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Abstract

Motivation

Visual Question Answering (VQA) in the field of artificial intelligence (AI) integrates

computer vision and natural language processing to develop systems capable of answer-

ing questions based on visual content. The rapid advancements in AI research have

significantly expanded the complexity and variety of data available for training VQA

models. This growing volume of visual data and the diverse nature of questions posed

necessitate sophisticated techniques to achieve high performance. VQA systems have

immense potential in real-world applications such as assisting visually impaired individu-

als, enhancing human-computer interaction, and improving automated customer support.

However, developing effective VQA systems remains challenging due to the need for pre-

cise understanding and integration of visual and textual information. Transformer-based

architectures, with their attention mechanisms, have revolutionized natural language pro-

cessing and are now making significant inroads into computer vision. These models excel

at capturing dependencies and relationships within data, making them well-suited for

tasks that require an understanding of both images and text.

Objectives

This study aims to explore the application of transformer models in VQA, focusing on

leveraging deep learning techniques to improve system performance. The main objective

is to enhance the ability of VQA systems to answer questions accurately and efficiently

by fine-tuning pre-trained transformer models with domain-specific data. Additionally,

we conducted a comparative study between several state-of-the-art transformer models to

evaluate their performance and identify the most effective model.

Results

Our research delves into the architecture of transformer models, their training processes,

and the critical datasets for their development. Through fine-tuning pre-trained trans-

former models on the VizWiz dataset, our approach demonstrated an accuracy of 80%,

surpassing related works. This study confirms the potential of transformer-based archi-



tectures to significantly enhance VQA systems, making them more accurate and efficient

for real-world applications.

Keywords

Visual Question Answering, Transformer Models, Deep Learning, Computer Vision, Nat-

ural Language Processing, VizWiz Dataset, AI, Human-Computer Interaction



Résumé

Motivation

Le Visual Question Answering (VQA) dans le domaine de l’intelligence artificielle (IA)

intègre la vision par ordinateur et le traitement du langage naturel pour développer des

systèmes capables de répondre à des questions basées sur du contenu visuel. Les pro-

grès rapides de la recherche en IA ont considérablement élargi la complexité et la variété

des données disponibles pour l’entraînement des modèles VQA. Ce volume croissant de

données visuelles et la nature diverse des questions posées nécessitent des techniques so-

phistiquées pour atteindre des performances élevées. Les systèmes VQA ont un potentiel

immense dans les applications réelles telles que l’assistance aux personnes malvoyantes,

l’amélioration de l’interaction homme-machine et l’amélioration du support client au-

tomatisé. Cependant, développer des systèmes VQA efficaces reste un défi en raison

de la nécessité d’une compréhension et d’une intégration précises des informations vi-

suelles et textuelles. Les architectures basées sur les transformateurs, avec leurs mécan-

ismes d’attention, ont révolutionné le traitement du langage naturel et font désormais des

avancées significatives dans la vision par ordinateur. Ces modèles excellent à capturer les

dépendances et les relations au sein des données, ce qui les rend bien adaptés aux tâches

nécessitant une compréhension des images et du texte.

Objectifs

Ce travail vise à explorer l’application des modèles de transformateurs dans le VQA, en

se concentrant sur l’utilisation des techniques d’apprentissage profond pour améliorer les

performances du système. L’objectif principal est d’améliorer la capacité des systèmes

VQA à répondre aux questions de manière précise et efficace en ajustant des modèles de

transformateurs pré-entraînés avec des données spécifiques au domaine. De plus, nous

avons mené une étude comparative entre plusieurs modèles de transformateurs de pointe

pour évaluer leurs performances et identifier le modèle le plus efficace.



Résultats

Notre recherche examine l’architecture des modèles de transformateurs, leurs processus

d’entraînement et les ensembles de données critiques pour leur développement. En ajus-

tant des modèles de transformateurs pré-entraînés sur le jeu de données VizWiz, notre

approche a démontré une précision de 80%, surpassant les travaux connexes. Cette étude

confirme le potentiel des architectures basées sur les transformateurs pour améliorer sig-

nificativement les systèmes VQA, les rendant plus précis et efficaces pour les applications

réelles.

Mots-Clés

Visual Question Answering, Modèles de Transformateurs, Apprentissage Profond, Vision

par Ordinateur, Traitement du Langage Naturel, Jeu de Données VizWiz, IA, Interaction

Homme-Machine
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General Introduction:

Every year, the field of Visual Question Answering (VQA) witnesses significant advance-

ments, reflecting the rapid growth in artificial intelligence research. VQA is a challenging

interdisciplinary domain that integrates computer vision and natural language processing,

aiming to develop systems capable of answering questions based on visual content. As

this field evolves, the complexity and variety of data available for training these mod-

els also expand, making it imperative to utilize sophisticated techniques to achieve high

performance.

The increasing volume of visual data, coupled with the diverse and intricate nature of

questions posed, necessitates advanced systems that can accurately interpret and respond

to these queries. VQA systems hold immense potential in various real-world applications,

such as assisting visually impaired individuals, enhancing human-computer interaction,

and improving automated customer support. However, the development of effective VQA

systems is challenging due to the need for precise understanding and integration of both

visual and textual information

One promising approach to address these challenges is the application of transformer-

based architectures, which have revolutionized natural language processing and are now

making significant inroads into computer vision. Transformers, with their attention mech-

anisms, excel at capturing dependencies and relationships within data, making them well-

suited for tasks that require an understanding of both images and text.

In this study, we aim to explore the application of transformer models in VQA, fo-

cusing on leveraging deep learning techniques to improve system performance. We will

delve into the architecture of these models, their training processes, and the datasets that

are critical for their development. By fine-tuning pre-trained transformer models with
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Introduction

domain-specific data, we can enhance their ability to answer questions accurately and

efficiently.

This document is structured into three main sections:

Chapter One provides a detailed overview of VQA, including the evolution of VQA

systems, their architecture, motivations for their development, and their applications.

This chapter also reviews key datasets used in the field and discusses various methods

and techniques employed in VQA, from foundational approaches to cutting-edge advance-

ments. The evaluation metrics used to assess VQA systems are also covered.

Chapter Two focuses on the transformer architecture, a groundbreaking framework

in deep learning. It begins with an introduction to neural networks for natural language

processing and computer vision, followed by an in-depth exploration of the attention

mechanism and transformer models. The chapter highlights transformer-based models

designed for vision-and-language tasks and examines related works in the field.

Chapter Three presents a comparative study of different VQA models, detailing the

datasets used, preprocessing methods, hyperparameter tuning, and fine-tuning processes.

The chapter also discusses the experimental setup, performance metrics, and challenges

encountered. A critical analysis of the results provides insights into the strengths and

weaknesses of various approaches.

Through this comprehensive study, we aim to contribute to the growing body of

knowledge in VQA, offering valuable insights and practical guidance for researchers and

practitioners in the field.

2



Chapter 1
Visual Question Answering

1.1 Introduction

Visual Question Answering stands as a foundational task within the realm of vision-

and-language research, garnering significant interest from diverse artificial intelligence

communities such as Computer Vision (CV) and Natural Language Processing (NLP).

This task serves as a bridge between CV and NLP, fostering research collaboration and

pushing the boundaries of both fields. In its typical form, VQA involves presenting a

model with an image accompanied by a textual question related to the image. The model

is then tasked with accurately determining and expressing the answer in a concise manner,

often using a few words or a short phrase. VQA exhibits various forms, including binary

(yes or no answers) and multiple-choice scenarios, where the model must choose from a

set of candidate answers [8].

In the following sections of this chapter, we will offer a comprehensive overview of VQA

systems, covering aspects like their definitions and real world applications, motivations

and goal, methods and techniques of VQA models, and metrics for evaluation. Addition-

ally, we will explore datasets have been curated for training and evaluating VQA models.

These datasets typically consist of images, associated questions in natural language, and

corresponding ground-truth answers.

3



Chapter 1 Visual Question Answering

1.2 General overview of VQA

1.2.1 General overview

Over the last decade, progress in deep learning systems has resulted in significant break-

throughs in understanding both visual and textual information. This progress has empow-

ered AI models to reach a level where they can compete with human performance in these

areas. While humans have traditionally excelled in comprehending images, AI has lagged

behind, often producing answers that are considered mediocre and simplistic. However,

distinguishing between responses generated by humans and those produced by AI has

become increasingly challenging recently. This is evident in the fact that the specific line

under consideration has been crafted by an AI system. VQA presents a challenge within

the AI domain, drawing heavily from the principles and methodologies of both Computer

Vision (CV) and Natural Language Processing (NLP). As VQA has progressed, it has

developed its own distinct identity with unique characteristics and subtleties [9]. Figure

1.1 illustrates Sample from VizWiz Dataset: Image, Question, and Answer from Visually

Impaired Users [1].

Visual Question Answering is a task that involves answering questions about images.

It requires understanding both the visual content of an image and the textual content of a

question to provide an accurate natural language answer. VQA task can be summarized

as follows:

• Input: An image and a question about the image (e.g., "What color is the car?").

• Output: A natural language answer (e.g., "Blue").

1.2.2 VQA System Architecture

VQA systems need to understand the content of the image, recognize objects, infer rela-

tionships, and comprehend the meaning of the question to generate an accurate answer.

Therefore, the architecture of a VQA system begins with the extraction of high-level fea-

tures from input images. Simultaneously, textual questions undergo processing, involving

techniques like word embedding to capture semantic meaning. These visual and textual

features are then fused to create a joint representation, establishing a connection between

4



Chapter 1 Visual Question Answering

Figure 1.1: Sample from VizWiz Dataset: Image, Question, and Answer from Visually

Impaired Users [1].

the image content and the posed question. This joint representation serves as the basis

for answer prediction through a mechanism specific to the model employed. Training the

system involves datasets containing image-question-answer triplets, allowing the model to

learn associations between visual content and textual queries, enabling accurate responses

across various contexts [8].

