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Abstract

Motivation

Relation extraction (RE) in the biomedical domain is crucial due to the enormous volume of

textual data generated by scientific research and clinical practices. Biomedical publications, patient

reports, and clinical databases contain valuable information that, when properly structured and in-

terpreted, can revolutionize diagnostics, treatments, and disease understanding. Manually extracting

these relations is time-consuming and prone to errors. Traditional relation extraction techniques have

limitations in terms of precision and scalability. Recent advances in deep learning models, particularly

Transformers, offer new perspectives by enabling the analysis and extraction of information with un-

precedented precision and speed. These advances make biomedical information more accessible and

useful for healthcare professionals and researchers, thus improving clinical decision support tools and

reducing the time required to find relevant information.

Objectives

This work focuses on the application of Transformers techniques, specifically SciBERT models,

to extract relation from biomedical texts. The main objective is to develop a system capable of

identifying and structuring relations between biomedical entities with high precision.

Results

In our results, the proposed model, RE-SciBERT, demonstrated exceptional performance thanks

to a rigorous fine-tuning process. By applying advanced fine-tuning techniques to the SciBERT model,

we optimized the hyperparameters and improved the precision of biomedical relation extraction. The

results show that our model achieved a remarkable F1 score of 90.10, with a precision of 77.15 and

a recall of 75.73, thus surpassing the performance of the compared models.

Keywords

Relation Extraction, Biomedical Domain, Clinical Texts, Transformers, SciBERT.



Résumé

Motivation

L’extraction des relations (RE) dans le domaine biomédical est cruciale en raison de l’énorme

volume de données textuelles issues de la recherche scientifique et des pratiques cliniques. Les pu-

blications biomédicales, les rapports de patients et les bases de données cliniques contiennent des

informations précieuses qui, correctement structurées et interprétées, peuvent révolutionner les diag-

nostics, les traitements et la compréhension des maladies. L’extraction manuelle de ces relations est

chronophage et sujette à des erreurs. Les techniques traditionnelles d’extraction de relations ont

des limites de précision et de scalabilité. Les récents progrès des modèles d’apprentissage profond,

notamment les Transformers, offrent de nouvelles perspectives en permettant une analyse et une

extraction d’informations avec une précision et une rapidité sans précédent. Ces avancées rendent les

informations biomédicales plus accessibles et utiles pour les professionnels de santé et les chercheurs,

améliorant ainsi les outils de support à la décision clinique et réduisant le temps nécessaire pour

trouver des informations pertinentes

Objectifs

Ce travail se concentre sur l’application des techniques Transformers, spécifiquement les modèles

SciBERT, pour extraire des relations à partir de textes biomédicaux. L’objectif principal est de

développer un système capable d’identifier et de structurer les relations entre les entités biomédicales

avec une grande précision.

Résultats

Dans nos résultats, le modèle proposé, RE-SciBERT, a démontré une performance exceptionnelle

grâce à un processus de fine-tuning rigoureux. En appliquant des techniques avancées de fine-tuning

sur le modèle SciBERT, nous avons optimisé les hyperparamètres et amélioré la précision de l’ex-

traction des relations biomédicales. Les résultats montrent que notre modèle atteint un score F1

remarquable de 90.10, avec une précision de 77,15 et un rappel de 75,73, surpassant ainsi les perfor-

mances des modèles comparés.

Mots-clés

Extraction des relations, Domaine biomédical, Textes cliniques, Transformers, SciBERT.
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General introduction

The continuous growth of biomedical literature poses unprecedented challenges for

information retrieval and data mining techniques. Repositories like pubMed central and

MEDLINE are experiencing an exponential surge in publications, demanding innovative

solutions to transform this data into actionable knowledge. Natural language processing

emerges as a powerful tool in this endeavor, empowering researchers to interpret and pro-

cess text for human-understandable knowledge extraction. Relation extraction systems, a

specific type of NLP tool, offer a solution to this critical need.

Biomedical Relation Extraction focuses on automatically identifying relationships bet-

ween chemical compounds, genes, and proteins. Unveiling these relationships is crucial

for knowledge extraction, ultimately paving the way for novel treatment development and

disease cause identification. While BioRE offers immense potential, it faces significant

challenges due to the inherent complexities of biomedical texts. These challenges include

specialized vocabulary, diverse terminologies, and intricate sentence structures.

One promising solution lies in fine-tuning pre-trained transformer-based RE systems.

Transformers, a type of neural network architecture, have demonstrated remarkable effec-

tiveness across various NLP tasks, including RE. Their ease of use and training efficiency

make them a preferred choice to other models. Additionally, transformers offer a fertile

ground for continuous research and advancements, ensuring ongoing performance impro-

vements.

This study delves into the application of transformer models specifically for BioRE

tasks. We leverage NLP and Deep Learning techniques to train a SciBERT model for

chemical-protein relationship extraction within the biomedical domain. Our proposed mo-

del builds upon the pre-trained language comprehension capabilities of SciBERT. Fine-

1



General introduction

tuning this model on the ChemProt dataset equips it with the necessary knowledge of

general RE patterns, ultimately enhancing its capacity for accurate chemical-protein re-

lation extraction in biomedical texts.

This dissertation is structured into four distinct chapters :

• In the first chapter, we establish a comprehensive foundation in RE. We’ll explore the

most important approaches, techniques, and datasets used to model and benchmark

RE systems. This chapter will also delve into the evaluation metrics that are crucial

for assessing their performance.

• In the second chapter, various preliminary concepts are introduced, followed by an

in-depth exploration of advancements in artificial intelligence. The focus is particu-

larly on DL and neural networks. The chapter further examines the application of

neural networks in NLP, with a special emphasis on transformers. Additionally, it

includes a comprehensive analysis of related works.

• The third chapter outlines the proposed approach to address the problem. It presents

the datasets utilized, the models developed, and the architecture of the system.

• The last chapter wraps things up by analyzing and discussing the research findings

we presented throughout this work. We’ll delve into the specifics of our experimental

setup, including the software used. Additionally, we’ll dissect the results, showcasing

the performance gains achieved through our model training process.

2



Chapter 1
Relation Extraction

1.1 Introduction

Relation extraction serves as a crucial component in natural language processing and

data analysis, enabling the identification and characterization of associations that exist

between diverse entities. This process involves parsing through textual or structured data

to unveil the underlying relationships that may be implicit or explicit. The objective is

to distill meaningful patterns and connections, contributing to a more profound compre-

hension of the information at hand.

In the subsequent sections, we will provide a comprehensive of relation extraction,

this will include discussions on its definition. Subsequently, we will delve into specific as-

pects of relation extraction, including types, extraction pipeline, applications, approaches,

biomedical aspects, datasets, and evaluation metrics.

1.2 Relation Extraction

Relation extraction (RE) is a fundamental task in Natural Language Processing (NLP)

that aims to automatically identify and classify semantic relationships between entities

mentioned in text [8]. In the context of relation extraction, entities are typically real-world

objects such as people, organizations, locations, or other named entities.

Example : "Apple Inc. announced the acquisition of a startup company". - Here,

the extracted relation is "organization-action-object", where "Apple Inc". (organization)

is the entity performing the action "announce", and the object of this action is "the

3



Chapter 1 Relation Extraction

acquisition of a startup company" (see Figure 1.1).

Figure 1.1 – Example of relation extraction.

1.2.1 Relation Types

In the task of Relation Extraction, relation types refer to the different types of se-

mantic relationships that exist between entities mentioned in text. These relations can

vary depending on the number of entities they link, the granularity and scope of the rela-

tions extracted, the domain, or the specific application. Some common relation types in

Relation Extraction include [9] :

• Binary relations :, A binary relation is a relation involving two entities (which can

be called also arguments of the relation) (e.g. : "The company Apple was founded by

Steve Jobs." e1 :Apple "Organization", e2 :Steve Jobs "Person", Relation : Founded

By).

• N-ary relations : They link three or more entities. They are good for verbs which

can take multiple arguments or for event representation [9], (e.g. : "The collabora-

tion between Microsoft, Intel, and Dell led to the development of a groundbreaking

technology." e1 : Microsoft "Organization", e2 : Intel "Organization", e3 : Dell "Or-

ganization", Relation : Collaboration.)

• First-order relations : They connect two or more entities.

• Higher-order relations They link an entity with one or many relations.

• Targeted – Predefined relations : They are part of a set of predefined known

relations ; relations that are already established or specified in advance. Thus, the

task of their extraction bears resemblance to a classification task.

4
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• Emergent relations : They are relations that are not predefined beforehand and

may be discovered or identified during the process. The approach diverges from as-

suming a predefined set of relations. Instead, it aims to extract all possible relations

in an unsupervised or semi-supervised manner. This concept aligns with Open In-

formation Extraction (OpenRE), which represents an extraction paradigm designed

to address an unlimited range of relations.

• Mention-level also known as sentence-level RE. The goal of sentence-level RE

is to identify the relationship between two entities that are mentioned together in

the same sentence [8]. The relationships are identified and classified based on the

context and semantic meaning of the sentence in which the entities appear.

• Global level, also known as document-level RE, aims to determine the rela-

tion between two entities from a document of multiple sentences [10]. The goal of

document-level relation extraction is to understand the connections and interactions

between these entities within the context of the entire document. This task is more

complex than sentence relation extraction, as it requires an understanding of the

broader context and relationships between entities that may not be explicitly stated

in a single sentence.

In this work, we focus on document-level Relation Extraction. This type of RE focuses

on extracting relations from documents that are relevant to a specific domain or industry.

For example, in the field of biomedical research, one might be interested in extracting

relations between genes, proteins, and diseases. In this case, the extracted relations would

be specific to the biomedical domain.

1.2.2 Relation Extraction Pipeline

Relation extraction entails multiple phases within a pipeline approach. This metho-

dology involves the systematic breakdown of the relation extraction task into various

sub-tasks. These sub-tasks encompass different aspects of the extraction process, and can

be described as follows :

Entity recognition

Entity recognition, also known as Named Entity Recognition (NER), is a fundamental

task in natural language processing that encompasses identifying and classifying entities

5
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in a text. The original design idea for NER was to parse the text, to identify proper nouns

from the text, and to categorize them.

Relation identification

Relation identification involves determining the specific relationship between entities

mentioned in a sentence or text. By using natural language processing techniques, such

as dependency parsing and pattern matching, relation identification aims to understand

the syntactic and semantic structure of the sentence. It helps us recognize and classify the

relationship between entities, such as "is associated with," "causes", "treats", or "interacts

with".This process is essential for extracting structured information from unstructured

text, enabling us to uncover hidden connections and gain deeper insights.

