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Abstract

Raman spectroscopy is an advanced technique for analyzing spectra. This method,

which does not require invasive procedures, shows great promise in blood analysis, par-

ticularly in measuring biomarkers such as HbA1c and glucose.When combined with ad-

vancements in machine learning, Raman spectroscopy enables the development of accurate

predictive models using extensive spectral data sets. These models are integrated into in-

telligent analysis systems to automate and enhance the precision of blood diagnostics,

providing a viable alternative to traditional invasive methods.Our research focuses on

applying machine learning to analyze spectroscopic data for non-invasive blood analy-

sis, aiming to overcome the limitations of conventional methods that are known for their

labor-intensive nature, high cost, and occasional risks. Our goal is to explore and pro-

pose models capable of effectively quantify HbA1c and glucose levels in the blood.This

approach represents a significant step forward in improving the accuracy and efficiency

of non-invasive blood analysis, potentially offering safer and more accessible options com-

pared to invasive techniques.The proposed approach, utilizing SVC-XGBoost, acheived

an RMSE of 0.44% for HbA1c and 15.49 mg/dL for glucose, which is a significant im-

provement compared to recent literature.

Key words: Raman spectroscopy , Machine learning , Glucose , Diabetes , HbA1c ,

In-vivo measurements . . .
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General introduction

Blood tests are crucial in healthcare to diagnose many diseases such as diabetes

which affects millions of people worldwide and is on the rise. The main monitoring

technique is invasive, which can be expensive, uncomfortable, expensive, impractical and

risky (infection, transmission of certain diseases, if not properly treated). Faced with

these limitations, research has focused on finding non-invasive methods to help solve the

problem.

Spectroscopy has gained popularity in the last few years due to its extensive ap-

plication domain, such as identifying unknown substances in materials science, Blood

tests,biology, pharmaceutics, and food science. It is a powerful analytical technique that

can provide valuable information about the composition and structure of various mate-

rials. Spectroscopy has also become increasingly important in environmental monitoring

and forensic analysis.

The current project goal is to find a non-invasive in-vivo blood testing method for

glucose and Hb1Ac utilizing spectral data and machine learning in the hopes of achieving

similar accuracy to standard monitoring devices while removing limits and invasiveness..

This approach could potentially revolutionize diabetes management by providing a more

convenient and less risky way for patients to monitor their blood glucose levels. If suc-

cessful, it could greatly improve the quality of life for those living with diabetes.
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General introduction

The structure of this thesis: is organized into four distinct chapters, each addressing

a key component of the study. The chapters are as follows:

Chapter 1: Fundamentals of Spectroscopy

This chapter introduces the basic principles of spectroscopy, with a special focus RAMAN

spectroscopy. It covers the theoretical background, the mechanisms behind spectroscopy,

and the specific advantages and applications of RAMAN spectroscopy.

Chapter 2: ML Application on Spectroscopic Data

An overview of various machine learning algorithms , along with their applications in

Raman spectroscopy.

Chapter 3:Data Preprocessing and System Architectures.

A detailed methodology for data preprocessing, including data collection, cleaning, and

validation.

Chapter 4: Model Implementation and Validation.

The implementation of the proposed machine learning model, including the evaluation of

the validation of results.

2



Chapter 1
Fundamentals of Spectroscopy

1.1 Introduction

The integration of spectroscopy with chemometrics represents a powerful approach

that combines the analytical capabilities of spectroscopic techniques with advanced sta-

tistical and mathematical methods. This synergy allows researchers to extract meaning-

ful information from complex spectral data, improve analytical performance, and solve

challenging problems in various fields. In this chapter, we will review the definition of

spectroscopy and its different types (MS, RAMAN, IR, etc.),then we will take a closer

look at the definition and instruments of Raman spectroscopy and its advantages and dis-

advantages, following that we will go over qualitative Analysis and quantitative.Finally

we will discuss about machine learning in raman spectroscopy.

1.2 Spectroscopy

1.2.1 Definition

”Spectroscopy is the branch of science contracts with learning about the interaction of

the radiation of electromagnetic rays with substances.”[4] By measuring the amount of

radiation absorbed or emitted by a substance based on its wavelength or frequency, spec-

troscopy studies the interaction between electromagnetic radiation and matter.[5].

3



Chapter 1 Fundamentals of Spectroscopy

1.2.2 Electromagnetic radiation

EMR, or electromagnetic radiation, is a type of energy that can be found in a variety of

forms, including microwaves, radio waves, visible light, infrared, ultraviolet X-rays, and

gamma rays, as well as sunlight, which is a small part of the electromagnetic spectrum

[4], It is defined as waves and particles. Waves explain refraction and absorption, whereas

particles explain absorption and emission. The precise nature of electromagnetic radiation

is unknown, although dual models offer a reasonable description.[6]

1.2.3 Interaction phenomena

By interacting with matter, light produces a variety of phenomena that can be examined

to learn more about the biological system under study. The phenomena are :

Absorption

Matter absorbs energy from electromagnetic waves in specific regions of the spectrum; for

example, leaves absorb green light, causing it to be transmitted and reflected preferentially.[7]

Emission

Light can be released from a heated body (light bulb) or after absorbing one wavelength,

the longer wavelength of the released light results in less energy in the released light.[7]

Scattering

Matter scatters electromagnetic waves, changing their propagation direction. The en-

ergy difference between the scattered and incident light determines whether this occurs

elastically (Rayleigh scattering) or inelastically (Raman scattering). [7]

4



Chapter 1 Fundamentals of Spectroscopy

Figure 1.1: interaction of electromagnetic radiation (light) [1]

1.2.4 Types of Spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique that uses mag-

netic properties to record energy absorption between quantized levels, revealing all nuclei

in the molecule under research. [8]

Mass spectrometry (MS)

Mass spectrometry is an analytical tool used to determine the mass-to-charge ratio of

molecules in a sample, calculate molecular weight, identify unknown compounds, quantify

known compounds, and discover the structure and chemical properties of molecules. [8]

Infrared (IR) spectroscopy

Infrared Spectroscopy (IRS) is a technique for analyzing the frequencies of bond vibrations

in molecules. It is typically used to identify functional groups in samples. Covalently

bound molecules absorb electromagnetic radiation in the infrared spectrum, which lies

between visible light and microwaves. This radiation, mostly thermal energy, causes

larger vibrations in molecules, making it suitable for nondestructive or nondestructive

determination and quantitative compound analysis.[4]

IR can be divided into three major bands:

5



Chapter 1 Fundamentals of Spectroscopy

• Near-Infrared (NIR, 0.78 3.0 um) : The first region (NIRS) allows the study of

overtones and harmonic or combination vibrations.[9]

• Mid-Infrared (MIR, 3.0 50.0 um): The MIRS region is to study the fundamental

vibrations and the rotation-vibration structure of small molecules.[9]

• Far-Infrared (FIR, 50.0 1000.0 um): the FIRS region is for the low heavy atom

vibrations (metal-ligand or the lattice vibrations).[9]

Raman spectroscopy

Raman spectroscopy is a method of analysis that utilizes the scattering of light to de-

termine the energy modes of vibration in a given sample. Raman spectroscopy provides

valuable chemical and structural information, as well as enabling the identification of sub-

stances through their unique Raman ’fingerprint’. When molecules scatter light, Raman

scattering occurs, leading to the polarization of the electronic cloud of the molecules and

the creation of a transient complex known as the virtual state of the molecule. [8]

1.3 Raman Spectroscopy

1.3.1 History

Raman spectroscopy was discovered by Sir Chandrasekhara Venkata Raman in India in

1928 and is named after him. It was initially uncommonly used during most of the 20th

century, with infrared spectroscopy being more popular at the time. The technique faced

instrumental difficulties in its early stages, but advancements in technology eventually

made it more accessible. The first commercialized Raman spectrometer was introduced

in the 1960s as a result of special government projects. Raman spectroscopy gained

popularity in the 1970s, with improvements in sensitivity and the development of laser

technology. It became widely used in various fields, including chemistry, materials science,

biology, and medicine.[10]

1.3.2 Instrumentation for Raman Spectroscopy

Raman spectroscopy requires specific instrumentation to perform accurate measurements

and analysis.A Raman spectrometer typically consists of a laser source, a sample holder,

6



Chapter 1 Fundamentals of Spectroscopy

a spectrometer, and a detector.