1.2.3 Brief history of VQA System

VQA has experienced significant evolution since its inception. In the 1970s, early work

laid the foundation, exploring image understanding and natural language processing as

distinct domains. The 1990s saw the concept of a Visual Turing Test, proposed by Turing

5
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in 1950, gaining traction, advocating for machines to comprehend and respond to visual

information akin to humans. Advancements in basic image understanding occurred in the

2000s with datasets like PASCAL VOC and the introduction of Scale-Invariant Feature

Transform (SIFT) features. The transformative period for VQA unfolded in the 2010s,

marked by the launch of the VQA challenge in 2012, serving as a standardized bench-

mark. The advent of deep learning between 2013 and 2015 revolutionized both image

understanding and natural language processing, propelling VQA forward. The year 2016

saw a boost in performance with the introduction of attention mechanisms, particularly in

Transformers. Significant moments during the decade included Google’s DeepQA system

excelling in 2015 and Facebook AI’s Mask Region-based Convolutional Neural Network

(Mask-R-CNN) showcasing prowess in object detection and captioning in 2016.

The VQA 2.0 challenge in 2022 introduced more diverse and challenging questions, and

ongoing research explores aspects such as explainability, robustness, and integration with

modalities like touch and language. This narrative encapsulates the pivotal milestones

shaping the trajectory of Visual Question Answering throughout its dynamic history.

1.2.4 Motivation

The motivation of VQA lies in our shared human desire to bridge the gap between

machines and our natural ways of understanding the world. It’s like teaching computers

to see and comprehend images just as effortlessly as we do. VQA envisions a future

where technology becomes an intuitive companion, responding to our questions about

visual content with the ease of a conversation. Beyond this, it’s about making technology

inclusive — assisting those who are visually impaired by providing them with a way to

explore and understand the visual world. Also, VQA is like a playground for researchers,

pushing the boundaries of what artificial intelligence can achieve, fostering innovation

that can eventually touch every aspect of our lives. So, in a nutshell, VQA is all about

infusing a touch of humanity into our machines, making them not just smart but relatable

and helpful in our day-to-day interactions [8, 10, 11].

1.2.5 Real-world Applications

The potential application of VQA is constantly expanding as the technology evolves.

VQA research promise us to make our lives easier, safer, and more informative by bridging
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the gap between human and machine understanding of the visual world. These are just a

few examples.

1.2.5.1 Accessibility

• Assistance for visually impaired individuals: VQA-powered applications can de-

scribe scenes, identify objects, and answer questions about the physical world, en-

hancing independence and mobility [12].

• VQA applications can also help image understanding by reading descriptions of im-

ages on social media, websites, or documents, providing access to visual information

[12].

1.2.5.2 Education

• Interactive museum exhibits: Visitors can ask questions directly about paintings or

artifacts, receiving insightful answers generated by AI [13].

• Personalized learning experiences: Students can ask questions about images in text-

books or educational videos, getting instant clarifications or deeper understanding

[13].

• Accessibility for visually impaired students: VQA systems can describe images and

answer questions, aiding visually impaired students in their learning journey [13].

1.2.5.3 Healthcare

• Medical image analysis: VQA models can assist doctors in analyzing medical images

like X-rays or MRIs, identifying potential abnormalities and highlighting areas of

concern [14].

• Patient education: Patients can ask questions about their medical images, receiv-

ing understandable explanations generated by AI in collaboration with healthcare

professionals [14].
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1.2.5.4 Robotics

• Scene understanding for robots: VQA-powered robots can better understand their

surroundings, identify objects, and make informed decisions based on visual infor-

mation [15].

• Safe navigation for autonomous vehicles: Vehicles can "ask questions" about their

environment, like "Is that a pedestrian crossing the road?" or "What is the speed

limit on this sign?", leading to safer navigation.

1.2.5.5 Entertainment

• Interactive games and experiences: VQA can be incorporated into games where

players ask questions about virtual environments or images, creating more engaging

and dynamic experiences [16].

• Image-based social media interactions: Platforms can use VQA to generate captions

or answer questions about user-uploaded images, enriching social media engagement

[16].

1.2.5.6 E-commerce

• Personalized product recommendations: VQA systems can analyze images of cloth-

ing or home decor and suggest similar items based on user preferences and questions

[17].

• Virtual shopping assistants: Customers can ask questions about product details,

materials, or styling directly through images, improving the shopping experience

[17].

1.2.5.7 Military

• VQA systems could analyze aerial imagery or video feeds from drones and other

sources, identifying objects, people, and activities of interest in real-time. This

could help commanders make better decisions and improve battlefield awareness.

• VQA could be used to automate tasks like inspecting equipment for damage or iden-

tifying spare parts needed for repairs, improving efficiency and reducing downtime.
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1.3 Datasets

Several datasets have been suggested for VQA research, each comprising triples con-

sisting of an image, a question, and its corresponding correct answer at the minimum.

Some datasets include additional annotations like image captions, regions in the image

supporting the answers, or multiple-choice candidate answers. The complexity of datasets

and the questions they contain varies, encompassing differences in reasoning requirements

and the need for nonvisual information, such as "common sense," to deduce the correct

answers. This section offers a thorough comparison of these datasets, discussing their ap-

propriateness for evaluating different aspects of VQA systems. The focus in this section

is exclusively on general classical VQA datasets, with other specialized VQA datasets

for domains like Medical VQA, TextVQA, and knowledge-based VQA covered elsewhere.

Below are examples of some widely used datasets in VQA [8].

1.3.1 Microsoft COCO

The MS COCO (Microsoft Common Objects in Context) dataset is a large-scale resource

for object detection, segmentation, key-point detection, and captioning, featuring 328,000

images. Originally released in 2014 with 164,000 images, it underwent changes in 2017,

adjusting the training/validation split to 118,000/5,000. The dataset includes annotations

for object detection, captioning, keypoints detection, stuff image segmentation, panoptic

segmentation, and dense pose annotations. The latter provides detailed information about

body poses and shapes for over 39,000 images and 56,000 person instances, available for

training and validation images only [18].

1.3.2 VQA

VQA-v1, widely used in VQA research, is based on the COCO dataset, consisting of VQA-

v1-real with natural images and VQA-v1-abstract with synthetic cartoon images. VQA-

v1-real has 123,287 training images, 81,434 testing images, and diverse question/answer

pairs. It includes 614,163 binary questions with 10 answers each, collected by annotators.

However, it has a bias where some questions can be answered without seeing the image.

VQA-v1-abstract, designed for higher-level reasoning, features 50,000 clipart scenes and

150,000 questions answered by 10 annotators, using a process similar to VQA-v1-real [12].
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1.3.3 VQA v2.0

VQA-v2 is an expanded version of VQA-v1-real, aiming to address bias issues. It balances

the dataset by collecting pairs of similar images with different answers for each question.

With 204,721 images and 1,105,904 questions (10 answers per question), it doubles the

image-question pairs compared to VQA-v1-real. This balanced approach helps reduce

biases, discouraging VQA models from relying solely on language patterns for higher

scores and encouraging models that prioritize visual understanding and interpretability

[8].

1.3.4 Visual Genome

Visual Genome includes VQA data in a multiple-choice format, utilizing 101,174 images

sourced from MSCOCO and incorporating 1.7 million question-answer pairs. On average,

each image has 17 questions. In contrast to the Visual Question Answering dataset, Visual

Genome achieves a more balanced distribution across six question types: What, Where,

When, Who, Why, and How. Additionally, the Visual Genome dataset provides 108,000

images with comprehensive annotations for objects, attributes, and relationships [19].

1.3.5 CLEVR

CLEVR is a synthetic Visual Question Answering dataset featuring 3D-rendered object

images. It includes 70,000 training images with 700,000 questions, 15,000 validation

images with 150,000 questions, and a test set. Questions cover Exist, Count, Compare

Integer, Query Attribute, and Compare Attribute tasks. Each scene object is described by

four attributes: position, size (large/small), shape (square/cylinder/sphere), material type

(rubber/metal), and color (gray/blue/brown/yellow/red/green/purple/cyan), resulting in

96 unique combinations [20].

1.3.6 VizWiz

The VizWiz Visual Question Answering dataset is designed to assist individuals with

visual impairments by providing answers to questions about images. It encompasses

tasks like TextVQA and VizWiz-Captions. The VQA task involves answering questions

about images taken by blind individuals, aiming to enhance accessibility through AI tech-
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nologies. In the updated version as of January 10, 2023, terminology in answers has

been refined, and the new, larger version from January 1, 2020, includes 20,523 training

image/question pairs, 205,230 training answer/answer confidence pairs, 4,319 validation

image/question pairs, 43,190 validation answer/answer confidence pairs, and 8,000 test

image/question pairs [1].This dataset will be utilized in our work to explore and develop

advanced techniques in visual question answering.

Figure 1.2 represents a timeline of most popular VQA datasets found in litterature.

Figure 1.2: Timeline of popular VQA datasets

• The table 1.1 presents an overview of VQA datasets, offering statistics such as the

number of images, questions, and the average questions per image.

1.4 Methods and Techniques in VQA

VQA has undergone a transformative journey in terms of methods and techniques,

moving from early attempts that relied on handcrafted features to contemporary ap-

proaches grounded in deep learning and advanced methodologies. This evolution can be

traced across different paradigms, each contributing to the improvement of VQA systems

[17, 9, 21].