1.2.3 Relation Extraction Applications

Relation Extraction has transformed from a technical feat to a transformative tool, un-

locking valuable knowledge hidden within textual data. Its applications span an impressive

range of fields, each leveraging its ability to identify and classify relationships between

entities mentioned in text. Let’s take an in-depth look at some prominent examples from

different domains :

Knowledge Graph Construction

Relation extraction is an essential component in constructing knowledge graphs. One

notable system in this domain is Open IE (Open Information Extraction), proposed by

Banco et al.[11]. Open IE aims to extract relations in an unsupervised manner from

large amounts of text. Another notable work is Reverb, introduced by Fader et al.[12],

which focuses on extracting binary relations from text using a pattern-based approach.

These systems have been instrumental in populating knowledge graphs with structured

information, facilitating advanced knowledge representation and semantic search.

Biomedical Research

Relation extraction is of great importance in biomedical research, particularly in ex-

tracting relationships between biomedical entities. One notable system is BioBERT (Bio-

medical Bidirectional Encoder Representations from Transformers), proposed by Lee et

6
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al.[13]. BioBERT is a domain-specific language model fine-tuned on a large corpus of bio-

medical literature, enabling it to capture complex relationships between genes, proteins,

diseases, and drugs. Another system is DNorm, introduced by Leaman et al.[14], which

focuses on normalizing disease mentions in biomedical texts by identifying relationships

between disease names and their corresponding unique identifiers.

Opinion Mining and Sentiment Analysis

Relation extraction is employed in opinion mining and sentiment analysis to identify

relationships between entities and sentiments expressed in text. One notable system is

the SenticNet framework proposed by Cambria et al.[15]. SenticNet combines natural

language processing and machine learning techniques to extract and analyze relationships

between entities and their associated sentiments, enabling fine-grained sentiment analysis

in various domains.

Social Network Analysis

Relationship extraction is used in social network analysis to uncover connections and

relationships between individuals or entities within a social network. One notable sys-

tem is Stanford’s CoreNLP, which provides a suite of natural language processing tools,

including relation extraction capabilities. CoreNLP has been widely used for extracting

relationships such as family relations, friendships, and professional connections from social

media data[16].

Financial Analysis

Relation extraction is applied in financial analysis to extract relationships between

companies, individuals, and financial events mentioned in textual sources. One notable

system is FinBERT, introduced by Yang et al.[17], which is a domain-specific language

model fine-tuned on financial texts, enabling it to capture relationships and sentiments

related to financial entities.

Question Answering Systems

Relation extraction is employed in question answering systems to understand and ans-

wer questions that require knowledge about relationships between entities. One notable

7
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system is OpenQA (Open Question Answering), proposed by Yates et al.[18]. OpenQA

uses relation extraction techniques to identify relevant relationships between entities in

text, enabling it to provide accurate and informative answers to user queries.

1.3 Relation Extraction Approaches

Relation extraction has witnessed a transformative evolution in methodologies, driven

by the increasing complexity of biomedical texts. This section provides an overview of the

diverse approaches employed for extracting relationships between entities within litera-

ture, with a focus on the progression from traditional methods to advanced deep learning

techniques.

Traditional Approaches

Traditional approaches to relation extraction relied on handcrafted features and rule-

based systems. While these methods have been effective in some domains, they often

require manual feature engineering and domain-specific knowledge. In our work, traditio-

nal approaches may not be suitable due to the need for scalability in DocRE.

Therefore, we will focus in our proposed solution on exploring more advanced tech-

niques that can overcome the limitations of traditional approaches and efficiently extract

relationships from biomedical texts.

Semi-Supervised and Unsupervised Learning

Semi-supervised and unsupervised approaches to relation extraction aim to alleviate

the reliance on labeled data by leveraging unlabeled or partially labeled text corpora. To

train models, semi-supervised methods typically include a small portion of labeled data

and a larger pool of unlabeled data [19].

Unsupervised methods use techniques like clustering, co-occurrence analysis, or graph-

based algorithms to extract relationships from unlabeled text. These approaches have the

potential to be scalable and flexible, but they may not perform as well as supervised

methods in complex or nuanced relation extraction tasks.

8
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Deep Learning Approaches

Deep learning has revolutionized relation extraction by enabling models to automa-

tically learn hierarchical representations of text data [20]. Deep learning architectures,

such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), or

transformer-based models like BERT (Bidirectional Encoder Representations from Trans-

formers), have demonstrated remarkable performance in relation extraction tasks. These

models can capture complex linguistic patterns and contextual information, leading to

state-of-the-art results in various relation extraction benchmarks. The proposed work

aims to leverage the capabilities of deep learning models to improve relation extraction

in the biomedical context.

Hybrid Approaches

The combined strength of multiple techniques, such as rule-based, supervised, and deep

learning methods, is leveraged in hybrid approaches [21]. In a hybrid system, a supervised

learning model and a deep learning model may be employed to classify the candidates,

while using rule-based heuristics to generate candidate relations. Hybrid approaches in-

corporate diverse methodologies to offer flexibility and robustness, but may need more

computational resources and expertise for development and deployment.

1.4 Biomedical Relation Extraction

Biomedical Relation Extraction stands as a revolutionary force in deciphering the com-

plexities of life sciences research. It delves into the vast realm of biomedical literature,

not just reading the words, but actively unveiling the relationships that bind entities like

genes, proteins, diseases, and drugs. These relationships, intricate and diverse, can shed

light on interactions, regulations, pathways, and the very fabric of biological processes.

Biomedical relation extraction involves automatically identifying and extracting re-

lationships between biomedical entities mentioned in textual sources, such as scientific

articles, clinical records, and biomedical databases.

In biomedical texts, Relation Extraction models aim to identify and extract various

types of relationships between entities. The relationships can span across different do-
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mains, including drug interactions, protein-protein interactions, gene-disease associations,

and more. Here are some common types of relationships that can be extracted from bio-

medical texts :

Chemical-Protein Relations

Chemical-protein interactions are vital for understanding how small molecules, such as

drugs, interact with proteins to influence biological processes. These interactions are cru-

cial in drug design, toxicology, and elucidating disease mechanisms. By extracting these

relationships from biomedical texts, researchers can identify potential drug targets, com-

prehend adverse drug reactions, and understand mechanisms of action. Examples include

drug binding (e.g., statins to HMG-CoA reductase), enzyme inhibition (e.g., organophos-

phates inhibiting acetylcholinesterase), and protein modulation via allosteric sites [7].

Gene-Disease Associations

Identifying relationships between genes and diseases is crucial for understanding the

genetic basis of diseases and identifying potential therapeutic targets. For example, iden-

tifying associations between the BRCA1 gene and breast cancer sheds light on the genetic

predisposition to the disease [22].

Protein-Protein Interactions (PPIs)

Proteins often interact with each other to perform various biological functions. Ex-

tracting protein-protein interactions from literature aids in deciphering complex cellular

processes and signaling pathways. For instance, identifying interactions between p53 and

MDM2 proteins elucidates their role in regulating cell growth and apoptosis [23].

Drug-Target Interactions

Understanding the interactions between drugs and their molecular targets is essential for

drug discovery and development. Extracting drug-target interactions from literature as-

sists in identifying potential drug candidates and predicting drug efficacy and side effects.

For example, identifying the interaction between aspirin and cyclooxygenase-1 (COX-1)

informs its mechanism of action in inhibiting platelet aggregation[24].

10
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Drug-Drug Interactions

Drug-drug Interactions (DDIs) represent significant challenges in pharmacotherapy,

with the potential to lead to adverse outcomes or therapeutic failures. These interactions

occur when two or more drugs interact, altering their pharmacokinetic or pharmacodyna-

mic properties. A notable example is the interaction between warfarin and ciprofloxacin,

where ciprofloxacin inhibits warfarin metabolism, leading to increased anticoagulant ef-

fects and bleeding risk [25].

Virus-Host Interactions

Virus-host interactions refer to the intricate relationships between viruses and their

host organisms. Understanding these interactions is crucial for comprehending viral pa-

thogenesis, developing antiviral strategies, and advancing our knowledge of host immune

responses. For example, interaction between severe acute respiratory syndrome coronavi-

rus 2 (SARS-CoV-2) and human host cells in COVID-19 [26].

Biomedical relation extraction finds diverse applications across various domains in bio-

medical research and healthcare. Several systems and approaches have been developed to

address specific applications, including :

BioBERT and SciBERT

These are specialized language models pre-trained on large-scale biomedical text data.

They capture the domain-specific knowledge needed for biomedical relation extraction

tasks and have shown improved performance in various relation extraction challenges,

[13][27].

BioNLP Shared Task

The BioNLP shared task series organizes challenges to promote the development of re-

lation extraction methods for specific biomedical relationships. Examples include protein-

protein interactions, gene-disease associations, drug-drug interactions, and more. Partici-

pating in these challenges helps advance the field[28][29].
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Pharmacovigilance and Adverse Event Reporting Systems

Pharmacovigilance systems collect and analyze data on Adverse drug events (ADEs)

reported by healthcare professionals and patients. These systems help identify previously

unknown drug-drug interactions and assess their impact on patient safety. By monitoring

ADE reports, regulatory authorities and pharmaceutical companies can take necessary

actions to mitigate risks associated with drug-drug interactions [30].

Clinical Decision Support Systems

Biomedical relation extraction plays a crucial role in clinical decision support systems

by extracting relationships between patient characteristics, diagnoses, treatments, and

outcomes. This aids in personalized medicine, treatment recommendations, and clinical

research [31].

Pathway Reconstruction Systems

Pathway reconstruction systems aim to extract relationships between genes, proteins,

and biological processes to reconstruct intricate biological pathways. Examples of such

systems include PathwayStudio [32] and ingenuity pathway analysis [33], which leverage

biomedical relation extraction to map interactions between molecular entities and eluci-

date signaling cascades and metabolic pathways.

Integrating extracted relationships into Decision Support Systems (DSS) in a clinical

setting can greatly enhance the capabilities of healthcare professionals and improve patient

outcomes. Here are some details and practical examples to delve into :

Practical Examples

• Alerting for Potential Drug Interactions : When a physician enters a patient’s

medication list into a DSS, the system can automatically flag potential drug inter-

actions, providing recommendations to avoid adverse effects.

• Symptom-Based Diagnosis Assistance : DSS can analyze a patient’s reported

symptoms, compare them with known disease-symptom associations, and generate

a ranked list of potential diagnoses, aiding the clinician in decision-making.
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• Treatment Recommendations : Based on a patient’s medical condition and cha-

racteristics, a DSS can suggest the most effective treatment options by considering

drug-condition associations and treatment-efficacy relationships.

• Personalized Risk Assessment : By incorporating disease-risk factor associa-

tions, DSS can assess a patient’s risk of developing certain conditions and recom-

mend appropriate preventive measures, such as lifestyle modifications or screenings.