The laser source

Provides the excitation light, which interacts with the sample and generates Raman scat-

tering. Commonly used lasers include solid-state lasers, diode lasers, and gas lasers.

The sample holder

Holds the sample in place and allows for precise positioning during measurements. It can

accommodate various sample types, including solids, liquids, and gases.

The spectrometer

Disperses the Raman scattered light into its different wavelengths, allowing for the iden-

tification and analysis of the Raman spectrum. It consists of a diffraction grating or a

prism and a detector.

The detector

Captures the dispersed Raman signal and converts it into an electrical signal for further

analysis. Commonly used detectors include charge-coupled devices (CCDs) and photo-

multiplier tubes (PMTs).

Additional accessories

Such as temperature and pressure cells, optical fibers for remote analysis, and microprobes

for high spatial resolution, can be incorporated into the instrumentation setup for specific

experimental requirements. [10]

1.3.3 Advantages and limits of Raman Spectroscopy

Advantages of Raman spectroscopy

• Applicable to all states: Solids, liquids, and gases can be analyzed.

• Requires only a small amount of sample due to the narrow laser source bandwidth.

[11]

7



Chapter 1 Fundamentals of Spectroscopy

• Raman spectroscopy offers noninvasive analysis of biological samples, providing

valuable diagnostic information.

• It allows for the identification and characterization of various compounds, without

the need for sample preparation.

• Raman spectroscopy can be used to study the molecular composition and structure

of tissues, aiding in the diagnosis of diseases.

• Raman spectroscopy is a versatile technique that can be applied to various fields.

• Raman is advantageous for studying living tissues (in vivo) due to its reduced water

interference. [12]

Limits of Raman spectroscopy

• Large and complex datasets, interferences from instrumentation noise, and sam-

ple properties can mask the true features of samples, making Raman spectroscopy

challenging.

• Preprocessing steps such as cosmic ray removal, smoothing, and baseline correction

are often required for Raman-based regression procedures.

• Distinguishing similar peaks: Complex samples, have many molecules causing over-

lapping peaks in the spectra.

• Separating weak signals from background: Weak signals from certain molecules

might be masked by the background noise and strong signals from other components.

[13]

1.3.4 Chemometrics

Chemometrics is a discipline that utilizes statistical and mathematical techniques to ex-

amine chemical data. It plays a significant role in the realm of Raman spectroscopy, which

is used in various fields to analyze complex spectral data. Chemometrics models are de-

veloped by merging data from different sources to enhance discrimination and prediction
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Chapter 1 Fundamentals of Spectroscopy

capabilities in Raman spectroscopy. These models can be formed via supervised or unsu-

pervised learning and are utilized to forecast sample properties or parameters based on

Raman spectra. [14]

1.3.5 Quantitative analysis

Quantitative analysis in Raman spectroscopy entails the determination of the concentra-

tion or quantity of particular elements in a given sample. This can be accomplished by

making a comparison between the Raman spectra of the sample and reference spectra that

contain known concentrations. [15] Quantitative analysis is the process of determining the

quantity or concentration of a particular component in a sample. It involves measuring

the physical or chemical properties and using mathematical calculations to ascertain the

amount of the substance being analyzed. This type of analysis is commonly employed in

fields like chemistry, biology, and environmental science to measure substances of interest.

[14]

1.3.6 Qualitative analysis

Qualitative analysis in Raman spectroscopy focuses on the identification of the chemical

composition or molecular structure of a sample. It entails a comparison between the Ra-

man spectra of the sample and reference spectra that contain known compounds. The

aim is to determine the presence of specific functional groups or molecular vibrations. [15]

Qualitative analysis, on the other hand, involves identifying the presence or absence of

specific components in a sample. Its main focus is on determining the identity or char-

acteristics of the substance being analyzed rather than its quantity. Qualitative analysis

techniques can include visual observation, chemical tests, and spectroscopic methods like

Raman spectroscopy. These methods aid in identifying the functional groups, chemical

bonds, or molecular structures present in a sample. [14]

1.3.7 Machine learning in Raman spectroscopy

Despite being a highly effective method for identifying chemical materials, Raman spec-

troscopy has drawbacks because of the equipment’s limits and complicated data. Deep

learning shows promise in assisting researchers in overcoming obstacles, modeling intricate
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Chapter 1 Fundamentals of Spectroscopy

connections, and extracting information from Raman-based chemical analysis. [16]

1.4 Conclusion

In conclusion, this chapter has provided an in-depth exploration of spectroscopy, elec-

tromagnetic radiation, and the fundamental interaction phenomena that underpin these

techniques. Various types of spectroscopy, including Raman spectroscopy, were examined,

with detailed discussions on its principles and applications. The advantages of Raman

spectroscopy, such as its non-destructive nature, were highlighted, alongside its limita-

tions. Furthermore, we explored chemometrics and both quantitative and qualitative

analyses. Finally, the chapter discussed the application of machine learning techniques

in Raman spectroscopy, illustrating their potential to overcome the challenges inherent

in spectroscopic analysis. This comprehensive exploration provides a foundational under-

standing of spectroscopic techniques.

10



Chapter 2
ML Application on Spectroscopic Data

2.1 Introduction

Machine learning (ML) is an essential technology because of its ability to analyze large

data sets, discern patterns, and make predictions autonomously. Integrating ML with

spectroscopy addresses the limitations of traditional chemometrics by providing more

efficient handling of high-dimensional spectral data, developing adaptable models less

dependent on assumptions, and optimizing analytical tools for improved performance.

This synergy not only improves precision and efficiency, but also promotes innovation,

opening new avenues for scientific exploration and technological advancement. In this

chapter, we will first examine the definition of ML and its types, then we will take look

at the tools and descriptions that are commonly used in Machine Learning in Raman

spectroscopy .At last we will mention the distinct applications of machine learning in

raman spectroscopy.

2.2 Machine learning

2.2.1 Definition

Machine learning (ML) represents a groundbreaking shift in computing. It empowers sys-

tems to learn and adapt through dedicated training data, enabling them to automate the

creation of analytical models and independently tackle associated tasks. This eliminates

the need for explicit programming. ML strives to uncover meaningful relationships and

patterns within provided examples and observations. This process has led to the develop-
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ment of intelligent systems with remarkable cognitive capabilities, mirroring the human

mind. Such advancements have significantly automated aspects of our lives. [17]

2.2.2 Deep learning

Deep learning, a subset of machine learning that utilizes artificial neural networks (ANNs),

has recently gained significant traction in chemical research due to its ability to create

powerful models that can both explore and predict from large, raw datasets. [17]

2.2.3 Types of machine learning

Figure 2.1: machine learning types [2]

1. Supervised machine learning

A machine learning technique that involves the use of algorithms to model the re-

lationships and dependencies between the target prediction output and the input

features. The main objective is to make predictions for new data based on the
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relationships learned from previous datasets. This type of learning, known as su-

pervised learning, is driven by specific tasks such as regression and classification.

