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Abstract

This thesis aims to utilize Convolutional Neural Networks (CNNs) for the detection of

Alzheimer’s disease (AD) using Magnetic Resonance Imaging (MRI). Alzheimer’s dis-

ease, a prevalent neurodegenerative disorder, presents significant diagnostic challenges,

necessitating advanced methodologies.

This work integrates deep learning models to enhance classification capabilities, in-

cluding data preprocessing and augmentation techniques like Synthetic Minority Over-

sampling Technique (SMOTE). The thesis also explores the development and optimization

of CNN variants tailored for AD detection.

Experimental results demonstrate the potential of CNNs in improving diagnostic ac-

curacy, highlighting the importance of machine learning in medical diagnostics. This work

underscores the critical role of technological advancements in neuroimaging and artificial

intelligence.



Résumé

Ce mémoire vise à utiliser les réseaux de neurones convolutionnels (CNN) pour détecter

la maladie d’Alzheimer (MA) à l’aide de l’imagerie par résonance magnétique (IRM). La

maladie d’Alzheimer, un trouble neurodégénératif répandu, présente des défis significatifs

en termes de diagnostic, nécessitant des méthodologies avancées.

Ce travail intègre des modèles d’apprentissage profond pour améliorer les capacités

de classification, incluant des techniques de prétraitement et d’augmentation des données

comme le suréchantillonnage synthétique des minorités (SMOTE). Ce mémoire explore

aussi le développement et l’optimisation de variantes CNN adaptées à la détection de la

MA.

Les résultats expérimentaux montrent le potentiel des CNN à améliorer la précision

du diagnostic, soulignant l’importance de l’apprentissage automatique dans les diagnos-

tics médicaux. Ce travail met en avant le rôle critique des avancées technologiques en

neuroimagerie et en intelligence artificielle.
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General introduction

Context and Problem Statement

Neuroscience is rapidly evolving with technological advancements, particularly in the

study of Alzheimer’s disease (AD). This neurodegenerative condition, affecting millions

worldwide, presents significant public health challenges. Despite the lack of effective

treatments, research focuses on early detection to mitigate cognitive and behavioral de-

cline. Innovations in neuroimaging and machine learning, especially magnetic resonance

imaging (MRI) and convolutional neural networks (CNNs), show promise in predicting

and understanding AD before it progresses to advanced stages.

Objective

Therefore, the primary objective of this thesis is to develop methodologies to detect and

predict the progression of Alzheimer’s disease using MRI and CNNs.

Contribution

In this work, we employed a comprehensive approach involving advanced data prepro-

cessing, augmentation, and the use of state-of-the-art deep learning models. The process

included:

• Data Pre-Processing and Augmentation: Utilizing techniques such as SMOTE

for oversampling to address class imbalances, and applying image augmentation
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General introduction

strategies like brightness adjustment, zoom, and horizontal flipping to enhance the

dataset.

• Model Selection: Implementing several pre-trained CNN models, including Xcep-

tion, InceptionV3, and MobileNetV2, as base model to identify the most effective

architecture for AD detection.

• Model Customization: All models were customized by adding additional lay-

ers for dropout, global average pooling, batch normalization, and dense layers to

improve performance and reduce overfitting. These models were trained using a

combination of callbacks, including early stopping based on accuracy and learning

rate reduction on plateau.

• Proposed Variants: After customizing the models, we proposed several archi-

tecture variants to determine the optimal configuration for AD detection. These

variants include:

– FS-TL-SMOTE: A model where the weights are trained from scratch with

trainable layers and SMOTE applied for class balancing.

– PTW-TL-SMOTE: A model using pre-trained weights with trainable layers

and SMOTE.

– PTW-NTL-SMOTE: A model using pre-trained weights with non-trainable

layers and SMOTE.

– PTW-NTL-NS: A model using pre-trained weights with non-trainable layers

and without SMOTE.

• Evaluation and Metrics: The models performance was evaluated using metrics

such as categorical accuracy, AUC and F1 score. classification reports were also

generated to provide detailed insights into model performance.

• Comparison with Related Work: To contextualize our contributions, we re-

viewed existing research in the field. This includes traditional methods and recent

advancements in deep learning and CNN approaches for AD detection. Our method-

ology aligns with current trends in employing CNNs and MRI data, and we discuss

the similarities and differences between our approach and those found in the related

work.
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General introduction

Thesis Structure

The remaining sections of the thesis are organized as follows:

• Chapter 1: Provides a general overview of Alzheimer’s disease and its relationship

with MRI imaging.

• Chapter 2: Presents a comprehensive state-of-the-art review of current research

and advancements related to AD and neuroimaging.

• Chapter 3: Describes our proposed methodological approach to detect and predict

the progression of AD using MRI and CNNs, detailing the data preprocessing, model

training, and evaluation processes.

• Chapter 4: Discusses the implementation of our approach, presents the develop-

ment tools used, and evaluates the results obtained from our experiments.

3



Chapter 1
Generalities about alzheimer’s disease.

1.1 Introduction

This chapter serves as a brief exploration of Alzheimer’s disease, focusing on key areas

including the disease progression and stages, diagnostic methodologies, symptomatic man-

ifestations, classification frameworks, and why is better to switch from radiology to MRI.

By delving into these topics, we aim to provide a basic understanding of AD, elucidating

its complexities and offering insights into its diagnosis and management.

1.2 Definition of alzheimer’s disease

AD is a neurodegenerative diseases [17] characterized by the gradual deterioration of:

• Cognitive function

• Memory loss

• behavioral changes.

It is the most common cause of dementia, affecting millions of people , particularly aged 65

or older [18]. The disease is marked by the accumulation of abnormal protein deposits in

the brain, leading to the death of nerve cells and the disruption of neural pathways respon-

sible for cognition, memory, and behavior. As AD advances, individuals may experience

increasing difficulties with everyday tasks and social interactions such as understanding

there for communication, in advanced cases AD can significantly impact language abil-

ities. Unfortunately there is no cure for AD, and available treatments aim to manage
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Chapter 1 Generalities about Alzheimer’s Disease.

symptoms and slow disease progression, not to fully recover. Figure 1.1 shows a compar-

ison between a person with AD and another without it in brain regions associated with

language and memory.

Figure 1.1: Coronal section of the brain of a normal individual and a person with

Alzheimer’s disease[1]

1.3 Symptoms of alzheimer’s disease

AD is characterized by a progressive set of symptoms that primarily affect memory, cog-

nitive abilities, and behavior. Some of the most common symptoms include: [19]

• Short-term memory loss: individuals with Alzheimer’s often struggle to remem-

ber recent events or important details of their daily lives.

• Mental confusion: they may feel disoriented in time or space, leading to poten-

tially dangerous situations.

• Difficulties with reasoning and problem-solving: Tasks requiring abstract

thinking or planning become increasingly challenging.

• Changes in personality and behavior: people with Alzheimer’s may exhibit

mood swings, agitation, irritability, or social withdrawal.
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Chapter 1 Generalities about Alzheimer’s Disease.

• Language problems: they may have difficulty finding the right words to express

themselves or understanding the language of others.

1.4 Classification of alzheimer’s disease

AD presents three degrees of severity, including Very-Mild Dementia, Mild Dementia, and

Moderate Dementia, each stage characterized by distinct symptoms.

The disease can be delineated into three stages:

1.4.1 Mild stage

In the Mild Stage, individuals may experience sporadic short-term memory lapses, strug-

gles and have significantly be disturbed in sleep, 5% of individuals with mild stage main-

tain stability or revert to a normal state.[20]

1.4.2 Moderate stage

In the Moderate Stage, memory impairments become more serious, they intend to forget

only recent information. Individuals may struggle with daily activities a bit more on this

stage, and a noticed behavioral disturbances, including language difficulties and occasional

aggression, may surface.[21]

1.4.3 Advanced stage

In the advanced stages of AD, individuals often experience a complete loss of awareness

of self and surroundings. They may face personality changes. Basic functions such as eat-

ing, walking, and toileting become increasingly challenging, requiring full-time assistance.