• Predictive Analytics for Disease Progression : By utilizing disease-risk factor

associations and patient data, DSS can predict the likelihood of disease progression

or deterioration. This information can assist healthcare professionals in developing

proactive treatment plans and interventions to slow or manage disease progression

effectively.

• Treatment Adherence Monitoring : DSS can extract and analyze relationships

between medication adherence and patient outcomes. By integrating this informa-

tion, healthcare professionals can monitor patients’ adherence to prescribed treat-

ments and intervene if non-compliance is detected, improving treatment effective-

ness.

These examples illustrate how integrating extracted relationships into DSS can sup-

port healthcare professionals in making informed decisions, improving patient care, and

reducing the likelihood of errors or adverse events.

1.5 Biomedical RE Datasets

A benchmark dataset commonly used in the research community can be used to evaluate

the performance of a Relation Extraction model. In the following section, we present some

important and reliable datasets that are commonly used to report outcomes related to

RE modeling.

BioCreative VI ChemProt

The BioCreative VI ChemProt corpus is a valuable resource for studying chemical-

protein interactions in scientific literature. It contains 6,500 interactions across 1,820

PubMed abstracts, providing standardized annotations, diverse interaction types, and
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additional contextual information. It has potential applications in drug discovery, protein

function understanding, and personalized medicine [7].

Biomedical Relation Extraction Dataset (BioRED)

BioRED is a dataset created for relation extraction in the biomedical field. It focuses

on identifying connections between various biomedical entities such as genes, proteins,

diseases, and chemicals. The dataset consists of annotated sentences or abstracts from the

biomedical literature, with labels indicating the relationships between entities. In total,

there are 20,419 entities mentioned in the BioRED corpus, representing 3,869 unique

concept identifiers [34].

BioInfer

BioInfer is a project and dataset focused on biomedical text mining and Natural Lan-

guage Processing. It provides a collection of scientific abstracts and annotations for extrac-

ting biomedical information. The dataset has been widely used to develop and evaluate

techniques for information extraction, entity recognition, and relationship extraction in

the biomedical domain. BioInfer has played a significant role in advancing the field of

biomedical text mining [35].

BioCreative V CDR

The BioCreative V Chemical-Disease Relation (BC5CDR) corpus, a cornerstone in bio-

medical Natural Language Processing, provides researchers with a wealth of information

on chemical-disease interactions extracted from the vast PubMed database. This publi-

cly available dataset, consisting of over 1500 manually annotated abstracts, serves as a

crucial benchmark for developing and evaluating NLP methods focused on information

extraction from biomedical texts [36].

In the context of our work, we will focus our analysis on the BioCreative VI ChemProt

dataset, recognized as a fundamental resource for studying chemical-protein interactions

in scientific literature. This corpus, containing 6,500 interactions spread across 1,820 Pub-

Med abstracts with standardized annotations, offers a diversity of interaction types and
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valuable contextual information. We intend to leverage this dataset to deepen our unders-

tanding of drug discovery, protein functions, and personalized medicine.

Here’s a comparison table 1.1 highlighting the key variations among the datasets we’ve

discussed :

Feature BioCreative

VI ChemProt

BioRED BioInfer BioCreative

V CDR

Entity

types

Chemicals, pro-

teins

Genes/proteins,

diseases, chemi-

cals, variants,

species, cell lines

Varied Chemicals, di-

seases

Relation

types

4 (binding, posi-

tive modulation,

negative modu-

lation, Pt modi-

fication)

8 (positive regu-

lation, negative

regulation, part-

of, etc.)

10 Various

chemical-

disease rela-

tions

Size 1820 abstracts 600 abstracts 1100 sentences 1500 abstracts

Relation

level

Document level Document level Sentence level Document le-

vel

Data

source

PubMed abs-

tracts

PubMed abs-

tracts

PubMed abs-

tracts, GENIA

corpus, PID

PubMed abs-

tracts

Table 1.1 – Benchmark Datasets
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1.6 RE Evaluation Metrics

The evaluation metrics for RE models are determined by the extraction approach used

in these relations. The evaluation of the performances is based on the use of precision (P),

recall (R), and F1-score (F1) models. Understanding these measures requires the use of

the confusion matrix.

1.6.1 Confusion Matrix

A confusion matrix is a table that is used to evaluate the performance of a classification

algorithm. It provides a detailed breakdown of the model’s predictions by comparing them

to the actual outcomes. The confusion matrix consists of four entries : true positives, true

negatives, false positives, and false negatives, as specified in Table 1.2 :

Predicted

Positive Negative

Actual
Positive True Positive False Negative

Negative False Positive True Negative

Table 1.2 – Confusion Matrix.

Using the values from the confusion matrix, we can calculate various evaluation metrics,

such as precision, recall, accuracy, and F1 score.

1.6.2 Precision

Precision measures the proportion of correctly predicted positive relations (true posi-

tives) out of all predicted positive relations (true positives + false positives). It helps to

assess the model’s ability to avoid false positive predictions.

Precision “
TruePositive

TruePositive ` FalsePositive
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1.6.3 Recall

Recall measures the proportion of correctly predicted positive relations (true positives)

out of all actual positive relations (true positives + false negatives). It helps assess the

model’s ability to find all relevant relations.

Recall “
TruePositive

TruePositive ` FalseNegatives

1.6.4 F1 Score

The F1 score is the harmonic mean of precision and recall. It provides a single metric

that balances both precision and recall.It is particularly useful when dealing with imba-

lanced datasets or situations where both false positives and false negatives are important.

It is often used to compare and rank relation extraction models.The formula for the F1

score is :

F1Score “
2 ˚ Precision ˚ Recall

Precision ` Recall

1.6.5 Accuracy

Accuracy is a commonly used evaluation metric for classification tasks, including rela-

tion extraction. It measures the proportion of correctly classified instances (true positives

and true negatives) out of the total number of instances. The accuracy formula is :

Accuracy “
TruePositive ` TrueNegative

TruePositive ` TrueNegative ` FalsePositive ` FalseNegatives

Accuracy provides an overall measure of how well the model is performing across all

classes. In such cases, a high accuracy score can be misleading, as the model may be

biased towards the majority class. Therefore, it’s important to consider accuracy along

with other metrics such as precision, recall, and F1 score to obtain a more comprehensive

evaluation of the model’s performance.
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1.7 Conclusion

In this chapter, we explored Relation Extraction. First, we have defined what Relation

Extraction is, its importance in the biomedical field, and the motivation behind our re-

search. Then, we have outlined the most important approaches, techniques, and datasets

used to model and benchmark RE systems. Finally, we examined the evaluation metrics

utilized for gauging the efficacy of RE models.

The next chapter will delve into the utilization of neural networks in Natural Language

Processing to enhance Relation Extraction, specifically within the biomedical context.
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Chapter 2
Deep Learning and Transformers

2.1 Introduction

Deep learning has emerged as a powerful paradigm within artificial intelligence, revo-

lutionizing various fields by enabling machines to learn complex patterns and represen-

tations directly from data. In the realm of Natural Language Processing, deep learning

techniques have led to significant advancements in understanding and processing human

language.

In this chapter, we delve into the fundamentals of deep learning and explore the evolu-

tion of neural network architectures. We begin by exploring the basics of neural networks,

including the perceptron and multi-layer perceptron, and their learning algorithms such

as backpropagation. We then delve into the application of neural networks in NLP, focu-

sing on recurrent neural networks (RNNs), long short-term memory (LSTM) networks,

and their variants, which laid the groundwork for transformer-based models. We discuss

the key components of transformer models and their applications in various NLP tasks,

including relation extraction.

Furthermore, we examine transfer learning techniques, which have become increasingly

prevalent in NLP, allowing models to leverage pre-trained representations and adapt them

to specific tasks with limited annotated data. We review prominent transformer-based mo-

dels such as BERT, RoBERTa, XLNet, and ERNIE, highlighting their architectures and

applications in relation extraction from biomedical texts. Finally, we provide an overview

of related works in the field, presenting a comparative analysis of various deep learning

and transformer-based models for relation extraction.
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2.2 Deep Learning

Deep learning is a sub-branch of machine learning which is based on a stack of layers

of neural networks. The goal of deep learning is to be able to imitate the actions of the

human brain using artificial neural networks. The more layers and neurons the network

contains, the more expressive the model will be, which allows it to understand more

complex concepts and better adapt to reality.

The beggining of artificial neurons dates back to the 1940s, when Warren McCul-

loch and Walter Pitts[37] proposed their first mathematical and computer model of the

biological neuron : the formal neuron. This artificial neuron has one or more inputs and

a binary output, its operation is simple ; the neuron activates its output (active output =

1) depending on whether its inputs exceed a certain threshold.

The perceptron was invented in 1957 by F. Rosenblatt [38]. The perceptron is

a formal neuron, the smallest possible neural network, whose activation function is a

step function also called linear threshold function, which makes the perceptron a linear

threshold unit. The perceptron takes arbitrary numbers as inputs (unlike the formal

neurons), and each input is weighted by a weight (w). The principle of the per-

ceptron is to classify the input data into two groups (0 or 1). However, a perceptron can

only classify data that is linearly separable, meaning data that can be separated into two

groups.

Multilayer perceptrons are neural networks and aim to classify more complex data

than that classified by a perceptron. To do this, the multilayer perceptron observes each of

the data it possesses and updates each weight of each neuron in each layer of its network

in order to best classify this database. The algorithm that multilayer perceptrons use to

update their weights is called error gradient backpropagation.

The revolution of deep learning is linked to the increasing power of computers, enabling

the creation and training of neural networks with dozens of hidden layers. The rise of deep

learning also stems from the abundance of data continuously accumulating.

2.3 Artificial Neural Networks

Artificial Neural Network is an information processing paradigm that is inspired by

the way biological nervous systems, such as the brain, process information. The key ele-
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ment of this paradigm is the novel structure of the information processing system. An

artificial neural network is composed of numerous interconnected processing elements,

akin to neurons, collaborating harmoniously to tackle designated tasks. Similar to human

cognition, ANNs acquire knowledge through exposure to examples. Each ANN is tailored

for a particular purpose, be it pattern recognition or data classification, achieved through

a learning phase. In biological systems, learning encompasses modifications to synaptic

connections among neurons [39].

Main Architectures of ANNs

The basic structure of an ANN can be modelled as shown in Figure2.1. This architec-

ture consists of three basic parts [40] :

Figure 2.1 – Architecture of ANNs.

• Input Layer : serves as the initial point for receiving data from the external envi-

ronment.

• Hidden, intermediate, or invisible layers :These layers carry out the funda-

mental operations within a network, consisting of neurons tasked with extracting

features.