One commonly employed method in supervised deep learning is the convolution neu-

ral network. The purpose of supervised learning algorithms is to provide answers

to questions like ”Based on the Raman fingerprint of this newly collected sample,

which class in my database does it most likely belong to?” or ”What is the level of

purity of this substance?”[13]

Figure 2.2: Supervised machine learning [3]

There are two type of algorithms :

1.1 Classification Analysis: Classification is a supervised machine learning al-

gorithm that predicts class labels based on supplied exemple. It transforms input

information into output variables to anticipate the goal, label, or categories. Spam

detection is a common categorization challenge among email service providers.

• Binary categorization : Is a way of categorizing tasks using two labels, such

as ”true and false” or ”yes and no.” It enables for one class to represent the

normal state and another for the aberrant condition. For example, ”cancer not

detected” is a normal result in a medical test.

• Multiclass classification : A technique for categorizing activities with several

class labels that does not rely on the concept of normal and abnormal results

is called multiclass classification. As an illustration, consider categorizing the
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many kinds of network attacks seen in the NSL-KDD dataset into four class

labels: DoS, U2R, R2L, and probing assaults.

• Multi-label : Multi-label classification is a machine learning approach that

associates an example with many classes or labels. It is an extension of mul-

ticlass classification. It uses hierarchically constructed classes, which allow

any example to belong to several classes at each level. This method use so-

phisticated algorithms to forecast mutually non-exclusive classes or labels, as

opposed to typical tasks in which class labels are mutually exclusive.

[18]

1.2 Regression Analysis: Regression enables continuous quantity prediction. Ap-

plied in a variety of sectors, including financial forecasting, cost estimating, trend

analysis, marketing, and medication response modeling. The most common regres-

sion algorithms are linear, polynomial, lasso, and ridge regression. [18]

2. Unsupervised machine learning

A technique in machine learning where models are not trained using a dataset. In-

stead, the models themselves discover hidden patterns and insights from the given

data without labels. This process is similar to how the human brain learns new

things. Unsupervised learning allows users to perform more complex processing

tasks compared to supervised learning and is known as a data-driven approach.

Some tasks that can be achieved with unsupervised machine learning include di-

mensionality reduction, clustering, and association. Examples of unsupervised deep

learning algorithms include autoencoders, sum-product networks, recurrent neural

networks, and Boltzmann machines. Unsupervised learning algorithms focus on an-

swering questions like ”How similar are these samples to each other based on their

Raman fingerprints?”. [13]

There are two types of algorithms :

2.1 Cluster Analysis: An unsupervised machine learning method called cluster

analysis is used to find and organize similar data points in big datasets. It arranges

items into categories based on how similar they are to one other compared to other
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Figure 2.3: Unsupervised machine learning [3]

groupings. Finding trends or patterns in data, such customer groupings based on

behavior, is frequently accomplished through the use of clustering. Applications for

it include e-commerce, user modeling, health analytics, and cybersecurity. [18]

2.2 Association Rule Learning: Association rule learning is a rule-based machine

learning technique that identifies associations between variables in huge datasets. It

is utilized for a variety of applications, including IoT services, medical diagnostics,

online usage statistics, and cybersecurity.The data mining literature has offered a

variety of methodologies, including logic-dependent, frequent pattern-based, and

tree-based approaches. [18]

3. Semi supervised machine learning

Semi-supervised learning may be regarded as a combination of the aforementioned

supervised and unsupervised approaches, since it works with both labeled and un-

labeled data . Thus, it lies in between learning ”without supervision” and learning

”with supervision.” In the actual world, labeled data may be scarce in various sce-

narios, but unlabeled data is abundant, making semi-supervised learning helpful .

The ultimate aim of a semi-supervised learning model is to offer a better predic-

tion output than that obtained by the model utilizing only labeled input. Machine

translation, fraud detection, data labeling, and text classification are all examples

of semi-supervised learning applications. [18]
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4. Reinforcement machine learning

Instead of providing input and output pairs in a reinforcement learning system, we

describe the system’s current state, specify a goal, provide a list of allowable actions

and their environmental constraints for their outcomes, and allow the ML model

to experience the process of achieving the goal on its own using the trial and error

principle to maximize a reward. [17]

2.3 ML-based models used in Raman Spectroscopy

Machine learning techniques have been applied more and more to improve data inter-

pretation and analysis in Raman spectroscopy.Multivariate analysis techniques like as

support vector machines (SVM), partial least squares regression (PLSR), and principal

component analysis (PCA) are often used for problems including regression, classification,

and dimensionality reduction. These techniques make it possible to extract useful data

from intricate spectral datasets, which helps with the identification and measurement of

analytes in Raman spectra.For a more specification, view the table on the next page2.1.
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Tools Descriptions

K-Nearest

Neighbor

KNN classifier is to classify unlabeled observations by assigning them to the class

of the most similar labeled examples.[19]

Decision Tree DT A decision tree is a type of tree structure that resembles a flowchart, with

each leaf node representing the result, the branch representing a decision rule,

and the internal node representing a features (or attribute).[20]

Random Forest

(RF)

The idea behind random forests is to combine a number of randomly selected

decision trees. The goal is to pool a set of predictors (not necessarily optimal).[21]

Support Vector

Machine

SVM Find the hyperplane that distinguishes the different categories with maxi-

mum margins and separate the dataset into different categories by selecting ap-

propriate support vectors. [22]

Artificial Neural

Network

ANN mathematical model that simulates the brain’s neuronal activity as a set

of connected input/output units, where each connection has a weight associated

with it.[22]

Stochastic Gra-

dient Descent

(SGD)

Is a simple but highly effective method for fitting linear classifiers and regressors

to convex loss functions [23] .

XGBoost Is a lightweight, efficient, and versatile distributed gradient boosting library that

utilizes the Gradient Boosting framework for machine learning algorithms, in-

cluding parallel tree boosting..[24]

Principal com-

ponent analysis

PCA is a statistical technique that is useful for compression and extract useful

information from multivariate data sets ,the objective is to reduce the dimension-

ality of a data set.[25]

Isomap Isometric mapping is an additional spectral theory-based distance-preserving non-

linear dimensionality reduction method. [26]

Table 2.1: Tools and descriptions that are commonly used in Machine Learning in Raman

spectroscopy.
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2.4 Discriminant analysis in Raman Spectroscopy

Discriminant analysis in Raman spectroscopy is a technique used to differentiate between

groups based on their Raman spectra.[27]

2.4.1 Multivariate analysis

Multivariate analysis is a statistical technique used to analyze data with multiple vari-

ables, identifying trends, outliers, and classifying data. In this case, unsupervised princi-

pal component analysis (PCA) and supervised partial least square discriminant analysis

(PLS-DA) were used to analyze Raman spectroscopy data of waste cooking oil samples,

identifying a chemical fingerprint characteristic of each sample.[28]

2.4.2 Principal component analysis (PCA)

Principle component analysis is a powerful statistical approach for reducing a case-by-

variable data table to its core properties, known as principle components. A small number

of linear combinations of the original variables, known as principal components, can ac-

count for the majority of the variation in all the variables. Using just a few key elements,

the technique approximates the original data table in the process. The definition, geom-

etry, and interpretation of the method’s numerical and graphical findings are all covered

in detail in this primer.[29]

2.5 Developing a Machine Learning Model for Ra-

man Spectroscopy

The several processes required to develop a machine learning model for Raman spec-

troscopy will be covered , with an emphasis on important procedures such data collection

and preprocessing, model selection and training, and model evaluation. Refer to the figure

2.4
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Figure 2.4: Steps for Developing a Machine Learning Model for Raman Spectroscopy

2.5.1 Data Collection

The dataset offers Raman spectra measurements of 46 volunteers, alongside their HbA1c

and glucose levels. While the dataset doesn’t detail the exact collection method, it does

indicate the in vivo nature of the study, meaning the Raman spectra were directly obtained

from the living subjects. In vivo Raman spectroscopy typically involves a specialized probe

directing a laser onto a target body area and collecting the resulting scattered light. This

scattered light provides information on the molecular makeup of the sampled tissue.