Overall, advanced Alzheimer’s profoundly affects theire mental health causing paranoia

necessitating comprehensive care and support to maintain their comfort and dignity.[20]

The figure 1.2 Illustrates brain images representing three stages of AD: preclinical,

mild to moderate, and severe.
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Figure 1.2: Types of AD [2]

1.5 Diagnosis of alzheimer’s disease

The diagnosis of AD is a complex process that typically involves several steps: [22]

• Clinical evaluation: a physician conducts a comprehensive assessment of the

patient’s health, asking about symptoms and performing cognitive tests.

• Exclusion of other causes: it’s essential to rule out other medical conditions

that may cause similar symptoms, such as vitamin deficiencies, thyroid disorders,

or brain tumors.

• Additional tests: blood tests, neurological evaluations, brain imaging tests (such

as MRI), and sometimes neuropsychological assessments may be performed to con-

firm the diagnosis.

1.5.1 Imaging Techniques in Alzheimer’s Disease Diagnosis and

Monitoring

Conventional imaging techniques, such as X-rays and CT scans (computed tomography),

may lack the sensitivity and specificity to detect the subtle changes associated with AD.

MRI, however, offers significant advantages. It is a non-invasive technique that provides

detailed visualization of brain structures. In the context of AD, MRI can detect structural

changes in the brain, such as hippocampal atrophy, at an early stage of the disease [23].

MRI is also particularly useful for tracking the progression of AD over time, enabling

doctors to compare images to assess changes in the patient’s brain. It offers much better
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spatial resolution than other imaging modalities, allowing for the visualization of brain

structures with high precision. Additionally, the contrast between soft tissues is often

superior to that of CT scans, providing more detailed images. Figure 1.3 provides a

representation of the principle and function of MRI

This figure (1.3) provides a representation of the principle and function of MRI

Figure 1.3: The principle and function of MRI [3]

1.6 Conclusion

In conclusion, this chapter has provided an overview of AD, covering its definition, clas-

sification, symptoms, and the crucial role of imaging techniques, particularly MRI, in

its diagnosis and monitoring. MRI stands out for its ability to detect early structural

changes in the brain, offer superior spatial resolution, and track disease progression. The

next chapter will delve into CNNs and Deep Learning, which will be utilized in the pro-

cessing of medical images associated with AD.
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Chapter 2
State of the art

2.1 Introduction

In this chapter, we delve into the realm of DL, particularly focusing on CNNs and their

application in the detection and classification of AD using medical imaging. We begin

by exploring the foundational concepts of DL and its distinction from traditional ML

approaches. Through a brief overview, we highlight the significance of CNNs in revolu-

tionizing medical image analysis.

2.2 Basic principles of machine learning

ML constitutes a subset of AI, focused on enabling machines to evolve and fulfill tasks

through learning processes, a feat unattainable through conventional algorithms alone.

ML algorithms learn to solve problems automatically by analyzing data, aiming to min-

imize errors and enhance accuracy. ML was first introduced by Arthur Samuel[24], who

defined it as an area of research and development within computer science. It’s not just

a single technique or method but an entire field dedicated to creating systems that are

given the flexibility to learn from data without having specific instructions programmed

for every situation they might encounter. Among the most adopted ML methods are

supervised and unsupervised learning.[25]
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2.3 Fundamental concepts of deep learning

DL, a subset of ML[26], represents a revolutionary approach to AI, enabling machines

to learn autonomously from data without explicit programming. It is based on neural

networks architectures inspired by the structure and function of the human brain. DL

algorithms utilize multi-layered networks of artificial neurons to process information it-

eratively, with each layer refining and enhancing the output of the previous layer. This

hierarchical learning mechanism enables the system to extract complex patterns and fea-

tures from vast datasets, leading to remarkable advancements in various domains such as

computer vision, natural language processing, and speech recognition. In figure 2.1, we

can observe the relationship between the two concepts mentioned, ML and DL.

Figure 2.1: Machine Learning Deep Learning [4]

2.3.1 Comparison between machine learning and deep learning

First and foremost, it’s imperative to recognize that DL operates within the broader realm

of ML, as illustrated in Figure 2.1.

Another notable contrast between DL and traditional ML lies in the adaptability
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of DL algorithms. Unlike many ML techniques that face constraints in handling large

datasets, DL models thrive with increased data, thereby exhibiting enhanced performance.

DL models have been known to surpass human-level performance in domains such as

image processing [27], owing to their capability to handle vast amounts of data without

theoretical limitations.

Figure 2.2 underscores the reduced necessity for human intervention in DL compared

to traditional ML methods. DL algorithms possess the ability for automatic feature

extraction through their neural networks architecture, eliminating the need for manual

feature identification by software engineers—a laborious and specialized task.

Figure 2.2: Machine Learning vs Deep Learning [5]

Moreover, the complex multi-layered structure of DL necessitates a larger volume

of data for optimal functionality. This aspect is crucial for mitigating fluctuations and

ensuring high-quality interpretations.

2.4 Deep learning algorithms

DL comprises a multitude of algorithms, each tailored to specific application domains.

Here, we’ll introduce several, with our primary focus being on detecting AD in images.

This involves the realm of computer vision, utilizing CNNs for image recognition.

2.4.1 Recurrent neural networks

RNNs are pivotal in DL, especially in the realm of home automation. Their strength

lies in their ability to process sequential data for tasks such as speech recognition, trans-

11



Chapter 2 State of the art

lation, and time-series prediction. Unlike traditional networks, RNNs retain memory of

past inputs through feedback loops, enabling them to analyze data sequences and make

predictions based on previous context. However, they face challenges such as the vanish-

ing gradient problem. To address this, variants like Long Short-Term Memory (LSTM)

networks have been developed, enhancing information retention over long sequences[28].

The figure 2.3 shows a recurrent neural network with three types of layers: input, hidden,

and output layers.

Figure 2.3: Recurrent neural networks [6]

2.4.2 Generative adversarial networks

GANs are powerful in generating lifelike images, unlike CNNs primarily used for recog-

nition. GANs feature two neural networks, a generator and a discriminator, engaged in

a competitive process. The generator produces images to fool the discriminator, which

distinguishes real from fake. In medical imaging, GANs show promise for creating realis-

tic synthetic images, improving training data quality and diversity for disease detection

models, leading to enhanced performance[29].

In Figure 2.4, the GAN architecture is showcasing the flow of random input and real

images through the generator and discriminator, with associated losses for both, resulting

in the generation of authentic samples.

12



Chapter 2 State of the art

Figure 2.4: Generative adversarial networks [7]

2.4.3 Convolutional Neural Networks

CNNs have transformed AI, especially in computer vision, inspired by the human visual

system. They excel in tasks like image recognition[30]. CNNs are utilized also in vari-

ous other domains such as medical imaging, robot technology, predict machine failures,

analyze financial transactions for fraud detection.

A typical CNN architecture includes convolutional layers for feature extraction, sub-

sampling layers for efficiency enhancement, fully connected layers for classification, and

normalization layers. Unlike traditional neural networks, CNNs operate on pixelated

images, with neurons connected to specific regions, reducing training time and overfitting

while improving pattern learning.[31]

In our focus on disease detection in medical images, a deep understanding of CNNs is

crucial due to their expertise in computer vision tasks. By leveraging CNN capabilities, we

aim to enhance disease detection methods and propel advancements in medical imaging

technology.

Figure 2.5 shows the CNN archirecture.
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Figure 2.5: Convolutional Neural Networks Architecture[8]

2.5 Architecture of Convolutional Neural Networks

2.5.1 Different types of layers used in a CNN

In a CNN, various types of layers are employed to process and extract features from input

data.

Convolutional layers

These layers apply convolution operations to the input data, extracting local features

through filters or kernels. Convolutional layers play a pivotal role in feature extraction

by convolving the input with learnable filters[32].

Figure 2.6 shows the pixel transformation with convolutional kernels.

Figure 2.6: Convolution layer[9]
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Pooling layers

Pooling layers reduce the spatial dimensions of the feature maps generated by convolu-

tional layers. They help in capturing the most important features while reducing compu-

tational complexity and preventing overfitting. Common pooling operations include max

pooling and average pooling[33].

The figure 2.7 illustrates the process of max pooling, where each 2x2 block in a 4x4

matrix is reduced to a single value representing the maximum value in that block.

