by providing a measure of the individual's quality.
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o Selection:

Individuals from the current population are selected for reproduction based on their fitness
scores. This selection process is typically biased towards individuals with higher fitness values,

aiming to preserve and promote desirable traits in subsequent generations[13].
o Reproduction:

Selected individuals undergo reproduction processes, such as crossover and mutation, to
create offspring. Crossover involves exchanging genetic material between parent individuals
to generate new solutions, while mutation introduces random changes to maintain diversity

in the population.
o Replacement:

The offspring replace some individuals in the current population, typically through strategies
like elitism (where the best individuals are preserved) or generational replacement (where the

entire population is replaced).
o Termination:

The algorithm terminates when a predefined stopping criterion is met, such as reaching a
maximum number of generations, achieving a satisfactory solution, or exhausting

computational resources[13].
o Iteration:

Steps 2 to 6 are repeated iteratively until the termination criterion is satisfied, with each
iteration (generation) potentially leading to the improvement of solutions within the

population.

By iteratively applying these steps, genetic algorithms explore the solution space, gradually
refining candidate solutions to approach or reach optimal or near-optimal solutions for the

given optimization problem.
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1.3.2 Swarm intelligence

The inception of Swarm Intelligence (SI) traces back to 1992 when American scholars, Hack
wood et al. introduced the concept within the framework of molecular automata systems,
showcasing self-organization through interactions among neighbouring individuals in grid
spaces. Initially, SI primarily drew inspiration from the collective behaviours observed in social
insects and other animal groups. Presently, Sl has evolved to encompass broader research into
the collective behaviours of multi-component systems regulated by decentralized controls and
self-organization. Meta-heuristics grounded in swarm intelligence emulate a collective of
uncomplicated individuals, refining their solutions through interactions with both each other
and the environment. This approach has demonstrated remarkable efficacy in addressing
numerous challenging problems, rendering swarm intelligence a highly dynamic and vibrant

research domain in recent years[14].

Figure I. 6: Swarm intelligence.

And here we have one of the swarm intelligence algorithms:
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1.3.2.1 Particle swarm optimization

The concept of Particle Swarm Optimization (PSO) emerged through the collaborative
efforts of Kennedy et al. drawing inspiration from the social behaviours observed in animals
and insects, such as birds and fish[15]. PSO stands as a population-based global optimization
method, where numerous independent solutions, referred to as particles, traverse through a
multidimensional search space to identify the optimal solution. Each particle is characterized
by a position vector and a velocity vector, which are iteratively adjusted based on the particle's

optimal local vector and the current optimal global vector of the entire population[16].

A
L3 A A A2 34

Figure I. 7: position in particle swarm optimization.

Methodology of particle swarm optimization

o Initialization:
e The optimization process begins by initializing a population of potential solutions, often
referred to as individuals, particles, or agents, within the search space of the problem.
e |Initial positions and velocities (if applicable) are assigned to these individuals randomly

or using specific strategies to explore the search space effectively.
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o Evaluation:
e Everyone in the population evaluates its fitness by computing the objective function
associated with its current position in the search space.
e The fitness value represents how well the individual performs with respect to the
optimization problem, serving as a measure of its quality.
o Interaction and Communication:
e Individuals interact with each other through a process of sharing information or
through environmental cues.
o Update:
e Based on the evaluation results and information exchanged during interaction,
individuals update their positions and/or velocities to search for better solutions.
e The update rules are typically guided by mathematical equations or heuristics specific

to the chosen swarm optimization algorithm.

And there are rules for both velocity and position of each particle are updated:

Velocity — V; (t) = Qvi(t - 1) +con (pbest,i - xi(t - 1)) + C1y (gbest,i -

xi(t — 1))
Hvi(t - 1) — Prevent the particle from drastically changing the direction.

C11 (pbest,i —x;(t — 1)) — Make the particle tracks its best position.

CoTy (gbest,i —x;(t — 1)) —  Make the particle tracks the best position found by the
group.

Inertia weight 6 :is a proportional agent that is related with the speed of last improvement;

the value of 0 is assumed to vary linearly from 0.9 to 0.4.
¢, and c, : are the cognitive (individual) and social (group) learning rates.

r; and r, : are uniformly distributed random numbers in the range 0 and 1.

position = x; (£) = x;(t — 1) + v;(£) o} Ji{7un Tilt) Zus
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o Iteration:

e The process of evaluation, interaction, and update is repeated iteratively for a certain
number of generations or until termination criteria are met.

e During each iteration, individuals explore the search space further, potentially
converging toward optimal or near-optimal solutions.

o Termination:

e The optimization process terminates when predefined stopping criteria are satisfied,
such as reaching a maximum number of iterations, achieving a satisfactory solution,
or when improvements become negligible.

o Solution Extraction:

e After termination, the best solution found by the swarm, or a set of best solutions, is
extracted from the final population.

e These solutions represent candidate solutions that approximate the optimal
solution(s) of the optimization problem.

o Post-processing (Optional):

e Additional post-processing steps may be applied to the extracted solutions, such as
refining them further or ensuring that they satisfy any constraints imposed by the
problem.

o Analysis and Validation:

e The obtained solutions are analysed and validated to assess their quality and
suitability for the optimization problem.

e Results may be compared with known solutions or validated through testing in real-
world scenarios.

o Parameter Tuning and Optimization:

Parameters of the swarm optimization algorithm, such as population size, communication
range, or update coefficients, may be fine-tuned to improve performance or convergence

speed.
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1.3.3 Ant colony algorithm

Ant colony optimization (ACO) represents a metaheuristic approach mimicking the foraging
actions of ant colonies to uncover the most efficient path towards food sources. Through their
guest for sustenance, ants deposit pheromones along their routes, thereby enticing fellow ants

to trail along the same path[16].

exploration
way Y direction

back

R

Exploration Optimisation Research extraction
step step stcp

Figure I. 8: position in ant colony algorithm.

Methodology of ant colony algorithm

The ant colony optimization (ACO) algorithm works by simulating the foraging behaviour of
ants to find the optimal solution to optimization problems[16], particularly those related to

finding the shortest path. Here's how the algorithm typically operates:

e |Initialization: Initially, a set of artificial ants is randomly placed in the problem space.

These
ants represent potential solutions to the optimization problem.

e Solution Construction: Each ant begins to construct a solution by iteratively selecting

paths.
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T

based on the probability to select discrete values of design variables p}‘ = =
j=1"%j

T7:  pheromone trail.
k: the number of any possible solution.

This rule is guided by a combination of heuristic information (distance between nodes) and

pheromone trails.
o Pheromone Update: As ants move along their paths, they deposit pheromone trails.

on the edges they traverse. The amount of pheromone deposited is typically proportional to
the quality of the solution found. Pheromone evaporation may also occur to prevent

stagnation and encourage exploration.
O Solution Evaluation: Once each ant has completed its solution construction, the

quality of each solution is evaluated based on a predefined objective function this function can

be best f,.s+ Or worst fi,ors¢ (total distance travelled). Ants that find better solutions

. k
contribute more pheromone to the edges they traversed by T]new — ‘L'Jpld + Zk A‘L'j( ).

quest

fWOTSt

Atj(k) =

The other ants, evaporate the pheromone of the other paths by Tjr-lew «(1- p)l’]‘?ld.

frest —best objective function.

fworst = Worst objective function.

{— scaling parameter.

p —Eevaporate rate.

o Global Update: After all ants have completed their tours, a global pheromone update.

is performed to adjust the pheromone levels on all edges. This update typically involves
evaporating existing pheromone trails and depositing new pheromone based on the quality of

the solutions found.
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o Termination Criterion: The process of constructing solutions, updating pheromone

trails, and evaluating solutions iterates for a predefined number of iterations or until a

termination criterion is met (a satisfactory solution is found).

By iteratively repeating these steps, the ACO algorithm gradually converges towards the
optimal solution to the optimization problem. The pheromone trails effectively represent a
form of indirect communication among the artificial ants, guiding them towards promising

regions of the search space and facilitating the discovery of high-quality solutions.

1.3.4 Bee colony algorithm

The artificial bee colony algorithm (ABC) is a heuristic approach influenced by the honey
gathering behaviour of bees. It assigns varying weights to neurons depending on their
respective contributions to outcomes, with greater weights allocated to neurons with more

significant impacts and lower weights to those with lesser impacts[17].

Employed bee

. h . Onlookers

Hives
Scouts

Figure I. 9: Schematic diagram of collecting nectar of bee colony.

Methodology of bee colony algorithm:

The artificial bee colony (ABC) algorithm operates by simulating the foraging behaviour of

honeybees to find optimal solutions to optimization problems.
o Initialization: The algorithm starts by randomly generating a population of artificial
bees, which represent potential solutions to the optimization problem.

o Employed Bees Phase: In this phase, each employed bee explores a solution by
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adjusting one component (or parameter) of its current solution. This adjustment is typically
made using a neighbourhood search strategy, such as randomly selecting a neighbouring

solution or perturbing the current solution within a certain range.
o Onlooker Bees Phase: During this phase, onlooker bees select solutions to explore.

based on the quality of solutions discovered by employed bees. The probability of selecting a
solution is proportional to its quality, with better solutions having a higher probability of being

chosen.
o Scout Bees Phase: If an employed bee exhausts all possible solutions within its

neighbourhood without finding an improved solution, it becomes a scout bee. Scout bees

explore new solutions randomly to introduce diversity into the population.
o Solution Evaluation: After employed and onlooker bees have explored solutions, each.

solution is evaluated based on a predefined objective function. This function quantifies the
quality of the solution in terms of how well it satisfies the optimization criteria (minimizing a

cost function or maximizing a performance metric).
o Update Solutions: Based on the evaluations, solutions are updated iteratively. Better

solutions replace inferior ones in the population, leading to an improvement in the overall

guality of solutions over successive iterations.
o Termination Criterion: The algorithm continues to iterate through the phases until a

termination criterion is met. This criterion could be a maximum number of iterations,

convergence to a satisfactory solution, or a predefined computational budget.

By iteratively repeating these steps, the ABC algorithm gradually converges towards an optimal
or near-optimal solution to the optimization problem. The exploration of solutions by
employed and onlooker bees, along with the introduction of diversity by scout bees, allows

the algorithm to effectively search the solution space and find high-quality solutions.
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1.3.5 Grey wolf algorithm

The Gray Wolf Optimization (GWO) algorithm is a novel meta-heuristic approach designed to
address optimization challenges. It draws inspiration from the social structure and hunting
behaviour of grey wolves in the wild. The GWO algorithm employs a hierarchical leadership

model, featuring four distinct types of grey wolves: alpha, beta and delta[18].
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Figure I. 10: the position in GWO algorithm.
Methodology of Gray wolf algorithm:
The Grey Wolf Optimization (GWO) algorithm is a nature-inspired metaheuristic optimization

algorithm based on the social hierarchy and hunting behaviour of grey wolves. Here's a

general methodology of how the grey Wolf Algorithm typically operates:

e Initialization: Start by initializing a population of grey wolves, usually randomly, within
the search space of the optimization problem. Each grey wolf represents a potential

solution.
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e Objective Function Evaluation: Evaluate the fitness or objective function value of each
grey wolf in the population. The objective function represents the problem to be
optimized.

e Pack Leadership: Determine the leadership hierarchy within the grey wolf pack. This is
based on the fitness values of individual wolves. The alpha, beta, delta, and omega
wolves represent the best, second-best, third-best, and worst solutions, respectively.

e Exploration and Exploitation: The alpha, beta, and delta wolves lead the pack in
exploring the search space for better solutions. They guide the rest of the pack towards
promising regions, balancing between exploration (searching for new solutions) and
exploitation (refining existing solutions).

e Update Positions: Each wolf adjusts its position based on the positions of the alpha,
beta, and delta wolves. This update is influenced by mathematical equations that
simulate the social interactions and hunting behaviours of grey wolves.

e Boundary Handling: Ensure that the updated positions of the wolves remain within the
boundaries of the search space, applying any necessary boundary handling techniques.
Fitness Evaluation and Selection: After updating positions, evaluate the fitness of the
new solutions. Select the alpha, beta, delta, and omega wolves based on the updated
fitness values.

e Termination Criterion: Repeat steps 4-7 for a predefined number of iterations or until
a termination criterion is met (reaching a satisfactory solution, reaching a maximum
number of iterations).

e Solution Extraction: Extract the best solution found during the optimization process,
typically, the position of the alpha wolf, as the optimal solution to the optimization
problem.

e Result Analysis: Analyse the obtained solution and assess its quality in terms of the
objective function value and its feasibility with respect to any constraints present in the

problem.