11



Chapter 1 Visual Question Answering

Table 1.1: Overview of VQA Datasets

Dataset Number of Number of Average of Questions

images Questions per image

Microsoft COCO 328,000 - -

VQA v1.0 204,721 114,163 3

VQA v2.0 265,016 1,457,587 5.4

Visual Genome 101,174 1.7 million 17

CLEVR 70,000 700,000 10

VizWiz 20,528 205,230 10

1.4.1 Early Approaches and Fundamental Techniques

The standard approach involved three key phases: feature extraction, feature conjugation,

and answer generation. Feature extraction aimed at distilling meaningful information

from multi-modal inputs, relying on traditional methods such as explicit Red-Green-

Blue (RGB) vectors, Support Vector Machines (SVM), Histogram of Oriented Gradients

(HOG), Scale-Invariant Feature Transform (SIFT), and Singular Value Decomposition

(SVD) [9].

1.4.1.1 Visual Feature Extraction

For visual features, classical computer vision algorithms like Haar-like features and HOG

were common, alongside early CNNs such as LeNet and AlexNet. Transfer learning,

particularly with pre-trained CNNs on ImageNet, played a crucial role in adapting these

models for VQA tasks [9].

1.4.1.2 Textual Feature Extraction

On the textual side, initial strategies included one-hot vectors and count-based meth-

ods. Neural network architectures like Word2Vec, Continuous Bag of Words (CBOW),

and Skip-Gram emerged for learning word representations. Recurrent Neural Networks

(RNNs), especially Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)

variants, gained popularity for processing questions [9].
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1.4.1.3 Feature Conjugation

Feature conjugation involved fusing visual and textual features. Vector operations like

Vector Concatenation, Element-Wise Multiplication, and Element-Wise Addition were

common choices. Bilinear pooling, as seen in methods like "Multimodal Compact Bi-

Linear Pooling" (MCB), became popular for multimodal fusion [9].

1.4.2 Advanced Techniques in VQA

The modern era of VQA is characterized by a shift towards advanced techniques, marking

a departure from predefined features to end-to-end learning. Several pivotal methods have

emerged, here some popular advanced techniques [9].

1.4.2.1 Attention Mechanisms

Attention mechanisms play a crucial role in enhancing the interpretability and accuracy

of VQA models. Inspired by human visual attention, attention mechanisms allow models

to focus on specific regions of an image or words in a question, improving the overall

reasoning process. Attention mechanisms have become a staple in contemporary VQA

architectures, enabling the model to dynamically allocate importance to different parts of

the input [9].

1.4.2.2 Transformer-Based Architectures

The introduction of transformers has revolutionized natural language processing and,

consequently, VQA. Transformer architectures, initially designed for sequence-to-sequence

tasks, have been adapted to handle the fusion of visual and textual modalities. Vision

Transformer (ViT) and Cross-Modal Transformers (CMT) are notable examples. Trans-

formers facilitate parallelization of processing, enabling the capture of long-range depen-

dencies and improving the efficiency of VQA models [9].

1.4.2.3 Vision-Language Pre-training (VLP)

Pre-training models on large-scale datasets with diverse tasks, including image captioning

and VQA, has become a prevalent strategy. Vision-Language Pre-training (VLP) involves

training a model on multiple vision-language tasks before fine-tuning it on downstream
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VQA tasks. This approach has shown remarkable success in improving the generalization

and performance of VQA models [9].

1.4.2.4 Knowledge-Based Approaches

Acknowledging the importance of external knowledge, recent developments include ap-

proaches that integrate knowledge bases into VQA systems. Techniques like Differentiable

Graph Neural Networks (GNN) model visual dialogues as structural graphs, providing a

framework for incorporating external information into the reasoning process [17].

1.5 Evaluation Metrics

Evaluating VQA systems is uniquely challenging due to the combination of image under-

standing and natural language processing. Here are some of the key techniques used.

1.5.1 Accuracy based metrics

1.5.1.1 Accuracy

This fundamental metric measures the percentage of correctly predicted answers, provid-

ing a straightforward assessment of overall correctness.

Accuracy =
TruePositive + TrueNegative

TruePositive + TrueNegative + FalsePositive + FalseNegative

1.5.1.2 Precision

Precision is an important metric used in VQA evaluation. It helps understand how rele-

vant the model’s answers are, and tells the percentage of the predicted answers that are

actually correct.

Precision =
TruePositive

TruePositive + FalsePositive

1.5.1.3 Recall

Recall tells the percentage of correct answers the model actually predicts. A high recall

value indicates that the model is good at finding most of the correct answers.
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Recall =
TruePositive

TruePositive + FalseNegative

1.5.1.4 F1 Score

Balancing precision and recall, the F1 score is useful for tasks where false positives and

false negatives need consideration.

F1 =
2 (Precision × Recall)
Precision + Recall

1.5.2 Semantic similarity metrics

• BLEU (Bilingual Evaluation Understudy): Originally designed for machine trans-

lation, BLEU assesses the similarity between predicted and reference answers using

n-gram precision.

• ROUGE (Recall-Oriented Understudy for Gisting Evaluation): Primarily used for

text summarization, ROUGE evaluates the overlap in n-grams between predicted

and reference answers, emphasizing recall.

• CIDEr (Consensus-based Image Description Evaluation): Adapted for VQA, CIDEr

considers consensus among human annotators in evaluating the quality of generated

answers.
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1.6 Conclusion

In conclusion, this chapter offers a comprehensive exploration of this interdisciplinary

field. It begins by introducing the importance of VQA in the convergence of computer vi-

sion and natural language processing, providing clear definitions and outlining real-world

applications and goals.

Datasets, ranging from COCO to specialized ones like VizWiz, are discussed as essen-

tial foundations for VQA research. The methods and techniques section delves into the

innovative approaches employed in VQA models, including convolutional and recurrent

neural networks, attention mechanisms, and multimodal transformers models.Evaluation

metrics such as accuracy, BLEU and CIDEr are highlighted, emphasizing the multifaceted

nature of assessing VQA models.

In the next chapter, we will explore the Transformers Architecture, a cornerstone in

deep learning for text and image processing.
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Transformers Architecture

2.1 Introduction

Deep learning, particularly with the advent of Transformers, has sparked a paradigm

shift in artificial intelligence, notably in natural language processing (NLP) and computer

vision (CV). This chapter explores the transformative architecture of Transformers, which

has redefined how sequential data is processed. Before delving into Transformers, it’s

essential to understand the broader context of deep learning’s applications in text and

image processing like RNN and CNN.

This chapter focuses on the main transformer architecture, the attention mechanism. This

mechanism serves as the linchpin of Transformer architectures, enabling models to capture

intricate dependencies and contextual nuances. As we navigate through Transformer-

based models for NLP and CV, we dissect the components and mechanisms that fuel their

remarkable capabilities. From attention mechanisms to multi-head architectures, we delve

into how Transformers like Vision Transformer (ViT) and Vision-Language Transformer

(ViLT) have expanded the horizons of Deep Learning.

Finally, we will review an overview of related works in the field of VQA aimed at assisting

blind and visually impaired individuals, with a focus on research conducted using the

VizWiz dataset.
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2.2 Deep Learning for Text and Image

Deep Learning techniques have garnered widespread acclaim for their remarkable perfor-

mance in processing both textual and visual data. In the domain of Natural Language

Processing (NLP), models empowered by Deep Learning, including Convolutional Neural

Networks (CNNs), Recurrent Neural Networks (RNNs), and Transformers, have surpassed

traditional approaches, exhibiting unprecedented proficiency in tasks such as language

translation, sentiment analysis, and text generation. These architectures leverage the

power of hierarchical feature extraction, sequential learning, and attention mechanisms

to glean insights from text data, enabling unprecedented levels of accuracy and fluency.

Similarly, in the realm of Computer Vision (CV), Deep Learning has enabled break-

throughs in image classification, object detection, and image generation. Convolutional

Neural Networks (CNNs) have emerged as a cornerstone technology, revolutionizing the

way computers perceive and interpret visual information. Meanwhile, Recurrent Neu-

ral Networks (RNNs) have proven instrumental in capturing temporal dependencies in

sequential data, making them invaluable for tasks like video analysis and captioning.

Moreover, Transformers have gained prominence for their ability to efficiently process

long-range dependencies in both text and image data, paving the way for novel applica-

tions and breakthroughs in AI research. Collectively, these advancements have propelled

the field of Deep Learning towards new horizons of possibility, bridging the gap between

textual and visual understanding and unlocking unprecedented levels of performance in

real world applications [22, 23].

2.2.1 Neural Networks for NLP

In recent years, Natural Language Processing (NLP) has witnessed remarkable progress

through the integration of Deep Learning techniques, particularly Recurrent Neural Net-

works (RNNs) and Long Short-Term Memory (LSTM) networks. These advancements

have fundamentally reshaped how machines understand and generate human language,

especially in sequential data [24].
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2.2.1.1 The recurrent neural networks (RNN)

RNNs, distinguished by their recurrent connections enabling information persistence over

time, have emerged as pivotal tools in NLP tasks such as language modeling. Their

ability to capture context and sequential dependencies makes them well-suited for tasks

like sentiment analysis and text generation. However, traditional RNNs are challenged by

the vanishing gradient problem, hindering their capacity to retain information over long

sequences, thus limiting their effectiveness in capturing long-term dependencies [25].

2.2.1.2 Long Short Term Memory (LSTM)

To address the limitations of traditional RNNs, LSTM networks were introduced, featur-

ing a more sophisticated memory cell architecture with input, forget, and output gates.

These gates allow LSTMs to selectively retain or forget information over long sequences,

thereby facilitating the capture of long-term dependencies in text. In the domain of NLP,

LSTM networks have become indispensable, demonstrating superior performance in vari-

ous tasks such as sentiment analysis, machine translation, and text summarization. Their

nuanced understanding of dependencies within text enables coherent responses in conver-

sational AI systems and effective sentiment analysis in social media content. Furthermore,

LSTM-based sequence-to-sequence models have facilitated breakthroughs in translation

and summarization tasks by encoding and decoding text into a latent representation space.