Figure 2.7: Max Pooling Layer [10]

Activation layers

play a crucial role in CNNs by introducing non-linearities between layers, impacting the

network’s performance [34]. Various activation functions have been explored, such as

ReLU . These functions influence the network’s ability to learn complex patterns and

make decisions based on the input data. Additionally, the activation patterns across

different layers in CNNs encode valuable information about spatial relations, temporal

patterns, and features’ co-occurrence, enhancing the network’s performance in tasks like

visual tracking. The choice and combination of activation functions in CNNs significantly

impact the network’s efficiency and effectiveness in various applications

Fully Connected Layers and Classification

Fully connected layers are utilized towards the end of the CNN architecture for classi-

fication or regression tasks [35]. These layers form a dense network where each neuron

is connected to every neuron in the subsequent layer. These layers are critical for in-
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terpreting features extracted from medical images and classifying patients into different

categories. Within these layers, the softmax activation function is often employed to

convert raw scores into probabilities, thus determining the predicted class for each input.

Therefore, fully connected layers with softmax act as the final classifier in the CNN, as-

signing a class to each input based on features learned by the network. in a figure 2.8

illustrating the fully connected layer.

Figure 2.8: Fully connected layers [11]

Additional Layers for Enhanced CNNs

In addition to the fundamental layers discussed above, there are several additional layers

that can be incorporated into CNN architectures to enhance their performance. These

layers include:

• Correction layers (Normalization layers): Correction layers, such as batch

normalization or layer normalization, are used to improve the training stability

and speed of CNNs by normalizing the input of each layer. They reduce internal

covariate shift and accelerate convergence during training[36].

The figure 2.9 demonstrates batch normalization and layer normalization, showing

their application on samples and units within a neural network.
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Figure 2.9: Normalization layers [12]

• Dropout layers: Dropout layers play a pivotal role in CNNs to prevent overfitting

by randomly ignoring a certain percentage of neurons during training [37]. Dropout

layers provide a mechanism to enhance model generalization and robustness. By

randomly dropping out neurons, dropout layers promote the learning of more robust

features, leading to improved performance on unseen data. This regularization

technique is particularly beneficial in scenarios where the dataset is limited or when

the model exhibits signs of overfitting. In the architecture of CNNs, dropout layers

are strategically placed to mitigate overfitting and improve the network’s ability to

generalize to new data.

2.5.2 Choice and adjustment of hyperparameters to optimize

model performance

Hyperparameters in a CNN are parameters that are set before the learning process begins.

They greatly influence the network’s learning process and its ability to generalize well to

unseen data.[38] Here are some key hyperparameters :

• The learning rate is a crucial hyperparameter that controls the step size during

optimization. Setting it too high can cause overshooting of the minima, while a

value too low can significantly slow down convergence. Therefore, careful tuning is

essential for achieving optimal performance [39].

• The number of filters determines the depth of the output volume in convolutional

layers. Increasing the number of filters allows the network to capture more diverse

features, but it also comes with a trade-off of increased computational complexity.
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• The number of epochs refers to the number of times the entire dataset is passed

forward and backward through the Neural Networks.

• The kernel size refers to the dimensions of the filter applied to the input data. It

affects both the size of the receptive field and the granularity of detected features

[40].

• Stride determines how much the filter moves after each operation. Larger strides

result in a reduction of the spatial dimensions of the output volume [41].

• Activation functions introduce non-linearity into the neural network. Common

choices include ReLU, Sigmoid, or Tanh [42].

• Pooling size determines the size of the window over which max or average pooling

is applied. It affects the amount of downsampling and information retention [43].

• The dropout rate represents the fraction of units to drop during training. It helps

prevent overfitting by introducing randomness and encouraging strong feature learn-

ing [44].

• Batch size refers to the number of samples processed before updating the model’s

weights. Larger batches may lead to faster convergence but require more memory

[45].

• The number of layers in a neural network impacts its ability to learn hierarchical

representations. Deeper networks can capture more complex patterns but are prone

to issues like vanishing gradients.

• In weight initialization, setting the starting point for a neural network’s learning

journey is important. This process, called weight initialization, assigns initial val-

ues to the network’s connections. By carefully choosing these starting points, we

can help the network learn faster and avoid problems like exploding or vanishing

gradients.[46]

2.5.3 Overfitting

Regularization techniques play a vital role in training CNNs effectively, improving their

ability to generalize well to unseen data. Here are some key methods:
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• Data Augmentation: This technique employs artificial manipulation of existing data

to create new variations. By enriching the training dataset with these synthetic

samples, the model encounters a broader range of features, reducing overfitting.

• Over-sampling: SMOTE is a technique in ML used to address imbalanced datasets.

It creates synthetic data points for the minority class.[47]

• Dropout: In neural networks, by randomly deactivating a subset of neurons, the

network is forced to develop robust feature representations that are not dependent

on any single unit.

• Batch Normalization: Normalizing the activations within each layer during training,

batch normalization stabilizes the learning process and facilitates faster convergence.

It addresses the issue of exploding or vanishing gradients[36].

• Pre-trained Weights: Leveraging pre-trained weights from a successful model on

a related task can accelerate the training process. These weights provide a strong

foundation of learned features, which can be fine-tuned for the specific requirements

of the new task.

By exploring these regularization techniques, model generalization can be significantly

improved. The goal is to create a model that not only performs well on the training data

but also demonstrates strong performance on unseen data, ensuring its effectiveness in

real-world applications.

2.6 Pre-trained convolutional neural networks

2.6.1 Transfert learning

Transfer learning is a technique in DL where a pre-trained CNN model is used as a starting

point for a new task. The pre-trained model is ”transferred” to the new task by using

its learned features as the initial weights for the new model, and then fine-tuning the

model on the new task’s dataset. This approach has several advantages, such as reducing

the amount of data and computational resources required for training the new model,

and often leading to improved performance compared to training a model from scratch.
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Transfer learning is commonly used in computer vision tasks where there is a shortage of

labeled data.

Some popular pre-trained CNNs for transfer learning include:

VGG16 : VGG16 is a CNN architecture introduced in 2014, characterized by its

depth with sixteen layers of convolution and pooling, followed by three fully connected

layers for classification. It was trained on the ImageNet dataset, demonstrating outstand-

ing performance in object recognition[35].

Figure 2.10: VGG-16 Archetecture [13]

MobileNetV2 : It’s is a lightweight CNN architecture designed for mobile and

embedded devices, offering a balance between accuracy and speed. Optimized to run

on lightweight computational devices, it employs techniques such as depth-wise separa-

ble convolutions and residual connections to enhance efficiency and performance. Mo-

bileNetV2 has shown the ability to deliver accurate results while requiring fewer compu-

tations than traditional architectures, making it popular for image classification tasks on

mobile platforms [48].
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Figure 2.11: MobileNetV2 Archetecture [14]

Xception : Xception is a deep neural network design that uses depth-wise separa-

ble convolutions instead of conventional convolutional layers, requiring fewer parameters

and computations. It utilizes skip and residual connections and performs well on image

classification and object detection tasks, achieving state-of-the-art results [49].

Figure 2.12: Xception Archetecture [14]

MobileNet : MobileNet is a lightweight CNN model designed for image classification

on mobile platforms. It aims to effectively extend deep learning applications to peripheral

devices. MobileNet is known to outperform traditional CNN models. These advances

demonstrate the effectiveness of MobileNet in improving image classification tasks on

devices with limited resources.[50]
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Figure 2.13: MobileNet Archetecture [15]

InceptionV3 : InceptionV3 is a deep Neural Networks that uses a combination of

convolutional layers and max pooling. It has an auxiliary classifier for training and reg-

ularization, and performs well on image classification tasks. InceptionV3 has achieved

state-of-the-art results and is widely used in research and industry for computer vision

applications [51].

Figure 2.14: InceptionV3 Archetecture [16]
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2.6.2 The potential impact of CNNs in the health and medical

field

The potential impact of CNNs in the medical and health field is immense, poised to rev-

olutionize diagnosis, treatment, and patient care. These sophisticated networks excel in

analyzing complex medical imaging data, aiding in the early detection of diseases such

as cancer, Alzheimer’s, and cardiovascular conditions. Their ability to extract intricate

patterns from images allows for more accurate diagnoses, enabling clinicians to intervene

at earlier stages when treatments are often more effective. CNNs also enhance person-

alized medicine by analyzing genetic data to predict individual responses to medications

and therapies. Additionally, they facilitate the development of smart healthcare systems,

assisting in remote patient monitoring and real-time health analysis. By harnessing the

power of CNNs, the medical community stands to benefit from improved diagnostic preci-

sion, optimized treatment strategies, and ultimately, better health outcomes for patients

worldwide.