By following these steps, the Grey Wolf Algorithm iteratively searches the solution space to

find an optimal or near-optimal solution to the given optimization problem.
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1.3.6 Random forest

Random forest is a popular algorithm in machine learning that falls under the umbrella of
ensemble learning techniques. It functions by creating multiple decision trees during the
training phase and then aggregates their predictions to make final decisions. In classification
tasks, it selects the most common class among the trees' predictions, while in regression tasks,
it calculates the average prediction from the individual trees. Each decision tree is constructed
using a subset of the training data and a random subset of features, giving rise to the term
"random forest."[19] This approach introduces randomness, which helps prevent overfitting
and enhances the model's ability to generalize to unseen data. Another advantage of random
forest is its capability to handle both numerical and categorical data, making it adaptable to
diverse datasets. Overall, random forest stands out for its simplicity, efficiency, and robust

performance in addressing complex classification and regression challenges.
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Figure I. 11: random forest prediction.

1.3.7 Extreme Gradient Boosting Trees (XGBoost)

Extreme Gradient Boosting Trees (XGBoost) stands out as a potent machine learning algorithm
renowned for its prowess in predictive modeling endeavors. Falling under the ensemble
learning paradigm, XGBoost employs a method known as gradient boosting. Through this
technique, XGBoost constructs a sequence of decision trees, where each subsequent tree aims
to rectify the errors of its predecessors. It iteratively enhances a predefined objective function,

like minimizing loss or maximizing accuracy, by judiciously adding trees that most effectively
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bolster the model's performance[20]. Additionally, XGBoost incorporates regularization
strategies to forestall overfitting and amplifies its efficiency via parallel processing and
hardware optimization. In sum, XGBoost garners acclaim for its remarkable predictive

precision, rapid execution, and adaptability across a myriad of datasets and tasks.
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Figure I. 12: Gradient Boosting Trees.
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1.4 Conclusion:

In conclusion, the field of artificial intelligence (Al) has experienced notable advancements
driven by a wide array of techniques and algorithms, each contributing uniquely to addressing
intricate problems across diverse domains. Principal among these techniques are machine

learning and deep learning:

e Machine Learning: Renowned for its capacity to glean insights from data and facilitate
predictive analysis, machine learning finds widespread utility in applications spanning
recommendation systems to fraud detection.

e Deep Learning: Fueled by neural networks, deep learning excels in processing and
comprehending intricate data such as images, audio, and text, catalyzing breakthroughs
in fields like computer vision, natural language processing, and autonomous driving.

Complementing these techniques are several Al algorithms that play pivotal roles in tackling

specific challenges:

e Genetic Algorithm: Inspired by natural selection, genetic algorithms iteratively refine
solutions to optimization and search problems, with applications spanning scheduling,
optimization, and design tasks.

e Ant Colony Algorithm: Modeled after ant behavior, these algorithms simulate
cooperative foraging to solve optimization problems, particularly adept at addressing
routing and scheduling challenges.

e Particle Swarm Optimization: Drawing inspiration from collective behavior in nature,
particle swarm optimization algorithms iteratively refine solutions by simulating
particle movement within a search space, commonly applied in optimization and
function optimization tasks.

e Gray Wolf Algorithm: Inspired by the hunting tactics of gray wolves, this algorithm
specializes in optimization problems, particularly in continuous optimization and
engineering design endeavors.

e Random Forest: A widely embraced ensemble learning technique, random forests
amalgamate predictions from multiple decision trees to bolster accuracy and

robustness, extensively employed in classification, regression, and anomaly detection.
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Importantly, these represent just a subset of the manifold Al algorithms available, each
boasting distinct strengths and applications. As Al research advances, the continual
development and enhancement of new algorithms promise to broaden the capabilities of Al
systems, empowering them to address an even wider spectrum of challenges across diverse

fields.
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II.1 Introduction

Artificial intelligence (Al) within civil engineering can be delineated as a branch of computer
science dedicated to exploring, advancing, and applying intelligent computing systems[1]. This
facet holds pivotal importance in the digital transformation and enhancement of civil
engineering, facilitating substantial advancements in automation, efficiency, and
dependability, while establishing a direct correlation between physical and digital construction
realms[2]. The primary aim of this domain lies in exploring diverse methodologies to emulate
and execute cognitive functions akin to those of the human brain, fostering technological
innovations and formulating relevant hypotheses. Essential theories and methodologies
encompass symbolism, behaviourism, and connectionism. Since its inception in the 1950s,
artificial intelligence has sparked numerous expectations and aspirations. Widely
acknowledged as a transformative technology, Al offers an alternative avenue for tackling
various challenges and ambiguities. Moreover, it finds application in intricate system
modelling, identification, optimization, forecasting, and control. The evolution of Al can be
segmented into five distinct phases: pre-1956, incubation, formation, the dark phase,
knowledge application, and integrated development (1986-present)[21]. Recent strides in data
collection and processing hardware have ushered in a revolutionary machine learning
technique known as Deep Learning (DL) within the realm of Al. Given the significant economic
footprint of the construction sector and its potential to drive national development,
governments worldwide are intensifying efforts to integrate Al, leveraging big data to instruct
complex algorithms, thereby bolstering the construction industry. Once trained, Al
technologies exhibit agility in making swift predictions and extrapolations in the domain of

digital construction, adeptly addressing multifaceted and nonlinear functional challenges.
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1.2 Civil engineering domain

1.2.1 Structural Engineering
Focuses on the design and analysis of structures to ensure they can withstand loads and

environmental conditions. This includes buildings, bridges, dams, and towers[22].

11.2.2 Geotechnical Engineering
Deals with the behaviour of earth materials and assessing the stability of soil and rock slopes
for construction projects. Geotechnical engineers also work on foundation design for

structures[23].

11.2.3 Transportation Engineering
Involves planning, design, and operation of transportation systems, including highways,

railways, airports, and urban transit systems[24].

1.2.4 Environmental Engineering
Addresses environmental issues related to water and air quality, waste management, pollution

control, and sustainable development[25].

11.2.5 Water Resources Engineering
Focuses on the management of water resources, including water supply systems, flood control,

irrigation systems, and hydroelectric power generation[26].

11.2.6 Construction Engineering
Involves project management, scheduling, cost estimation, and quality control during the

construction phase of infrastructure projects[22].

1.3 The implementation of Al in civil engineering

1.3.1 Structural Health Monitoring
Al techniques such as machine learning (ML) and computer vision are employed for monitoring
the structural health of buildings, bridges, and other infrastructure. This includes detecting

defects, assessing structural integrity, and predicting potential failures.
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1.3.1.1 Variations of Ant Colony Optimization for the solution of the structural damage

identification problem

This study addresses the problem of identifying structural stiffness coefficients in a damped
spring-mass system using Ant Colony Optimization (ACO) algorithms. Structural damage
identification is a complex inverse problem characterized by significant sensitivity to small
perturbations in input data, leading to substantial variations in the final solution. Traditional
methods for solving this ill-posed problem often fall short due to the high dimensionality and

presence of numerous local optima.

The researches (Carlos E. Braun et al) presented various adaptations of the ACO metaheuristic,
both as standalone methods and in combination with the Hooke-Jeeves (HJ) local search
algorithm. These adaptations include different strategies for pheromone evaporation and
deposit, as well as the frequency of invoking the local search. A discretization approach is
employed to manage continuous domain design variables within ACO, maintaining the native

algorithm's characteristics while integrating new heuristic information based on search history.

The experimental setup involves simulating damage across structural elements and evaluating
performance using both noiseless and noisy synthetic data. The results demonstrate that the
hybrid ACO-HJ method, which incorporates a rank-based pheromone deposit strategy and the
newly introduced heuristic information, yields the most accurate and reliable solutions for
damage identification. This method effectively balances exploration and exploitation,

outperforming other ACO variations in both accuracy and convergence speed [27].
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11.3.1.2 Wavelet-based multiresolution analysis coupled with deep learning to efficiently
monitor cracks in concrete

This study focuses on the critical issue of identifying the initial formation of cracks within

concrete structures. These cracks, hidden from external view, have the potential to propagate

unnoticed until they culminate in structural failure. Such failures can have catastrophic

consequences, particularly in sensitive infrastructures such as nuclear power plants, dams, and

bridges. Detecting and monitoring cracks during their early development stages is imperative

to avert such disasters and uphold the safety and stability of essential structures.

Ahcene Arbaoui, Abdeldjalil Ouahabi, Sébastien Jacques,and Madina Hamiane employed a

multi-step approach to crack detection in aging concrete samples.

Ultrasonic Inspection: First, they employed non-destructive ultrasonic testing to gather a
specific ultrasonic signal that pinpoints the defect within the concrete sample.
Multiresolution Analysis with Wavelets: In a crucial step, they performed multiresolution
analysis using wavelets on the captured ultrasonic signal. This analysis helped isolate and
highlight the presence of cracks within the material. The analysis also generated a B-scan map,
which essentially visualized the defect's location in space across different resolutions.

Deep Learning Classification: Finally, the multi-resolution image obtained from the wavelet
analysis was fed into a deep learning algorithm based on Convolutional Neural Networks
(CNNs). Architectures like AlexNet and VGG16 were specifically used within this deep learning
model to automatically distinguish between cracked and non-cracked regions in the concrete
sample.

Early Detection Capability: The approach employed facilitated the identification of crack
initiation in its early stages, even before visible signs of concrete fracture appeared on the
surface. This capability allowed for prompt maintenance interventions to prevent structural

failure.

The methodology shows an exceptional accuracy, with crack detection accuracy surpassing
98% and loss function values below 0.1, proving its efficacy in identifying cracks in concrete
structures. Economically, it required only an on-site portable ultrasonic device and a standard

processor, making it practical for field deployment. This wavelet-based multiresolution analysis
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combined with deep learning offers a cost-effective and efficient solution for monitoring cracks

in civil engineering structures[28].

1.3.2 Building Information Modelling (BIM)
Al algorithms are used in BIM software for tasks such as clash detection, energy simulation,
and construction scheduling. BIM also integrates with Al-driven analytics for better decision-

making throughout the construction lifecycle.

11.3.2.1 Integrating Building Information modelling (BIM) and Artificial Intelligence (Al) for
smart construction schedule, cost, quality, and safety management
The study aimed to confront the complexities surrounding the integration of Building
Information Modelling (BIM) and Artificial Intelligence (Al) within smart construction
management. Their objective was to overcome obstacles impeding the full exploitation of this
integration's potential, including technical intricacies, interoperability hurdles, and
organizational dynamics. Through a comprehensive analysis of existing literature, empirical
data, and insights, the study sought to offer a nuanced comprehension of the current scenario
and potential pathways for seamless integration. Ultimately, the goal was to devise strategic
recommendations and best practices to guide stakeholders in harnessing this integration's

transformative power for sustainable, efficient, and safe construction practices.