Despite their successes, RNNs and LSTMs face challenges with capturing dependencies

over extremely long sequences and slow training times due to their sequential nature. On-

going research aims to overcome these limitations while further advancing the capabilities

of recurrent neural networks in NLP [26].

2.2.2 Neural Networks for CV

Computer Vision (CV) endeavors to imbue computers with the capacity to comprehend

and process visual information. Traditionally, this domain relied heavily on meticulously

crafted features and algorithms to execute tasks such as object detection and image classi-

fication. However, the advent of Deep Learning, particularly Neural Networks, has precip-

itated a trans-formative shift in CV. These sophisticated algorithms, drawing inspiration

from the intricate workings of the human brain, possess the remarkable ability to glean in-

tricate patterns directly from extensive image data. Unlike conventional methods, Neural
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Networks avoid explicit feature engineering, instead autonomously uncovering these fea-

tures through interconnected layers of nodes. This progressive extraction of higher-level

information from raw pixels has propelled the efficacy of CV systems to unprecedented

heights [27].

2.2.2.1 Convolutional Neural Networks (CNN)

Among the myriad architectures fueling advancements in CV, Convolutional Neural Net-

works (CNNs) stand out as one of the most successful and impactful. Specifically designed

to process grid-like data, CNNs employ convolutional layers adept at efficiently capturing

spatial relationships between pixels. By applying filters that slide across the image, con-

volutional layers identify local features like edges and textures, which are amalgamated

to discern more complex features in subsequent layers. This intrinsic capability to learn

features automatically, coupled with the robustness afforded by specialized layers like

pooling layers for downsampling and retaining essential information, has rendered CNNs

indispensable in various CV tasks. Their applications span image classification, object

detection, image segmentation, and even image generation, underpinning their pivotal

role in reshaping the landscape of computer vision [28].

2.3 Transformers

Transformers are a class of powerful neural network architectures that have revolutionized

natural language processing (NLP) tasks by focusing on relationships within sequential

data, such as text. Unlike traditional models like recurrent neural networks (RNNs),

transformers employ self-attention mechanisms to efficiently identify relevant parts of

a sequence for a given task, leading to faster training and better performance. This

model architecture consists of a multi-head self-attention mechanism combined with an

encoder-decoder structure. Originally designed for NLP, transformers have expanded their

impact to computer vision tasks, with models like Vision Transformers (ViTs) adapting

the architecture to analyze relationships within images. Additionally, the emergence of

multimodal transformers combines the strengths of NLP and computer vision, enabling

models to understand and analyze both text and images simultaneously, opening up new

possibilities for AI applications. Despite computational challenges, transformers offer a
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more nuanced understanding of language and visual data, driving advancements in AI

across various domains [2, 3].

2.3.1 Attention Mechanism

Attention mechanisms are pivotal components enhancing model performance, notably

in tasks involving sequential data like natural language processing and computer vision.

These mechanisms allow models to selectively focus on pertinent parts of input data

while disregarding irrelevant information, mimicking human prioritization. By allocating

varying weights to different input elements, attention mechanisms dynamically adjust

during computation, enabling the model to attend to different parts of the input sequence

with variable emphasis. Self-attention, a common type, facilitates capturing long-range

dependencies and relationships within the same sequence, while cross-attention extends

this capability to different sequences or modalities [2].

2.4 Transformer-based models for NLP

Most competitive neural sequence transduction models utilize an encoder-decoder frame-

work. In this setup, the encoder converts an input sequence of symbol representations

(x1, . . . , xn) into a sequence of continuous representations denoted as z = (z1, . . . , zn).

Subsequently, the decoder generates an output sequence (y1, . . . , ym) of symbols itera-

tively, where each symbol is produced one at a time. Throughout this process, the model

operates in an auto-regressive manner, incorporating previously generated symbols as

additional input when predicting the next symbol. The Transformer model adheres to

this general architecture, employing stacked self-attention and point-wise, fully connected

layers for both the encoder and decoder components [2], as illustrated in Figure 2.1.

2.4.1 Word Embeddings

The first step in Figure 2.1 is word embedding. This process is crucial for converting

input sequences into machine-readable representations, efficiently capturing contextual

information. Unlike one-hot encoding, which results in large, sparse vectors with mini-

mal information, word embeddings transform these vectors into dense, lower-dimensional

representations, considering contextual nuances, the original paper [2] use 512 dimensions
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Figure 2.1: Transformer model architecture [2].

of embedding vector (d_model) [2]. This transformation enhances the model’s ability

to understand the semantic relationships between words within a given context. In the

Transformer architecture, word embedding serves as the initial component, reducing di-

mensionality while preserving contextual dependencies between words. It acts as a lookup

table, mapping input vectors to a lower-dimensional space and enabling the model to cap-

ture relationships and contextual nuances between words [2].

2.4.2 Positional Encoding

The Transformer architecture, which replaces recurrence-based networks with self-attention

mechanisms for processing input sequences, offers faster training and improved handling

of long-range dependencies but lacks inherent information about the relative positions of
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words. To remedy this, positional encoding is introduced, augmenting each word embed-

ding vector with a unique vector of length d_model determined by the word’s position in

the input sequence. This encoding enables the model to discern the relative positions of

words and integrate this spatial information into its processing. Specifically, the positional

encoding formula 2.1 incorporates parameters "pos" representing word position and "i"

indicating the position of values within the word embedding. By applying both positional

encoding functions (formula 2.1 for even positions and formula 2.2 for odd positions), two

distinct values are generated for each "i" value, ensuring comprehensive coverage across

the embedding dimension (d_model). For instance, in a sentence like "What is this?"

with a d_model of 512, the word "this" would have a pos value of 3, while its "i" value

ranges from 0 to 255 [2].

PE(pos,2i) = sin
(
pos/100002i/dmodel

)
(2.1)

PE(pos,2i+1) = cos
(
pos/100002i/dmodel

)
(2.2)

2.4.3 Encoder

The encoder shown in the left half of Figure 2.1 in the Transformer architecture is respon-

sible for converting input sequences into machine-readable representations that capture

both word similarity and relative positional information. Comprised of a stack of identical

layers, typically six, each layer contains two sub-layers: a multi-head self-attention mech-

anism and a positionwise fully connected feed-forward network. Residual connections and

layer normalization are applied around each sub-layer to facilitate information flow and

mitigate potential gradient issues. Leveraging multi-head attention mechanisms, the en-

coder discerns intricate word relationships, akin to human language analysis. Finally, the

accumulated knowledge from the encoder is passed to the decoder for generating the final

output sequence [2].

2.4.4 Decoder

The transformer decoder architecture is utilized in tasks such as language generation,

where the model is tasked with producing a sequence of words given an input prompt or

context. Unlike the encoder, the decoder operates in a step-by-step manner, generating
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each word conditioned on the previously generated words. To facilitate this process, the

decoder employs a technique known as triangle masking for attention. This technique

restricts the attention mechanism to only consider tokens to the left of the current token

being generated, preventing the model from accessing tokens it hasn’t yet produced and

ensuring a more coherent generation process [2].

2.4.5 Attention

An attention function can be defined as a process that maps a query and a collection

of key-value pairs to produce an output, with all elements—query, keys, values, and

output—represented as vectors. The output is determined by computing a weighted sum

of the values, where each value’s weight is determined by a compatibility function between

the query and its corresponding key [2].

2.4.6 Scaled Dot-Product Attention

Scaled Dot-Product Attention is an attention mechanism designed to operate on queries

(Q), keys (K), and values (V), of dimensionality dk. It involves computing the dot prod-

ucts between the query and all keys, scaling the result down by
√
dk, and applying a

softmax function to obtain weights for the values. In practice, the attention calculation

proceeds as follows: Given a query Q, a key K, and a value V, the attention is computed

by taking the dot product of Q and K, dividing the result by
√
dk, and then applying the

softmax function to obtain the weights for the values, as illustrated in Figure 2.2, and we

calculate the attention as follows:

Attention (Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.3)

The two main attention mechanisms are additive and dot-product attention. Dot-product

attention, scales the compatibility function by
1√
dk

, while additive attention employs a

feed-forward network with a single hidden layer. Despite comparable theoretical com-

plexities, dot-product attention is faster and more space-efficient due to optimized matrix

multiplication. While both mechanisms perform similarly for small dk values, additive

attention outperforms dot-product attention without scaling for larger dk values. This
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difference is attributed to potential gradient issues caused by large dot product magni-

tudes, mitigated by scaling in dot-product attention [2].

2.4.7 Multi-Head Attention

Instead of using a single attention function with dmodel − dimensional keys, values, and

queries, it’s advantageous to project queries, keys, and values multiple times with distinct

learned linear projections to dimensions dk, dk and dv, respectively. Then, attention

functions are applied in parallel on these projected versions, resulting in dv−dimensional

output values. These outputs are concatenated and projected once more to obtain the final

values, as illustrated in Figure 2.2. This approach, known as multi-head attention, allows

the model to attend to information from different representation subspaces simultaneously

at different positions, improving its ability to capture diverse patterns and dependencies.

In contrast, using a single attention head and averaging restricts this capability [2], and

is defined as:

MultiHead (Q,K, V ) = (head1, . . . , head)W0 (2.4)

where headi = Attention
(
QWQ

i , KW k
i , V W ν

i

)
(2.5)

2.5 Transformer-based models for CV

Transformer-based models are revolutionizing Computer Vision (CV) by offering a fresh

perspective on processing visual data. Unlike traditional Convolutional Neural Networks

(CNNs), transformers excel at capturing long-range dependencies and contextual rela-

tionships within images, making them particularly adept at tasks like object detection

and image classification. By leveraging self-attention mechanisms similar to those in

NLP transformers, these models achieve a more holistic understanding of image content.