The utilization of CNNs in AD detection offers several advantages:

• Facilitating early diagnosis: CNNs assist clinicians in identifying AD at its

incipient stages, enabling timely interventions for better patient outcomes.

• Providing quantitative measures: They furnish quantitative measures of AD

progression, aiding clinicians in monitoring the disease’s trajectory and evaluating

treatment efficacy.

• Enabling timely interventions: By providing early and accurate detection,

CNNs empower healthcare providers to intervene promptly, potentially slowing

down disease progression and enhancing patient quality of life.

2.7 Advancements in Alzheimer’s Disease Detection

Using CNN: Related work

Several studies have explored the application of CNNs in AD detection using MRI data,

including brain image classification for AD detection, segmentation of brain regions af-

fected by AD, and even progression and prediction of the disease.
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In rescent studies, [52] employed a hybrid deep-learning model called SegResNet, com-

bining SegNet and ResNet-101 to improve the accuracy which was recorded for 98%.[53]

Proposed to train their data on a custom-designed CNN model, the architecture con-

sisted of four convolutional layers and two fully connected layers and it was trained using

a 10-fold cross-validation technique to ensure robust evaluation. This model achieved

an accuracy of 93.45%.In [54],the authors utilized the MobileNetV2 architecture as the

backbone for feature extraction, input images were resized to match the input dimensions

required by the model.The results indicated classification accuracy of 92.7%.

Polat et al.[55] employed a model where information flows through layers in a specific

order, designed in a sequence of convolutional (conv2D) and max pooling (maxPool-

ing2D) layers, followed by dense layers.The model’s accuracy was 96.35%. Ebrahimi et

all, [56] used a pre-trained 2D CNN and achieved 91.78% of accuracy.

In some research [18] [57] [58] [59] [60] [61] that used the same data set as ours[62],

Adeola Ajagbe et all.[60] classified AD using DCNN and transfer learning techniques, they

trained the data on three models and compared their performance: VGG-19 acheived the

accuracy of 77.66%,VGG-16 acheived 77.04% and DCNN got 71.02%. Altwijri et all. [58],

employed transfer learning by utilizing a pre-trained EfficientNetB0 model to classify AD

severity from MRI images, the model attained an accuracy of 89.7%. [61], introduced

DEMNET architecture, a deep learning model that offers an approach for automatic and

potentially earlier diagnosis of AD. To address the issue of class imbalance in the dataset,

the researchers employed the SMOTE method, they acheived an accuracy of 95.23% with

SMOTE and 85% without it.

2.8 Conclusion

In conclusion, this chapter has delved into the realm of CNNs, discussing their potential

impact in the medical field, their advantages and their application in image classification

and AD detection. We have highlighted key findings and insights regarding the efficacy

of CNNs in these critical areas of research.
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Looking ahead, the future prospects for CNNs in the field of DL are promising. CNNs

are expected to play an increasingly vital role in various domains, including healthcare,

robotics, and autonomous systems. There is potential for significant advancements in

CNN architectures, training techniques, and their diverse applications.

However, as with any evolving technology, there are also challenges and opportunities

to consider. Future research may face obstacles in further developing CNNs, but there are

ample opportunities for innovation, collaboration, and interdisciplinary exploration. By

addressing these challenges and capitalizing on opportunities, we can continue to harness

the power of CNNs and propel the field of DL forward.
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Our proposed approach

3.1 Introduction

In this chapter, we present our proposed approach for AD detection using CNNs. We focus

on a comparative analysis of five distinct methods, each employing five different models.

This comprehensive examination covers the entire process from data preprocessing to

model architecture and variant configurations. Our goal is to identify the most effective

strategies for improving model performance and generalization capability in AD detection.

3.2 Dataset

The data consists of MRI images from the Alzheimer’s Dataset (4 class of images) [62].It

was established in collaboration with various academic and research institutions to make

MRI data accessible to researchers. The main objective of the AD dataset is to facilitate

the creation of an accurate model classifying better the disease.

A total of 6400 MRI images of subjects were extracted and classified into four cate-

gories. The images were captured over several years. The initial format of the MRI data

was DICOM, which was transformed into NIfTI format for processing

The initial dimensions of the MRI images were 256x256 pixels, which were reduced to

128x128 pixels for consistency and to optimize computational efficiency. Normalization

applied scaled pixel values between 0 and 1.

Here are the four stages that the dataset comprises:
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• Mild Demented: This category includes 179 files in the test data and 717 files in

the training data. Figure 3.1, shows characteristic signs of mild dementia, including

cortical atrophy and enlarged ventricles.

Figure 3.1: Example image for Mild Demented class.

• Moderate Demented: With only 12 files in the test data and 52 files in the

training data, figure 3.2, exhibits severe cortical atrophy and significant ventricular

enlargement, indicating advanced stages of dementia.

Figure 3.2: Example image for Moderate Demented class.

• Non Demented: This class comprises 640 files in the test data and 2560 files in the

training data. Figure 3.3 shows no significant signs of cortical atrophy or ventricular

enlargement, indicating absence of dementia-related changes.
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Figure 3.3: Example image for Non Demented class.

• Very Mild Demented: With 448 files in the test data and 1792 files in the

training data, figure 3.4, shows subtle signs of cortical atrophy and mild ventricular

enlargement, indicating early stages of dementia.

Figure 3.4: Example image for Very Mild Demented class.

The data is organized into two distinct directories: training and test data. Each

directory contains a sub-folder for each class, making it easy to manage and access the

data for analysis and modeling.

3.3 Our proposed framework

This section outlines our approach, which includes the comparison of four distinct meth-

ods, each utilizing five different models, within the context of AD detection. In addition

to discussing the considered methods, we will also delve into the data preprocessing phase.
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We start by detailing the data preprocessing steps, including normalization, data augmen-

tation, and oversampling, which are crucial for preparing the dataset.

Figure 3.5 Presents our proposed framework:

Figure 3.5: Our proposed framework.

We are going to describe our model architecture and the specific layers used to en-

hance feature extraction and classification. We also will explore different configurations

of CNNs, assessing the impact of pre-trained weights, trainable layers, and the applica-

tion of SMOTE on our Alzheimer’s dataset. By comparing these configurations, we aim

to provide a robust framework for AD detection that can be adapted and optimized for

various clinical and research settings.

3.3.1 Data preprocessing phase

In this section, we describe the various preprocessing steps we performed on our data

before using it to train our CNN model.

Image normalization

Normalization of pixel intensities was performed to make the images comparable. This

ensures that the pixel values are within the same range, typically between 0 and 1.

work_dr = IDG(rescale = 1./255)
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Data augmentation

The data augmentation phase of our pipeline involves the application of various trans-

formations to the original images, aimed at generating new training data with increased

diversity. These transformations include rotation, translation, scaling, flipping, and zoom-

ing, among others. By applying these techniques, we create variations in the data, which

helps prevent overfitting and enhances the model’s ability to generalize to new data.

Specifically, we applied the following techniques to augment our dataset:

• Rotation range: Images were randomly rotated within a specified range of angles,

introducing variability in the orientation of the objects within the images.

• Width and height shift range: Random horizontal and vertical shifts were ap-

plied to the images within specified ranges, simulating changes in perspective and

viewpoint.

• Zoom range: Random zooming in or out of the images was performed, altering

the scale of objects within the images.

• Horizontal flip: Images were randomly flipped horizontally, further diversifying

the dataset by changing the orientation of objects.

Additionally, featurewise centering and featurewise standard normalization techniques

were applied to ensure that the training data has zero mean and unit variance. This

normalization process helps stabilize the training process and improve model performance

by reducing the effects of variations in pixel intensities across images.

Oversampling (SMOTE)

To address class imbalance, particularly with minority classes, the Synthetic Minority

Over-sampling Technique was employed. This technique generates synthetic samples for

the minority classes to balance the dataset.

sm = SMOTE(random_state=42)

By incorporating these preprocessing steps into our workflow, we ensure that our data

is appropriately prepared for training our CNN model.
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3.3.2 Model architecture

The model architecture is constructed using a Sequential API in Keras. Each layer is

added sequentially to the model.