Specific challenges addressed encompassed augmenting data-driven decision-making,
automating processes, optimizing resource allocation, and forecasting potential risks and
delays via Al algorithms analyzing historical project data and real-time information.

Additionally, proactive measures based on real-time data aimed to prevent schedule overruns.

Nitin Liladhar Rane underscored the significance of establishing robust data management
protocols, nurturing a culture of innovation and collaboration, and tailoring strategies to align
with the distinct requirements and objectives of construction stakeholders. By tackling these
challenges and seizing opportunities, the study aimed to contribute to the ongoing dialogue
on technology's transformative role in the construction industry, fostering sustainable growth

and progress within the sector.
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Literature Review: The researchers meticulously reviewed existing literature to grasp the
current landscape of BIM and Al integration in construction. Synthesizing key findings and

expert insights, they pinpointed challenges and opportunities.

Data Analysis: Empirical data analysis provided insights into technical complexities,
interoperability issues, and organizational dynamics affecting BIM and Al integration. This

informed their understanding of specific hurdles requiring attention.

Recommendation Development: Drawing from research findings, the team formulated
actionable recommendations and guidelines tailored to industry stakeholders. These
addressed issues like data standardization, interoperability, skill development, and

organizational change management.

Strategic Planning: The study aimed to offer strategic recommendations and best practices to
empower stakeholders in leveraging BIM and Al integration for sustainable, efficient, and safe
construction practices. They crafted a roadmap to navigate challenges and capitalize on

opportunities presented by this synergy.

Collaborative Ecosystem: Emphasizing collaboration, innovation, and adaptability, the
researchers advocated for a culture of cooperation within the construction sector. Through
knowledge sharing and technology adoption, they aimed to foster continuous improvement

and competitiveness.

Continuous Improvement: Recognizing the importance of ongoing research and development,
the study underscored the need to continually address challenges and unlock the full potential
of BIM and Al integration in construction management. This focus on continuous enhancement
aimed to enable stakeholders to fully capitalize on the benefits of integration[29].

11.3.3 Natural Disaster Management

Al technologies aid in disaster preparedness, response, and recovery. This includes using Al
for early warning systems, damage assessment, evacuation planning, and infrastructure

resilience analysis.
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1.3.3.1 fire detection on a reinforcement concrete (RC)

Exposure to high temperatures, such as those experienced during a fire, has detrimental
effects on the characteristics of building materials. Concrete, for instance, undergoes changes
due to chemical reactions during fire exposure, resulting in a decline in its physical and
microstructural properties. This often leads to spalling, characterized by the explosive
detachment of concrete chunks from the structure during a fire. Spalling not only diminishes
the overall cross-sectional area of a reinforced concrete (RC) member but also exposes the
internal layers of concrete and steel reinforcement to the fire. Consequently, this accelerates

the deterioration of strength and elastic modulus throughout the structural member.

To mitigate potential challenges arising from fire disasters, Naser and his team opted to
develop an innovative solution aimed at predicting fire responses in reinforced concrete (RC)
columns. Their approach involved the creation of a user-friendly tool, termed "Nomograms via
Machine Learning," which provides simple visual aids for forecasting fire responses. This

initiative began with the following steps:

Data Acquisition: To build their fire resistance prediction tool, the researchers meticulously
compiled a dataset of 248 real-world fire tests involving reinforced concrete (RC) columns. This
data, gleaned from various scientific sources, encompassed ten key factors that influence RC
column behavior in a fire. These factors included the column's geometry, loading conditions,
and material properties. Additionally, the dataset included a crucial output variable - the fire

resistance of each tested column.

Machine Learning Techniques: The researchers leveraged the power of machine learning to
create the core of their prediction tool. Specifically, they employed linear regression for
nomograms based on regression analysis, and logistic regression for those based on
classification. By training these models on the comprehensive dataset, they empowered them

to predict the fire response and fire rating of RC columns based on the input features.

Visualizing Predictions: Building upon the machine learning models, the researchers
developed innovative nomograms. These nomograms act as user-friendly visual aids that
simplify the process of predicting fire resistance for RC columns. Notably, these nomograms

incorporate various factors that are often overlooked in traditional engineering knowledge and
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design codes. This inclusion significantly enhances the accuracy and practicality of these fire

resistance prediction tools.

Performance Evaluation: To ensure the effectiveness of their creation, the researchers
rigorously validated and analyzed the developed nomograms. This process assessed their
ability to accurately predict the fire response and fire rating of RC columns. The study also
compared the accuracy of these nomograms to existing methods, thereby demonstrating the

clear advantage of the machine learning-based approach in boosting predictive capabilities.

Real-World Impact: The study culminates by exploring the broader implications of its findings
for the civil engineering field. The potential to integrate these nomograms into building codes
and standards is highlighted, paving the way for more robust fire safety practices. Additionally,
the authors provide valuable recommendations for further research. These include exploring
different types of nomograms and refining the accuracy of the predictive models through

advanced regression techniques.

The study introduced a Simplified Visual Tool for Predicting Fire Response of RC Columns with
significant outcomes. The regression-based nomogram, using a linear regression model, had
an R-squared value of 0.64 and outperformed existing codes in predicting fire resistance. The
classification-based nomogram, crafted with a logistic regression model, matched advanced
machine learning models in accuracy, sensitivity, and specificity. Both nomograms surpassed
traditional methods in comprehensive fire resistance evaluation. These tools offer accessible
methods for forecasting and classifying fire response, providing practical value for engineers.
Their integration into building regulations could enhance fire safety and structural design

practices.

11.3.4 Geotechnical Engineering
Al techniques are used in geotechnical engineering for tasks such as slope stability analysis,
soil classification, and predicting ground settlement. This assists in mitigating risks associated

with foundation failures and landslides.

Artificial intelligence techniques have been applied to tackle various geotechnical challenges.

Two studies are presented in this work as follow:
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11.3.4.1 Predicting the ultimate bearing capacity of shallow footings resting on two distinct

soil layers

A critical challenge in geotechnical engineering is predicting the ultimate bearing capacity of
shallow footings resting on two distinct soil layers. This capacity determines the maximum load
a foundation can withstand before failure. To address this challenge, researchers investigated
the use of various machine learning and evolutionary techniques. These techniques included
artificial neural networks (ANNs), genetic algorithms (GAs), and particle swarm optimization
(PSO). The goal was to develop accurate predictive models for estimating the ultimate bearing
capacity. The study then focused on optimizing these models and evaluating their performance
to generate valuable insights for practical engineering applications

Hossein Moayedi, Arash Moatamediyan, Hoang Nguyen, Xuan Nam Bui, Dieu Tien Bui, and
Ahmad Safuan A. Rashid, implemented a structured approach in their investigation aimed at
predicting the ultimate bearing capacity of shallow footings on two-layered soil conditions.

The essential steps involved in their methodology are outlined below:

Data Collection and Pre-processing: A dataset comprising 3515 full-scale numerical simulations
of single shallow footings on two-layered soil conditions was acquired. Effective parameters
influencing the ultimate bearing capacity, such as friction angle, dilation angle, unit weight,
and elastic modulus, were identified. The dataset underwent pre-processing to identify

dependable model inputs and outputs for training artificial intelligence models.

Model Development: Various non-linear intelligent models, including GA-ANN, ANFIS, DEA,
FFNN, GRNN, and PSO-ANN, were employed to estimate the ultimate bearing capacity. A
database incorporating fourteen inputs and one output (Fy) was compiled to facilitate model
development. The models were optimized based on the influential parameters identified and

the dataset obtained from Finite Element Method (FEM) simulations.

Model Evaluation: The performance of the developed models was evaluated by comparing
their predictions with actual ultimate bearing capacity values. Evaluation metrics such as Root
Mean Square Error (RMSE), R-squared (R"2), and Variance Accounted For (VAF) were utilized

to gauge the accuracy and efficacy of the models in predicting bearing capacity.
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Result Analysis: Results obtained from each technique were compared to discern the influence

of significant parameters on the prediction of ultimate bearing capacity.

The study presented findings indicating the efficacy of various artificial intelligence and
machine learning models in forecasting the ultimate bearing capacity of shallow footings on

two-layered soil conditions. Here are key observations from their investigation:

Model Performance: Multiple models, encompassing GA-ANN, ANFIS, DEA, FFNN, GRNN, and
PSO-ANN, demonstrated satisfactory predictive capabilities in estimating the ultimate bearing
capacity. The PSO-ANN model emerged as notably superior and more dependable compared

to alternative techniques, exhibiting high accuracy in predicting bearing capacity.

Evaluation Metrics: Assessment metrics such as Root Mean Square Error (RMSE), R-squared
(R72), and Variance Accounted For (VAF) were employed to appraise model performance. The
PSO-ANN model showcased remarkable values of 0.01, 0.99, and 99.90 for RMSE, R*2, and
VAF, respectively, on the training dataset, indicating its exceptional accuracy and reliability in

predicting bearing capacity.

Comparison of Models: Models were compared based on their predictive prowess and
accuracy in estimating ultimate bearing capacity. The PSO-ANN model consistently
outperformed other models, underscoring its efficacy in resolving the complex engineering

problem.

Ranking System: A novel ranking system termed CER (color intensity rating) was devised to
evaluate the efficacy of proposed methods based on their outcomes. The PSO-ANN model
attained high rankings in accuracy and performance, further affirming its superiority in

forecasting ultimate bearing capacity.

Overall, the study concluded that the PSO-ANN model stood out as the most effective in
predicting the ultimate bearing capacity of shallow footings on two-layered soil conditions.
These insights offer valuable implications for future engineering applications and geotechnical

research endeavors[30].
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11.3.4.2 Predicting the ultimate axial bearing capacity of driven piles

In this study, the researchers aimed to address the challenge of accurately predicting the
ultimate axial bearing capacity of driven piles. They noted that traditional methods and
empirical equations often fall short in accurately estimating pile strength, particularly as the
input parameters related to pile geometry and soil properties become more complex. To
overcome these limitations, the researchers explored the potential of machine learning
techniques, specifically Artificial Neural Network (ANN) and Random Forest (RF) algorithms, to
develop a more precise and dependable predictive model for pile axial bearing capacity. By
harnessing the power of these advanced computational methods, the study aimed to enhance
prediction accuracy and efficiency in the realm of geotechnical engineering.

Tuan Anh Pham, Hai-Bang Ly, Van Quan Tran, Loi Van Giap, Huong-Lan Thi Vu, and Hong-Anh
Thi Duong meticulously followed a structured approach in their research to forecast the
ultimate axial bearing capacity of driven piles utilizing Artificial Neural Network (ANN) and

Random Forest (RF) algorithms. Here's an outline of their methodology:

Data Collection: They compiled an extensive database comprising 2314 reports from static load
tests conducted on driven piles. This dataset encompassed various parameters like pile
diameter, length of pile segments, natural ground elevation, pile top elevation, guide pile
segment stops driving elevation, pile tip elevation, average standard penetration test (SPT)

values, and more.

Data Preparation: The dataset was meticulously divided into training (70%) and testing (30%)

subsets to facilitate the development and validation phases of the machine learning models.

Model Development:

ANN: Employing Artificial Neural Network (ANN), the researchers constructed a predictive

model for estimating the axial bearing capacity of piles.

RF: Additionally, they utilized the Random Forest (RF) algorithm to create a distinct predictive

model for comparative analysis.
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Model Evaluation: The performance of the ANN and RF models was evaluated using various
error criteria such as mean absolute error (MAE), root mean squared error (RMSE), and
coefficient of determination (R*2). The predicted outcomes from these machine learning
models were juxtaposed with results obtained from five empirical equations sourced from

literature and classical multi-variable regression.