• Output Layer :This layer, comprised of neurons, generates and delivers the ulti-

mate outputs of the network.
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Formal neuron

Formal neurons are elementary units in an artificial neural network. They are a ma-

thematical function. The following diagram represents the general mathematical model of

a formal neuron [1] :

Figure 2.2 – Mathematical model of the formal neuron [1].

— The formal neuron that is given in the figure above has n inputs, denoted as :

{X1, X2, . . . , Xnu.

— For each line connecting these inputs to the summation function, a weight is assi-

gned, denoted as : {W1,W2, . . . ,Wnu.

— The summation function aggregates the products of each input multiplied by its

corresponding weight, adding the bias term ’b’ to adjust the output in conjunction

with the weighted sum of inputs to the neuron :

Sum “

˜

n
ÿ

i“1

pxi ˆ wiq ` b

¸

(2.1)

— The activation function F(a) is one of the most important parts of a neuron. Several

activation functions can be considered, such as : linear function, sigmoid function,

etc. [1]. For example, the sigmoid function transforms the values of the summation

into values between 0 and 1. It can be defined as follows :

fpxq “
1

1 ` e´Sum
(2.2)

— Output :the final activation y :

y “ f

˜

n
ÿ

i“1

xi ¨ wi ` b

¸

(2.3)
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2.4 Neural Network Learning

An artificial neural network’s ability to learn is arguably the most important aspect.

There are two types of neural network learning [41] :

• Supervised Learning : This form of learning relies on input data paired with

their corresponding correct outputs. During training, the neural network adjusts

the weights to achieve optimal values that allow it to generate accurate outputs

corresponding to the given inputs. This enables the network to produce correct

outputs for any new input. The Backpropagation Algorithm is commonly employed

as the training algorithm for supervised learning.

• Unsupervised Learning : In contrast, unsupervised learning operates solely on

input data without any provided correct outputs. The network’s objective is to

identify relationships and similarities among the input data, grouping them into

distinct categories by extracting patterns unique to each category. As a result, the

network can generate output based on the patterns observed in novel input data.

Backpropagation Algorithm

Backpropagation is a key algorithm used to train neural networks, particularly in

supervised learning settings. It involves iteratively adjusting the network’s parameters

(weights and biases) to minimize the difference between predicted and actual outputs.

The backpropagation algorithm consists of several steps :

1. Forward-propagate : Forward propagation involves sending the inputs through

the network layers towards the outputs, as illustrated in Figure 2.3. The output of

the network, denoted as ak, is obtained by applying pre-activation zl, and activation

gl, for all layers (indexed with i for the input layer, j for the hidden layer, and k for

the output layer) using equation 2.4.

ak “ gkpbk `
ÿ

j

gjpbj `
ÿ

i

aiwijqwjkq

(2.4)

Figure 2.3 – Forward-propagate [2].
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2. Back-propagate : In the second stage of the algorithm, the error E is compu-

ted between the network output ak and the actual output tk. This calculation is

performed using a cost function as described by equation 2.5, which may vary in

complexity, ranging from simple options like Mean Squared Error (MSE) to more

intricate choices such as cross-entropy.

E “
1

2

ÿ

kPK

pak ´ tkq
2 (2.5)

The error signal δ1 is determined using the following equations (2.6, 2.7) to propagate

backward through the network layers, illustrated in Figure 2.4. δk represents the

error signal for the output layer, while δj signifies the error signal for the hidden

layer.

δk “ g1
kpzkqE 1

pak, tkq (2.6)

δj “ g1
jpzjq

ÿ

k

δkwjk (2.7)

Figure 2.4 – Back-propagate [2].

3. Calculate parameter gradient : The third step involves calculating the gradients

of the error function for each layer’s weights. This utilizes "forward signals" (denoted

as al ´ 1) from the preceding layer and "backward error signals" (denoted as δl)

from the current layer, as detailed in Equation 2.8. Similarly, the gradient for biases

is computed using the same fundamental rule but with a key distinction. Unlike

weights, biases are not directly connected to the previous layer, resulting in their

"feed-forward activations" always being one layer ahead, as illustrated in Equation

2.9.

BE

Bwl´1,l

“ al´1δl (2.8)

BE

Bbl
“ blδ (2.9)

Figure 2.5 – Compute parameter gradients [2].
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4. Update parameters : The final step entails updating all network parameters -

both weights and biases - based on the gradients computed in the previous step.

This update utilizes the learning rate parameter pηq as a scaling factor, as specified

by the following equations :

wl´1,l “ wl´1,l ´ η
BE

Bwl´1,l

(2.10)

bl “ bl ´ η
BE

Bbl
(2.11)

2.5 Neural Networks for NLP

Neural networks have been highly successful in various NLP tasks, including language

modeling, machine translation, and sentiment analysis. This section explores different

types of neural networks commonly used in NLP, including recurrent neural networks,

long short-term memory networks, and transformers.

2.5.1 The recurrent neural networks (RNN)

Recurrent neural networks are a specific type of neural network designed for handling

sequential data, such as text. These networks incorporate a feedback loop that aids in

retaining information from previous steps. Figure 2.6 illustrates the unrolled representa-

tion of a recurrent network. In its unrolled form, it resembles a multi-layer feed-forward

network, with the distinction that parameters are shared across the different time steps

within the RNN.

Figure 2.6 – Recurrent Neural Network [3].

Among the various versions of recurrent neural networks (RNNs), one widely utilized

variant is the one proposed by Elman in 1990 [42].
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ht “ ρpWhxt ` Uhht´1 ` bhq (2.12)

yt “ ρpWyht ` byq (2.13)

In the given equation, ρp.q represents any non-linear activation function, while xt

and ht represents the input and hidden states at time step t, respectively. The network

parameters, including Wh, Wy, Uh, bh, and by, are learned during the training process. The

hidden state phtq plays a crucial role in retaining past information within the network.

2.5.2 Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber (1997) introduced long short-term memory networks, a

specific type of recurrent neural network architecture designed to address the challenges

of capturing long-term dependencies and mitigating the vanishing and exploding gradient

problems that hinder traditional RNNs [43]. This is achieved by replacing the recurrent

hidden layer with a more complex cellular structure, as illustrated in Figure 2.7. The key

components of an LSTM cell include :

Figure 2.7 – LSTM cell [4].

1. Cell State (Ct ) : This is the core of the LSTM cell, and it’s responsible for storing

long-term information. It is updated based on the previous cell state (Ct´1), the

current input (xt), and the forged gate (ft).

2. Gates : LSTM networks use gating mechanisms to control the flow of information

and selectively update the cell state. The three main types of gates in an LSTM

are :
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• Input Gate (it) : Determines how much new information to add to the cell

state.

• Forget Gate (ft) : Determines how much information to discard from the

previous cell state.

• Output Gate (ot) : Determines how much of the cell state should be exposed

as the output.

3. Hidden State (ht) : The hidden state contains information selectively filtered from

the cell state and serves as the output of the LSTM cell.

LSTMs are able to learn long-term dependencies in sequential data by selectively re-

membering and forgetting information over time. This makes them well-suited for a variety

of tasks, such as speech recognition, machine translation, and time series forecasting.

2.5.3 Transformers

The Transformer is a sequence to sequence type of neural networks introduced by

Vaswani et al. (2017) [5] in their paper titled "Attention is All You Need". It differs

from Recurrent Neural Networks in two key ways : architecture and processing. Unlike

RNNs, which rely on recurrent units that process data sequentially, transformers leverage

an attention mechanism alone. This enables them to analyze the entire input sequence

simultaneously, a capability that unlocks the power of parallelization during training and

inference. This efficiency is a hallmark of the transformer architecture, which elegantly

combines a multi-head self-attention mechanism with an encoder-decoder struc-

ture.

The encoder-decoder structure plays a crucial role in how transformers operate. The

encoder meticulously creates a compressed vector representation (embedding) of the input

sequence, capturing its core essence. The decoder, comprised of stacked layers, builds upon

the encoder’s output to ultimately generate the final sequence.

2.5.4 Model Architecture

Transformer architecture has revolutionized Natural Language Processing. This ar-

chitecture departs from its predecessor, the recurrent neural network, by employing a

meticulously designed encoder-decoder structure that hinges on the transformative po-
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wer of the attention mechanism. The encoder, comprised of stacked layers equipped with

self-attention, meticulously analyzes the input sequence (e.g., a sentence) to generate rich

contextual representations for each element. This self-attention mechanism empowers the

model to selectively focus on relevant portions of the input sequence itself, enabling the

capture of long-range dependencies and intricate relationships within the data. The de-

coder, also utilizing stacked layers with masked self-attention and attention over the en-

coder’s outputs, subsequently generates the final output sequence, such as a translated

sentence or a concise summary [5].

Encoder

The encoder depicted in the left half of Figure 2.8 consists of six identical layers, with

each layer composed of two sublayers :

1. The first sublayer employs a multi-head self-attention mechanism, where each head

receives a linearly projected version of the queries, keys, and values. These heads

produce outputs in parallel, which are then combined to generate a final result.

2. The second sublayer consists of a fully connected feed-forward network with Recti-

fied Linear Unit (ReLU) activation. It consists of two linear transformations :

FFNpxq “ ReLUpW1x ` b1qW2 ` b2 (2.14)

Each layer applies the same linear transformations to all words in the input sequence,

but with different weight pW1,W2q and bias pb1, b2q parameters. Both sublayers have a

residual connection around them. Additionally, each sublayer is followed by a normaliza-

tion layer, LayerNormpx ` Sublayerpxqq, which normalizes the sum computed between

the sublayer input pxq and the output generated by the sublayer pSublayerpxqq.

Decoder

The decoder, visualized on the right side of Figure 2.8, is structured as a stack of six

identical layers. Each of these layers contains three sublayers with specific functions :

1. The first sublayer is a masked multi-head self-attention layer, enabling the model

to attend to different parts of the input sequence.

2. the second layer uses "multi-head attention" to focus on key aspects of the previous

output (encoder stack).
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3. The third sublayer is a fully connected feed-forward network that applies non-linear

transformations to the outputs of the second sublayer.

Additionally, each of the three sublayer in the decoder has residual connections around

them and is followed by a normalization layer.

Figure 2.8 – Architecture of the Transformer model [5].

Attention

Attention mechanisms utilize vectors to transform a query and a collection of key-value

pairs into a single output. The output can be understood as a weighted combination of

the values, where each weight is determined by a compatibility function. This function

measures how well the query aligns with its corresponding key, essentially gauging their

similarity [5].