2.5.2 Data Preprocessing

Data preprocessing is an important phase in machine learning that includes operations

such as cleaning, scaling, and encoding data. Preprocessing improves the caliber and

dependability of machine learning results by addressing irregularities and converting data

into a format that is readable.
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Checking missing values and outliers

Outliers and missing values in data can have a major negative influence on a study’s

statistical power and dependability, which can result in severe bias and decreased effi-

ciency. Handling outliers and missing values has a big influence on the outcomes of data

analysis.[30]

Naming columns

Column naming in a DataFrame aims to provide clear and meaningful labels for the data

included inside them. This clarity makes it easier to use and analyze data and helps to

grasp the structure and substance of the dataset.

Normalisation

Normalization is a data preprocessing method that rescales numerical values within a

defined range. It aim is to reduce disparities in the ranges of values while maintaining a

consistent scale for all aspects .[31]

Encoding categorical data

Encoding techniques are required to convert these category variables into numerical values

since machine learning algorithms can only handle numerical inputs.[32]

Oversample

Oversampling is a resampling approach that can be used to balance a dataset by increasing

the number of minority class instances or samples, as well as creating new instances or

repeating some of them. Borderline is one oversampling technique example.-SMOTE.[33]

Smoothing

Data smoothing is a statistical strategy that removes outliers from datasets to highlight

trends. It is accomplished by removing statistical noise from datasets using algorithms.

Data smoothing is a useful tool for predicting patterns, such share price trends.[34]
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Feature Extraction and Selection

Feature extraction retains the original variables processes them into a smaller set to retain

more information, and feature selection removes input variables that do not significantly

impact model performance.[35]

2.5.3 Model Selection

From the algorithms suggested for spectroscopy in the studied field, we choose the most

suitable one for exemple ANN,SVM...etc.

2.5.4 Model Evaluation

TO understanding its performance, detecting issues making informed decisions, and im-

proving its effectiveness.

2.6 Applications of machine learning in Raman spec-

troscopy

2.6.1 Materials science

Raman spectroscopy is a powerful tool for studying material structures and composition.

Combining computer science innovations with materials synthesis and characterization

could save costs and time. AI algorithms like ML and deep learning can efficiently identify

materials and understand their behaviors[36].Refer to the table 2.2
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Applications approach Result Years

Identify the number of

graphene layer

PCA Accuracy < 90% 2018

Recognize minerals CNN Accuracy is 98.43% 2022

Classify the plastics SVM ,PCA ,ANN Accuracy for SVM

,PCA > 95% and for

ANN close 100%

2019

Distinguish phases of

matter

SVM, PCA Accuracy 98.7% and

99.7%

2019

Table 2.2: Applications of machine learning in Raman spectroscopy for Materials science.

2.6.2 Food science

The following are some examples of how Raman spectroscopy is used in the examination

of food, with an emphasis on its effectiveness in identifying food adulteration, unap-

proved additions, antibiotics, medications, pesticide and fungicide residues, and heavy

metals,[37]Refer to the table 2.3.

Applications approach Result Years

Detection of edible oils

type andadulteration

PCA, CNN, RF... All ML algorithms

were used and acheive

100 % accuracy

2022

Identification of intact

beef, venison andlamb

PCA, PLS-DA, SVM Accuracy: 80 % (PLS-

DA) , 92 % (SVM)

and 100 %(SVM and

PLS-D)

2021

Detection of fruit distil-

lates

DT,DA,SVM,KNN,

Ensemble classifiers

Accuracy is 95.5 % 2020

Table 2.3: Applications of machine learning in Raman spectroscopy for Food science .
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2.6.3 Pathogens in biomedicine

Spectroscopic raman have been finding growing uses in the field of biomedicine, notably

in the field of illness diagnosis and monitoring, despite the quick introduction of various

molecular biology-based approaches. Here are some examples:[38]Refer to the table 2.4.

Applications approach Result Years

Detection of bacteria CNN Accuracy ≈ 86 % 2021

Analysis of Raman spectra of

humanand avian viruses

CNN Accuracy 99 % 2022

Identification of Marine

Pathogens

RNN (LSTM) Accuracy >94 % 2021

Table 2.4: Applications of machine learning in Raman spectroscopy for Pathogens in

biomedicine .

2.6.4 Healthcare

Machine learning (ML) and Raman spectroscopy are revolutionizing healthcare by provid-

ing precise, non-invasive diagnostic tools. ML algorithms can detect molecular signatures

associated with health conditions like cancer and neurological disorders. By analyzing

biological samples such as blood, saliva, or urine and it can differentiate between healthy

and diseased states, enabling early disease detection and personalized treatment. This

technology also holds promise in drug development and quality control, improving patient

outcomes and medical research,here are some examples refer to the table 2.5.
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Applications Approach Result Years

Alzheimer’s disease

(AD) diagnosisbased

on saliva analysis

ANN Accuracy is 99 % 2019

Saliva-based detection

of COVID-19 infection

MILES Auc t Max=0.80 2022

Diagnosis of lung can-

cer

STFT based CNN Accuracy is 96.5 % 2021

Identify blood species RNN Accuracy is 97.7 % 2021

Identification of kid-

ney tumor tissue

SVM Accuracy is 92.89 % 2021

Use of Raman spec-

troscopy to screen di-

abetes mellitus with

machine learning tools

ANN

SVM

Accuracy: 88.9–90.9%

76.0–82.5%

2018

Classification of cere-

bral infarction and-

cerebral ischemia

PCA, PLS, MRMR,

SVM,KNN, PNN, DT

Accuracy >85 % 2022

Quantifcation of gly-

cated hemoglobin and

glucose in vivo using

Raman spectroscopy

and artifcial neural

networks

FFNN RMSE :0.69% for

HbA1c and 30.12

mg/dL for glucose.

2022

Blood glucose concen-

tration estimation by

Raman spectroscopy

based on particle

swarm optimized SVR

PSO-SVR R-Squared is 0.8041

RMSE is 1,8580

2023

Table 2.5: Applications of machine learning in Raman spectroscopy for Healthcare .
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2.7 Conclusion

To conclude , we have explored the foundational concepts of ML and its various types.

We have delved into the tools and methodologies commonly employed in Machine Learn-

ing, particularly within the context of Raman spectroscopy. By understanding these tools

and techniques, we gain insight into how they facilitate the analysis and interpretation

of spectral data. Additionally, we have highlighted the distinct applications of Machine

Learning in Raman spectroscopy, showcasing how ML can enhance the precision and effi-

ciency of spectroscopic analysis. Through these discussions, it becomes evident that the

integration of Machine Learning with Raman spectroscopy holds significant potential for

advancing both research and practical applications in this field.
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3.1 Introduction

Preprocessing spectral data is an important step for spectral data in machine learn-

ing because it helps enhance the quality and usability of the data , thus improving the

performance of machine learning models. In this chapter, we will explore the process of

machine learning implementation and our data structure and specificity. Additionally, we

will examine the architecture of our proposed models, laying the foundation for effective

spectral data analysis and modeling.