Sensitivity Analysis: A sensitivity analysis was conducted to discern the most influential factors
affecting the prediction of axial bearing capacity of piles. Key factors such as average SPT value

and pile tip elevation emerged as significant contributors.

This research compared machine learning methods for predicting pile capacity. The Random
Forest (RF) model significantly outperformed the Artificial Neural Network (ANN) model in
accuracy. Even compared to traditional methods, RF showed better results. The study
identified key factors affecting pile capacity and highlighted the potential of machine learning
for pile design. It also suggests exploring even more advanced techniques for even better

predictions[23].

11.3.5 Project Management
Al-powered project management tools assist in scheduling, resource allocation, risk analysis,

and cost estimation, improving overall project efficiency and delivery.

11.3.5.1 Optimization of the energy consumption in activated sludge process using deep

learning selective modelling.

The study tackled the challenge of optimizing energy consumption in wastewater treatment
plants (WWTPs), with a specific focus on the activated sludge process. (Rafik Oulebsir,
Abdelouahab Lefkir, Abdelhamid Safri, Abdelmalek Bermad) aimed to develop a method using
artificial neural networks to create an optimal energy consumption model for WWTPs. This
optimization is vital because WWTP operations incur significant energy costs, with aeration

being identified as the most energy-intensive part of the wastewater treatment process.

In wastewater treatment plants, (Rafik Oulebsir, Abdelouahab Lefkir, Abdelhamid Safri,
Abdelmalek Bermad) investigated a deep learning approach for optimizing energy

consumption during the activated sludge process. This method involved a two-step data
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selection process followed by deep neural network training. First, data points meeting
environmental regulations were chosen. Then, from this pool, additional data points
demonstrating optimal energy consumption based on pollution indicators were selected.
Finally, the deep neural network model was trained using this curated data to estimate energy

savings for unseen data.

The researchers' deep learning model achieved impressive results. During training, it
demonstrated a strong correlation between predicted and actual values, with a coefficient of
determination between 90% and 92%. This correlation remained high during testing, ranging
from 74% to 82%. Furthermore, applying the optimized model to new data revealed significant
energy savings, validating its effectiveness in optimizing energy consumption within
wastewater treatment processes. This study underscores the potential of deep learning
selective modelling for accurate energy consumption prediction in these facilities, paving the

way for improved energy efficiency and reduced overall consumption in WWTPs[26].

1.4 The advantage of Al in civil engineering

Al offer numerous and diverse solutions to challenges that face engineers in various aspects of

their work.
a. Efficiency

Al can automate repetitive tasks, such as drafting designs, analysing data, and generating
reports, saving engineers time and enabling them to focus on more complex aspects of their

projects.
b. Accuracy

Al algorithms can process large amounts of data and perform complex calculations with a high
degree of accuracy, reducing errors in design, analysis, and decision-making. And this is just in

the case of non-availability of data.
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¢. Optimization

Al can optimize designs, processes, and resource allocation to improve efficiency and reduce
costs in construction projects. This includes optimizing structural designs, scheduling

construction activities, and managing resources like materials and equipment.
d. Predictive Analytics

Al-powered predictive analytics can forecast project outcomes, identify potential risks, and
recommend mitigation strategies based on historical data and real-time inputs, helping

engineers make informed decisions and improve project outcomes.
e. Sustainability

Al can help engineers design more sustainable infrastructure by optimizing energy usage,
reducing waste, and minimizing environmental impact. Al algorithms can analyse data to
identify opportunities for improving energy efficiency, using renewable materials, and

implementing eco-friendly construction practices.
f. Remote Monitoring and Management

Al-powered sensors and remote monitoring technologies can provide real-time data on the
performance and condition of infrastructure, enabling engineers to remotely monitor and

manage assets from anywhere, reducing the need for manual inspections and onsite visits.
g. Innovation

Al fosters innovation in civil engineering by enabling engineers to explore new design concepts,
materials, and construction techniques. Al-powered generative design tools can generate
novel design solutions that may not have been considered through traditional methods,

leading to innovative and efficient designs.
h. Cost-Effectiveness

Al can help reduce costs in civil engineering projects by optimizing resource utilization,
minimizing waste, and improving productivity. By streamlining processes and automating

tasks, Al can help projects stay within budget and improve the overall return on investment.
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i. Decision Support

Al can provide valuable insights and decision support to engineers throughout the project
lifecycle, helping them evaluate alternative solutions, assess risks, and make data-driven

decisions to achieve project objectives more effectively.

1.5 challenges that civil engineers face when implementing Al
While the integration of Artificial Intelligence (Al) in civil engineering holds immense potential,
it also presents several challenges that civil engineers may encounter during

implementation[31]:
a. Data Availability and Quality

Al models rely heavily on data for training and decision-making. Obtaining large and relevant
datasets specific to civil engineering tasks can be challenging. Additionally, ensuring the

quality, accuracy, and reliability of the data is crucial for the effectiveness of Al algorithms[32].
b. Interdisciplinary Knowledge

Implementing Al in civil engineering often requires interdisciplinary knowledge spanning
engineering, computer science, and data science. Civil engineers may need to collaborate with

experts from other fields to develop and deploy Al solutions effectively.
c. Complexity of Infrastructure Projects

Civil engineering projects involve complex and multifaceted challenges, including structural
design, environmental considerations, and regulatory requirements. Developing Al algorithms

that can address these complexities and provide holistic solutions is a significant challenge.
d. Regulatory and Safety Standards

Civil engineering projects must comply with strict regulatory and safety standards to ensure
public safety and environmental protection. Integrating Al into the design, construction, and
maintenance processes while adhering to these standards requires careful consideration and

validation[32].
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e. Ethical and Social Implications

Al applications in civil engineering raise ethical concerns related to privacy, fairness, and
accountability. Engineers must consider the social implications of Al technologies, such as job
displacement, equity in access to infrastructure, and unintended consequences of Al-driven

decisions[33].
f. Adoption and Cultural Resistance

Introducing Al into traditional engineering practices may face resistance from stakeholders
who are unfamiliar or sceptical about the technology. Civil engineers may encounter
challenges in gaining acceptance, trust, and adoption of Al solutions within their organizations

and the broader industry[33].
g. Cost and Resource Constraints

Implementing Al technologies often requires significant investments in infrastructure,
software, and training. Small firms or organizations with limited resources may face challenges

in acquiring and deploying Al solutions effectively[32].
h. Interpretability and Transparency

Al models can sometimes be opaque and difficult to interpret, especially for complex tasks like
structural design or risk assessment. Ensuring transparency and explainability in Al-driven

decisions is essential for gaining trust and acceptance among stakeholders.
i. Security and Privacy Risks

Al systems in civil engineering may be vulnerable to cybersecurity threats, such as data
breaches, malicious attacks, or algorithm manipulation. Protecting sensitive project data and
ensuring the security of Al systems is critical for maintaining the integrity and reliability of

infrastructure projects[34].
j- Long-term Maintenance and Support

Civil engineering projects have long lifecycles, and Al systems must be maintained, updated,
and supported over time. Ensuring the scalability, reliability, and sustainability of Al solutions

throughout the project lifecycle is a significant challenge for civil engineers.
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1.6 Future implication of Al in civil engineering
The future implications of Artificial Intelligence (Al) in civil engineering are vast and
transformative, shaping the way infrastructure is designed, constructed, and maintained.

Some key future implications include[35]:
a. Smart Infrastructure Design

Al will enable the creation of smarter, more efficient infrastructure designs. Generative design
algorithms can explore a wide range of design options, optimizing for factors such as cost,
sustainability, and resilience. Al will also facilitate the integration of sensors and loT devices

into infrastructure, enabling real-time monitoring and adaptive functionality.
b. Predictive Maintenance

Al-powered predictive maintenance systems will become standard in civil engineering. By
analysing sensor data and historical maintenance records, Al algorithms will predict when
infrastructure components are likely to fail and recommend proactive maintenance actions,

reducing downtime and extending asset lifespans.
c. Autonomous Construction

Construction sites will increasingly utilize autonomous equipment and robotics, guided by Al
algorithms. Al-driven construction machinery will perform tasks such as excavation, material
handling, and assembly with greater precision and efficiency, while Al-powered drones will

assist in site surveying, inspection, and monitoring.
d. Virtual Design and Construction (VDC)

Al will enhance Virtual Design and Construction processes, allowing engineers to create digital
twins of infrastructure projects and simulate construction processes virtually. Al algorithms
will optimize construction sequencing, resource allocation, and logistics planning, minimizing

delays and cost overruns.
e. Enhanced Risk Management

Al will improve risk management in civil engineering by analysing vast amounts of data to

identify potential risks and vulnerabilities in infrastructure projects. Al-driven risk assessment
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tools will help engineers make informed decisions to mitigate risks and enhance project

resilience against natural disasters, climate change, and other threats.
f. Adaptive Infrastructure

Al will enable infrastructure to adapt dynamically to changing environmental conditions and
user needs. Smart transportation systems will optimize traffic flow in real-time, while Al-
controlled energy grids will balance supply and demand efficiently. Adaptive infrastructure will

enhance safety, efficiency, and sustainability across various domains.
g. Sustainable Development

Al will play a crucial role in advancing sustainable development goals in civil engineering. Al
algorithms will optimize energy usage, reduce waste, and minimize environmental impact in
infrastructure projects. Al-driven simulations and modelling tools will inform decision-making

to design more resilient and eco-friendly infrastructure solutions.
h. Augmented Engineering Workforce

Al will augment the capabilities of civil engineering professionals, enabling them to focus on
high-level tasks that require creativity and expertise. Al-powered tools will automate routine
tasks, facilitate design exploration, and provide decision support, empowering engineers to

innovate and solve complex challenges more effectively.
i. Global Connectivity and Collaboration

Al will facilitate global connectivity and collaboration in civil engineering. Cloud-based Al
platforms will enable engineers to share data, collaborate on projects remotely, and access
advanced simulation and analysis tools from anywhere in the world, fostering innovation and

knowledge exchange across borders.
j- Ethical and Societal Implications

As Al becomes increasingly integrated into civil engineering practices, addressing ethical and
societal implications will be crucial. Engineers must consider issues such as equity, privacy, and
transparency to ensure that Al technologies benefit society as a whole and contribute to

sustainable and inclusive development[33].
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I1.7 Conclusion

The rise of Artificial Intelligence (Al) is significantly reshaping civil engineering across health
monitoring, concrete analysis with ultrasonics, Building Information Modeling (BIM), and

geotechnical applications.

In health monitoring, Al algorithms become powerful allies, analyzing sensor data from
structures to identify anomalies and predict potential failures. This proactive approach allows
for optimized maintenance schedules, ultimately enhancing safety and extending the lifespan

of infrastructure.

For concrete evaluation using ultrasonics, Al steps in to interpret ultrasonic signals, pinpointing
defects, cracks, and voids within concrete structures with greater accuracy. This automation

improves efficiency and cost-effectiveness compared to traditional manual inspections.

BIM, when combined with Al, creates a revolutionary approach to infrastructure projects. Al
analyzes vast amounts of BIM data, optimizing designs, streamlining workflows, and mitigating
risks throughout the project lifecycle. These fosters enhanced collaboration among

stakeholders and leads to better-informed decision-making.

In geotechnical engineering, Al models become valuable tools for predicting soil behavior,
analyzing geological data, and optimizing foundation designs. By leveraging Al's capabilities,
engineers can mitigate risks associated with ground instability, optimize construction

techniques, and ensure the long-term stability of infrastructure projects.