• Scaled Dot-Product Attention :

Scaled Dot-Product Attention, as depicted in Figure 2.9 (a), is a foundational

component of transformer models, enabling precise computation of the relevance of
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each token in an input sequence concerning a given query. Mathematically, given a

query Q, a set of key vectors K , and a set of value vectors V for an input sequence,

the attention scores AttentionpQ,K, V q are computed as follows :

AttentionpQ,K, V q “ softmax
ˆ

QKT

?
dk

˙

(2.15)

where Q denotes the query, K represents the set of key vectors, V signifies the

set of value vectors, and dk indicates the dimensionality of the key vectors. This

mechanism efficiently yields weighted sums of the value vectors, thereby producing

the final output [5].

• Multi-Head Attention :

Multi-Head Attention, as illustrated in Figure 2.9 (b), enhances the capabilities

of scaled dot-product attention by enabling simultaneous attention across multiple

subspaces within the input sequence. It achieves this by projecting the query, key,

and value vectors into distinct lower-dimensional spaces, or "heads", and performing

Scaled Dot-Product Attention independently within each subspace. Given h atten-

tion heads, the output of multi-head attention MultiHeadpQ,K, V q is computed as

follows :

MultiHeadpQ,K, V q “ Concatphead1, head2, . . . , headhqWO (2.16)

Where each headi is the result of applying scaled dot-product attention to the

projected query, key, and value vectors of the i-th head. WO is a learnable linear

transformation applied to the concatenated outputs. This mechanism enables the

model to attend to different aspects of the input sequence simultaneously, enhancing

its capacity for nuanced representation learning [5].
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(a) Scaled Dot-Product Attention (b) Multi-Head Attention

Figure 2.9 – Attention Mechanisms in Transformers [5].

2.5.5 Transfer Learning

Transfer learning is a method that uses the knowledge acquired from one task to

address a related but distinct problem. Essentially, given a source domain Ds and learning

task Ts, along with a target domain Dt and learning task Tt (where Ds ‰ Dt or Ts ‰

Tt), transfer learning aims to facilitate the improvement of learning the target predictive

function ft in Tt by utilizing the knowledge from Ds and Ts . Figure 2.10 illustrates this

process visually. Initially, a mathematical model (referred to as the "Model" along with

the Head) is employed to learn the base task Ts. Subsequently, the pre-trained portion of

the Model is isolated and combined with a New-Head to create a new model, which then

learns the target task Tt. Transfer learning has the potential to enhance the robustness

of models and expedite learning in deep learning systems [6].
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Figure 2.10 – Transfer Learning [6].

2.6 Transfer Learning in NLP

Transfer learning has emerged as a powerful technique in natural language processing,

allowing models to leverage knowledge from pre-trained representations to improve per-

formance on downstream tasks. In NLP, two common approaches to transfer learning are

feature-based transfer and fine-tuning.

Feature-based transfer

Feature-based transfer learning involves extracting relevant features from a pretrained

model and using those features as input to a new task-specific model. In NLP, this can

be done by using pretrained word embeddings or language models as feature extractors.

Word embeddings, such as Word2Vec [44] and GloVe [45], capture semantic and syn-

tactic relationships between words. These pretrained embeddings can be used as input

features for downstream NLP tasks, such as sentiment analysis or text classification. By le-

veraging the knowledge encoded in these embeddings, the model benefits from the transfer

of general language understanding.

Additionally, language models like ELMo [46] and GPT [47] can be used as feature

extractors. These models generate contextualized word representations that capture the

meaning of words in the context of the surrounding words. These contextualized embed-

dings can be passed through task-specific models, such as recurrent neural networks or

convolutional neural networks, to perform various NLP tasks.
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Fine-tuning

Fine-tuning involves taking a pretrained model and updating its parameters on a task-

specific dataset. In NLP, fine-tuning is commonly used with models like BERT [48] and

other transformer-based architectures.

BERT, for example, is pretrained on a large corpus using unsupervised learning objec-

tives. After pretraining, the model is fine-tuned on a specific downstream task by adding

a task-specific layer on top of the pretrained model and training the entire model on task-

specific labeled data. During fine-tuning, the pretrained parameters are updated while the

task-specific layer is trained from scratch. Fine-tuning allows the model to adapt its re-

presentations to the specific task, incorporating task-specific information while retaining

the knowledge from the pretrained model.

Fine-tuning has been shown to be highly effective in NLP, achieving state-of-the-art

performance on a wide range of tasks, including text classification, question answering,

and named entity recognition.

2.7 Transformer-based models in RE

Transformer-based models have significantly advanced relation extraction tasks by

capturing contextual information and achieving state-of-the-art results. Here are some

popular transformer-based models used in relation extraction :

BERT

In the realm of natural language processing, where machines strive to understand

and interact with human language, the bidirectional encoder representations from

transformers (BERT) model stands as a landmark achievement. Introduced by Google

AI in 2018 [48], BERT has revolutionized the field with its exceptional capabilities in

capturing nuanced details and contextual information within language.

The cornerstone of BERT lies in its reliance on the Transformer architecture.

This novel architecture utilizes the attention mechanism, allowing it to analyze the

relationships between words, regardless of their distance in the sentence. Unlike traditional

models that process text sequentially, BERT can simultaneously consider all words in a

sentence, enabling it to grasp long-range dependencies and understand the context
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surrounding each word.

However, the true power of BERT lies in its pre-training process. Unlike models

trained solely for specific tasks, BERT benefits from extensive pre-training on massive

datasets of text. This pre-training involves two crucial steps :

1. Masked Language Modeling (MLM) : randomly masking words in the text and

predicting the missing words based on the surrounding context. This helps BERT

learn the relationships between words and their meanings.

2. Next Sentence Prediction (NSP) : Predicting whether two given sentences

appear consecutively in the original data. This hones BERT’s ability to understand

how sentences relate to each other and flow coherently.

Through this pre-training, BERT acquires a deep understanding of general language pat-

terns and contextual information. This knowledge can then be fine-tuned for various

NLP tasks.

RoBERTa

RoBERTa (Robustly Optimized BERT Pretraining Approach) is an extension of the

BERT model that was introduced by Liu et al. (2019)[49]. It addresses some limitations

of BERT and incorporates several modifications to improve performance in various na-

tural language processing tasks, including relation extraction. RoBERTa largely follows

the architecture and training methodology of BERT but introduces modifications to the

training process. Some key modifications include :

1. Dynamic Masking :while BERT uses static masking, where a fixed percentage of

input tokens are masked during training, RoBERTa applies dynamic masking. This

means that the masking pattern is randomly selected for each training instance,

allowing the model to see various masked tokens configurations.

2. Larger Training Corpora : RoBERTa is trained on a larger amount of data

compared to BERT, incorporating additional publicly available text sources. This

increased training data helps in capturing a broader range of linguistic patterns and

improves the model’s generalization ability.

3. Training Duration : RoBERTa is trained for a longer duration compared to BERT.

The longer training duration allows the model to see more data and learn more

effectively.
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By incorporating these modifications, RoBERTa achieves improved performance over

BERT on a range of NLP tasks, including relation extraction. The enhanced training

methodology and larger training corpora allow RoBERTa to learn more robust repre-

sentations, capturing a broader understanding of language semantics and improving its

ability to extract relations between entities in a given sentence.

XLNet

XLNet, introduced by Yang et al. in 2019 [50], stands as a state-of-the-art pre-trained

language model that pushes the boundaries of natural language processing performance.

Its architecture extends the transformer model, incorporating innovative techniques to

address limitations observed in previous models like BERT and GPT.

Key among these innovations is permutation language modeling, a departure from

BERT’s token masking approach. XLNet considers all permutations of the input sequence

during training, allowing it to capture bidirectional context more effectively. To efficiently

handle this task, XLNet utilizes an autoregressive factorization scheme, breaking down

the joint probability of permutations into conditional probabilities. Additionally, XLNet

employs a two-stream self-attention mechanism, which captures information from both

preceding and succeeding tokens, enhancing its ability to model bidirectional dependencies

within the input sequence.

ERNIE

ERNIE (Enhanced Representation through kNowledge IntEgration) is a transformer-

based model specifically designed to enhance representation learning in natural language

processing tasks, including relation extraction. It was introduced by Sun et al. (2019) [51].

The key idea behind ERNIE is to incorporate external knowledge sources, such as

knowledge graphs or other structured knowledge bases, into the pretraining process. By

integrating external knowledge, ERNIE aims to improve the model’s understanding of

relations between entities and enhance its ability to extract useful information from text.

ERNIE’s training process involves two steps : pretraining and fine-tuning.

In the pretraining phase, ERNIE uses a masked language modeling objective similar

to BERT. However, ERNIE introduces additional training objectives that utilize external

knowledge. For example, ERNIE incorporates entity-level and sentence-level knowledge
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objectives, where the model is trained to predict masked entities and their relationships

based on the knowledge in external sources.

In the fine-tuning phase, ERNIE is further trained on task-specific labeled data, such

as relation extraction datasets. The model’s parameters are adjusted to make accurate

predictions based on the specific task requirements. Fine-tuning allows ERNIE to adapt

its pretrained representations to the relation extraction task and improve its performance

in extracting relations between entities.

By integrating external knowledge sources during both pretraining and fine-tuning,

ERNIE aims to provide enhanced representations that capture both contextual informa-

tion and knowledge-based signals. This integration of knowledge helps ERNIE achieve

improved performance in relation extraction tasks by leveraging the rich information

available in external knowledge bases.

2.8 Related Works

This section presents a survey of existing research efforts in the field of relation extrac-

tion within the biomedical domain, focusing on research conducted using the ChemProt

dataset and utilization of deep learning techniques.

SciBERT model, developed by Beltagy et al. [27] , represents a significant break-

through in natural language processing tailored specifically for scientific text. By levera-

ging the BERT architecture and training on a vast corpus of scientific literature from

sources like pubMed and arXiv, SciBERT has acquired a deep understanding of the

nuances and complexities inherent in scientific language. When evaluated on the Chem-

Prot relation extraction benchmark, SciBERT achieves an F1-score of 83.64. This F1-score

signifies SciBERT’s capability in identifying relationships between chemical and protein

entities within a scientific document.

Lee et al. [13] introduced BioBERT, a pre-trained biomedical language representation

model tailored explicitly for biomedical text mining tasks. BioBERT builds upon the

BERT architecture but is pre-trained on PubMed abstracts and pubMed central full-

text articles, allowing it to capture domain-specific biomedical knowledge and context

effectively.In relation extraction on ChemProt, Lee et al. demonstrate BioBERT’s efficacy,
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achieving an F1 score of 76.46 in accurately discerning relationships between chemicals

and proteins within the ChemProt dataset.