3.2 Data overview

3.2.1 Acquisition information

The data was taken from 46 participants who were fasting and had their blood drawn, and

tests for glycated hemoglobin and glucose were performed. The first test used afinidad

de boronato, while the second used glucosa oxidasa. These results are regarded as gold

standards.[39]

In vivo measurements

The Raman measurements equipment consisted of a 60 mW power Raman probe InPho-

tonics® RIP-RPS-785 and a Raman spectrometer QE65000 from Oceans Optics® with

a resolution of 0.14–7.7 nm FWHM. The observations were made in Tuxtla Gutierrez,

Chiapas, Mexico, where the temperature was 19.76 ±1.02 °C and the humidity was 63.09
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± 5.25 %. Ten measurements were made for each participant and body area using 30 sec-

onds of integration time; however, some volunteers moved while the spectra were being

acquired. The American National Standard for the safe use of lasers (ANSI Z136.1-2007)

was followed in the calculation of the laser power and integration time.[39]

3.2.2 Data file structure

The files listed below are used in our study:HbA1c and glucose in vivo Raman spectra[40]

The file Volunteers information

Presents details on the participants, including their id, age, weight, height, diabetes, and

HbA1c and glucose...etc.Consult the figure 3.1.

• Features:

1. ID:An identifier of Volunteers and ranges from 1 to 46.

2. Glucose (mg/dl):Glucose level of patient varied from 56 to 400 mg/dL.

3. HbA1c (%):Glycated hemoglobin test estimates the blood glucose average for

the previous 2 to 3 months, the values varied from 5.2 to 14% .

4. Age :Count the age of volunteers

5. Gender:Refers to the gender of volunteers

6. Others :Height ,Weight,Humidity,Enviremental tamperatur(°C)...etc

• Labels:

1. Diabetes:Represent if the Volunteers has type 2 diabetes or not (Binary labels).
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Figure 3.1: Information about data ”Volunteers information”

The folder Filtered Raman spectra

Holds the input and output for glucose and HbA1c, or the values of glucose and HbA1c

for each volunteer. This folder also contains the filtered Raman spectra for each volunteer

and body area (forearm, wrist, index finger).

There are Raman spectra in each tab for the forearm, wrist, and index finger, covering a

spectral range of 200 to 1800 cm-1 (788 features). It is evident that just 414 measurements

each volunteer obtaining 9 measurements will be used for the wrist and forearm, whereas

the index finger’s Raman spectra tab has 3 measurements.[39]

• Input and Output HbA1c: A file for each body part(forearm, wrist, and index

finger).Refer to the figure 3.2.

1. features:

- ID: An identifier of 46 Volunteers.

- Spectral data :788 features from F0 to F787 refer to the Raman spectroscopy

measurements of HbA1c molecules in the bloodstream at specific Raman shift

values.

2. labels:

- HbA1c: The values varied from 5.2 to 14% .
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Figure 3.2: Information about data ”Input and Output HbA1c”

• Input and Output Glucose:A file for each body part(forearm, wrist, and index fin-

ger).Consult the figure 3.3.

1. features:

- ID: An identifier of 46 Volunteers.

- Spectral data :Features from F0 to F787 refer to the Raman spectroscopy

measurements of Glucose molecules in the bloodstream at specific Raman shift

values.

2. labels:

- Glucose: The values varied from 56 to 400 mg/dL.

Figure 3.3: Information about data ”Input and Output Glucose”
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3.3 System architectures

3.3.1 Data Exploration

In this phase, we explore the dataset HbA1c and glucose in vivo Raman spectra to com-

prehend the underlying problem and explore the relationships between its columns. Our

primary focus lies in detecting any inaccuracies, missing values, or outliers.

3.3.2 Diabete classification

We utilized three datasets:

1. ”Volunteers Information”: We used ID,Gender,Diabetes,age.

2. ”Input and Output HbA1c” and ”Input and Output Glucose” :The complete set of

features comprising the dataset.

For binary classification (yes/no).Take a look at the figure 3.4.

Step 1:

We merged the three datasets for each body part (forearm, wrist, and index finger),

resulting in datasets each with 1592 columns.

Step 2: Preprocessing

1. We checked for any missing values or outliers in the datasets to ensure data com-

pleteness. Upon thorough examination, it becomes evident that the dataset is devoid

of any missing values or outliers.

2. We appropriately named the columns to make the datasets more understandable

and easier to manipulate.

3. Through correlation analysis, we identify certain columns that appear to be less

significant. These columns were removed.

4. We encoded categorical columns (such as ID, gender, and diabetes status) to nu-

merical values .This step is essential for algorithms that require numerical input.
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5. We normalized the data using StandardScaler to ensure that all features contribute

equally to the analysis.

6. In addressing the issue of unbalanced data, we’ve opted to employ resampling tech-

niques as a solution. Given the limited number of volunteers in our dataset (only 46),

oversampling emerged as the more suitable approach. Specifically, we’ve chosen the

Synthetic Minority Over-sampling Technique (SMOTE) to augment the minority

class.

7. the features In our dataset represent spectral data values.However,due to factors

such as instrument noise and fluctuations, spectral data can be prone to noise and

variability, which can complicate the task of building accurate machine learning

models. To address this challenge, we employed the Whittaker smoother technique.

8. During our data exploration phase, a notable observation was the large number of

features within the dataset, posing a risk of dimensionality. To address this risk,

we’ve chosen feature selection/extraction as our strategy. In our approach, we’ve

employed Self-Organizing Maps (SOM) and Relief techniques.

Step 3:Train-Test Split

We split the data into training and testing sets for each body part to evaluate the models’

performance. This step ensures that we have a separate dataset to test the models’

generalizability.While keeping data with same ”ID” (same volunteer) in one group to

have a more reliable evaluation.We divided the data as follows: 80% for the train set and

20% for the test set.

Step 4:Models Application

We applied the top three models to the datasets:

• Xgboost, SVC, SGDClassifier

Step 5:Model Evaluation

We evaluated each model on the testing data using various metrics (such as accuracy,Specificity).

,Sensitivity) to measure their performance comprehensively.
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Step 6:Model Validation

We validated the performance of the models to ensure their reliability and effectiveness

in predicting outcomes. This validation step helps in confirming that the models can be

trusted for real-world applications.

Figure 3.4: ”Diabete classification architecture”
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3.3.3 Regression

The same steps were used for both ”Input and Output HbA1c”, and ”Input and Output

Glucose”individualy.Refer to the figure 3.5.

Step 1:Preprocessing

Those preprocessing phases (Checking missing values,naming columns,Filtring spectral

data Whittaker,Features selection/extraction) were used as in the previous architecture

,in addition to :

1. In our implementation, we applied the Z-score outlier detection technique to the

dataset. However, despite its application, we observed no significant improvement

in the model’s performance. Given the limited dataset and the absence of notable

enhancements We concluded that, due to the absence of notable enhancements and

the limited nature of our dataset, it was prudent to discard this technique from our

data preprocessing approach.

Step 2:Train-Test Split

We divided the data as follows: 80% for the train set and 20% for the test set.

Step 3:Models Application

We applied four models to the datasets:

• XGboost: To refine our XGBoost model’s performance, through grid search, we

tested key parameters such as learning rate, maximum tree depth (max depth), and

the number of estimators (n estimators).

• SVR: To refine SVR’s performance, we examined the key parameters such as reg-

ularization (C), epsilon, kernel coefficient (gamma), choice of kernel function, and

polynomial degree.

• KNN: To optimize the performance of the KNN algorithm, we employed grid search,

a hyperparameter tuning technique. We explored various combinations of hyper-

parameters such as the number of neighbors (n neighbors), the weighting scheme

(weights), and the distance metric (algorithm) .
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• Gaussian process regressor: To optimize the performance of this regression

model, we employed grid search methodology. we systematically explored a range

of hyperparameters, including the regularization parameter (alpha), choice of kernel

function (kernel), the number of restarts for optimization (n restarts optimizer), and

whether to normalize the target variable (normalize y).

Step 4:Model Evaluation

We assessed the performance of each model on the test dataset using multiple evaluation

metrics, including RMSE and SD.