Although challenges such as computational cost and integration into existing workflows

remain, the promise of transformers in CV is undeniable. The Vision Transformer (ViT)

model was introduced in 2020 by Google Research, Brain Team in the paper titled "AN

IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION

AT SCALE" [3].
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Figure 2.2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of

several attention layers running in parallel [2].

2.5.1 Vision Transformer Architecture (ViT)

Inspired by the success of Transformer models in natural language processing (NLP), re-

searchers have extended their application to image processing through the Vision Trans-

former (ViT) architecture. ViT [3] revolutionizes image analysis by treating images as

sequences of patches, akin to tokens in NLP. By directly applying the Transformer to im-

age patches, ViT enables holistic understanding and feature extraction [3], as illustrated

in Figure 2.3

2.5.1.1 Patch Splitting

The initial step in the Vision Transformer (ViT) architecture involves partitioning images

into fixed-sized patches, effectively converting the image into a sequence of manageable

segments. This process enables the model to process images in a structured manner,

facilitating subsequent analysis [3].

2.5.1.2 Flattening of Image Patches

Once the images are segmented into patches, these patches are flattened to create a more

compact and uniform representation. Flattening the patches simplifies the data format,
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Figure 2.3: Vision Transformer model architecture [3]

making it conducive to processing by subsequent layers in the model [3].

2.5.1.3 Linear Embedding Generation

Following flattening, linear embeddings are generated from the flattened image patches.

These embeddings encode essential features of the image patches while reducing compu-

tational complexity, ensuring efficient processing throughout the network [3].

2.5.1.4 Inclusion of Positional Embeddings

To incorporate crucial positional information into the model, positional embeddings are

introduced. These embeddings denote the spatial arrangement of patches within the

image, allowing the model to understand the relative positions of different elements in the

image sequence [3].

2.5.1.5 Input to Transformer Encoder

The sequence of patch embeddings, along with positional embeddings, serves as the input

to a transformer encoder. This encoder employs self-attention mechanisms to capture

complex relationships between patches and refine the representation of the image, facili-

tating effective feature extraction and information processing [3].
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2.5.1.6 Pre-training with Image Labels

The ViT model is pre-trained using a large dataset of labeled images in a fully supervised

manner. During this phase, the model learns to extract meaningful features from images

and associate them with corresponding labels, enriching its understanding of various visual

concepts [3].

2.5.1.7 Fine-tuning for image classification

Finally, the pre-trained ViT model undergoes fine-tuning on downstream datasets tailored

for specific tasks, such as image classification. This process allows the model to adapt its

learned features to new domains and optimize performance for the task at hand. Through

these systematic steps, the ViT architecture revolutionizes image processing by leveraging

transformer-based models to achieve exceptional results in diverse computer vision tasks

[3].

2.6 Multimodal Transformers Vision Language Models

(VLMs)

A vision-language model combines vision and natural language processing capabilities

by processing both images and their corresponding textual descriptions. Through this

fusion, the model learns to associate information from both modalities, leveraging spatial

features from images and encoding textual information. By mapping data from both

sources, including detected objects, image spatial layout, and text embeddings, the model

gains an understanding of images and can express this knowledge in natural language.In

our work, we will utilize a Vision-and-Language Transformer (ViLT) to address tasks such

as VQA, where the model takes both images and corresponding questions as inputs. This

VLM ingests images alongside textual descriptions, learning to comprehend images and

encode this knowledge into natural language.
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2.6.1 Vision-and-Language Transformer (ViLT)

The ViLT model, introduced by Wonjae Kim, Bokyung Son and Ildoo Kim in the paper

titled "Vision-and-Language Transformer Without Convolution or Region Supervision"

[4], is a deep learning architecture that integrates computer vision and natural language

processing (NLP) to tackle tasks like VQA and image captioning. It inherits its foundation

from the Vision Transformer (ViT) architecture, known for its effectiveness in computer

vision tasks as illustrated in Figure 2.4.

ViLT extends the ViT framework by incorporating text embeddings, enabling it to

engage in vision-and-language pre-training (VLP). This capability allows the model to

glean insights from extensive datasets containing both images and corresponding textual

descriptions. ViLT undergoes fine-tuning on the VQAv2 dataset, a widely used benchmark

dataset for VQA tasks.

Characterized by its minimal design, ViLT boasts computational efficiency and a rel-

atively modest parameter count compared to other VLP models. These attributes render

it suitable for real-world applications where computational resources may be constrained.

Figure 2.4: Vision Transformer model architecture [4].
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2.7 Related Works

This section presents an overview of related works in the field of VQA aimed at assisting

blind and visually impaired individuals, focusing on research conducted using the VizWiz

dataset. The VizWiz dataset, specifically designed for this purpose, comprises images cap-

tured by blind users along with accompanying textual questions. The dataset is unique in

that it captures real-world scenarios encountered by blind individuals, providing a diverse

and challenging set of images and questions. The VQA challenge associated with the

VizWiz dataset consists of two primary tasks: predict the answer to a visual question and

predict whether a visual question cannot be answered [29].

Alayrac et al. introduced Flamingo, a Visual Language Model for Few-Shot Learning

[30], which encompasses a family of Visual Language Models capable of performing vari-

ous multimodal tasks, including VQA. Flamingo utilizes pre-trained vision and language

models. A key component, the Perceiver Resampler, bridges these models, enabling them

to collaborate effectively for tasks such as analyzing images and text to generate com-

prehensive textual responses. This approach is reflected in its VQA performance results

on the VizWiz-QA benchmark in the task of predicting the right answer. It achieves an

accuracy of 65.4% when finetuning the largest model.

In [31], Singh et al.proposed the LoRRA (Look, Read, Reason, Answer) model archi-

tecture for visual question answering. This architecture consists of three key components:

(i) a VQA component, (ii) a reading component, and (iii) an answering module. The VQA

component, Pythia v0.3, is a refined implementation of Pythia v0.1 [32], which was the

winner of the VQA 2018 challenge. Pythia v0.3 extracts image features, both grid-based

and region-based, and processes question text using pre-trained word embeddings and an

LSTM with self-attention. Notably, it integrates an explicit reading component by in-

corporating pre-trained FastText embeddings for Optical Character Recognition (OCR)

outputs. Finally, an answer module combines these processed information streams to

generate the final answer. Evaluation of a single model on the VizWiz dataset yields an

accuracy of 54.72%.
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Chen et al [33]. introduced and developed PaLI (Pathways Language and Image

Model), a large language model (LLM) designed for joint image and text processing,

leverages pre-trained components for efficiency. At its core, PaLI combines a large ViT

model for image understanding with a pre-trained mT5 model for text processing. PaLI

is trained on a massive, multilingual dataset called WebLI, along with other resources, to

tackle various image-language tasks. PaLI achieves increasing accuracy on the VizWiz-QA

benchmark as model size scales, achieving 67.5% accuracy for the 3B parameter model,

71.1% for the 15B parameter model, and 73.3% for the 17B parameter model.

In their paper, Deuser et al [34]. propose a simplified VQA approach that leverages

a pre-trained CLIP model for both image and text encoding. Their approach utilizes a

CLIP ensemble consisting of two robust encoders: a high-resolution ResNet-50 scaled by

64x (RN50x64) and a ViT-L/14 model resized to 336x336 pixels. Instead of training a

complex model from scratch, they train an additional linear classifier head on top of the

pre-trained CLIP. Their strategy incorporates three key components: (i) curating a spe-

cific vocabulary of common answers to enhance classification performance, (ii) employing

linear layers directly on CLIP’s pre-extracted image and text features for VQA tasks, and

(iii) introducing an optional element, an answer type gate, that facilitates a learnable

masking mechanism to further refine answer prediction. Evaluated on the VizWiz 2022

VQA Challenge, the model achieves an accuracy of 60.15%.

The authors in [35] propose a novel approach that decouples box proposal and fea-

turization for VQA. This allows separate training in region identification (box proposal)

and feature extraction (featurization), promoting better transfer learning. They lever-

age a simplified "up-down" model architecture based on Pythia v0.1. During training,

the model utilizes standard Faster R-CNN (B-FRCNN) based bounding box features.

However, for evaluation, these are replaced with Ultra-based features (B-Ultra). The re-

ported accuracy on the test-standard split for the VQA task on the VizWiz dataset using

B-FRCNN is 51.9 % and the B-Ultra is 53.7%.
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2.7.1 Comparative table

The following table 2.1 summarizes the related works discussed previously and compares

them to our proposed work based on different comparison criteria.

Work Model
Training/

Finetuning Dataset

Evaluation

Dataset

Scores [Acc (%)]

test-

dev

test-

std

Alayrac et al

[30]. 2022
Flamingo VizWiz VizWiz 65.7 65.4

Singh et al

[31]. 2019
Pythia v0.3

ImageNet, Visual

Genome, GloVe

embeddings datasets

VizWiz / 54.72

Chen et al

[33]. 2022
PaLI-17B

VQAv2, OKVQA,

TextVQA, VizWiz
VizWiz 74.4 73.3

Deuser et al

[34]. 2022
CLIP / VizWiz 61.64 60.15

Soravit et

al [35]. 2019

B-FRCNN
/ VizWiz /

51.9

B-Ultra 53.7

Proposed PALIGemma VizWiz VizWiz 80.00 /

Table 2.1: Comparative table of related works
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2.8 Conclusion

In this chapter, we have explored the intersection of deep learning with both text and

image processing. We began by discussing the fundamentals of neural networks for nat-

ural language processing (NLP) and computer vision (CV). We gained insight into their

respective roles and applications in analyzing textual and visual data. Following this, we

introduced transformers, a powerful architecture that has transformed various NLP tasks,

and delved into their key components, including attention mechanisms, word embeddings,

and positional encoding. Moreover, we examined the adaptation of transformer-based

models for both NLP and CV tasks. Notable models such as the Vision-and-Language

Transformer (ViLT) were explored, showcasing the potential of integrating vision and

language processing in a unified framework.