In their work, Alrowili et al.[52] recognized the limitations of single-architecture

models for biomedical relation extraction tasks like those found in the ChemProt bench-

mark. They proposed BioM-BERT, a powerful pre-trained language model that leverages

a multi-model ensemble approach. This approach combines the strengths of three pro-

minent architectures – BERT, ALBERT, and ELECTRA – all fine-tuned on a massive

corpus of biomedical text. This strategy allows BioM-BERT to capture the nuances of

scientific language and the relationships between chemical entities and proteins. Notably,

the authors report that BioM-BERT achieves an F1 score of 80.0 on the ChemProt task,

demonstrating its effectiveness in accurately identifying chemical-protein interactions.

Shin et al. [53] proposed BioMegatron, a foundational large language model (LLM)

specifically designed for the biomedical domain. It’s training on a massive biomedical

text corpus equips it to understand scientific language crucial for ChemProt relation

extraction. Achieving an F1-score of 77.0 on the benchmark demonstrates BioMegatron’s

capability in this task. Future research on fine-tuning and specialized architectures holds

promise for further improvement. BioMegatron offers a valuable tool for researchers to

unveil chemical-protein interactions from biomedical literature.

Yasunaga et al. [54] proposed LinkBERT, a document-centric pre-trained language

model (PLM) that leverages document-level links for training. BioLinkBERT (large), a

large-scale biomedical variant of LinkBERT, achieves competitive micro F1-score and

F1-score of 79.98 on the ChemProt benchmark. This focus on document-level connections

suggests particular promise for ChemProt tasks, where understanding relationships across

scientific text sections is crucial.
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2.8.1 Comparative table

Table 2.1 provides a summary of the previously discussed related works and contrasts

them with our proposed approach across various comparison criteria.

Work Model Training

Corpus

Task Fine-

tuning

Evaluation

Dataset

Score [F1]

Beltagy et

al.[27]

SciBERT Semantic

Scholar

Yes ChemProt 83.64

Lee et al.

[13]

BioBERT PubMed Yes ChemProt 76.46

Alrowili et

al.[52]

BioM-BERT PubMed +

PMC

Yes ChemProt 80.0

Shin et al.

[53]

BioMegatron PubMed +

PMC

No ChemProt 77.0

Yasunaga

et al.[54]

BioLinkBERT Wikipedia

+ PubMed

Yes ChemProt 79.98

Table 2.1 – Comparative table of related works.

2.9 Conclusion

This chapter has provided an overview of deep learning and neural networks, focusing

on prominent architectures of Artificial Neural Networks. It discusses neural network

learning, particularly with the backpropagation algorithm.

Furthermore, it explores the application of neural networks in natural language pro-

cessing, including RNNs, LSTMs, transformers, and their model architectures and at-

tention mechanisms. Transfer Learning is also discussed, highlighting its role in utilizing

pre-trained models to enhance performance in new tasks, especially in NLP and relation

extraction using transformer-based models like BERT, RoBERTa, and XLNet.

Lastly, related works in this field are reviewed, demonstrating the significant impact

of DL and transformer architectures, particularly in RE tasks. The next chapter delves

into the proposed relation extraction model, leveraging the strengths of deep learning and

transformer architectures.
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3.1 Introduction

In this chapter, we will discuss our proposed approach for relation extraction in the

biomedical domain, leveraging the transformative power of transformers. This solution

aims to equip models with the capability to extract chemical-protein relationships from

biomedical texts.

The system architecture of the proposed RE model includes multiple components and

processes. It leverages the ChemProt dataset as the basis for training and evaluating the

model. This dataset features a wide variety of interaction types, enabling a thorough

evaluation of the RE model’s performance.

Furthermore, the chapter explores the strategic integration of SciBERT, a pre-trained

language model, into the proposed RE model’s development. This pre-trained model have

garnered considerable attention due to their exceptional performance in NLP tasks.

The chapter meticulously describes the crucial preprocessing stage, emphasizing its

role in preparing data for the training process. This stage entails tokenization, a process

that fragments the text into smaller, more manageable units for analysis.

Finally, the chapter sheds light on the fine-tuning process, a critical step that in-

volves configuring the model architecture and subsequently training it on the prepared

data. Training encompasses optimizing the model’s internal parameters and meticulously

adjusting hyper-parameters to achieve optimal performance.
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3.2 System Architecture

Relation extraction with transformer-based models like SciBERT involves a series of

crucial steps to deliver accurate responses to user queries. Figure 3.1 depicts the overall

RE process.

Preprocessing : Sentences or texts are tokenized into individual tokens, and special

tokens like [CLS] and [SEP] are added. Additional markers may be used to highlight the

entities involved in the relation. For example, in the sentence "The kinase phosphorylates

the substrate," the entities "kinase" and "substrate" might be marked as [@CHEMICAL$]

and [@GENE$].

Embedding : The tokenized sequences are converted into embeddings, which re-

present the tokens in a high-dimensional vector space. These embeddings capture the

contextual meaning of the tokens.

Encoding : The embeddings are fed into a transformer encoder, which consists of

multiple layers that process the tokens and capture their contextual representations. The

encoder uses mechanisms like self-attention to dynamically weigh the importance of each

token relative to others in the context.

Attention : The encoded tokens undergo processing via a self-attention mechanism,

specifically the multi-head attention mechanism. This calculates attention weights for

each token, determining its significance relative to other tokens and enriching each token’s

representation with contextual information from the entire sequence.

Relation Prediction : The output from the attention mechanism is passed through

a task-specific layer, typically including linear layers, followed by a soft max activation.

The model predicts the type of relationship between the entities based on their contextual

embeddings.

Post-processing : The predicted relation type is extracted along with the entities

involved. The relation is cleaned and processed for clarity and accuracy, then returned in

a structured format such as a triplet (@CHEMICAL&, Relation, @GENE&).
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Figure 3.1 – Relation Extraction Process Using Transformer-Based Models.

3.3 Used Dataset

We fine-tuned our model on the ChemProt dataset to focus on understanding chemical-

protein interactions.

3.3.1 BioCreative VI ChemProt

The ChemProt corpus, employed within the BioCreative VI text mining task [7],

encompasses 1,820 PubMed abstracts meticulously annotated by domain experts to ex-

plicitly capture chemical-protein interactions. These interactions are noteworthy for their

unidirectional nature, focusing exclusively on the influence of chemicals on genes/proteins

(chemical-to-gene/protein direction). The specific interaction types encompassed within

the corpus are comprehensively categorized in Table 3.1
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Group Eval. CHEMPROT relations belonging to this group

CPR :1 N PART_OF

CPR :2 N REGULATOR|DIRECT_REGULATOR|INDIRECT_REGULATOR

CPR :3 Y UPREGULATOR|ACTIVATOR|INDIRECT_UPREGULATOR

CPR :4 Y DOWNREGULATOR|INHIBITOR|INDIRECT_DOWNREGULATOR

CPR :5 Y AGONIST|AGONIST-ACTIVATOR|AGONIST-INHIBITOR

CPR :6 Y ANTAGONIST

CPR :7 N MODULATOR|MODULATOR-ACTIVATOR|MODULATOR-INHIBITOR

CPR :8 N COFACTOR

CPR :9 Y SUBSTRATE|PRODUCT_OF|SUBSTRATE_PRODUCT_OF

CPR :10 N NOT

Table 3.1 – CHEMPROT Relations by Group[7].

The provided table categorizes CHEMPROT relations into distinct groups, each iden-

tified by a unique CPR (Chemical-Protein Relation) number, ranging from CPR :1 to

CPR :10. It includes two main columns : one indicating whether the group has been eva-

luated (Eval.) and another listing the specific CHEMPROT relations within each group.

The Group column identifies the CHEMPROT relation groups with labels such as

CPR :1, CPR :2, etc. The Eval. column indicates the evaluation status of each group,

where Y (Yes)denotes that the group has been evaluated, meaning the relations within

this group have been reviewed and validated, and N (No) signifies that the group has

not been evaluated, potentially indicating either a lack of validation or lower priority for

evaluation.

CHEMPROT relations belonging to this group :

– PART_OF : Indicates that a chemical is part of a protein or protein complex.

– REGULATOR, DIRECT_REGULATOR, INDIRECT_REGULATOR :

Indicate relations where the chemical regulates the protein directly or indirectly.

– UPREGULATOR, ACTIVATOR, INDIRECT_UPREGULATOR : Indi-

cate relations where the chemical increases the activity of the protein, either directly

(activator) or indirectly (indirect_upregulator).

– DOWNREGULATOR, INHIBITOR, INDIRECT_DOWNREGULATOR :

Indicate relations where the chemical decreases the activity of the protein, either

42



Chapter 3 Proposed Biomedical RE Model

directly (inhibitor) or indirectly (indirect_downregulator).

– AGONIST, AGONIST-ACTIVATOR, AGONIST-INHIBITOR : Indicate

relations where the chemical acts as an agonist, activating or inhibiting the protein.

– ANTAGONIST : Indicates that the chemical acts as an antagonist, inhibiting the

action of the protein.

– MODULATOR, MODULATOR-ACTIVATOR, MODULATOR-INHIBITOR :

Indicate relations where the chemical modulates the activity of the protein, either

activating or inhibiting it.

– COFACTOR : Indicates that the chemical acts as a cofactor necessary for the

protein’s activity.

– SUBSTRATE, PRODUCT_OF, SUBSTRATE_PRODUCT_OF : Indi-

cate relations where the chemical is a substrate of the protein, a product of the

protein, or both.

– NOT : Indicates a lack of a specific relationship between the chemical and the

protein.

3.3.2 Data Exploration

A comprehensive analysis and exploration of the dataset proves to be crucial in both

the data pre-processing stage and the selection of optimal hyperparameters for our models.

These factors have been demonstrably influential in determining the model’s training

performance.

Format

The ChemProt dataset isprovided in tabular format (such as CSV or TSV files). These

files typically contain the following columns :

• Chemical : Unique identifier of the chemical (often a ChEMBL or PubChem iden-

tifier).

"ChEMBL : Focuses on small molecules with bioactivity data ; identified by ChEMBL

IDs".

"PubChem : Provides a comprehensive resource for chemical substances and their

biological".
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• Protein : Unique identifier of the protein (often a UniProt identifier).

"UniProt : Offers extensive protein sequence and functional information ; identified

by UniProt IDs".

• Interaction Type : Type of interaction between the chemical and the protein, usually

categorized into several functional categories (activation, inhibition, binding, etc.).

• Document ID : Identifier of the scientific document from which the information is

extracted (often a PubMed ID).

• Sentence : Exact sentence extracted from the scientific literature describing the

interaction.

• Relation Type : Type of relation (e.g., direct or indirect).