Step 5:Model Validation

We conducted thorough validation of the models to ensure their reliability and effective-

ness in predicting outcomes.
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Figure 3.5: ”Regression architecture ”

3.3.4 HbA1c/Glucose Classification

Similar procedures were applied for glucose and HbA1c data independently for multiclass

classification(ok/high/low).Refer to the figure 3.6.

35



Chapter 3 Data Preprocessing and System Architectures

The same process were utilised as Diabete classification plus :

In the models application :SVC ,KNN,SGDClassifier were used.

In the validation steps :Cross validation (GroupKFold) was used.

Figure 3.6: ”Architecture of HbA1c/Glucose Classification”
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3.3.5 Combined classification and regression model

The dataset utilized for classification consisted of all spectral data from ”Input and Out-

put HbA1c” and ”Input and Output Glucose”, serving as the input for Support Vector

Classifier (SVC). The input for XGBoost for the quantification included all spectral data

from ”Input and Output HbA1c” and ”Input and Output Glucose”, augmented by the

predicted class (high, low, ok) of glucose and HbA1c from SVC.

• To boost the previous model performance, we tested introducing a new class column.

This column categorized the target glucose/hbA1c values into specific classes(ok,high,low),

aiming to provide additional structure and context for the model.

• This approach made an improvement in our results. To allow the addition of this col-

umn, we first implemented a classification model(HbA1c/Glucose Classification)its

architecture was explained previously.

• The choosed model from the models applied in HbA1c/Glucose Classification is

SVC,The output from the Support Vector Classification (SVC) model was integrated

as an additional feature into our initial dataset.

• Then we rescaled the data using StandardScaler to adjust the values of the data to

a standard range. The updated data was passed into the XGBoost regression model

to generate predictions.

• After that ,we evaluated and validated model using the evaluation metrics(RMSE,SD)

plus the Clarke Error Grid for assessing the accuracy in predicting glucose levels,and

Bland-Altman plot for HbA1c.

Consult the figure 3.7.
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Figure 3.7: ”Architecture Combined classification and regression model”
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3.4 Conclusion

This chapter has provided an in-depth understanding of the key stages of machine

learning development, from data collection and preparation to modeling and performance

evaluation. Than, we have offered a detailed overview of the data used in this study

.Finally, we presented the proposed architectures for the curren work.
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Chapter 4
Model Implementation and Validation

4.1 Introduction

The performance of machine learning models is crucial for their effectiveness in solving

real-world problems. In this chapter, we will emphasize the significance of model perfor-

mance evaluation and optimization techniques. We’ll delve into the implementation tools

and libraries utilized in our project, providing insights into their roles and functionalities.

Additionally, we’ll conduct a detailed examination of the results obtained from each archi-

tecture, elucidating their strengths, weaknesses,and overall performance, thereby offering

valuable insights into the efficacy of our models.

4.2 Development tools

4.2.1 Definition language Python

Python is an object-oriented, interpreted, high-level language with dynamic semantics.

It is particularly appealing for Rapid Application Development as well as for usage as a

scripting or glue language to join existing components together because of its high-level

built-in data structures, dynamic typing, and dynamic binding. Python’s easy-to-learn

syntax prioritizes readability, which lowers software maintenance costs. Python promotes

code reuse and software modularity by supporting modules and packages. For free on all

major systems, both the Python interpreter and the large standard library are accessible

in source or binary format. They may be shared without restriction.[41]
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4.2.2 Python library

Pandas

Pandas is a Python module that offers expressive, quick, and flexible data structures that

make dealing with ”relational” or ”labeled” data simple and straightforward. It seeks to

serve as the essential high-level building block for using Python to undertake useful, real-

world data analysis. Its overarching objective is to become the most potent and adaptable

open source data analysis/manipulation tool accessible in any language. [42]

NumPy

NumPy is Python’s essential scientific computing library. It is a Python library that

includes a multidimensional array object, various derived objects (such as masked arrays

and matrices), and a collection of routines for performing fast array operations such

as mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete Fourier

transforms, basic linear algebra, basic statistical operations, random simulation, and much

more.[43]

Matplotlib

Matplotlib is a feature-rich Python visualization toolkit for static, animated, and inter-

active graphics. Matplotlib allows for visualizing both simple and complex data.[44]

Scikit-learn

Scikit-learn is a Python package that combines a variety of cutting-edge machine learn-

ing methods for medium-scale supervised and unsupervised applications. This package

aims to make machine learning accessible to non-specialists by adopting a general-purpose

high-level language. The focus is on simplicity of use, performance, documentation, and

API consistency. [45]

1. Pipeline: Pipeline is a tool for preprocessing data using a list of transformers and,

if desired, concludes with a final predictor for predictive modeling. It puts together

steps with adjustable parameters and cross-validation capabilities. Pipelines make
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modeling simpler than merely writing code by condensing logic into a single function

call, streamlining routine tasks.[46]

2. Grid search: Grid search is the easiest method for modifying hyperparameters.

In essence, we create a discrete grid within the hyperparameter domain. Next, we

experiment with every possible combination of values in this grid, utilizing cross-

validation to compute a few performance metrics. The ideal set of hyperparameter

values is the grid point that maximizes the average value in cross-validation.Grid

search finds the optimum location in the field since it is a thorough method that

covers all possible combinations. Its major drawback is its extreme slowness.[47]

3. StandardScaler: Is a scikit-learn pretreatment approach that removes the mean

and scales to unit variance in order to standardize features.[48]

4. SMOTE: Interpolates several existing data points from the minority class to create

fresh samples of the positive class.[49]

TensorFlow

TensorFlow is an open-source toolkit that allows developers and academics to design Deep

Learning templates and conduct complicated machine learning tasks. It is a toolset for

tackling highly complicated mathematical issues in an easy and straightforward manner.[50]

4.3 Development platform

4.3.1 Collaboratory

Google Colaboratory, often known as Colab, is a cloud-based platform for machine learn-

ing research and instruction that is built on top of Jupyter Notebooks. It offers a runtime

that is ready for deep learning and unfettered access to a powerful GPU.[51]With this

platform, you can train machine learning models on the cloud directly. As a result, we

don’t need to install anything on our computer other than a browser. [52]
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4.3.2 JupyterLab

JupyterLab is an extremely feature-rich and extensible notebook writing and editing pro-

gram. Its main objective is to provide tools (and standards) for interactive computing

using computational notebooks.JupyterLab is the brother program of Jupyter Notebook

and Jupyter Desktop, two additional notebook writing programs that are part of the

Project Jupyter family. When compared to Jupyter Notebook, JupyterLab provides a

more sophisticated, feature-rich, and customized experience.[53]

4.4 Classification Evaluation Metrics

4.4.1 Confusion Matrix

The confusion matrix is a cross-tabulation that documents the frequency of occurrences

between two raters, as well as the anticipated and true/actual classifications. The rows

show the actual categorization, while the columns represent the model prediction for

consistency’s sake across the whole publication.[54]

Predicted Positive Predicted Negative

Actual Positive TP FN

Actual Negative FP TN

• True Positives (TP): Number of cases where the model correctly predicted the

positive class.

– Example: A medical test correctly identifies a sick person as sick.

• True Negatives (TN): Number of cases where the model correctly predicted the

negative class.

– Example: A medical test correctly identifies a healthy person as healthy.

• False Positives (FP): Number of cases where the model incorrectly predicted the

positive class for an instance that is actually negative.

– Example: A medical test incorrectly identifies a healthy person as sick.

• False Negatives (FN): Number of cases where the model incorrectly predicted

the negative class for an instance that is actually positive.
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– Example: A medical test incorrectly identifies a sick person as healthy.