Finally, we reviewed the related works in the field of VQA aimed at assisting blind and

visually impaired individuals, focusing on research conducted using the VizWiz dataset.

With this foundational knowledge, we are now prepared to delve into our proposed ap-

proach in the next chapter.
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3.1 Introduction

This chapter embarks on a detailed comparative study of four state-of-the-art multimodal

VQA models: Vision-Language Transformer [4] (ViLT), Contrastive Language-Image Pre-

training [5] (CLIP), Bootstrapping Language-Image Pre-training [6] (BLIP), and Google

PALIGemma [7, 33]. Our investigation begins with an in-depth data exploration of the

VizWiz dataset, which is specifically designed for VQA tasks aimed at assisting blind and

visually impaired individuals. This dataset provides a robust foundation for evaluating

and benchmarking the performance of our selected models.

The chapter will systematically cover several critical components to offer a comprehen-

sive comparison. First, we delve into the architecture and language models underpinning

each VQA system, examining how these models integrate and process visual and textual

information. Next, we discuss the preprocessing techniques employed to prepare the data

for each model, ensuring that the inputs are optimally formatted for effective learning.

We will then explore the hyperparameters that govern the training process of each

model, alongside the fine-tuning strategies used to adapt pre-trained models to the VizWiz

dataset. Performance metrics, such as accuracy and other relevant evaluation measures,

will be outlined to provide a clear framework for assessing model performance.

Our experimental setup section will detail the methodology and environment in which

the models are trained and tested, ensuring reproducibility and transparency in our com-

parative analysis. We will follow this with a thorough comparison and discussion of the

results, highlighting the strengths and weaknesses of each model in the context of the
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VizWiz dataset.

Finally, we will test the models against various scenarios and problems inherent in

the VQA task, addressing challenges such as ambiguity, contextual understanding, and

the ability to generalize across different types of questions and images. Through this

comparative study, we aim to provide valuable insights into the current capabilities and

limitations of multimodal VQA models, paving the way for future advancements in this

dynamic field.

3.2 Used Dataset

To train our models, we use the VizWiz Visual Question Answering dataset [29] as we

mentioned in chapter one. This dataset is specifically designed to assist individuals with

visual impairments by providing answers to questions about images they have taken.

3.2.1 Dataset Exploration of VizWiz

The VizWiz Visual Question Answering dataset is structured in four main folders: Anno-

tations, Train, Val, and Test. The Annotations folder contains three JSON files—train.json,

val.json, and test.json—which are crucial for organizing the data for the training, valida-

tion, and testing phases. The Train folder holds the training images, the Val folder holds

the validation images, and the Test folder holds the test images.

3.2.1.1 Content of JSON Files

Each JSON file in the Annotations folder has specific content. The train.json file contains

20,523 entries, each with an image filename, a question, a list of answers, and metadata.

The training set has 41,229 distinct answers. The val.json file contains 4,319 entries with a

similar structure and 10,905 distinct answers. The test.json file contains 8,000 entries that

include only the image filenames and questions. Examples of these entries are shown in

Figure 3.1. The table 3.1 provides a clear summary of the number of entries and distinct

answers in each dataset.

The following figure 3.2 illustrates a concrete example taken from the VizWiz dataset

for illustration purposes.
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Dataset Total Samples Distinct Answers

Train 20,523 41,229

Validation 4,319 10,905

Test 8,000 -

Table 3.1: Summary of the VizWiz dataset entries and distinct answers.

Figure 3.1: Dataset format

Figure 3.2: Input Example from vizwiz
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3.2.1.2 Distribution of Answer Types and Answerability

The Train, Val, and Test folders contain the images referenced in their respective JSON

files. We visualize the distribution of answer_type and answerable columns in the training

and validation datasets. For the training datasets, the distribution of answer_type in-

cludes 13,733 "other" answers, 5,532 "unanswerable" answers, 957 "yes/no" answers, and

301 "number" answers. The distribution of answerable indicates 14,991 entries marked as

answerable and 5,532 as unanswerable. The training set has 41,229 distinct answers and

a total of 20,523 samples.

For the validation dataset, the answer_type distribution includes 2,691 "other" an-

swers, 1,385 "unanswerable" answers, 195 "yes/no" answers, and 48 "number" answers.

The answerable distribution shows 2,934 answerable entries and 1,385 unanswerable en-

tries. The validation set has 10,905 distinct answers and a total of 4,319 samples. These

visualizations help us understand the distribution and frequency of different types of an-

swers and answerability within the dataset, providing a foundation for further analysis

and model training.

3.2.1.3 Length Analysis of Questions and Answers in the VizWiz Dataset

The analysis of the VizWiz dataset’s questions and answers reveals interesting insights into

their length distributions. The questions exhibit a broad range, with an average length

of approximately 32 characters. The median length is 25 characters, and most questions

(75%) are 36 characters or shorter. However, the longest question reaches an impressive

302 characters, showcasing the dataset’s diversity. In contrast, answers are generally more

concise, with an average length of about 10 characters. The median length of answers is

10 characters, and 75% of answers are 12 characters or shorter, with the longest answer

extending to 93 characters. These statistics highlight that while questions can be quite

detailed and lengthy, answers tend to be brief and to the point, reflecting the nature of

visual question answering tasks where concise and specific responses are often sufficient,

illustrated in figures [3.3, 3.4].
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Figure 3.3: Distribution of Question

Lengths

Figure 3.4: Distribution of Answer

Lengths

3.2.1.4 Train-Validation Split

For our experiments, we use the Train dataset only by splitting it into 80% for training and

20% for validation. This results in a training set with 13,134 samples and a validation set

with 3,284 samples. For the training set, the distribution of answer_type includes 8,789

"other" answers, 3,518 "unanswerable" answers, 622 "yes/no" answers, and 205 "number"

answers. The answerable distribution indicates 9,616 entries marked as answerable and

3,518 as unanswerable. The training set has 28,268 distinct answers. For the validation

set, the answer_type distribution includes 2,189 "other" answers, 926 "unanswerable"

answers, 140 "yes/no" answers, and 29 "number" answers. The answerable distribution

shows 2,358 answerable entries and 926 unanswerable entries. The validation set has 8,620

distinct answers.

The figures [3.5, 3.6, 3.7, 3.8, 3.9, 3.10] is statistic comparison between training and

validation dataset. The detailed statistics for these splits are presented in the table 3.2.
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Figure 3.5: Pie chart of training

answer type

Figure 3.6: Pie chart of validation

answer type

Figure 3.7: Pie chart of training

answerable

Figure 3.8: Pie chart of validation

answerable

3.3 Comparative Study

In this section, we provide a detailed comparative analysis of the four state-of-the-art

multimodal VQA models: Vision-Language Transformer (ViLT), Contrastive Language-

Image Pre-training (CLIP), Bootstrapping Language-Image Pre-training (BLIP), and

Google PaliGemma. This comparative study focuses on various aspects, including the

architecture and language models underpinning each VQA system, preprocessing tech-

niques, hyperparameters, fine-tuning strategies, and performance metrics.
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Figure 3.9: Number of answerable questions

on training set

Figure 3.10: Number of answerable ques-

tions on validation set

Dataset Answer Type Count Answerable Count Total Total

Distinct Samples

Answers

T
ra

in
in

g
S
et Other 8,789

Answerable
9,616

28,268 13,134
Unanswerable 3,518 3,518

Yes/No 622

Number 205

V
al

id
at

io
n

S
et Other 2,189

Answerable
2,358

8,620 3,284
Unanswerable 926 926

Yes/No 140

Number 29

Table 3.2: Detailed statistics for the training and validation set.

3.3.1 Language Models

The foundation of any VQA model lies in its ability to effectively process and integrate

visual and textual information. This is primarily achieved through sophisticated language

models that are jointly trained on both modalities. We will explore the language models

used by CLIP, BLIP, and PaliGemma in detail, with a brief reference to ViLT, which was

covered in the previous chapter.
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3.3.1.1 Vision-Language Transformer (VILT)

As discussed in the previous chapter, ViLT (Vision-Language Transformer) leverages a

transformer-based architecture to seamlessly integrate visual and textual inputs. By di-

rectly encoding images as sequences of patches, similar to words in text, ViLT avoids the

need for convolutional neural networks (CNNs), leading to a more unified and efficient

approach to multimodal learning.

3.3.1.2 Contrastive Language-Image Pre-training (CLIP)

CLIP (Contrastive Language-Image Pre-training [5]) is an innovative model designed to

predict whether an image and a text snippet from the web are paired, utilizing a large

dataset for pre-training. It leverages a multi-modal embedding space by training an

image encoder and a text encoder jointly to maximize the cosine similarity between cor-

rect image-text pairs while minimizing it for incorrect pairings. Notable for its zero-shot

learning capability, CLIP can perform tasks without task-specific training, demonstrating

significant performance improvements on various image classification datasets compared

to prior models like Visual N-Grams. Its pre-training on diverse web data enables impres-

sive results across different tasks, sometimes even outperforming supervised models. The

figure 3.11 illustrates CLIP approach. Unlike standard image models that train an image

feature extractor and a linear classifier together to predict a label, CLIP simultaneously

trains an image encoder and a text encoder to predict the correct pairings in a batch

of (image, text) training examples. During testing, the learned text encoder creates a

zero-shot linear classifier by embedding the names or descriptions of the target dataset’s

classes.
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Figure 3.11: CLIP: Efficient Zero-shot Transfer Learning [5].