Chemical Protein
Interaction

Type

Document

ID
Sentence

Relation

Type

CHEMBL25 P12345 activation 12345678
Chemical X activates

protein Y.
direct

CHEMBL32 Q67890 inhibition 87654321
Chemical A inhibits

protein B.
indirect

CHEMBL45 O12345 binding 23456789
Chemical M binds to

protein N.
direct

Table 3.2 – Chemical-Protein Interactions.

In our study, several modifications have been made to the ChemProt dataset to tailor

it for specific research needs. The original ChemProt dataset, which contains comprehen-

sive information on chemical-protein interactions, served as a foundation. However, to

better align with research objectives, the focus was placed on refining the data structure

and enhancing the clarity of interaction types. Relevant interactions were meticulously

extracted, the data was reformatted, and specific labels were introduced to streamline the

dataset for analytical models.

Steps of Transformation

– The dataset included columns such as "Chemical", "Protein", "Interaction

Type", "Document ID", "Sentence", and "Relation Type". The data struc-
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ture was simplified, retaining essential interaction details in the columns "index",

"sentence", and ’label’.

– Sentences were directly extracted from scientific literature, often mentioning specific

chemical and protein names. These sentences were standardized by replacing actual

chemical and protein names with placeholders ’@CHEMICAL$’ and ’@GENE$’. This

anonymization maintained consistency and focused on interaction patterns rather

than specific entities.

– Each interaction was referenced by a "Document ID". A unique indexing system

for each interaction in the format "Document ID" was introduced. This identifier

allowed tracing interactions back to their original scientific document while providing

a clear reference system within the modified dataset.

– The dataset contained a "Relation Type" column with values such as direct or

indirect.A "label" column was introduced to categorize interactions. This column

includes specific labels like "CPR :4" for certain interaction types, while ’false’

indicates non-interactions. This allowed for more detailed and precise classification

of interaction.

– A detailed data structure with multiple columns describing each interaction was

streamlined to focus on interaction sentences and their corresponding labels. The

columns were reduced to "index", "sentence", and "label" to make the dataset

more manageable and suitable for machine learning models or further analytical

processes.

– Natural language processing techniques were used to identify chemical and protein

entities in the sentences. Once the entities were identified, they were replaced with

standardized placeholders ’@CHEMICAL$’ for chemicals and ’@GENE$’ for proteins).

For example, a sentence like "Chemical X activates protein Y." was transformed

into "@CHEMICAL$ X activates @GENE$."

Example of Transformation

The table 3.3 below illustrates the dataset after the transformation process :
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Index Sentence Label

1712335.T23.T45 ’@CHEMICAL$’ (0.3 mg/kg, iv) produced a significant inhibi-

tion of the ’@GENE$’ mediated positive chronotropic response

to isoproterenol.

CPR :4

10064839.T47.T55 We found that DF, ’@CHEMICAL$’, and DR were relative high-

affinity ligands at ’@GENE$’ (Ki=151, 205, 144 nM, respecti-

vely) while all of them were with low affinity at sigma-2 re-

ceptors (Ki=4-11 microM).

false

Table 3.3 – Example of Transformation ChemProt.

Characteristics

The pie chart 3.2 illustrates the distribution of classes in the ChemProt dataset. The

largest segment, labeled "false," comprises 79.2% of the data, indicating that a significant

majority of the samples do not have an annotated chemical-protein relationship or belong

to a non-relevant class. among the annotated relationships, the "CPR :4" class is the

most frequent, accounting for 10.4% of the data. Other classes such as "CPR :3" (4.1%),

"CPR :9" (3.8%), "CPR :6" (1.5%), and "CPR :5" (1.0%) have much smaller proportions.

Figure 3.2 – Number of examples for each class.
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Context Length

The graph 3.3 illustrates the distribution of sentence lengths in the ChemProt dataset.

We observe that the majority of sentences range from 10 to 40 words in length. spe-

cifically, the peak of the distribution is around 20 words per sentence, indicating that

sentences of this length are the most frequent in the dataset. Beyond 40 words, the num-

ber of examples gradually decreases, showing that longer sentences are increasingly less

common. Additionally, very few sentences exceed 80 words, and it is extremely rare to find

sentences longer than 100 words. This distribution is typical of many text corpora, where

shorter and medium-length sentences are more prevalent than very long sentences. For

natural language processing models, this information is crucial, as it helps determine pre-

processing strategies such as sentence segmentation or handling variable-length sequences.

Figure 3.3 – Distribution of Context Length.
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3.4 Building up the Proposed RE Model

3.4.1 Language Models

SciBERT

SciBERT [27] is a specialized version of the BERT model designed specifically for

scientific text. The model’s architecture is based on the original BERT, with the key

parameters such as the number of layers, hidden size, and the number of self-attention

heads remaining the same.

SciBERT is pre-trained on the Semantic Scholar (S2) corpus, which includes 1.14

million papers from computer science and biomedicine, encompassing both abstracts and

full papers. This domain-specific corpus allows SciBERT to better capture the nuances

and specialized terminology of scientific literature. Similar to BERT, SciBERT comes

in versions akin to BERT Base and BERT Large, with SciBERT Base being the most

commonly used, featuring 12 layers, 768 hidden units, and 12 self-attention heads per

layer.

SciBERT is particularly well-suited for relation extraction, a critical task in natural

language processing that involves identifying relationships between entities such as genes,

proteins, diseases, and chemicals in scientific texts. A SciBERT-based relation extrac-

tion system typically comprises three primary components : input encoding, contextual

encoding, and relation classification.

In the input encoding component, the text containing potential relations is tokenized

into numerical representations using SciBERT’s specialized vocabulary. Token embed-

dings 1 are created for each token, along with segment embeddings 2 to differentiate

between different parts of the input if necessary, and positional embeddings to capture

the sequence order of the tokens.

The contextual embeddings are then used to classify the relationships between entities

in the text. This involves using attention mechanisms and fully connected layers to focus

on the relevant parts of the context that indicate a relationship.

In the contextual encoding component, SciBERT generates contextual embeddings by

1. Are numerical vectors that represent the meaning of each token, taking into account its position in

the sentence.
2. A number is added to each token, indicating its sentence (first or second).
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processing the token embeddings through multiple layers of bidirectional Transformers.

The model leverages its pre-trained knowledge of scientific texts to understand the context

and relationships between words more effectively, providing a rich contextual represen-

tation that captures the intricate relationships and dependencies between entities within

the scientific text.

Hyper-parameters

The details of the hyperparameters used to fine-tune the pre-trained SciBERT model

on the ChemProt dataset are provided in Table 3.4.

The "Max_length" is a hyperparameter that acts as a ceiling on the number of

tokens a model can process at once. Any sequences exceeding this limit are trimmed

down to fit within the specified length.

The "batch_size" hyperparameter dictates the number of samples processed toge-

ther during each training iteration. We chose a specific batch size, which basically means

we picked a certain number of examples to process together before the model updates its

internal workings.

We employed the Adam optimizer for training, incorporating weight decay and

a specific learning rate. Weight decay acts as a regularized, preventing the model’s

parameters from becoming excessively large. The learning rate, on the other hand, dictates

the magnitude of adjustments made to the model’s weights during training.

To maintain consistency, all other hyperparameters remained at their default settings,

leveraging the values pre-defined within the chosen model architecture.

Hyperparameter Value

max_length 512

train_batch_size 3

learning Rate 2e-05

num_train_epochs 2

weight_decay 0.01

Table 3.4 – Hyperparameters for our proposed fine-tuned SciBERT model.
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3.4.2 Preprocessing

To prepare text data for our model, we subject it to a preprocessing pipeline. This

crucial step transforms the text into a format the model can readily comprehend and

utilize. The preprocessing pipeline typically encompasses the following steps :

Entity masking

Entity masking involves replacing specific entities within the text with special tokens

to generalize the information they represent. This process is crucial for anonymizing or

standardizing the input text, making it easier for us to process and analyze.

In biomedical text, we replace gene mentions with a special token like "@GENE$" to

anonymize the specific gene names. For example, if the text mentions the gene "BRCA1",

we would replace it with "@GENE$". We also replace chemical mentions with a special

token such as "@CHEMICAL$" to standardize their representation. For instance, if the

text mentions "aspirin", we would replace it with "@CHEMICAL$".

Tokenization

The tokenizer performs several crucial tasks.Firstly, it breaks down sentences into

tokens using the WordPiece method, which effectively manages complex biomedical ter-

minology by decomposing unknown words into subword units. Then, we convert these

tokens into unique integer IDs based on SciBERT’s extensive vocabulary, transforming

the textual data into a numerical format suitable for model ingestion.

For this purpose, we use the huggingface transformer tokenizer, ensuring compatibility

with the model architecture we intend to use.

To ensure uniform input lengths, we truncate sentences that exceed the model’s maxi-

mum length, preserving only the most relevant parts of the text. This process is controlled

by the max_length hyper-parameter. For shorter sentences, we apply padding, adding

[PAD] tokens until each sequence reaches the desired length.

Additionally, we generate attention masks, which assign a value of 1 to actual tokens

and 0 to padding tokens, guiding the model to focus on the substantive content.

Moreover, special tokens such as [CLS] (classification token) and [SEP] (separator

token) are added to the tokenized sequences. The [CLS] token is typically added at the

beginning of each sequence and is used for classification tasks, while the [SEP] token is
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used to separate different segments of text, especially useful in tasks involving pairs of

sentences or passages.

3.4.3 Fine-tuning

To tackle our relation extraction task, we leverage the AutoModelForSequence-

Classification class from the Hugging Face library. Similar to the tokenizer, this class

employs the from_pretrained method to seamlessly download and cache the pre-trained

model. Beyond the model and tokenizer, fine-tuning necessitates an optimizer. We’ll em-

ploy the AdamW optimizer from pytorch, known for incorporating gradient bias correc-

tion and weight decay for enhanced training stability. Configuring the optimizer involves

specifying the learning rate and feeding the model’s parameters.

Model training is achieved through the train method, iterating over the training data

for a predefined number of epochs (complete passes). Following each epoch, the model’s

performance is assessed on the validation set. This evaluation guides the training process,

determining if further iterations are necessary for optimal performance.

3.4.4 Evaluation

To evaluate our model, logits play a crucial role in determining the confidence of the

model’s predictions. Logits are the raw, unnormalized scores output by the model’s final

layer before applying an activation function such as softmax. These scores indicate the

likelihood of each possible class—in this case, the potential relation types between entities.

For each entity pair in the input data, the model generates logits corresponding to

various relation types. Higher logits indicate higher confidence in the associated relation

type. To predict the relation between a pair of entities, we typically select the relation

type with the highest logit.

Once the logits are obtained, we can apply a softmax function to convert them into

probabilities, providing a more interpretable measure of confidence for each relation type.