Models used

The base model is used as the starting point of the architecture. This pre-trained model,

obtained from the Keras applications module, serves as an excellent feature extractor due

to its deep convolutional layers. Each method was assessed using five different models to

explore the variability of results. The selected models include:

• Xception

• Inception

• MobileNetV2

• MobileNet

• VGG16

This approach was chosen to evaluate the impact of different model configurations

and preprocessing methods on AD detection performance. By comparing the results of

each method-model combination, we aim to determine the most effective configurations

for our detection task.

Dropout layer

A Dropout layer with a dropout rate of 0.5 is added after the base model. Dropout

regularization helps prevent overfitting by randomly dropping a fraction of input units

during training.

GlobalAveragePooling2D layer

A GlobalAveragePooling2D layer is added to reduce the spatial dimensions of the feature

maps obtained from the base model. This operation computes the average value of each

feature map across all spatial locations, resulting in a fixed-length vector.
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Flatten layer

The Flatten layer is used to convert the multi-dimensional output of the previous layer

into a one-dimensional array. This flattening operation is necessary to connect the output

of the GlobalAveragePooling2D layer to the subsequent Dense layers.

BatchNormalization layer

A BatchNormalization layer is inserted after the Flatten layer to normalize the activations

of the previous layer. This technique helps stabilize and speed up the training process by

reducing internal covariate shift.

Dense layers

Several Dense layers are added to perform further feature extraction and classification.

Each Dense layer consists of a specified number of neurons with the ReLU activation func-

tion, followed by another BatchNormalization layer and a Dropout layer. This sequence

of operations is repeated for each Dense layer, gradually reducing the number of neurons

from 512 to 4.

• Dense(512): This layer contains 512 neurons with ReLU activation.

• Dense(256): This layer contains 256 neurons with ReLU activation.

• Dense(128): This layer contains 128 neurons with ReLU activation.

• Dense(64): This layer contains 64 neurons with ReLU activation.

• Dense(4): The final dense layer consists of 4 neurons with softmax activation,

producing probability distributions over the classes for classification.

These Dense layers, along with the preceding BatchNormalization and Dropout layers,

collectively form the classification head of the model, enabling it to make predictions based

on the extracted features from the base model.

3.3.3 Our distinct CNN variants

In this section, we explore different configurations of CNNs for AD and classification. Each

configuration varies based on the use or non-use of pre-trained weights from ImageNet, as
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well as the application or non-application of the SMOTE technique to balance classes in

our Alzheimer’s dataset. We have chosen to explore four model variants for our project,

each with different configurations. Our main objective is to understand the performance

differences between models with and without the use of the SMOTE technique to address

class imbalances, as well as the effects of using or not using pre-trained weights from the

ImageNet dataset, and finally, the advantages of training or freezing the layers of the

model.

1. Models with pretrained weights, non-trainable layers and SMOTE

In this configuration, we use pre-trained weights from the ImageNet dataset to

initialize our CNN model. The layers of the model are frozen to preserve the general

features learned by the ImageNet layers while adapting the model to our specific

data. Subsequently, the SMOTE technique is applied to balance the classes in

our Alzheimer’s dataset, addressing class imbalances and enhancing the model’s

generalization capability.

2. Models with pretrained weights, trainable Layers and SMOTE

In this configuration, we use pre-trained weights from the ImageNet dataset to

initialize our CNN model. Unlike the previous configuration, the layers of the model

are trainable, allowing them to be fine-tuned during model training. By allowing

the layers to be trainable, we aim to finely tune the model to the characteristics of

our Alzheimer’s dataset. Although we still use ImageNet for initialization, training

the layers enables us to better capture the specific nuances of Alzheimer’s in our

data. The application of SMOTE remains important to ensure proper class balance.

3. Models with random weight, trainable layers and SMOTE

In this setup, we do not use pre-trained weights from the ImageNet dataset to

initialize our CNN model. The layers are trainable, allowing them to be trained

from scratch on our Alzheimer’s dataset, focusing entirely on learning Alzheimer’s-

specific features. This approach gives us complete control over the model’s training,

tailoring it precisely to our dataset. The application of SMOTE remains crucial for

addressing class imbalances and improving the model’s generalization capability

4. Models with pretrained weight, non-trainable layers and without SMOTE
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In this configuration, we utilize pre-trained weights from the ImageNet dataset to

initialize our CNN model. The decision to keep the layers non-trainable is based

on the desire to maintain the general features learned by the ImageNet layers while

preventing them from being influenced by our Alzheimer’s dataset. By freezing

these layers, we aim to capitalize on the knowledge transferred from ImageNet while

potentially sacrificing adaptability to our specific data. The specific architecture

includes convolutional layers followed by pooling layers, and possibly additional

fully connected layers depending on the chosen CNN architecture. However, the

absence of the SMOTE technique may affect the model’s ability to generalize to

test data, especially in the presence of class imbalances.

3.4 Conclusion

In this chapter, we proposed a comprehensive framework for classifying AD from brain

MRI images using CNNs. Our framework integrates several advanced methodologies to

address challenges in AD detection.

Firstly, for data preprocessing, we employed various techniques to prepare the dataset,

including normalization and SMOTE to handle class imbalances. This ensures that the

data fed into the CNNs is well-balanced and normalized, which is crucial for achieving

reliable results.

Secondly, in terms of model architecture, we explored multiple CNN architectures to

determine the most effective design for AD classification. This exploration included the

use of pre-trained models such as VGG-16, MobileNetV2, and Xception. These mod-

els were fine-tuned to improve performance specifically for the AD classification task,

leveraging their powerful feature extraction capabilities developed from training on large

datasets.

Lastly, we tested different configurations of CNNs to understand the impact of transfer

learning and resampling techniques on model performance. These configurations included

PTW-TL-SMOTE (Pre-Trained Weights with Trainable Layers and SMOTE), PTW-

NTL-SMOTE (Pre-Trained Weights with Non-Trainable Layers and SMOTE), and other

combinations without SMOTE. By experimenting with these variants, we aimed to iden-

tify the optimal approach for enhancing the accuracy and robustness of AD detection.
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Chapter 3 Our proposed approach

Our proposed solutions form the basis for further experimentation and optimization

in the subsequent chapters. This framework aims to advance the development of reli-

able diagnostic tools for Alzheimer’s Disease, contributing to earlier and more accurate

detection, which is crucial for patient care and treatment planning.
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Chapter 4
Experiments, reults, and discussion

4.1 Introduction

In this chapter, we delve into the analysis of different variants of AD classification models,

focusing on specific configurations of pre-training model, pre-processing data, and train-

able layers. Our goal is to assess the performances of these variants and identify the one

that offers the best performance in terms of accuracy, area under the ROC curve (AUC),

and F1 score. We will also explore the impact of these different approaches on the models’

ability to effectively detect AD from medical images.

4.2 Experiments configurations

Our experimental setup involved the development, training, and validation of our pro-

posed approach on the Kaggle platform using Keras with TensorFlow, with computational

resources provided by the P100 GPU. Each of the five models (VGG16, Inception, Mo-

bileNetV2, MobileNet, Xception), alongside the 4 code variants described in Chapter 3,

was employed to construct diverse CNN architectures aimed at accurately classifying our

dataset. To ensure comprehensive evaluation, each CNN architecture derived from the 4

code variants underwent training for a standardized number of epochs, specifically 100,

utilizing the RMSprop optimizer.
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4.3 Experimental material and platforms

4.3.1 Kaggle

Kaggle stands as a leading platform in the realm of data science and machine learning,

granting access to potent computing resources like GPUs and TPUs. Alongside furnishing

a varied collection of datasets for practice and competition, Kaggle draws a community

of researchers and data scientists worldwide. This platform enables users to collaborate,

learn, and compete by delving into datasets, constructing models, and sharing insights.

With its GPU and TPU support, Kaggle facilitates accelerated computation, empowering

users to efficiently tackle large-scale machine learning tasks.

4.3.2 Keras

Keras is a high-level neural networks API, written in Python and capable of running on

top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast ex-

perimentation, allowing researchers and developers to quickly prototype and deploy deep

learning models. Keras provides a user-friendly interface for building various types of neu-

ral networks, including convolutional networks, recurrent networks, and combinations of

both. Its simplicity and flexibility make it an ideal choice for beginners and experts alike,

facilitating the development of complex deep learning architectures with minimal code.