In conclusion, integrating Al into civil engineering unlocks transformative benefits across
various domains. From health monitoring and concrete analysis to BIM and geotechnical
applications, Al empowers civil engineers to improve safety, efficiency, and sustainability. This
ultimately leads to the delivery of infrastructure projects that meet the demands of the

modern world.
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I1I.1 Introduction

Al frameworks and libraries are foundational components of the artificial intelligence
ecosystem, empowering developers and researchers to create and deploy machine learning
models effectively. While both frameworks and libraries facilitate Al development, they serve

distinct purposes and offer different levels of abstraction.

Frameworks provide comprehensive infrastructures for building and training machine learning
models. They typically offer a wide range of functionalities, including high-level APIs for
constructing neural networks, optimization algorithms for training models, and tools for
deploying them in production environments. Frameworks abstract away low-level
implementation details, enabling developers to focus on model architecture and
experimentation. They provide a structured framework for organizing code and managing

dependencies, making it easier to scale projects and collaborate with others.

On the other hand, libraries are collections of pre-written code modules that address specific
tasks or functionalities within Al. Unlike frameworks, libraries do not impose a rigid structure
or workflow on developers. Instead, they offer a set of tools and utilities for performing
common tasks such as data preprocessing, feature extraction, or model evaluation. Libraries
can be used independently or in conjunction with frameworks to augment their capabilities or
address specialized requirements. They provide a more flexible and modular approach to Al
development, allowing developers to mix and match components based on their specific

needs.

In summary, while both frameworks and libraries are essential components of Al development,
they serve different roles and cater to different aspects of the workflow. Frameworks provide
comprehensive infrastructures for building and training models, while libraries offer
specialized tools and utilities for performing specific tasks within Al. By leveraging frameworks
and libraries in combination, developers can harness the full power of artificial intelligence to

solve complex problems and drive innovation in various domains.
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.2 Type of frameworks and libraries

Al frameworks and libraries are diverse tools that cater to various aspects of artificial

intelligence development. Here's some different types:

a. Deep Learning Frameworks

These are specialized tools designed for building, training, and deploying deep neural
networks. They offer APIs for defining network architectures, optimizing models, and running
computations efficiently, often leveraging GPUs for acceleration. Examples include TensorFlow,
PyTorch, and Keras[36].

b. Machine Learning Frameworks

Unlike deep learning frameworks, these cover a broader spectrum of machine learning
techniques beyond deep neural networks. They provide support for classical algorithms such
as linear regression, decision trees, and clustering, along with utilities for data preprocessing,
feature engineering, and model evaluation. Examples include scikit-learn, Apache Spark MLlib,
and XGBoost[36].

c. Natural Language Processing (NLP) Libraries

NLP libraries focus on processing and understanding human language. They offer tools and
models for tasks like text classification, sentiment analysis, named entity recognition, and
machine translation. Examples include NLTK, SpaCy, and Gensim[37].

d. Computer Vision Libraries

These libraries specialize in tasks related to image and video processing, such as object
detection, image segmentation, and facial recognition. They provide pre-trained models,
algorithms, and utilities for analysing visual data. Examples include OpenCV, Dlib, and
SimpleCV.

e. Reinforcement Learning Libraries

These are tools for developing and training agents that learn to make decisions through
interaction with an environment. They offer algorithms, environments, and utilities for

reinforcement learning tasks. Examples include OpenAl Gym, Stable Baselines, and RLLib.
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f. AutoML Libraries

AutoML libraries automate various stages of the machine learning pipeline, including data
preprocessing, feature engineering, model selection, and hyperparameter tuning. They enable
developers to build and deploy models with minimal manual intervention. Examples include
Google AutoML, H20.ai, and TPOT.

g. Model Interpretability Libraries

These libraries help interpret and explain the predictions of machine learning models,
enhancing their transparency and trustworthiness. They offer techniques for visualizing model
behavior, identifying influential features, and understanding model decisions. Examples
include Lime, SHAP, and eli5.

h. Probabilistic Programming Frameworks

These frameworks enable the specification and inference of probabilistic models. They are
useful for tasks such as Bayesian inference, probabilistic graphical models, and uncertainty
estimation. Examples include Pyro, Edward, and Stan.

i. General Al Development Platforms

These platforms offer end-to-end solutions for Al development, encompassing data
preparation, model building, deployment, and monitoring. They often integrate multiple
frameworks and libraries into a unified environment. Examples include Google Al Platform,

Microsoft Azure ML, and AWS SageMaker.

.3 Open-Source software vs Commercial software

Al frameworks and libraries come in both open-source and commercial variants. Open-source
tools are often freely available and offer transparency, flexibility, and community-driven
development. Commercial solutions may offer additional features, support, and services, but

at a cost.

111.3.1 top open-source Al frameworks and libraries

111.3.1.1 TensorFlow

TensorFlow is an open-source deep learning framework developed by researchers and
engineers at Google Brain, Google's Al research division. It was initially released in 2015 and
has since become one of the most widely used frameworks for building and training machine

learning models.
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TensorFlow provides a flexible and scalable infrastructure for defining, training, and deploying
machine learning models, particularly deep neural networks. Its key feature is its
computational graph abstraction, which allows users to define complex mathematical
computations as a directed graph of nodes, where each node represents a mathematical

operation and each edge represents the flow of data (tensors) between nodes[38].

TensorFlow is primarily written in C++ for performance and efficiency, with Python serving as
the main programming language for its high-level APl and interface. Python is widely used for
tasks such as defining model architectures, specifying training procedures, and interacting with
the TensorFlow library. Additionally, TensorFlow supports other programming languages such
as C++, Java, and JavaScript through its TensorFlow Serving and TensorFlow Lite components,

enabling model deployment and inference in various environments.

Python's popularity and versatility have contributed to TensorFlow's widespread adoption
among researchers, developers, and practitioners in both academia and industry. Its Python
API| provides a user-friendly interface for building and experimenting with complex machine
learning models while leveraging the computational power and efficiency of the underlying

C++ implementation.
TensorFlow supports a wide range of tasks in artificial intelligence, including:

a. Deep Learning: TensorFlow provides a comprehensive set of tools and APIs for
building and training deep neural networks, including convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and transformer models.

b. Machine Learning: Beyond deep learning, TensorFlow supports traditional machine
learning algorithms and techniques, such as linear regression, logistic regression, decision
trees, and support vector machines.

c. Natural Language Processing (NLP): TensorFlow offers specialized modules and models for
NLP tasks, such as text classification, sentiment analysis, named entity recognition,
machine translation, and language generation.

d. Computer Vision: TensorFlow includes pre-trained models and tools for computer vision
tasks, including image classification, object detection, image segmentation, and facial

recognition.
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e. Reinforcement Learning: TensorFlow provides support for reinforcement learning
algorithms, enabling the development and training of agents that learn to make decisions
through interaction with an environment.

f. Distributed Computing: TensorFlow includes features for distributed computing, allowing

users to scale their machine learning workloads across multiple CPUs or GPUs, as well as

distributed clusters of machines.

Tensorflow
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Figure Ill. 1: TensorFlow: User Fetches Outputs.
111.3.1.2 PyTorch
PyTorch, an open-source deep learning framework, originates primarily from the Facebook Al
Research (FAIR) lab and was introduced to the publicin 2016. Its rapid adoption by researchers
and practitioners is owed to its dynamic computation graph, adaptable structure, and intuitive

interface[39].
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PyTorch serves as a Python-centric platform for constructing and training machine learning
models, especially those involving deep neural networks. In contrast to frameworks utilizing
static computation graphs, PyTorch embraces a dynamic approach, affording greater flexibility
and simplified debugging. This dynamic nature means that computational graphs are
generated on-the-fly during runtime, offering advantages for tasks featuring intricate or

evolving architectures.
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Figure Ill. 2: Concepts of PyTorch.

111.3.1.3 Scikit-learn

Developed by David Cournapeau, Scikit-learn is a Python library tailored for machine learning
tasks, particularly data mining and analysis. Its intuitive interface, leveraging well-known
scientific computing packages like NumPy, SciPy, and matplotlib, caters to both novices and
experts in the field. Offering a plethora of machine learning algorithms, alongside tools for
model evaluation, integration with other Python libraries, and robust preprocessing

functionalities, Scikit-learn finds utility across various domains:

a. Data Science: Renowned for its versatility, Scikit-learn is a go-to tool in data science,
facilitating tasks such as classification, regression, clustering, and dimensionality reduction.
Its extensive toolkit proves invaluable for deciphering complex datasets.

b. Research: Researchers rely on Scikit-learn to prototype novel machine learning algorithms,
benchmark their performance against existing methods, and conduct experiments. Its

user-friendly interface expedites the experimentation process.
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c. Education: Frequently integrated into academic curricula, Scikit-learn aids in teaching
machine learning concepts comprehensively. Its simplicity allows students to implement
algorithms covered in their courses with ease.

d. Industry Applications: From predictive modeling to fraud detection, Scikit-learn finds
widespread usage in industries spanning finance, healthcare, e-commerce, and beyond. Its
efficiency and adaptability make it adept at addressing diverse business challenges,

including natural language processing, image recognition, and anomaly detection.
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Figure Ill. 3: Distributed Cross Validation.

111.3.1.4 Microsoft Cognitive Toolkit (CNTK)

The Microsoft Cognitive Toolkit (CNTK) is a is a free and open-source sophisticated deep
learning platform conceived and crafted by Microsoft, specifically tailored for constructing
neural networks. Originating from the inventive minds at Microsoft Research, it made its debut
in April 2016. CNTK distinguishes itself with its emphasis on efficiency, scalability, and
versatility, rendering it ideal for honing deep learning models in diverse fields such as computer
vision, speech recognition, and natural language processing. Notably, it accommodates both
CPU and GPU computing, catering to a wide spectrum of users. Its comprehensive suite of
features equips researchers and developers with powerful tools for exploring and

implementing deep learning solutions[40].
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However, it's important to note that getting accustomed to Microsoft CNTK might require more
effort due to its potentially steeper learning curve in comparison to simpler frameworks

designed for beginners.

Microsoft
Cognitive
Toolkit

um Microsoft

Figure Ill. 4: Microsoft Cognitive Toolkit Logo.

111.3.1.5 PyBrain

PyBrain, an open-source machine learning library for Python, originated from the Swiss Al Lab
IDSIA (Istituto Dalle Molle di Studi sull'Intelligenza Artificiale) starting around 2007. Engineered
to be flexible and user-friendly, it caters to various machine learning tasks, including supervised

learning, unsupervised learning, and reinforcement learning.

This framework is prized for its lightweight nature, making it ideal for experimentation and
rapid prototyping. It boasts support for a diverse array of machine learning algorithms, further

enhancing its versatility.

Furthermore, PyBrain's utility extends to educational settings, facilitating comprehension and

hands-on exploration of machine learning concepts.

However, it's worth noting that PyBrain may have limitations such as sparse documentation
and a smaller user community compared to mainstream libraries. Additionally, it might lack

certain advanced features present in other frameworks.

54



Chapter lll: Al frameworks and libraries

he Python Machine Learning Library

PyBrain

Figure lll. 5: PyBrain Logo.

111.3.1.6 Caffe

Caffe emerged as a deep learning platform stemming from the research efforts of Yangqing Jia
during his doctoral program at the University of California, Berkeley, approximately in 2013.
This framework is extensively employed for both the training and deployment phases of deep
learning models. Its notable attributes include remarkable speed, modular design, and a
flexible architecture, rendering it highly adaptable across diverse domains. Its widespread
adoption spans academic research, industrial sectors, and extensive applications in fields like

computer vision, natural language processing, and robotics[40].