The predicted relation type is then the one with the highest probability.

In the evaluation process, we use these logits to make predictions and compare them

against the ground truth. If the highest logits correspond to valid relation types and align

well with the ground truth data, it indicates that the model is making accurate predictions.
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Filtering and validation steps ensure that the predicted relations are reasonable and adhere

to predefined criteria, such as valid entity positions and relation types.

Finally, we calculate evaluation metrics such as precision, recall, and F1 score based

on the comparison between the model’s predictions and the ground truth relations.

3.5 Conclusion

This chapter introduced the proposed approach for relation extraction in the biome-

dical domain using transformer architectures. The system architecture of the RE model

was detailed, emphasizing the use of the SciBERT language model.

Furthermore, the chapter comprehensively explored the model building process, en-

compassing data exploration, preprocessing techniques such as tokenization, and the sub-

sequent fine-tuning and training procedures. Finally, the chapter culminated in the eva-

luation of the proposed RE model, demonstrably showcasing its performance.

The following chapter dives deep into a thorough analysis and discussion of the eva-

luation results for our proposed relation extraction model. We will also shed light on the

challenges and hurdles encountered during the development and implementation stages.
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Chapter 4
Experimental Results and Discussion

4.1 Introduction

This chapter delves into the core findings of our research by presenting the experimental

results and offering a thorough discussion of these outcomes. It is structured to provide a

comprehensive analysis of the performance of our proposed model.

We begin by detailing the experimental setup, including the hardware and software

environments utilized for our tests. Following this, we present the results obtained from

our model, including performance metrics such as precision, recall, and F1-score. These

metrics are critical for evaluating the effectiveness of our model and for comparing it

against existing benchmarks.

The discussion section offers insights into the implications of our results, highlighting

the strengths and limitations of the model. Key areas of analysis include the confusion

matrix, which helps identify specific challenges in relation extraction. We also discuss the

model’s performance across different types of chemical-protein relations (CPRs).

Finally, we test the proposed RE model to demonstrate its practical applicability.

4.2 Experimental Setup

Table 4.1 details the experimental setup employed in this study. It comprehensively

outlines both the hardware and software components that formed the foundation for our

rigorous testing and evaluation of the proposed model.
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Hardware and

Training
Cloud Tools

Google Colaboratory (Colab), by Google : • CPU : In-

tel(R) Xeon(R) • GPU : Tesla T4, 16GB • RAM : 12.7GB •

Disk : 107.7GB

Kaggle Notebooks, by Kaggle : • CPU : Intel(R) Xeon(R)

• GPU : Tesla P100-PCIE-16GB • RAM : 13GB • Disk :

107.37GB

Programming

Language
Python 3

Hugging Face Datasets : a python library for loading and

preprocessing datasets. It offers a straightforward and unified

interface for loading datasets from various sources, including

CSV files, JSON files, and HDF5 files. Additionally, it pro-

vides a range of preprocessing functions, such as tokenization,

normalization, and filtering.

Software and

Libraries
Libraries

Hugging Face TokenizersFast :a state-of-the-art tokeni-

zers library optimized for both research and production. It

implements the most commonly used tokenizers in Transfor-

mers, prioritizing performance and versatility.

Hugging Face Transformers : a widely used open-source

Python library for NLP tasks. It offers numerous pre-trained

Transformer models and a framework for fine-tuning these

models on custom tasks.

PyTorch : an open-source machine learning framework built

on the Torch library and utilizing Python. It is employed for

a wide range of tasks, including natural language processing,

computer vision, and robotics. PyTorch is renowned for its

flexibility and ease of use.

Table 4.1 – The experimental setup used.
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4.3 Results and Discussion

We now present the performance results obtained from our model. Table 4.2 details

these findings. The evaluation of our model leveraged standard metrics, including F1

score, precision, and recall.

Figures 4.1 and 4.2 visualize the training and validation accuracy and loss curves

for the proposed SciBERT model. These curves offer valuable insights into the model’s

performance on the training data and its ability to generalize to unseen data.

Model Precision Recall F1 Score

RE-SciBERT 77.15 75.73 90.10

Table 4.2 – Performance results of proposed the model.

Figure 4.1 – F1 Score curve of the pro-

posed model.

Figure 4.2 – Loss curve of the proposed

model.

As shown in Figure 4.3, the comparative performance metrics for BioBERT, BioMe-

gatron, and RE-SciBERT models illustrate distinct differences in their effectiveness.

RE-SciBERT stands out with the highest F1 Score of 90.10, indicating its superior

balance between Precision and Recall, which are 77.15 and 75.73, respectively.

BioBERT, while slightly behind RE-SciBERT, still performs robustly with a Precision

of 77.02, Recall of 75.9, and an F1 Score of 76.46. In contrast, BioMegatron exhibits

the lowest performance, with a Precision of 74.5, Recall of 79.7, and an F1 Score of 77,

reflecting its comparatively weaker performance.
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Overall, RE-SciBERT demonstrates the best performance, particularly in its F1 Score,

while BioBERT remains a strong contender, and BioMegatron lags in all evaluated me-

trics.

Figure 4.3 – Performance Comparison of Models.

Figure 4.4 depicts the F1 score’s progression during the training process. As observed,

the metric exhibits a gradual increase in the initial two epochs, signifying the model’s

successful learning and performance improvement.

However, the scores plateau beyond this point, indicating that the model has likely

extracted most of the valuable knowledge from the training data. It’s important to rei-

terate, as mentioned in Chapter 3, that the proposed model was deliberately trained for

only two epochs. This choice was strategically made based on the observation that the F1

scores yielded their optimal performance within this limited training timeframe.
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Figure 4.4 – RE-SciBERT F1 Score curve.

Table 4.3 presents a comprehensive breakdown of the fine-tuned RE-SciBERT model’s

performance on the test set. The classification report, generated, reveals valuable insights.

Class CPR :4 exhibits the highest performance and holds the largest proportion among

all relations. Conversely, CPR :3 stands out as the most challenging relation type for

classification.

Label Precision Recall F1-score

CPR :5 0.84 0.64 0.73

CPR :6 0.84 0.73 0.78

CPR :9 0.74 0.47 0.58

CPR :4 0.82 0.76 0.79

CPR :3 0.74 0.61 0.67

Table 4.3 – Performance breakdown of our proposed fine-tuned SciBERT model.

Figure 4.5 delves deeper into the prevalence of errors in CPR relation extraction by

our fine-tuned SciBERT model on the test set. This is visualized using a confusion matrix,
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where the predicted labels by the model are represented on the x-axis, and the true labels

are on the y-axis. Each cell showcases the total number of relation instances for that

specific combination of predicted and true labels. The color intensity within each cell is

normalized by row, with darker shades of blue indicating a higher number of instances

and lighter shades indicating fewer instances.

Figure 4.5 – Confusion matrix of the CPR.

4.4 Test of the proposed RE model

To evaluate the performance of our proposed RE model in the biomedical domain, we

prepared a test set comprised of sentences containing placeholders for chemical and gene

entities.

Table 4.4 presents the relationships extracted by our proposed RE-SciBERT model

for the corresponding sentences. The results demonstrate a remarkable achievement, with

the model successfully extracting all the intended relationships from the provided data.
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Sentence Real Relation Our Model’s Relation

We conclude that alprenolol and @CHEMICAL$

are competitive slowly reversible @GENE$ anta-

gonists on rat left atria.

CPR :6 CPR :6

Eosinophils were isolated from peripheral blood,

treated with either buffer or 10(-)10 M to 10(-)6

M FP in the presence of 10 pg/ml human recombi-

nant interleukin-5 (@CHEMICAL$) and activated

with @GENE$ (FMLP) + cytochalasin B (CB).

CPR :3 CPR :3

The nonselective and irreversible @CHEMICAL$

inhibitors, phenelzine (3-10 mg/kg), @GENE$ (1-

3 mg/kg), and nialamide (30 mg/kg), decreased

rates of responding maintained by ethanol reinfor-

cement.

CPR :4 CPR :4

Parenteral administration of selective agonists of

the delta-opioid receptor (SB 227122), mu-opioid

receptor (codeine and hydrocodone), and @CHE-

MICAL$ (@GENE$) produced dose-related inhi-

bition of citric acid-induced cough with ED (50)

values of 7.3, 5.2, 5.1, and 5.3 mg/kg, respectively.

CPR :5 CPR :5

Table 4.4 – Testing the proposed Biomedical RE Model.

4.5 Conclusion

This chapter discussed the findings and analysis of a relation extraction model designed

for ChemProt. We started by explaining how we set up the experiments.

Next, a detailed breakdown of the model’s performance was provided in the results

and discussion section.

We also included examples of how the model performed on test data. Overall, the

fine-tuned SciBERT model proves to be an effective tool for extracting relationships from

biomedical literature, with significant potential to aid in the advancement of biomedical

research.
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Conclusion and Future Perspectives

This dissertation introduced a model for relation extraction tasks within the biomedi-

cal domain, specifically targeting the extraction of chemical-protein interactions. The ap-

proach leverages the capabilities of transformer models, particularly SciBERT, enhanced

by advanced deep learning techniques to achieve accurate identification and classification

of these interactions.

Relation extraction is a crucial task in natural language processing that involves iden-

tifying and categorizing relationships between entities within a text. In the biomedical

field, RE is instrumental for uncovering complex interactions, such as those between che-

micals and proteins, which are vital for understanding biological processes and disease

mechanisms.

The core of this research lies in the implementation of a transformer-based model,

SciBERT, which has been fine-tuned to optimize its performance for the specific task of

extracting chemical-protein interactions from biomedical literature. The model’s construc-

tion involved the integration of language models, thorough preprocessing techniques, and

precise fine-tuning procedures. Fine-tuning involves adjusting the pre-trained model on a

specialized dataset to improve its accuracy and relevance for specific tasks. The dataset

used in this study was meticulously curated to include a wide array of chemical-protein

interactions, providing a robust foundation for training and evaluating the model.

The empirical results demonstrated the model’s effectiveness, showcasing its promising

potential in accurately extracting chemical-protein relationships from biomedical litera-

ture.

Future endeavors should focus on expanding the RE model’s applicability beyond

chemical-protein interactions. This necessitates training on diverse datasets encompassing
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General conclusion

a wider range of biological and clinical relationships. Rigorous evaluation across various

biomedical subfields will be crucial to ensure the model’s versatility and generalizability.

Additionally, exploration of transformer variants, such as ERNIE and BioBERT, holds

immense potential. Investigating hybrid approaches that combine these models’ strengths

could lead to even more robust and accurate relation extraction capabilities. Systematic

assessment of these models’ efficacy in specific tasks will be paramount in identifying the

most effective solutions for diverse biomedical applications.
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