4.4.2 Classification Report

Accuracy

Calculates the proportion of accurate predictions to all cases examined. [55]

Accuracy =
CorrectPredictions

TotalPredictions
=

TP + TN

TP + FP + TN + FN
(4.1)

Precision

The number of accurately predicted positive patterns from the total number of anticipated

patterns in a positive class.[55]

Precision =
TP

TP + FP
(4.2)

F1-score

The F1 score is the harmonic mean of memory and accuracy. It offers a clear indication

of the model’s performance and is used to evaluate test accuracy. The objective is to

acquire the F1 score as close to 1 as is practical. The score goes from 0 to 1.[56]

F1− score = 2× Precision× Recall

Precision + Recall
(4.3)

4.4.3 Sensitivity(Recall)

Is employed to calculate the percentage of positive patterns that receive accurate classi-

fication. .[55]

Sensitivity(recall) =
TP

TP + FN
(4.4)

4.4.4 Specificity

Used to calculate the percentage of negative patterns that are appropriately categorized.[55]

Specificity =
TN

TN + FP
(4.5)
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4.5 Regression Evaluation Metrics

4.5.1 Mean Absolute Error (MAE)

The mean absolute error (MAE) describes the difference between the original and pre-

dicted values and is calculated as the dataset’s total alteration mean. [57]

MAE =
1

n

n∑
i=1

|yi − ŷi| (4.6)

4.5.2 Mean Square Error (MSE)

Also called the Mean Squared Deviation the average squared error between the predicted

and actual values. It takes positive or zero values .[58]

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (4.7)

4.5.3 Root Mean Squared Error (RMSE)

Also called the square root of the mean of the squares of all the mistakes is the deviation

. Stated differently, the RMSE can be defined as the standard deviation of the errors.

Once more, RMSE indicates the proximity of the line of best fit to the data set.[58]

RMSE =
√
MSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (4.8)

4.5.4 Standard Deviation (SD)

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (4.9)

4.6 Validation Technique

4.6.1 Cross-validation

Cross-validation is a statistical approach for assessing and comparing learning algorithms

that divides data into two sections: one for learning or training a model and another

for validating the model. To ensure that every data point has an equal chance of being
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verified against, the training and validation sets must cross over in subsequent rounds

of traditional cross-validation. K-fold cross-validation is the most fundamental type of

cross-validation. Special instances of k-fold cross-validation include other types of cross-

validation.[59]

4.6.2 Bland-Altman

The Bland-Altman analysis is frequently utilized in studies examining the concordance

between two methods of the same medical measurement[60]. Bland and Altman intro-

duced the Bland-Altman plot as a tool to assess agreement between two quantitative

measurements. They devised a method to quantify this agreement by establishing limits

of agreement, calculated using the mean and standard deviation (s) of the measurement

differences. To validate assumptions like normality, they employed graphical techniques.

The resulting XY scatter plot displays the difference (A-B) on the Y-axis and the average

of the measurements ((A+B)/2) on the X-axis. [61].

4.6.3 Clarke Error Grid

The Clarke error grid method is used to determine the clinical relevance of variations

between the glucose measurement methodology being tested and the venous blood glucose

reference data. [62]

• Zone A indicates accurate predictions with no risk to patient care.

• Zone B suggests slight deviations in treatment decisions.

• Zones C, D, and E represent increasing levels of clinical risk, indicating potential

dangers in treatment decisions.

4.7 Models implementation and evaluation

4.7.1 Implementation and evaluation of ’Diabete Classification’

Evaluation of Model

• SVM: Let’s examine the outcomes of the diabetes binary classification by reviewing

the confusion matrices shown in image 4.1
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(a) Forearm (b) Wrist (c) Index finger

Figure 4.1: Confusion matrix for SVM

– The analysis of confusion matrices reveals the classification performance across

different body parts for diabetes and healthy classes. In the forearm, the

model correctly classified 457 diabetes cases (TP) and 562 healthy cases (TN),

with only 1 diabetes case misclassified as healthy (FN) and 1 healthy case

misclassified as diabetes (FP). Moving to the wrist, all 491 diabetes cases were

correctly identified (TP), but 37 were misclassified as diabetes(FP), while 493

healthy cases were correctly identified (TN) with 12 misclassified as healthy

(FN). Notably, the finger consistently showed perfect classification for both

diabetes (58 TP) and healthy (54 TN) cases, indicating high accuracy across

both classes.

• SGDClassifier:Let’s analyze the results SGDClassifier’s classification by examining

the confusion matrices depicted in the image 4.2

(a) Forearm (b) Wrist (c) Index finger

Figure 4.2: Confusion matrix for SGDClassifier

– Using SGDClassifier, the confusion matrix analysis reveals the classification
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performance across different body parts. In the forearm, the model correctly

classified 455 diabetes cases (TP) out of 458, with 3 misclassified as diabetes

(FP). For healthy cases, it correctly identified 562 (TN) out of 563, with 1 mis-

classified as healthy (FN). Moving to the wrist, the model correctly classified

431 diabetes cases (TP) out of 491, but missed 60 (FP). It correctly identified

488 healthy cases (TN) out of 493, with 5 misclassified as healthy (FN). In the

finger, the model achieved perfect classification with all 58 diabetes cases and

all 54 healthy cases correctly identified.

• HGBoost:Let’s examine the outcomes of the HGBoost classification as depicted in

the figure. 4.3

(a) Forearm (b) Wrist (c) Index finger

Figure 4.3: Confusion matrix for HGBoost

– In the forearm, the model correctly classified 487 diabetes cases (TP) , with

1 cases misclassified as diabetes (FP). It also correctly classified 553 healthy

cases (TN) , with 10 cases misclassified as healthy (FN). Moving to the wrist,

the model correctly classified 489 diabetes cases (TP) but missed 2 (FP), and

it correctly classified 491 healthy cases (TN) but missed 2 (FN). In the finger,

the model correctly classified 56 diabetes cases (TP) but missed 2 (FP), and

all 54 healthy cases were correctly classified.

Result of model

• The analysis reveals distinct performances across different regions: SVC excelled

in the forearm with an accuracy of 0.94, specificity of 0.95, and sensitivity of 0.93.

Meanwhile, HGBoost showed superior results in the wrist, achieving an accuracy of
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0.95, specificity of 0.97, and sensitivity of 0.94. In the index finger, both SVM and

HGBoost achieved high accuracy rates of 0.96, with SVM demonstrating specificity

and sensitivity of 0.94 and 0.97 respectively, and HGBoost showing specificity of

0.93 and sensitivity of 0.98. As shown in figure 4.4

Figure 4.4: Diabete classification result

4.7.2 Implementation and evaluation of ’Regression’

After performing cross-validation, we calculated the RMSE and SD for each body region

for both Glucose and HbA1C using diffrent algorithms as presented in the figure below4.5

(a) HbA1c

(b) Glucose

Figure 4.5: Regression result

• In the forearm region, XGBoost and SVR emerged as the top performers for ac-

curately quantifying hbA1c and glucose levels, showcasing their robust predictive

capabilities. Moving to the wrist region, these models continued to excel with mini-

mal error, reaffirming their effectiveness in precise measurements of hbA1c and glu-
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cose. Meanwhile, in the index finger region, Gaussian and XGBoost demonstrated

superior performance in quantifying hbA1c and glucose levels.

Xgboost with added column

• To improve the performance of regression model we tryed adding a new feature

(class of glucose/HbA1c) the result improved as illustrated in figure 4.6.