+Q+’ Caffe?

Figure lll. 6: caffe Logo.
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111.3.2 top Commercial Al frameworks and libraries

111.3.2.1 OpenAl
OpenAl, founded in December 2015 by Elon Musk, Sam Altman, Greg Brockman, llya Sutskever,
Woijciech Zaremba, and John Schulman, is committed to propelling artificial intelligence

forward responsibly for the betterment of humanity[41].

The organization's portfolio includes diverse Al models like the GPT series, notably GPT-3,
renowned for their proficiency in natural language processing, text generation, and
comprehension. These models find broad utility across various sectors, including industries,

research endeavors, and educational initiatives[42].

To incorporate OpenAl's models into your codebase, you'll engage their APIs, typically entailing
the transmission of requests to their servers and the subsequent reception of responses. This
interaction facilitates the integration of cutting-edge Al capabilities seamlessly into your

applications[41].

Figure lll. 7: OpenAl Logo.

11.3.2.2 OpenNN

OpenNN is a comprehensive framework dedicated to the creation, training, and deployment
of neural network models. Crafted predominantly in C++, it shines for its remarkable efficiency
and rapid processing capabilities. At its core, OpenNN offers an intuitive interface facilitating
network configuration alongside a repertoire of functionalities including support for diverse
network architectures, optimization algorithms, and data preprocessing utilities. Noteworthy
is OpenNN's prowess in efficiently managing extensive datasets and intricate models. Its

applications extend across both research pursuits and real-world scenarios where data-driven

56



Chapter lll: Al frameworks and libraries

decision-making powered by Al is imperative. These domains encompass finance, healthcare,

manufacturing, and various others, reflecting its versatility and relevance across diverse

Figure Ill. 8: OpenNN Logo.

industries.

111.3.2.3 IBM Watson

IBM Watson stands as an Al and machine learning platform brought to fruition by IBM. Its
inception can be traced back to the early 2000s when a dedicated team of researchers and
engineers within IBM embarked on its development journey. The platform's core architecture
predominantly relies on Java, supplemented by modules written in languages like C++, Python,

and JavaScript, ensuring support for diverse functionalities and seamless integrations[47].

IBM Watson stands out as a versatile suite of Al and machine learning solutions developed by
IBM. Offering a diverse array of tools and functionalities, it empowers users to craft and
implement Al-driven applications spanning various domains such as natural language

processing, computer vision, and predictive analytics.

An advantage of IBM Watson lies in its seamless integration with IBM Cloud, streamlining the
process of deploying and overseeing Al applications. Moreover, its strength is bolstered by
IBM's wealth of experience in the field, ensuring that users can rely on its robust and

dependable Al capabilities.

Nonetheless, it's worth noting that the pricing structure of IBM Watson services and consulting
might present a hurdle for smaller enterprises or organizations constrained by budget
considerations. While the suite offers extensive features, the affordability factor may influence

the decision-making process for those in search of Al solutions and support services.
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Watson

Figure Ill. 9: IBM Waston Logo.

111.3.2.4 Hugging Face
Hugging Face stands out as a significant player in the Al tools landscape, founded by Clément
Delangue and Julien Chaumond in 2016. The foundation of the platform predominantly relies

on Python, harnessing its adaptability and the rich ecosystem it offers for Al advancement.

Hugging Face is distinguished as a premier supplier of intuitive Al utilities, celebrated
particularly for their "Transformers" library. This library plays a pivotal role in enabling
sophisticated machine learning endeavors, particularly in tasks related to language processing
and chatbot creation. Additionally, they provide utilities for image and sound generation, as
well as for enhancing data management in Al models and simplifying the process of updating

large-scale Al models.

Of significant note, Hugging Face enhances accessibility to their suite of tools by offering web-
friendly versions. This accessibility empowers individuals of all skill levels, from beginners to
seasoned professionals, to explore Al experimentation across a broad spectrum of domains,

including natural language processing and computer vision.

w Hugging Face

Figure Ill. 10: Hugging Face Logo.
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.4 The difference between open source and commercial Al frameworks and
libraries

111.4.1 Open-source Al frameworks
Open-source Al frameworks, governed by open-source licenses, offer users the freedom to

utilize the software without restrictions [47].

Advantages of open-source frameworks include:

e Typically free, making them cost-effective for small projects and startups.
e Boasting vibrant communities, they serve as valuable hubs for learning and issue
resolution.

e Users can delve into the source code, enabling greater control over Al implementations.
However, there are drawbacks to consider:

e Support may be limited. Although community assistance exists, it may not match the
responsiveness or comprehensiveness of commercial support.
e Some open-source frameworks pose complexity, presenting challenges for beginners to
fully comprehend[43].
1.4.2 Commercial Al frameworks
Commercial Al frameworks, crafted by companies under proprietary licenses, impose

limitations on users' actions and may incur additional charges [53].
Advantages of commercial frameworks include:

e Dedicated support teams ensure swift resolution of issues.

e Emphasis on user-friendliness enhances accessibility for developers of varying
expertise.

e Advanced features and optimizations tailored to specific needs are often found in

commercial frameworks.

However, there are drawbacks to consider:
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e High costs may deter smaller or bootstrapped projects.
e Adoption of a commercial framework may result in vendor dependency, constraining

flexibility.

.5 the integration of frame works and libraries into codebase

Integrating any framework into your code generally follows a similar process[44]:

a. Installation

Begin by installing the framework on your system, which typically entails downloading the
framework package or utilizing package management tools such as pip (for Python) or npm
(for Node.js). Ensure to adhere to the installation instructions outlined in the framework's
documentation.

b. Initialization

Incorporate the framework into your codebase by importing it or including its components.
This process varies depending on the programming language and framework utilized and may
involve import statements, header file inclusions, or initialization of framework components.
c. Configuration

Tailor the framework to meet your specific requirements by configuring parameters, defining
options, or specifying resource paths like models or datasets. Consult the framework's
documentation for detailed guidance on configuration options.

d. Data Preparation

Prepare your data for utilization with the framework by loading it from files, databases, or APIs.
Additionally, preprocess the data, such as normalization or scaling, and segment it into
training, validation, and testing sets if applicable.

e. Model Building

Construct the model architecture using the framework's APIs or tools, specifying layers,
neurons, connections, and other components. Depending on your task, you can opt for pre-

trained models or design custom ones.
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f. Training

Train the model using the training data, which involves feeding it into the model, adjusting
parameters like weights and biases through optimization techniques like gradient descent, and
evaluating the model's performance over multiple iterations or epochs.

g. Validation

Assess the trained model's performance and generalization ability using validation data,
facilitating the detection of overfitting and enabling fine-tuning of model parameters if
required.

h. Testing

Evaluate the model's performance on unseen data by testing it using separate testing data
sets, providing insights into its real-world performance.

i. Deployment

Deploy the trained model for inference or production use, such as saving it to disk, bundling it
with your application, or deploying it to cloud services for online inference.

j-  Monitoring and Maintenance

Continuously monitor the deployed model's performance and undertake periodic
maintenance tasks as necessary. This may involve retraining the model with new data,

updating parameters, or scaling infrastructure to meet increasing demands.
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I11.6 Conclusion

Pre-written code libraries and frameworks act as accelerators in software development.
Frameworks enforce a structured approach, defining the application's core architecture. In

contrast, libraries function as modular building blocks for specific tasks.

The selection process hinges on your project's specific needs. Frameworks excel at building
applications within a predefined structure, while libraries provide flexibility by allowing you to

integrate functionalities into existing projects.

Open-source libraries boast free access and modifiability, fostering a collaborative
environment and customization. However, dedicated support might be limited. On the other
hand, commercial libraries frequently come with comprehensive support and documentation,

but require licensing fees and may restrict modifications.

Ultimately, the optimal choice revolves around factors like project requirements, budget, and
the desired level of control. When selecting frameworks and libraries for your software

development projects, carefully consider the trade-offs between flexibility, support, and cost.
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Chapter IV

IV.1 Introduction

The calculation of bearing capacity is a fundamental aspect of geotechnical engineering, which
involves determining the maximum load that soil can support without failure. This process
requires a deep understanding of soil properties and behavior under various loading
conditions. Engineers use a variety of methods and empirical formulas to estimate bearing
capacity, ensuring that foundations are safe and efficient. Accurate computation is crucial as it
directly influences the design and safety of structures such as buildings, bridges, and other

infrastructures.

Penetration tests, such as the Standard Penetration Test (SPT) and the Cone Penetration Test
(CPT) and the Dynamic Probing Test (DPT) are widely used in geotechnical investigations to
assess soil properties. These tests provide valuable data on soil density, strength, and
stratification by measuring the resistance of soil to penetration by a standard probe. The
results from these tests help engineers to understand the subsurface conditions and to make
informed decisions about foundation design and construction practices. Penetration tests are
essential for obtaining accurate field data, which in turn enhances the reliability of bearing

capacity calculations.

Recent advancements in artificial intelligence (Al) have introduced innovative approaches to
predicting bearing capacity, often matching the accuracy of traditional methods while
requiring significantly less data and resources. Al models, such as neural networks, trained on
historical data to identify patterns and make predictions. These technologies can provide rapid
and cost-effective solutions, particularly in scenarios where extensive field testing is
impractical or budget constraints are significant. By leveraging Al, engineers can achieve
reliable results with minimal data inputs, revolutionizing the field of geotechnical engineering
and optimizing resource allocation. In this chapter, an Al model will be suggested to compute
the bearing capacity of shallow foundation using only the density of the soil and the equivalent

dynamic point resistance value .
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IV.2 Bearing capacity computing

IV.2.1 Difinition

Bearing capacity computing refers to the process of calculating the maximum load (weight)
that the soil can support without experiencing failure. This is a critical aspect of geotechnical
engineering, ensuring the stability of foundations for structures like buildings, bridges, and

retaining walls[45].

IV.2.2 Computing methods

There are various methods for calculating bearing capacity, each with its own complexity and
accuracy. The choice of method depends on several factors, including the type of foundation
being designed (shallow or deep), the soil properties at the site (cohesive or non-cohesive),

and the desired level of precision.

IV.2.2.1 Terzaghi Equation
widely used method for calculating the ultimate bearing capacity of shallow foundations in
cohesive soils (clay). It provides a preliminary estimate of the maximum load the soil can

support without failure[46].

Qu=c'Nc+q' Nq+ 0.5y BNy

Qu— Ultimate bearing capacity of the soil (force per unit area).

¢' — Effective cohesion of the soil (strength that resists shear deformation).

Nc — Shape factor depending on the foundation geometry (e.g., strip footing, square
footing).

q' — Effective overburden pressure (weight of the soil above the foundation level).

Nq — Bearing capacity factor considering the soil's angle of internal friction (resistance to
deformation).

B — Width of the foundation.
v' — Effective unit weight of the soil (weight of soil solids minus the buoyant force of water).

Ny — Shape factor for the depth term.
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IV.2.2.2 Computing the bearing capacity from DPT
The general bearing capacity equation according to the standard DTR BC 2.331 and the
standard DTU 13.23 is giving by:

—E-5<ﬁ<7
Qu="5i>sF=

With:
Rd — Dynamic point resistance (bar)

p —Lift coefficient between 5 and 7 (in general $=5)
And by calculating the qu we could calculate the gadam Which it is giving by

qu — V1D
Qaam =~ + 11D F=3

y1 — The soil density
D — The embedding depth

F — safety factor =3

IV.2.2.3 Meyerhof Equation
Is an advancement over the Terzaghi Equation for calculating the ultimate bearing capacity of shallow
foundations. It considers a wider range of factors and provides a more refined estimate compared to

the simpler Terzaghi approach[47].