With Keras, users can seamlessly transition from experimenting with small-scale models

to training large-scale neural networks, thanks to its efficient backend implementations

and integration with powerful computational resources like GPUs.

4.3.3 TensorFlow

TensorFlow is a powerful open-source machine learning framework developed by Google

Brain. It facilitates the creation and deployment of machine learning models across vari-

ous platforms and devices. Its computational graph abstraction enables efficient execution

on CPUs and GPUs, and it supports distributed computing. TensorFlow offers high-level

APIs like Keras for easy model building, as well as lower-level APIs for more control.

It supports a wide range of tasks including deep learning, reinforcement learning, and

probabilistic modeling. With comprehensive tools for data preprocessing, model evalua-

37



Chapter 4 Experiments, reults, and discussion

tion, and visualization, TensorFlow remains a top choice for researchers, developers, and

enterprises in the field of machine learning.

4.3.4 Pandas

Pandas is a Python library widely used for data manipulation and analysis. It offers

intuitive data structures like DataFrames and Series, facilitating efficient handling of

structured data. With functionalities for loading data from various sources and performing

tasks such as cleaning, exploration, transformation, and visualization, Pandas is essential

for data preprocessing. It seamlessly integrates with other Python libraries, making it a

favorite among data scientists, analysts, and developers for working with tabular data.

4.3.5 Matplotlib

Matplotlib is a versatile Python library for creating static, animated, and interactive vi-

sualizations. It offers a flexible interface for generating a wide range of plots and charts,

with fine-grained control over customization. Matplotlib is widely used across scientific re-

search, engineering, finance, and data science for its ability to produce publication-quality

figures. It integrates seamlessly with Jupyter notebooks and supports various output for-

mats. Overall, Matplotlib is an essential tool for data visualization and storytelling in

Python.

4.4 Performance metrics

To evaluate the performance of our overall approach, we will use several metrics such as

precision, recall, F1-score, and AUC (Area Under the ROC Curve). To calculate these

metrics, you need to compare the model’s predictions with the ground truth labels. Here’s

a step-by-step guide on how to calculate these metrics:

Accuracy: It’s the ratio of the correctly labeled subjects to the whole pool of subjects.

Accuracy is the most intuitive one.

Acc =
TP + TN

TP + FP + TN + FN

Precision: Precision is the ratio of the correctly positive labeled by our program to
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all positive labeled.

Pre =
TP

TP + FP

Recall (aka sensitivity): Recall is the ratio of the correctly positive labeled by our

program to all who are infected in reality.

Recall = TP

TP + FN

F1 Score: It is the harmonic mean (average) of the precision and recall.

F1-Score =
2× Recall × Precision

Recall + Precision

True Positive (TP): The prediction and the actual value are positive. Example: A

sick person predicted sick.

True Negative (TN): The prediction and the actual value are negative. Example: A

healthy person predicted healthy.

False Positive (FP): The prediction is positive while the actual value is negative.

False Negative (FN): The prediction is negative while the actual value is positive.

Total instances (N): The total number of instances.

4.5 Results and discussion

To facilitate the comparison between the different approaches, we have noted the following:

PTW-NTL-NS: Models with Pre-trained Weights, Non-Trainable Layers, and with-

out SMOTE

FS-TL-SMOTE: Models from Scratch, Trainable Layers, and with SMOTE

PTW-TL-SMOTE: Models with Pre-trained Weights and Trainable Layers with

SMOTE

PTW-NTL-SMOTE: Models with Pre-trained Weights and Non-Trainable Layers

with SMOTE
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4.6 Our variants

4.6.1 PTW-TL-SMOTE: Pre-Trained Weights-Trainable Layer-

With SMOTE

Model loss Accuracy AUC F1SCORE

InceptionV3 0.4080 0.8234 0.9693 0.8231

MobileNet 0.4893 0.8305 0.9707 0.8326

MobileNetV2 0.4603 0.8035 0.9617 0.8042

VGG16 0.5662 0.7449 0.9401 0.7435

Xception 0.4249 0.8176 0.9673 0.8177

Table 4.1: FS-TL-SMOTE Result

The results obtained in table 4.1with models trained from scratch and using SMOTE

to address class imbalances show significant variability. The MobileNet model stands out

as the best with an accuracy of 83.05%, an AUC of 97.07%, and an F1-score of 83.26%,

while maintaining a moderate loss of 0.4893. Conversely, the VGG16 model shows the

worst performance with the lowest accuracy (74.49%), an AUC of 94.01%, and the lowest

F1-score (74.3%), as well as a high loss of 0.5662. The InceptionV3, MobileNetV2, and

Xception models show intermediate performances, with respective accuracies of 82.34%,

80.35%, and 81.76%, and AUCs of 96.93%, 96.17%, and 96.73%. The F1-scores and losses

for these models follow similar trends, indicating that although all models benefit from

the application of SMOTE, selecting the appropriate model architecture is crucial for

optimizing performance.
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Figure 4.1: Bar graph FS-TL-SMOTE

The combined diagram (Figure 4.1) illustrates the performance of each model for

the FS-TL-SMOTE variant. Each sub-figure generally shows that MobileNet stands out

with its high scores in accuracy, AUC, and F1-score, indicating superior effectiveness in

distinguishing classes. MobileNetV2 and InceptionV3 also show good performance, with

high scores in all metrics, suggesting a good balance between precision and recall and

notable training efficiency. Xception shows results similar to those of InceptionV3, with

slightly lower but still high scores, reflecting robust performance. In contrast, VGG16

shows the least favorable results, with lower scores in accuracy, AUC, and F1-score, and a

higher loss, indicating difficulties in balancing precision and recall and a greater tendency

towards errors during training. These results highlight the importance of choosing an

appropriate model architecture to optimize performance, and the effectiveness of SMOTE

in addressing class imbalances.

Training models from scratch without pre-trained weights allows them to learn the

specific features of Alzheimer’s disease directly from the dataset. This approach appears

particularly effective for the MobileNet model, which significantly outperforms the others.

The application of SMOTE in this configuration helps address class imbalances, which is

crucial for improving model generalization. All models benefit from SMOTE, as evidenced

by their relatively high AUC scores, demonstrating effective class distinction. The choice

of model architecture has a substantial impact on performance. The InceptionV3 and
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MobileNet architectures seem particularly well-suited for this task, likely due to their

efficient feature extraction and adaptability when trained from scratch.

The performance curves of various models trained with the FS-TL-SMOTE approach

in terms of loss, AUC, and accuracy is illustrated in Figures 4.2 to 4.6. Specifically, Figure

4.2 shows the results for the MobileNet model, Figure 4.3 for MobileNetV2, Figure 4.4 for

InceptionV3, Figure 4.5 for Xception, and Figure 4.6 for VGG16. These charts provide

insights into each model’s ability to generalize to new data and handle class imbalances

using SMOTE.

Figure 4.2: curves MobileNet FS-TL-SMOTE

Figure 4.3: curves MobileNetV2 FS-TL-SMOTE

Figure 4.4: curves InceptionV3 FS-TL-SMOTE
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Figure 4.5: curves Xception FS-TL-SMOTE

Figure 4.6: curves VGG16 FS-TL-SMOTE

4.6.2 PTW-TL-SMOTE: Pre-Trained Weights-Trainable Layer-

With SMOTE

Model Loss Accuracy AUC F1Score

Inceptionv3 0.3887 0.8348 0.9727 0.8351

MobileNet 0.1577 0.9621 0.9912 0.9622

MobileNetV2 0.2202 0.9586 0.9849 0.9588

VGG16 0.4900 0.7801 0.9553 0.7787

Xception 0.1575 0.9574 0.9928 0.9576

Table 4.2: PTW-TL-SMOTE Result

The table 4.2 presents the values of each metric for each of the five models. Examining

the loss column, we observe that MobileNet and xception show the lowest values (0.1577)

and (0.1575), indicating the model’s superior ability to minimize prediction error. Con-

versely, VGG16 has the highest loss (0.4900), suggesting difficulties in converging towards

an optimal solution.

Regarding accuracy, MobileNet again stands out with the highest value (96.21%),

demonstrating excellent capability in correctly predicting image classes. VGG16, once

more, ranks last with the lowest accuracy (78.01%), highlighting its limitations in precise
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class distinction.