Figure 4.6: Xgboost with added column result

4.7.3 Implementation and evaluation of ’HbA1c/Glucose Clas-

sification’

(a) HbA1c

(b) Glucose

Figure 4.7: ’HbA1c/Glucose Classification’result

• This model was implemented to get the class feature mentioned previously.We picked

the best performing model SVM in both Glucose and HbA1c data.
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4.7.4 Implementation and evaluation of ’Combined classifica-

tion and regression model’

• Combined model regression classification result :

Figure 4.8: Combined model regression classification result

• We employed a combination of classification and regression techniques to analyze

glucose and HbA1c levels across various body regions. The most effective model uti-

lized SVC for classification and Xgboost for regression. Notably, the optimal results

were achieved in the wrist area for both glucose and HbA1c predictions.Consult the

figure3.7.

4.7.5 Evaluation HbA1c

• We utilized the Bland-Altman plot to evaluate the agreement between predicted and

reference values of HbA1c(true value) in a quantification model. This plot compares

the differences between predicted and reference HbA1c values against their mean.

Each data point on the scatter plot represents a pair of these values, visualizing

both the spread and any potential bias between predictions and actual measure-

ments. The red dashed line across the plot indicates the average difference between

predicted and reference values. green dashed lines would depict the 95% limits of

agreement around the mean difference, reflecting the range within which most dif-

ferences lie. This plot aids in identifying any systematic bias between the methods

(illustrated by deviations from zero on the mean difference line) and evaluating

the precision of agreement (indicated by the width of the limits of agreement).This

graphical analysis assess the accuracy and reliability of the HbA1c quantification

model.Refer to the figure4.9.
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(a) Forearm

(b) Wrist (c) Index finger

Figure 4.9: Bland altman evaluation of HbA1C

52



Chapter 4 Model Implementation and Validation

4.7.6 Evaluation Glucose

• The forearm results show that the majority of measurements (73 out of the total) fall

within Zone A, indicating clinically acceptable accuracy. There are very few errors

(2 in Zone B and 1 in Zone D), and no measurements in the higher risk Zones C

and E. This suggests that overall, the device performs well within acceptable limits

for clinical use, with only minor errors observed in a small number of cases.Consult

the figure 4.10.

Figure 4.10: Clarck error grid forearm
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• The wrist results indicate that the model generally performs well, with 72 mea-

surements falling within Zone A, demonstrating clinically acceptable accuracy. No

measurements were found in Zones B, C, or E, indicating the absence of minor,

moderate, or critical errors. However, 4 measurements fell into Zone D, suggesting

that in some cases, the device’s readings significantly deviated from true glucose

levels, which could impact treatment decisions. Therefore, while the overall perfor-

mance is satisfactory, further investigation and potential error mitigation in Zone

D are recommended.Refer to the figure 4.11.

Figure 4.11: Clarck error grid wrist
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• The Clarke Error Grid analysis in the index finger the glucose measurements shows

that the majority of readings (26 out of 27) fall within Zone A, indicating clinically

acceptable accuracy. One measurement is in Zone B, suggesting a minor error that

is unlikely to significantly affect treatment decisions. Importantly, there are no

measurements in Zones C, D, or E, indicating no errors that could lead to benign,

clinically significant, or critical treatment decisions opposite to what is needed.

Overall, these results demonstrate that the device performs well within acceptable

limits, with only a minor deviation observed in a single instance.As illustrated in

the figure 4.12

Figure 4.12: Clarck error grid finger
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4.8 Related work

In ”Quantifcation of glycated hemoglobin and glucose in vivo using Raman spectroscopy

and artifcial neural networks” article, two approaches were implemented, and both of them

used the same preprocessing technique and deep learning algorithm:Zernike polynomial

filttering combined with genetic algorithms and Whitaker filtter to reduce fuorescence

and shot noise, followed by RReliefF and SOM for feature selection and extraction,first

combined with FFNN algorithm for regression achieved an error in the predictive model

of 0.69% for HbA1c and 30.12 mg/dL for glucose and the second for the classification the

Patients were classifed into three categories:healthy,prediabetes, and T2D. The FFNN

obtained a accuracy of 96.01% .[63]

4.9 Our proposed models vs related work Compari-

son

4.9.1 Combined classification regression comparison

1. A clustered column chart illustrating a comparative analysis between the RMSE

results of related work and the proposed method for HbA1c quantification across

each body region, Refer to the figure 4.13.
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(a) Forearm

(b) Wrist (c) Index finger

Figure 4.13: Clusterd column HbA1c
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2. A clustered column chart comparing RMSE results between existing methods and

our proposed approach for glucose quantification across various body regions, As

illustrated in figure 4.14.

(a) Forearm

(b) Wrist (c) Index finger

Figure 4.14: Clusterd column glucose

• In a comparison , the article previously discussed using the same dataset reported

predictive errors of 0.69% for HbA1c in the wrist region and 30.12 mg/dL for glucose

in the forearm region using FFNN.

In contrast, our approach utilizing a combined classification and regression model

(SVC-XGBoost) achieved significantly lower errors of 0.44% for HbA1c and 15.49

mg/dL for glucose in the wrist region.

This improvement underscores the efficacy of integrating multiple machine learning

techniques into a unified predictive framework, highlighting advancements in ac-

curacy and performance over previous methodologies. Consult the figure 4.13 and

4.14.
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4.9.2 Diabetes classification comparison

1. A clustered column chart comparing accuracy results between existing methods and

our proposed model across various body regions, As illustrated in figure 4.15.

(a) Forearm

(b) Wrist (c) Index finger

Figure 4.15: Clusterd column diabete classification

• In the evaluation of classification performance across different body parts, both

FFNN and HGBoost exhibited similar levels of accuracy for wrist and forearm clas-

sifications. However, a significant improvement was observed in the accuracy for

the index finger classification when using HGBoostC . Specifically, the accuracy for

the index finger increased from 81.59% with FFNN to an impressive 96.06% with

HGBoostC.Consult the figure4.15.
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4.10 Conclusion

In this chapter, we dive into the essential components required for implementing var-

ious architectures, including development tools, platforms, and libraries. We explored

the significance of selecting appropriate evaluation metrics and validation techniques to

ensure the robustness and effectiveness of these architectures. Through detailed imple-

mentation and evaluation of each architecture provided a hands-on understanding of their

applicability and performance.Finally, we conducting a comprehensive comparison of the

proposed models with the existent model.
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General Conclusion

Spectroscopy integrated with machine learning has emerged as a potent tool across

diverse fields, promising innovative solutions to longstanding challenges. In the realm

of healthcare, traditional methods for quantifying glucose and HbA1c levels often entail

invasive blood analyses, presenting inherent drawbacks such as discomfort, inconvenience,

and potential health risks. Recognizing this limitation, the fusion of spectroscopy with

machine learning offers a transformative approach. The central objective of our work lies

in implementing these integrated models, aiming to pioneer a non-invasive alternative

that addresses the shortcomings of conventional blood analysis techniques. Through the

seamless integration of spectroscopy and ML, we aspire to contribute to the advancement

of healthcare diagnostics, facilitating improved patient care and outcomes.

To address the shortcomings of conventional blood analysis techniques, we implemented

a hybrid approach combining classification and regression models. Specifically, we utilized

support vector classification (SVC) for categorizing glucose and HbA1c levels, alongside

XGBoost for regression tasks. This integrated model achieved remarkable accuracy, with

errors of only 0.44% for HbA1c and 15.49 mg/dL for glucose levels.

However,Our dataset is limited in size, This highlights the importance of ongoing efforts

to expand and diversify our data collection practices.

The most promising outcomes were achieved in the wrist area. This model has the po-

tential to be integrated into a watch, where it could display whether the Glucose/HbA1c

levels are high, low, or within the normal range, along with the specific numerical value.

This innovation could greatly enhance monitoring and management of glucose levels for

individuals needing regular health assessments in a non invasive way.
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