IV.2.2.4 Vesi¢ Equation
Is another method for calculating the ultimate bearing capacity of shallow foundations. It
builds upon the concepts of Terzaghi and Meyerhof but offers a more comprehensive and

versatile approach, particularly for complex scenarios[48].

IV.2.2.5 Geotechnical software

Geotechnical software computing methods refer to the use of specialized software programs
to analyze the bearing capacity of foundations and other geotechnical engineering problems.
These software tools offer powerful capabilities that go beyond the limitations of simpler hand

calculations like the Terzaghi, Meyerhof, and Vesi¢ equations[49].
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IV.2.3 The importance of bearing capacity computing
a. Safe foundation design
By knowing the bearing capacity of the soil, engineers can design foundations strong enough
to support the weight of the structure without causing[45]:
e Excessive settlement: Sinking of the foundation due to soil compression.
e Shear failure: Collapse of the soil due to exceeding its strength.

b. Cost optimization

Accurate bearing capacity calculations can help optimize foundation design. By knowing the soil's
capacity, engineers can choose a foundation type and size that matches the load requirements,

potentially reducing construction costs.

IV.2.4 The factors that affect the bearing capacity computing

IV.2.4.1 Soil Properties

a. Type
e Sand
Generally good bearing capacity when dense and dry. Loose sand or saturated sand with water

flow can have lower capacity.

e Clay
Can have high bearing capacity when dry and stiff, but strength reduces significantly with
moisture content.

e Rock
Offers the highest bearing capacity but can be expensive to excavate for foundations.

e Density
Denser soil particles are packed closer together, leading to increased friction and resistance to
deformation, resulting in higher bearing capacity. Loose soil has lower capacity.
b. Shear Strength
This is the soil's internal resistance to deformation or shearing. Higher shear strength indicates
a stronger soil and a higher bearing capacity. Clays have higher shear strength than sands when

dry, but this can change with moisture content[50].
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¢. Moisture Content
Saturated soil (filled with water) can have lower bearing capacity because water reduces the
friction between soil particles. Clay soils are particularly affected by moisture as they become

softer and lose strength.

IV.2.4.2 Depth of Foundation

Generally, the deeper a foundation is placed, the higher the bearing capacity. This is because
deeper soil layers experience greater confining pressure from the soil above them, making
them more resistant to deformation. However, there's a point of diminishing returns, and very

deep foundations might not be practical or cost-effective.
IV.2.4.3 Groundwater Conditions

The presence of groundwater can significantly reduce bearing capacity. Water fills voids
between soil particles, reducing friction and internal strength. Additionally, groundwater can

create uplift pressure on the foundation, potentially causing it to rise.
IV.2.4.4 Structure Size and Weight

The total load exerted by the structure on the soil and its distribution (even or uneven) needs
to be considered. A heavier structure will require a foundation with a higher bearing capacity
to avoid excessive settlement or failure. The distribution of weight is also important. Uneven

weight distribution can cause the foundation to tilt or settle unevenly.

IV.3 dynamic penetration test

IV.3.1 definition

DPT is an in-situ test, meaning it measures the properties of the soil directly at its location
within the ground. It's a fast and economical method for geotechnical investigations, providing

valuable information about the subsurface conditions[51].
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Figure IV. 1: dynamic penetration test machine.

IV.3.2 the process of dynamic penetration test

1V.3.2.1 Equipment
e DPT uses a multiple penetrometer with a metal cone tip.

e The penetrometer is connected to a drive rod and a hammer mechanism.

IV.3.2.2 Test Procedure
e The penetrometerisdriven into the ground by repeatedly lifting and dropping a weight
(typically 50kg or 63.5kg) from a specific height (usually 500mm or 750mm).
e The number of blows required for the cone to penetrate a certain depth (every
10cm/or 20cm) is recorded.
e The test continues until a predetermined depth is reached or a refusal criteria is met

(exceeding a maximum number of blows).
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IV.3.2.3 Data Analysis

The number of blows per depth interval is plotted on a graph, creating a DPT profile. This

profile reflects the relative ease or difficulty of penetrating the soil layers, indicating variations

in their strength and density[52].

IV.3.3 Advantages

Fast and cost-effective: DPT can be performed quickly and at a lower cost compared
to some other geotechnical tests.

Minimal equipment and manpower: The test requires relatively simple equipment
and minimal manpower, making it suitable for various field conditions.

Minimal ground disturbance: DPT creates minimal disturbance to the ground

compared to some drilling or excavation techniques.

IV.3.4 Limitations

Limited depth: DPT is typically limited to investigating shallower depths (up to 15-20
meters) compared to some drilling methods.

Qualitative assessment: DPT provides a qualitative assessment of soil strength based
on penetration resistance. It may not provide direct correlations to absolute soil
strength parameters without calibration with other tests.

Soil type limitations: DPT might not be suitable for very soft or loose soils or

encountering obstacles like cobbles or boulders.
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IV.4 The suggested computer code

IV.4.1 Inputs layer

the algorithm has two different inputs, first we have the type of neurons

| 78] Network ~]]ET NeuronType

+|| & Hidden

(& 1 kserializable>
2 Public Enum NeuronType
3 Hidden
4 Output
5 End Enum

and second, we have a set of data of soil properties Rd and the unit weight y as inputs.

For the training process

Private Sub RandomizeSamples()

If (Me.InvokeRequired) Then
Me.Invoke(Sub() Me.RandomizeSamples())

Else
Static rnd As New Random(Me.GetHashCode)
Dim a As New List(Of Double),

b As New List(Of Double), r As New List(Of Double)

Me.tbSampleSetA.Clear()
Me.tbSampleSetB.Clear()
Me.tbResult.Clear()

a.Add(40)
b.Add(1.5)
r.Add(1.12)

a.Add(41)
.Add(1.52)
r.Add(1.15)

o

a.Add(42)
.Add(1.54)
r.Add(1.2)

o

a.Add(45)
b.Add(1.58)
r.Add(1.3)

.Add(100)
.Add(1.7)
r.Add(1.86)

o o

.Add(125)
b.Add(1.75)
r.Add(1.99)

o

a.Add(160)
.Add(1.77)
r.Add(2.13)

o

For the query process

Cemuay ae oy

.Add(1.2)

-

o

.Add(45)
b.Add(1.58)
.Add(1.3)

-

.Add(100)
.Add(1.7)
r.Add(1.86)

(= 1)

a.Add(125)
.Add(1.75)
r.Add(1.99)

o

.Add(160)
.Add(1.77)
.Add(2.13)

S oo

.Add(170)
.Add(1.79)
.Add(2.21)

S oo

.Add(184)
b.Add(1.8)
r.Add(2.45)

[

a.Add(300)
b.Add(2)
r.Add(5.3)

Me.tbSampleSetA.Text = String.Join(" ", a)
Me.tbSampleSetB.Text = String.Join(" ", b)
Me.tbResult.Text = String.Join(" ", r)
Me.CreateCharts(r)
End If
End Sub
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Private Sub RandomizeSamples2()

If

Else

M

D

M

a

o

5
b.Add(1
1

Me.InvokeRequired) Then

e.Invoke(Sub() Me.RandomizeSamples2())

im a As New List(Of Double),

b As New List(Of Double), r As New List(Of Double)
Me.tbSampleSetA.Clear()

e.tbSampleSetB.Clear()

Me.tbResult.Clear()

.Add(50)
:5)
.12)

.Add(

.Add(52)

b.Add(1.52)

W

.Add(1.15)

.Add(60)

b.Add(1.54)

W

.Add(1.2)

.Add(62)

b.Add(1.58)

W

.Add(1.3)

.Add(80)

b.Add(1.61)

.Add(1.86)

IV.4.2 hidden layer (processing)

.Add(90)

b.Add(1.65)
r.Add(1.99)

.Add(95)
.Add(1.68)

r.Add(2.13)

.Add(94)
.Add(1.79)

r.Add(2.21)

.Add(115)
.Add(1.8)

r.Add(2.45)

.Add(200)

b.Add(2)
r.Add(5.3)

3

D

)

o

End If
End Sub

.tbSampleSetA.Text = String.Join(" ", a)
.tbSampleSetB.Text = String.Join(" ", b)

.tbResult.Text = ""

Me.CreateCharts(r)

This is the core phase where the algorithm performs operations on the inputs using a series of

computational steps. This phase is guided by logical and arithmetic calculations to process the

data effectively.

Decision making: the algorithm take the inputs (the values of Rd and

calculating the bearing capacity of soil.

) and start
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Public Class Neuron

2 références

Public Property ID As String

4 références

Public Property Type As NeuronType
14 références

Public Property Inputs As Double()

9 références

Public Property Weights As Double()

4 références

Public Property BiasWeight As Double
9 références
Public Property [Error] As Double

O références

Sub New()
Me.ID = Guid.NewGuid().ToString
End Sub
3 références
Sub New(Type As NeuronType)
Me.Type = Type
Me.Inputs = New Double(2) {}
Me.Weights = New Double(2) {}
Me.ID = Guid.NewGuid().ToString

End Sub

1 reférence

Public Sub Randomize()
Me.Weights(©®) = Me.Random.NextDouble()
Me.Weights(1) = Me.Random.NextDouble()
Me.BiasWeight = Me.Random.NextDouble()

End Sub

S références

Public Sub Cycle()
Me.Weights(©) += Me.Error * Inputs(©)
Me.Weights(1) += Me.Error * Inputs(1l)
Me .BiasWeight += Me.Error

End Sub

Public ReadOnly Property Output As Double
Get
Return Sigmoid.Output(Me.Weights(®) * Me.Inputs(@) + Me.Weights(1l) * Me.Inputs(1l) + Me.BiasWeight)
End Get
End Property
3 reférences
Public Function Random() As Random
Static rnd As New Random(Me.GetHashCode)
Return rnd
End Function

0 reférences
Public Overrides Function ToString() As String
Return String.Format("[{©}] Output: {1} Bias: {2} Error: {3}", Me.Type, Me.Output, Me.BiasWeight, Me.Error)
End Function
End Class

e Looping: the algorithm displays every 100 operations the new output
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Public Sub Train(x As Double(), y As Double(), Results As Double())
Try
Dim epoch As Integer = ©

Dim NH1 As Neuron = Me.GetNeuron(NeuronType.Hidden, ©)
Dim NH2 As Neuron = Me.GetNeuron(NeuronType.Hidden, 1)
Dim NOUT As Neuron = Me.GetNeuron(NeuronType.Output)

Me.Training = True
RaiseEvent TrainingStarted()

Do
epoch += 1
For i As Integer = @ To Results.Length - 1
NH1.Inputs = New Double() {x(i), y(i)}
NH2.Inputs = New Double() {x(i), y(i)}
NOUT.Inputs = New Double() {NH1.Output, NH2.Output}

If (epoch Mod 100 = © And epoch <> @) Then
RaiseEvent TrainingCycle(i, x(i), y(i), NOUT.Output)
End If

NOUT.Error = Sigmoid.F(NOUT.Output) * (Results(i) - NOUT.Output)
NOUT.Cycle()

NH1.Error = Sigmoid.F(NH1.Output) * NOUT.Error * NOUT.Weights(©)
NH2.Error = Sigmoid.F(NH2.Output) * NOUT.Error * NOUT.Weights(1)

NH1.Cycle()
NH2.Cycle()
Next
Loop Until Not Me.Training
Catch ex As Exception
Debugger.Break()
Finally
RaiseEvent TrainingStopped()
End Try
End Sub

IV.4.3 activation function

Public Class Sigmoid
1 référence
Public Shared Function Output(value As Double) As Double
Return 1 / (1 + Math.Exp(-value))