3.3.1.3 Bootstrapping Language-Image Pre-training (BLIP)

BLIP, which stands for Bootstrapping Language-Image Pre-training [6], is a novel frame-

work designed to enhance both vision-language understanding and generation tasks. Tra-

ditional vision-language pre-training models excel either in understanding-based tasks or

generation-based tasks, but not both, often relying on large datasets of noisy image-text

pairs from the web, which are suboptimal for training. BLIP addresses these challenges by

utilizing a multimodal mixture of encoder-decoder architecture, allowing it to function as

both a unimodal encoder and an image-grounded text decoder. Furthermore, BLIP incor-

porates a Captioning and Filtering (CapFilt) mechanism to improve the quality of train-

ing data, involving a captioner that generates synthetic captions and a filter that removes

noisy ones, enhancing the dataset’s quality. The figure 3.12 illustrates the BLIP architec-

ture, integrating several components for effective vision-language tasks, including a text

encoder and an image encoder that transform text and image inputs into embeddings.

The central Multimodal Mixture of Encoder-Decoder (MED) operates as a unimodal

encoder, an image-grounded text encoder, and an image-grounded text decoder. Addi-

tionally, the framework includes a Captioner (Cap) and a Filter (Filt), both pre-trained

using the MED model and then fine-tuned separately. The architecture supports three

vision-language pre-training objectives: image-text contrastive learning (ITC), image-text

matching (ITM), and image-conditioned language modeling (LM). BLIP achieves state-of-

the-art results across various vision-language tasks, including image-text retrieval, image
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captioning, and visual question answering, demonstrating strong generalization capabili-

ties, even in zero-shot transfers to video-language tasks.

Figure 3.12: Blip model architecture [6].

3.3.1.4 PaliGemma

PaliGemma [7] is a versatile family of vision-language models that combines the state-

of-the-art SigLIP-So400m image encoder with the Gemma-2B text decoder, resulting in

a powerful tool for tasks involving both images and text. SigLIP functions similarly to

CLIP, containing both image and text encoders trained jointly, while Gemma serves as a

decoder-only model for text generation. PaliGemma can be fine-tuned for various specific

tasks such as image captioning, visual question answering, entity detection, and referring

expression segmentation. The models are available in different resolutions and precisions,

and come in three types: pretrained (PT), fine-tuned for mixed tasks (Mix), and fine-

tuned for specific academic benchmarks (FT). Despite requiring substantial memory for

high-resolution inputs, the 224x224 resolution models are generally sufficient for most

applications. PaliGemma’s capabilities are best leveraged by fine-tuning it to particular

use cases, with task prefixes like "detect" or "segment" guiding the model’s output. The

mix checkpoints demonstrate the model’s diverse capabilities and are suitable for interac-

tive testing across various tasks. The following figure 3.13 illustrates PaliGemma system

architecture.
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Figure 3.13: PaliGemma model architecture [7].

3.4 Preprocessing Steps for VizWiz VQA Dataset

The VizWiz VQA dataset includes images and associated questions, each accompanied by

multiple answers provided by crowdsourced annotators. The initial step involves loading

the dataset into a structured format. The dataset is typically provided in JSON format,

and the primary fields of interest are the image paths, questions, and the corresponding

answers.

3.4.1 Tokenization of Questions and Answers

For the text data, which includes both questions and answers, tokenization is crucial.

Tokenization converts the text into tokens (e.g., words or subwords) that can be processed

by the model. This step ensures that the textual data is in a consistent format that the

VQA model can understand. Commonly, pre-trained tokenizers from transformer models

(such as those from the Hugging Face library) are used to maintain compatibility with

pre-trained language models.

3.4.2 Image Preprocessing

The images need to be preprocessed to fit the input requirements of the VQA model.

This typically involves resizing the images to a standard size and normalizing the pixel
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values. Normalization helps in scaling the pixel values to a range that the model can

process effectively. Images are converted to a consistent format, such as RGB, to ensure

uniformity across the dataset.

3.4.3 Creating Labels from Multiple Answers

Each visual question in the VizWiz dataset is associated with multiple answers. To create

a single label for training, we determine the most common answer from the set of provided

answers. This is done by counting the frequency of each answer and selecting the one

with the highest count. This approach assumes that the most frequent answer is the most

accurate representation of the ground truth for the given question.

3.4.4 Encoding Answers

Once the most common answers are identified, they need to be encoded into a format

suitable for training. One-hot encoding is commonly used for this purpose. Each unique

answer is assigned a unique vector, with a dimension corresponding to the total number of

unique answers in the dataset. This encoding transforms categorical labels into a binary

matrix representation, which can be easily processed by machine learning models.

3.4.5 Preparing the Data for Training

With the tokenized questions and encoded answers, the final step involves preparing

the data for the training process. This includes creating a dataset class that can feed

data into the model in batches. Each data point consists of a preprocessed image, a

tokenized question, and the corresponding one-hot encoded answer. This structured data

is then loaded into a DataLoader, which handles the batching and shuffling of data during

training.

3.4.6 Hyperparameters

The fine-tuning of three different models, Vilt, Blip, and PaliGemma, on the VizWiz

dataset for various visual question answering tasks. Each model employs similar hyper-

parameters such as max length and batch size, essential for tokenization and processing

sequences during training iterations. However, differences emerge in optimizer choices,
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with Vilt utilizing Adam optimizer with weight decay and a fixed learning rate, Blip

employing AdamW with a specific learning rate and exponential learning rate scheduler,

and PaliGemma using AdamW with weight decay and a different initial learning rate.

Additionally, each model incorporates distinct training strategies, such as gradient accu-

mulation steps, warmup steps, and model-saving strategies, reflecting the nuances in their

respective architectures and optimization approaches, as illustrated in table [3.3].

Model Batch Learning Number of Padding Optimizer

Size Rate Epochs

PaliGemma 2 2e-5 3 "longest" AdamW

ViLT 32 5e-5 15 "max_lengh" AdamW

BLIP 2 0.000018 10 "max_lengh" AdamW

CLIP 32 5e-4 30 "default" Adam

Table 3.3: Comparison of hyperparameters for ViLT, BLIP, and PaliGemma models.

3.4.7 Fine-tuning

Fine-tuning involves setting up the model for training and then training it on the pre-

pared dataset. We start by downloading the pre-trained model and preparing it for

fine-tuning. For our Visual Question Answering (VQA) task, we’ll utilize specific classes

like PaliGemmaForConditionalGeneration, BlipForQuestionAnswering, and

ViltForQuestionAnswering. We employ the from_pretrained method to fetch and

cache the pre-trained model automatically. Additionally, we configure an optimizer for

the fine-tuning process, often opting for the AdamW optimizer from PyTorch, known for

its gradient bias correction and weight decay. Setting up the optimizer involves specifying

the learning rate and passing the model parameters to it.

Training

Next, we proceed to train the model using the train method, iterating over the dataset

for a predefined number of epochs. Each epoch represents a complete pass through the

training data. After each epoch, the model’s performance is evaluated on the validation

dataset. This evaluation serves as a checkpoint, guiding the training process based on

the model’s performance. If the model’s performance on the validation dataset improves,
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training continues; otherwise, it may be stopped to prevent overfitting or optimize training

efficiency.

Evaluate

For evaluation, we assess the fine-tuned model’s performance on a separate validation

or test dataset. In the context of VQA, accuracy is a key metric for evaluating the

model’s effectiveness. We measure accuracy by comparing the model’s predicted answers

to ground truth answers in the dataset. A high accuracy indicates that the model can

effectively understand visual content and answer questions accurately. This evaluation

process helps validate the model’s performance and ensures its suitability for real-world

applications.

Performance Metrics of Models

The performance metrics of Blip, Vilt, Clip and the proposed PALIGemma were compared

based on their size, speed per epoch, and accuracy, as shown in Table 3.4. The Proposed

model is the largest at 11.3 GB and the slowest, taking 2 hours and 10 minutes per

epoch, but it achieves the highest accuracy at 80%, demonstrating superior performance.

Blip, with a size of 1.54 GB, completes an epoch in 1 hour and 50 minutes and has an

accuracy of 42%. Vilt is the smallest model at 470 MB, requiring 40 minutes per epoch

and attaining an accuracy of 36%. Clip, at 1.5 GB, is relatively fast, completing an epoch

in 45 minutes with an accuracy of 47%. While the Proposed model excels in accuracy, Vilt

stands out for its minimal size and quick training time. Clip offers a balanced trade-off

between speed and accuracy. Overall, the Proposed model is better due to its significantly

higher accuracy, despite the trade-offs in size and speed.

Model Size Speed/Epoch Accuracy (%)

Proposed 11.3 GB 2 h 10 m 80

Blip 1.54 GB 1 h 50 m 42

Vilt 470 MB 40 m 36

Clip 1.5 GB 45 m 47

Table 3.4: Performance metrics of different models.

47



Chapter 3 Experimental and Proposed Solution

3.4.8 Experimental Setup

Table 3.5 outlines the experimental setup used in this study, detailing the hardware and

software components that supported the thorough testing and evaluation of the proposed

model. It provides a comprehensive overview of the system configuration, including the

specific hardware specifications and software tools utilized.
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- Legion Pro 7i Gen 8: • CPU: Intel® Core™ i9-13900HX

• RAM: 32 GB DDR5-5600MHz • GPU: NVIDIA® GeForce

RTX™ 4080 Laptop GPU 12GB GDDR6 • Disk: 1TB SSD

- MacBook Pro (13-inch, M1, 2020), Apple M1 chip:

• 8-core CPU • 8-core GPU • 16-core Neural Engine

• RAM: 16GB unified memory • Disk: 1TB SSD

Google Colaboratory (Colab), by Google : • CPU: In-

tel(R) Xeon(R) • GPU: Tesla T4, 16GB • RAM: 12.7GB

• Disk: 107.7GB

Kaggle Notebooks, by Kaggle : • CPU: Intel(R) Xeon(R) •

GPU: Tesla P100-PCIE-16GB • RAM: 13 GB

• Disk: 107.37 GB

Programming

Language

• Python 3

Hugging Face Datasets: A Python library for loading and

preprocessing datasets. It offers a unified interface for loading

datasets from various sources like CSV, JSON, and HDF5 files,

and provides preprocessing functions such as tokenization, nor-

malization, and filtering.