The analysis of the AUC confirms MobileNet’s superiority, with a value of 99.12%

indicating exceptional ability to differentiate positive from negative classes. VGG16, with

an AUC of 95.53%, shows inferior performance in this area.

Finally, the F1-score, which combines precision and recall, confirms MobileNet’s dom-

inance with a value of 96.22%. VGG16, with an F1-score of 77.87%, exhibits the least

satisfactory results in terms of balance between precision and recall.

Figure 4.7: Bar graph PTW-TL-SMOTE

The figure 4.7 presents the models’ performances in terms of accuracy, AUC, and F1-

score as curves. The MobileNet curve clearly stands out from the others by its consistently

high position in all metrics, confirming its superior overall performance. The curves

of the other models (InceptionV3, MobileNetV2, and Xception) exhibit similar profiles,

indicating intermediate performance. As shown by the table, VGG16 is characterized

by curves located at the bottom of the graph, highlighting its limitations in terms of

accuracy, AUC, and F1-score.

Figures 4.8 to 4.12 show a plot of accuracy ,loss and AUC models using the PTW-TL-

SMOTE approach. Specifically, Figure 4.8 shows the performance of InceptionV3, Figure

4.9 of MobileNet, Figure 4.10 of MobileNetV2, Figure 4.11 of VGG16, and Figure 4.12 of

Xception. These graphs illustrate loss, AUC, and accuracy, offering a clear view of each

model’s ability to generalize to new data while addressing class imbalances with SMOTE.
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Figure 4.8: Curves InceptionV3 PTW-TL-SMOTE

Figure 4.9: Curves MobileNet PTW-TL-SMOTE

Figure 4.10: Curves MobileNetV2 PTW-TL-SMOTE
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Figure 4.11: Curves VGG16 PTW-TL-SMOTE

Figure 4.12: Curves Xception PTW-TL-SMOTE

4.6.3 PTW-NTL-SMOTE:Pre-Trained Weights-Non-Trainable Layer-

With SMOTE

Model Loss Accuracy AUC F1Score

InceptionV3 0.2999 0.8891 0.9843 0.8887

MobileNet 0.1793 0.9383 0.9939 0.9384

MobileNetV2 0.2711 0.8977 0.9865 0.8978

VGG16 0.2364 0.9164 0.9907 0.9160

Xception 0.3366 0.8770 0.9810 0.8762

Table 4.3: PTW-NTL-SMOTE Result

The results obtained with models using pre-trained weights and non-trainable layers

combined with SMOTE show competitive performance. MobileNet stands out with the

best performance, achieving an accuracy of 93.83%, an AUC of 99.39%, and an F1-score

of 93.84%, while maintaining a very low loss of 0.1793. VGG16 closely follows with an

accuracy of 91.64%, an AUC of 99.07%, and an F1-score of 91.60%, while maintaining

a moderate loss of 0.2364. The InceptionV3, MobileNetV2, and Xception models show

intermediate performances, with respective accuracies of 88.91%, 89.77%, and 87.70%,

and AUCs of 98.43%, 98.65%, and 98.10%. The F1-scores and losses for these models

follow similar trends, indicating that the use of pre-trained weights and non-trainable
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layers combined with SMOTE can be very effective in improving the performance of

Alzheimer’s disease detection models.

Figure 4.13: Bar graph PTW-NTL-SMOTE

The combined diagram (Figure 4.13) illustrates the performance of each model for

the PTW-NTL-SMOTE variant. Each sub-figure shows the performance curves of the

individual models, allowing for a clear visual comparison. MobileNet stands out with

higher curves in accuracy and AUC, as well as high F1-scores, confirming its effective-

ness. VGG16, on the other hand, shows similar curves, reflecting its competitive perfor-

mance. The other models fall between these extremes, each showing specific strengths

and weaknesses.

Models using pre-trained weights and non-trainable layers with SMOTE demonstrate

competitive performance, indicating the effectiveness of leveraging pre-trained knowledge

while freezing certain layers to avoid overfitting. MobileNet presents the highest perfor-

mance across all metrics, closely followed by VGG16. This suggests that architectures

capable of effectively leveraging pre-trained weights, even with non-trainable layers, can

achieve strong performance in Alzheimer’s disease detection tasks.

Figures 4.14 to 4.18 display the results of models using the PTW-NTL-SMOTE ap-

proach. Specifically, Figure 4.14 shows the performance of VGG16, Figure 4.15 of In-

ceptionV3, Figure 4.16 of MobileNet, Figure 4.17 of MobileNetV2, and Figure 4.18 of
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Xception. These graphs depict loss, AUC, and accuracy, providing a clear visualization

of each model’s capacity to generalize to new data while managing class imbalances with

SMOTE.

Figure 4.14: Curves VGG16 PTW-NTL-SMOTE

Figure 4.15: Curves InceptionV3 PTW-NTL-SMOTE

Figure 4.16: Curves MobileNet PTW-NTL-SMOTE
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Figure 4.17: Curves MobileNetV2 PTW-NTL-SMOTE

Figure 4.18: Curves Xception PTW-NTL-SMOTE

4.6.4 PTW-NTL-SMOTE:Pre-Trained Weights-Non-Trainable Layer-

Without SMOTE

Model loss Accurency AUC F1SCORE

InceptionV3 0.6477 0.7445 0.9317 0.5800

MobileNet 0.4079 0.8609 0.9699 0.8420

MobileNetV2 0.6169 0.7805 0.9404 0.7666

VGG16 0.4361 0.8328 0.9666 0.8541

Xception 0.7454 0.6984 0.9077 0.4834

Table 4.4: PTW-NTL-NS Result

The results obtained with models using pre-trained weights and non-trainable layers

without the application of SMOTE show significant variability. MobileNet stands out

with the best performance, displaying an accuracy of 86.09%, an AUC of 96.99%, and

an F1-score of 84.20%, while maintaining a relatively low loss of 0.4079. VGG16 closely

follows with an accuracy of 83.28%, an AUC of 96.66%, and an F1-score of 85.41%,

although its loss is slightly higher at 0.4361. The InceptionV3, MobileNetV2, and Xception

models show less impressive performances, with respective accuracies of 74.45%, 78.05%,

and 69.84%, and AUCs of 93.17%, 94.04%, and 90.77%. The F1-scores and losses for

these models follow similar trends, highlighting the importance of SMOTE for improving
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model performance by balancing data classes. These models demonstrate competitive

performance, although less optimal compared to using SMOTE. MobileNet presents the

highest performance across all metrics, closely followed by VGG16. This suggests that

architectures capable of effectively leveraging pre-trained weights, even with non-trainable

layers, can achieve solid performance in Alzheimer’s disease detection tasks, although the

absence of SMOTE may reduce overall effectiveness due to untreated class imbalances.

Figure 4.19: Bar graph PTW-NTL-NS

The combined diagram (Figure 4.19) illustrates the performance of each model for the

PTW-NTL-NS variant. Each sub-figure shows the performance curves of the individual

models, allowing for a clear visual comparison. MobileNet stands out with higher curves

in accuracy and AUC, as well as high F1-scores, confirming its effectiveness even with-

out the application of SMOTE. VGG16 shows similar curves, reflecting its competitive

performance. The other models show lower curves, particularly Xception, indicating that

the absence of SMOTE negatively impacts the performance of these models.

Figures 4.20 to 4.24 show a plot of accuracy ,loss and AUC of models using the PTW-

NTL-NS approach. Specifically, Figure 4.20 illustrates the performance of VGG16, Figure

4.21 of InceptionV3, Figure 4.22 of MobileNet, Figure 4.23 of MobileNetV2, and Figure

4.24 of Xception. These charts highlight loss, AUC, and accuracy, offering a detailed view

of each model’s ability to generalize to new data while handling class imbalances without

using SMOTE.
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Figure 4.20: Curves VGG16 PTW-NTL-NS

Figure 4.21: Curves InceptionV3 PTW-NTL-NS

Figure 4.22: Curves MobileNet PTW-NTL-NS
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Figure 4.23: Curves MobileNetV2 PTW-NTL-NS

Figure 4.24: Curves Xception PTW-NTL-NS

4.7 Comparison of Variants

Variant Model Accuracy (%) AUC F1 Score

FS-TL-SMOTE MobileNet 83.05 97.07 83.26

PTW-TL-SMOTE MobileNet 96.21 99.12 96.22

PTW-NTL-SMOTE MobileNet 93.83 99.39 93.84

PTW-NTL-NS MobileNet 86.09 96.99 84.20

Table 4.5: Best performing models for each variant

Table 4.5 presents the best performances achieved for each variant using the MobileNet

model. The performance metrics include accuracy, AUC (Area Under the ROC Curve),

and F1 score, which are key indicators of classification model performance. Notably,

MobileNet provided the best results across all variants.