End Function
3 références
Public Shared Function F(value As Double) As Double
Return value * (1 - value)
End Function
End Class

IV.4.4 Output layer
After processing the inputs, the algorithm produces an output. This output is the result of the

algorithm’s operations.
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Public Class Simple
3 références
Public Property Training As Boolean
10 références

Public Property Neurons As List(Of Neuron)

<NonSerialized> Public Event TrainingStarted()

<NonSerialized> Public Event TrainingStopped()

<NonSerialized> Public Event TrainingCycle(index As Integer, x As Double, y As Double, output As Double)

1 référence

Sub New()
Me.Neurons = New List(Of Neuron)
Me.Reset()

End Sub

2 références

Public Sub Reset()
Me.Neurons.Clear()

Me.Neurons.Add(New Neuron(NeuronType.Hidden))

Me.Neurons.Add(New Neuron(NeuronType.Hidden))
Me.Neurons .Add(New Neuron(NeuronType.Output))
Me.Randomize()

End Sub

1 référence

Public Sub Abort()
Me.Training = False

End Sub

Public Sub Resolve(x As Double(), y As Double())
If (x.Length = y.Length) Then
Dim NH1 As Neuron = Me.GetNeuron(NeuronType.Hidden, ©)
Dim NH2 As Neuron = Me.GetNeuron(NeuronType.Hidden, 1)
Dim NOUT As Neuron = Me.GetNeuron(NeuronType.Output)
For i As Integer = © To x.Length - 1
NH1.Inputs = New Double() {x(i), y(i)}
NH2.Inputs = New Double() {x(i), y(i)}
NOUT.Inputs = New Double() {NH1.Output, NH2.Output}
RaiseEvent TrainingCycle(i, x(i), y(i), NOUT.Output)
Next
End If
~_End Sub

0 reférences

Public Function Resolve2(x As Double, y As Double) As Double

Dim NH1 As Neuron = Me.GetNeuron(NeuronType.Hidden, ©)
Dim NH2 As Neuron = Me.GetNeuron(NeuronType.Hidden, 1)
Dim NOUT As Neuron = Me.GetNeuron(NeuronType.Output)

NH1.Inputs = New Double() {x, y}

MsgBox(NH1.0Output)

NH2.Inputs = New Double() {x, y}

NOUT.Inputs = New Double() {NH1.Output, NH2.Output}
Return NOUT.Output

End Function

IV.4.4.1 End learning button
In this computer code, the user can end the training only by clicking the corresponding button

when the outputs seems acceptable comparing to the reference data .
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IV.5 The Graphical User Interface of the code

-V
12345678910 Legend1 - Vide

12345678910

Qutput

oy
Train Stop Query Reset ‘ il ,;E.Q_I\t-_f*fr"

Figure IV. 2: GUI of the dynamic penetration test.

Graphical User Interfaces (GUIs) offer a user-friendly alternative. These interfaces rely on visual

elements like icons, menus, and buttons, making it easy to interact with computer programs.

This windows form (WinForms) has been developed in order to represent the outputs and the

inputs in a chart.

IV.5.1 Input Fields
e Rd represented by a label and a text box.
e ¥ the unit weight represented by a label and a text box.
e o bearing capacity represented by a label and a text box.

e Penetrometer represented by a picture box.
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IV.5.2 buttons

Public Class frmMain
10 références
Public Property Network As Simple
6 références
Public Property Buffer As List(Of Double)
1 référence

Public Property Multiplier As Integer = 100

0 reéferences

Private Sub frmMain_Load(sender As Object, e As EventArgs) Handles MyBase.load
Me.Initialize()
Me.btnQuery.PerformClick()

End Sub

0 references
Private Sub btnTrain_Click(sender As Object, e As EventArgs) Handles btnTrain.Click

Call New Threading.Thread(AddressOf Me.StartTraining) With {.IsBackground = True}.Start()
End Sub

0 références

Private Sub btnAbort_Click(sender As Object, e As EventArgs) Handles btnAbort.Click
Me .Network.Abort()
Me.Network.SaveAs(".\Network.bin")

End Sub

O références

Private Sub btnReset_Click(sender As Object, e As EventArgs) Handles btnReset.Click
Me.Network.Reset()

End Sub

0 références
Private Sub btnQuery_Click(sender As Object, e As EventArgs) Handles btnQuery.Click
Me.RandomizeSamples2()
Me.Network.Resolve(Me.StringToDoubles(Me.tbSampleSetA.Text), Me.StringToDoubles(lMe.tbSampleSetB.Text))
End Sub

Private Sub Initialize()
Me.Buffer = New List(Of Double)
If (Not File.Exists(".\Network.bin")) Then
Me.Network = New Simple
Else
Me.Network = File.ReadAllBytes(".\Network.bin").Deserialize(Of Simple)()
End If
AddHandler Network.TrainingStarted, AddressOf Me.TrainingStarted
AddHandler Network.TrainingStopped, AddressOf Me.TrainingStopped
AddHandler Network.TrainingCycle, AddressOf Me.TrainingCycle
End Sub

1 reférence
Private Sub StartTraining()
Me.RandomizeSamples()
Me.Network.Train(Me.StringToDoubles(Me.tbSampleSetA.Text), Me.StringToDoubles(Me.tbSampleSetB.Text)
» Me.StringToDoubles(Me.tbResult.Text))

End Sub
2 références
Private Sub TrainingStarted()
If (Me.InvokeRequired) Then
Me.Invoke(Sub() Me.TrainingStarted())

Else
Me.btnTrain.Enabled = False
Me.btnQuery.Enabled = False
Me.btnReset.Enabled = False
End If
End Sub

Private Sub TrainingStopped()
If (Me.InvokeRequired) Then
Me.Invoke(Sub() Me.TrainingStopped())

Else
Me.btnTrain.Enabled = True
Me.btnQuery.Enabled = True
Me.btnReset.Enabled = True
End If
End Sub
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e "Train" button to initiate the training.
e '"stop" button to stop the training.
e "Query" button to give a direct result.

e "Reset " button to reset the training.

1V.5.3. output:
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Figure IV. 3: GUI shows the outputs and the chart.

Calculated bearing capacity value displayed in the Output text box and draw a chart that

shows the variation of the output and how it is getting closer to the real value.

Creating a chart

Private Sub CreateCharts(data As List(Of Double))
Me.Buffer.Clear()
Me.Chart.Series.Clear()
.Chart.Series.Add("Input")
.Chart.Series("Input").Color = Color.Cyan
.Chart.Series("Input").XValueType = ChartValueType.Double
.Chart.Series("Input").ChartType = SeriesChartType.Column
.Chart.Series.Add("Output")
.Chart.Series("Output").Color = Color.Blue
.Chart.Series("Output").XValueType = ChartValueType.Double
.Chart.Series("Output").ChartType = SeriesChartType.Spline
.Chart.Series("Output").MarkerStyle = MarkerStyle.Circle
.Chart.Series("Output").MarkerSize = 5
Me.Chart.Series("Output") .MarkerBorderWidth = 1
For j As Integer = @ To data.Count - 1
Me.Chart.Series("Input").Points.AddXY(j, data(3j))
Me .Buffer.Add(0)
Next
End Sub

)

M

oM

nm

PMDDdMDD D

m

Running the chart
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Private Sub TrainingCycle(index As Integer, x As Double, y As Double, output As Double)
If (Me.InvokeRequired) Then
Me.Invoke(Sub() Me.TrainingCycle(index, x, y, output))
Else
Me.Buffer(index) = Math.Round(output * 100, 2)
If (index = 9) Then
Me.Chart.Series("OQutput").Points.Clear()
For i As Integer = © To 9
Me.Chart.Series("Output").Points.AddXY(i, Me.Buffer(i))
Next
Me.tbNetValues.Text = String.Join(" ", Me.Buffer.Select(Function(v) Math.Round(v, 2)))
Me.Chart.Refresh()
End If
End If
End Sub

IV.6 Results

IV.6.1 the inputs

Here we are representing the inputs we use in in the code

Sigma (o) (bar) Rd(bar) gamma(y) (bar)
1,12 40 1,5
1,15 41 1,5

1,2 42 1,5
1,3 45 1,5
1,4 50 1,5
1,42 52 1,5
1,44 58 1,6
1,5 55 1,6
1,58 69 1,6
1,63 77 1,6
1,65 80 1,6
1,7 85 1,6
1,75 90 1,6
1,86 100 1,7
1,87 101 1,7
1,9 105 1,7
1,92 110 1,7
1,94 115 1,75
1,95 118 1,75
1,99 125 1,75

2 130 1,75
2,09 155 1,75
2,13 160 1,79
2,2 169 1,79
2,21 170 1,79
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2,36 175 1,79

2,4 179 1,8

2,45 184 1,8

2,5 190 1,8

2,7 201 1,8

2,99 215 1,9

3 220 1,9

3,16 241 2

3,34 250 2

5,3 300 2

6 350 2
Table IV. 1: The inputs we use in the WinForms code.
IV.6.2 The Outputs variation

References Outputs (1) Outputs (2) Outputs (3) Outputs (4)
(o)(bar) (bar) (bar) (bar) (bar)
1.12 1.24 1.17 1.16 1.12
1.15 1.25 1.19 1.17 1.16
1.2 1.25 1.2 1.19 1.19
1.3 1.27 1.24 1.25 1.29
1.86 1.6 1.78 1.85 1.86
1.99 1.81 1.95 1.98 1.96
2.13 2.19 2.2 2.18 2.18
2.21 2.32 2.28 2.26 2.26
2.45 2.52 2.42 2.38 2.39
53 5.28 53 53 53

Table IV. 2: This table shows how the network's outputs change over time during training.

This table represent the variation of the outputs with the time

Outputs (1) were taken 1 minute after the training start

Output (2) was taken 2 minutes after the first output

Output (3) was taken 3 minutes after the second output

The last output was taken after 10 min
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IV.7 Conclusion

Al is increasingly becoming an integral part of civil engineering, transforming traditional
practices with its ability to provide accurate and reliable predictions. By utilizing machine
learning algorithms and neural networks, Al can analyze minimal data to yield results that
closely mirror those obtained from conventional methods. This technological advancement
not only streamlines the engineering process but also reduces the need for extensive and
costly field investigations. As Al continues to evolve, it promises to make the work of civil
engineers more efficient and effective, enabling them to design safer and more reliable
structures with fewer resources and at a lower cost. The integration of Al in civil engineering
signifies a significant leap forward, paving the way for more innovative and resource-efficient

engineering solutions.
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General Conclusion

In conclusion, this work highlights the pivotal role of artificial intelligence (Al) techniques and
algorithms in revolutionizing civil engineering practices. By leveraging machine learning
algorithms such as artificial neural networks, genetic algorithms, and particle swarm
optimization, researchers have made significant strides in predicting critical parameters and
optimizing construction processes. The implementation of Al in civil engineering, from health
monitoring to concrete analysis and geotechnical applications, has enhanced safety, efficiency,

and sustainability in infrastructure projects.

Looking towards the future, the continued evolution of Al promises to further streamline
engineering processes, reduce costs, and improve the reliability of structures. However,
challenges such as data availability and quality, interdisciplinary knowledge requirements, and

ethical considerations must be addressed to fully realize the potential of Al in civil engineering.

Furthermore, the study sheds light on the top Al frameworks and libraries that play a crucial
role in facilitating Al implementation in civil engineering. Frameworks like TensorFlow, PyTorch,
and scikit-learn, along with libraries such as Keras and OpenCV, provide powerful tools for
developing and deploying Al models in construction management and structural analysis. By
harnessing these frameworks and libraries, civil engineers can unlock transformative benefits

and drive innovation in the construction industry.
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