Hugging Face TokenizersFast: A state-of-the-art tokenizers

library, optimized for research and production. It implements

popular tokenizers in Transformers, focusing on performance

and versatility.

Hugging Face Transformers: A popular open-source Python

library for VQA tasks. It offers pre-trained transformers models

and a framework for fine-tuning them on custom tasks.

PyTorch: An open-source machine learning framework in

Python, based on the Torch library. It is used for tasks like

natural language processing, computer vision, and robotics. Py-

Torch is known for its flexibility and ease of use.

Hardware

and Training

Personal

Computer

Cloud Tools

Software and

Librairies
Librairies

Table 3.5: The experimental setup used
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3.4.9 Comparison and Discussion

The detailed comparison of the models is presented in Table 3.6, highlighting the different

processes, hyperparameters, finetuning capabilities, and evaluation accuracies. The Pro-

posed model, utilizing the PaliGemmaProcessor, employs a batch size of 2, a learning rate

of 2e-5, 3 epochs, the adamw_torch optimizer, and padding set to "longest". Despite its

larger size and slower speed, its finetuning capability and the highest evaluation accuracy

of 80% underscore its robustness. Blip, with the ViltProcessor, uses a batch size of 2,

a changeable learning rate per epoch, 10 epochs, AdamW optimizer, and padding set to

"max_length". It also supports finetuning, achieving a moderate accuracy of 42%. Vilt,

processed with the BlipProcessor, has a larger batch size of 32, a learning rate of 5e-5, 15

epochs, AdamW optimizer, and padding set to "max_length". This model also supports

finetuning but has a lower accuracy of 36%. Clip, using the ClipPreprocessor, also has a

batch size of 32, a higher learning rate of 5e-4, 30 epochs, Adam optimizer, and default

padding. Unlike the others, it does not support finetuning, yet it achieves a relatively

high accuracy of 47

3.4.10 Results

The results indicate that the Proposed model, despite its larger size and slower speed

per epoch, offers superior performance with the highest accuracy of 80% [3.14, 3.15].

Its finetuning capability and optimized hyperparameters contribute significantly to its

effectiveness. Blip and Vilt, though supporting finetuning, fall short in terms of accuracy,

with 42% [3.16, 3.17] and 36% [3.18, 3.19] respectively, potentially due to their different

learning rate strategies and epoch numbers. Clip, while lacking finetuning, still achieves

a commendable accuracy of 47% [3.20,3.21], suggesting that its higher learning rate and

greater number of epochs may offset the absence of finetuning to some extent. Therefore,

the choice of model may depend on the specific requirements for accuracy, processing time,

and resource availability, with the Proposed model being the optimal choice for scenarios

prioritizing accuracy.
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Model Process Hyperparameters Fintuning

Evaluation

Accuracy

(%)

Proposed PaliGemmaProcessor

Batch size 2

Yes 80.00

Learning rate 2e-5

Epoch_nbr 3

Optimizer adamw_torch

Padding "longest"

Blip ViltProcessor

Batch size 2

Yes 42.00

Learning rate
Changeable

/epoch

Epoch_nbr 10

Optimizer AdamW

Padding "max_length"

Vilt BlipProcessor

Batch size 32

Yes 36.00

Learning rate 5e-5

Epoch_nbr 15

Optimizer AdamW

Padding "max_length"

Clip ClipPreprocessor

Batch size 32

No 47.00

Learning rate 5e-4

Epoch_nbr 30

Optimizer Adam

Padding "default"

Table 3.6: Model comparison with various hyperparameters
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Figure 3.14: Training and Validation Accuracy for Proposed Model

Figure 3.15: Training and Validation Loss for Proposed Model
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Figure 3.16: Training and Validation Accuracy for Blip Model

Figure 3.17: Training and Validation Loss for Blip Model

53



Chapter 3 Experimental and Proposed Solution

Figure 3.18: Training and Validation Accuracy for Vilt Model

Figure 3.19: Training and Validation Loss for Vilt Model
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Figure 3.20: Training and Validation Accu-

racy for Clip Model

Figure 3.21: Training and Validation Loss

for Clip Model

3.5 Test of the models

To assess the performance of different VQA models, a dataset from VizWiz was utilized.

It included random queries like:

• What’s the name of this product?

The table [3.7] displays the answers generated by these models for the respective questions.

The models were tested on the VizWiz VQA dataset to evaluate their performance

on real-world visual question answering tasks. The Proposed model consistently provided

accurate and relevant answers, demonstrating its robustness in understanding and inter-

preting visual content. For instance, when asked about the name of a product, both the

Proposed model and Blip correctly identified it as "basil leaves". However, the Proposed

model showed superiority in more complex queries, such as identifying specific items or

distinguishing between similar objects, where Blip and Vilt provided less accurate or non-

specific answers. These results highlight the Proposed model’s enhanced capability in

handling a variety of questions, making it a reliable choice for practical applications.
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Image Question Model Answer

What’s the name

of this product?

Proposed "basil leaves"

Blip "basil leaves"

Vilt "basil leaves"

Which one of these

items is the

children’s

dictionary? Is it

the one on the

right, or the one

on the left?

Proposed "left"

Blip "Book"

Vilt "unanswerable"

Can you tell me

which medicine

this is please?

Proposed
"night time

cough syrup"

Blip "syrup"

Vilt "unanswerable"

Table 3.7: Testing the models on VizWiz VQA dataset
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3.6 Problems and Challenges

Working with large datasets, such as the 20 GB VizWiz VQA dataset, presents sig-

nificant challenges. One of the primary issues is the extensive training time required,

especially for larger models like the Proposed model, which can take several hours per

epoch. This necessitates substantial computational resources and efficient management of

RAM and hard drive space to handle the data processing and model training effectively.

Additionally, ensuring that the training process is uninterrupted and efficiently utilizes

available hardware is crucial for successful model development. Balancing these factors

while maintaining high accuracy and performance remains a persistent challenge in the

field of machine learning especially on VQA.

3.7 Conclusion

In conclusion, the evaluation of different models on the VizWiz VQA dataset highlights

the strengths and weaknesses of each approach. The Proposed model stands out for its

superior accuracy and robustness in answering diverse questions, albeit with significant

resource requirements. Blip and Vilt, while efficient in terms of processing time and re-

source usage, fall short in accuracy for complex queries. Clip offers a balanced approach

but lacks finetuning capabilities, limiting its adaptability. Overall, the choice of model

should be guided by the specific needs of the application, considering factors such as accu-

racy, training time, and resource availability. The Proposed model, despite its challenges,

proves to be the most effective for high-accuracy requirements.
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Fueled by a global surge in interest, VQA is witnessing significant advancements on two

fronts: the development of increasingly realistic datasets incorporating authentic, real-

world questions and answers, and the creation of advanced deep learning models that

more effectively leverage both visual and textual cues through various methods.

In this work, we present a exhaustive study into VQA, emphasizing the power of

transformer models and deep learning techniques. We establish a foundation in VQA by

tracing its development, examining its architecture, and exploring its real-world applica-

tions. Prominent datasets like COCO, VQA v2.0, and Visual Genome are analyzed for

their roles in training and evaluating VQA models.

We delve into neural networks for Natural Language Processing (NLP) and Computer

Vision (CV), focusing on transformer models and their impact on text and image pro-

cessing within deep learning. Detailed discussions on attention mechanisms, word embed-

dings, and positional encoding underscore the sophistication of transformers in handling

complex NLP and CV tasks. We also included examples of transformer-based models,

including ViT and VLMs, to shed light on their versatility and effectiveness.

Our central contribution lies in a comprehensive comparative study of the performance

and capabilities of various VQA models, including Vision-Language Transformer (ViLT),

Contrastive Language-Image Pre-training (CLIP), Bootstrapping Language-Image Pre-

training (BLIP), and Google PaliGemma. This study involves evaluating each model

based on architecture, preprocessing techniques, hyperparameter settings, and perfor-

mance metrics. We fine-tuned these models on the VizWiz dataset, achieving varying
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levels of accuracy. ViLT and BLIP showed moderate effectiveness, while CLIP demon-

strated a balance between pre-training robustness and adaptability. PaliGemma achieved

the highest accuracy, underscoring its robustness and fine-tuning capability. Our ex-

periments highlight the potential of transformer-based models in VQA, particularly in

handling complex queries, but also reveal challenges such as computational resource de-

mands and efficient memory management. This study serves as a roadmap for future

research, guiding efforts towards enhancing the accuracy and efficiency of VQA systems.

Future Work

Looking ahead, future work in the field of VQA should focus on several key areas to

further enhance system performance and applicability. Firstly, optimizing computational

resource usage and improving memory management techniques will be crucial for handling

the increasing complexity of visual questions and large-scale datasets. Secondly, devel-

oping more sophisticated models that can better integrate multimodal information and

handle nuanced visual and textual data will enhance accuracy and robustness. Another

important direction is enhancing the interpretability and explainability of VQA systems,

making them more transparent and trustworthy for users. Finally, exploring the integra-

tion of VQA systems with other AI technologies, such as natural language understanding

and image synthesis, could open up new possibilities for applications in areas like assis-

tive technology, education, and automated customer support. These advancements will

collectively contribute to the development of more efficient, accurate, and versatile VQA

systems.
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