Based on the table, the PTW-TL-SMOTE variant stands out as the top performer,

surpassing other variants across all performance metrics. The MobileNet model under

PTW-TL-SMOTE achieves an accuracy of 96.21%, an AUC of 99.12%, and an F1 score

of 96.22%. These results indicate that this model has an exceptional ability to correctly

classify Alzheimer’s Disease (AD) and non-AD cases, maintaining a good balance between

precision and recall, as evidenced by the F1 score.

PTW-NTL-SMOTE ranks second, with strong but slightly lower metrics compared
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to PTW-TL-SMOTE. MobileNet achieves an accuracy of 93.83%, an AUC of 99.39%, and

an F1 score of 93.84%. Although this variant performs well, it does not reach the levels of

PTW-TL-SMOTE, mainly due to the limitation of non-trainable layers reducing model

adaptability.

FS-TL-SMOTE, while performing well with an accuracy of 83.05%, an AUC of

97.07%, and an F1 score of 83.26%, lags behind the variants that utilize pre-trained

weights. This can be attributed to the fact that training models from scratch requires

much more data and computational resources to achieve optimal performance, which is

not always practical or feasible.

PTW-NTL-NS exhibits the lowest performance across all metrics. MobileNet under

this variant achieves an accuracy of 86.09%, an AUC of 96.99%, and an F1 score of

84.20%. The absence of SMOTE in this variant severely limits its ability to handle class

imbalance, resulting in poorer performance.

4.7.1 Reasons for the Superiority of the PTW-TL-SMOTE Vari-

ant

1. Utilization of Pre-trained Weights: Models under PTW-TL-SMOTE benefit

from general features learned from large datasets, providing a solid starting point

for training on specific task data.

2. Adaptability through Trainable Layers: The ability to fine-tune layers allows

models to adapt specifically to the AD dataset, enhancing overall performance.

3. SMOTE for Class Balance: The application of SMOTE helps address class

imbalance issues, ensuring the model is not biased towards the majority class, thus

improving precision and recall.

4. Combination of Prior Knowledge and Specific Adaptation: This variant

effectively balances the use of prior knowledge (via pre-trained weights) and spe-

cific adaptation (via trainable layers), which is crucial for complex tasks like AD

classification.

In conclusion, the PTW-TL-SMOTE variant emerges as the most robust and effec-

tive approach for AD classification, offering an optimal balance between leveraging prior
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knowledge and adapting to specific data characteristics.

4.8 Comparison related work

Table 4.6 compares the best-performing model from our study with models from related

studies using the same dataset as ours . Our PTW-TL-SMOTE MobileNet model achieves

the highest accuracy among the compared models.

Reference Model Accuracy

[60]
VGG16

VGG19

77.04%

77.66%

[58] EfficientNetB0 89.7%

[61]
From Scratch with Smote

From Scratch without Smote

95.23%

85%

[18]
DenseNet-169

ResNet-50

83.82%

81.92%

[57] From Scratch 94.39%

FS-TL-SMOTE MobileNet 83.05%

PTW-TL-SMOTE MobileNet 96.21%

PTW-NTL-SMOTE MobileNet 93.83%

PTW-NTL-NS MobileNet 86.09%

Table 4.6: Comparison related work
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Our proposed models, including VGG16, MobileNet, MobileNetV2, InceptionV3, and

Xception, demonstrated superior accuracy in classifying AD compared to previously re-

ported methods. The detailed comparison presented in Table 4.5 highlights the perfor-

mance of our models against several prior works, underscoring the effectiveness of our

approaches. For instance, Ajagbe et al. [61] reported accuracies of 77.04% and 77.66%

using VGG16 and VGG19, respectively. In contrast, our FS-TL-SMOTE with MobileNet

achieved an accuracy of 83.05%, demonstrating a notable improvement over these baseline

models.

Altwijri et al. [59] achieved an accuracy of 89.7% with EfficientNetB0, which is sur-

passed by our PTW-TL-SMOTE variant of MobileNet, reaching 96.21%. This is the

highest accuracy reported in our study and significantly exceeds the previously reported

highest accuracy of 95.23% by Murugan et al. [62] using a model trained from scratch

with SMOTE. Additionally, Murugan et al. [62] reported an accuracy of 85% for a model

trained without SMOTE, while our PTW-NTL-NS variant with MobileNet achieved an

accuracy of 86.09%, still higher than their non-SMOTE model. Furthermore, Ibrahim

et al. [18] reported an accuracy of 94.39% using a model trained from scratch, which

is slightly lower than our PTW-NTL-SMOTE variant with MobileNet, which achieved

93.83%. The comparison clearly indicates that our models, particularly when leverag-

ing pre-trained weights and SMOTE, consistently outperform previous methodologies.

These results emphasize the robustness and effectiveness of our proposed models in the

classification of AD, offering significant improvements over existing approaches.

4.9 Conclusion

In conclusion, this chapter has allowed us to compare and evaluate various variants of

AD classification models. We found that the PTW-TL-SMOTE variant, which utilizes

pre-trained weights with trainable layers and applies SMOTE to balance classes, offers

the best performance in terms of accuracy, AUC, and F1 score. These results provide

valuable insights for the development of more effective computer-aided diagnostic sys-

tems in the early detection of AD. Our extensive evaluation of models such as VGG16,

MobileNet, MobileNetV2, InceptionV3, and Xception demonstrated their superior perfor-

mance, with the PTW-TL-SMOTE variant achieving an accuracy of 96.21%. The careful
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preprocessing of MRI images and the integration of advanced sampling techniques were

crucial in achieving these results. This study underscores the potential of deep learning in

advancing medical diagnostics, emphasizing the importance of innovative approaches in

medical imaging and diagnostics. The insights gained from this research can significantly

contribute to the development of more accurate and reliable diagnostic tools, ultimately

improving patient outcomes. By leveraging the power of deep learning, we can enhance

the precision and efficiency of Alzheimer’s Disease detection, fostering advancements in

healthcare technology and personalized medicine.
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In conclusion, this thesis explored the use of pre-trained Convolutional Neural Networks

(CNNs) for the detection of Alzheimer’s Disease (AD) from MRI images. The objective

was to enhance diagnostic accuracy and enable early intervention through advanced deep

learning techniques.

The results obtained from the experiments demonstrate the effectiveness of the pro-

posed approaches. Pre-trained models combined with data rebalancing techniques such

as SMOTE achieved remarkable accuracy levels. For instance, the MobileNet model with

SMOTE achieved an accuracy of 96.21%. These results highlight the potential of lever-

aging pre-trained models to optimize CNN architectures and capitalize on the knowledge

acquired to improve early AD detection.

Similarly, other models such as VGG16 and InceptionV3, when combined with SMOTE,

also showed impressive performance, underscoring the efficacy of these models for medical

image classification. The results demonstrate that this approach can be a valuable tool

for automating the detection of Alzheimer’s Disease in a clinical context.

The integration of pre-trained models and data rebalancing techniques further en-

hanced the performance of the generated models. With accuracies reaching up to 96.21%,

the proposed approaches showcase significant potential to improve the efficiency and ac-

curacy of Alzheimer’s Disease diagnosis.

This thesis provides valuable insights into the use of pre-trained CNN architectures

for the detection of Alzheimer’s Disease. The results demonstrate the potential of data

rebalancing techniques and transfer learning to significantly enhance the efficiency and

accuracy of classification tasks in the medical field. Overall, the results underscore that

approaches based on pre-trained models are capable of generating better CNN archi-
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General conclusion

tectures for Alzheimer’s Disease detection compared to models trained from scratch. It

is important to note that while the achieved accuracies are impressive, further research

and evaluation are necessary to assess their robustness and generalizability across diverse

datasets and environmental conditions. Additionally, exploring new optimization tech-

niques and architectural modifications may yield even higher accuracy in future studies.
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