
République Algérienne Démocratique et Populaire

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Université AMO de Bouira

Faculté des Sciences et des Sciences Appliquées

Département d’Informatique

Master’s thesis

in Computer Science

Specialty : Computer Systems Engineering

Theme

Handwritten digits recognition

Supervised by Presented by

— Hacine Gherbi Ahcine — Amina Mokdad

— Ahlem Meziane

2023/2024

Remerciements

The first thing we would like to do is to thank our God for giving us the strength and

courage to accomplish this task.

We would like to express our deepest gratitude to our thesis advisor, Hachine Gherbi

Ahcine, for their invaluable guidance, expertise, and unwavering support throughout this

process.

Our heartfelt appreciation goes to the esteemed professors of the computer science de-

partment for their invaluable guidance and unwavering support throughout our academic

journey. Their expertise and passion for teaching have inspired us to excel in the field of

computer science. We are grateful for their dedication to our learning.

We are also grateful to the members of our thesis committee for their time, exper-

tise, and valuable insights. Their thoughtful comments and suggestions have significantly

enhanced the depth and rigor of our study.

We extend our appreciation to our colleagues and friends for their support, collabo-

ration, and stimulating discussions throughout this endeavor. Their contributions and

shared knowledge have enriched our understanding and broadened our perspectives.

Dedication

I dedicate this thesis to :

My beloved parents, Abdlazize and Naima - Your unwavering love, boundless

support, and endless sacrifices have been the bedrock of my journey. Your guidance and

encouragement have shaped me into the person I am today.And to my beloved grand-

mother For her endless love, support, and kindness.

To my dear sister Douaa and my brothers, Walid and Rida - Your steadfast

support and camaraderie have been a source of strength and inspiration, lifting me up

during challenging times and celebrating with me in moments of joy.And to my aunts,

uncles, and all my family

To my best friend, AMINA - Your unwavering friendship, constant support, and

boundless encouragement have been invaluable. You have stood by my side through every

challenge, providing strength and inspiration. I am deeply grateful for your presence in

my life. Together, we overcame every obstacle and achieved incredible work. Thank you

for everything.

To my cherished friends - Your presence and unwavering belief in me have lifted

my spirits and fueled my determination. Your companionship has been a beacon of light,

enriching my life in immeasurable ways.

I am forever grateful for the love, support, and friendships that have surrounded me

throughout this journey. Thank you for making this achievement possible.

Ahlem Meziane.

Dedication

I dedicate this work to all those who have inspired and supported me along the way.

To my mentors, whose guidance has shaped my understanding. To my family my father,

mother, sister and brother whose firm belief in me was my greatest strength. For my

friends, especially my colleague AHLEM , whose encouragement has kept me motivated,

it was a very beautiful journey with you, this achievement for you as much as it is for me.

Amina Mokdad.

Résumé

Les réseaux de neurones convolutifs (CNNs) pour la reconnaissance des chiffres ma-

nuscrite sont optimisés à l’aide d’algorithmes génétiques (GA) et d’optimisations d’essaim

de particules (PSOs). Cet article introduit une nouvelle technique de prétraitement, la

squelettisation, qui améliore l’ensemble de données MNIST et augmente les performances

du modèle. Avec les CNN, l’étude a atteint une précision de 98,92% avec GA et de

98,98% avec PSO sur l’ensemble de données MNIST traditionnel, et une précision de

98,45% avec GA et de 98,51% avec PSO sur l’ensemble de données amélioré. Même si

les modèles appliqués à l’ensemble de données MNIST traditionnel sont légèrement plus

précis, les modèles basés sur l’ensemble de données amélioré avec squelettisation montrent

une meilleure généralisation et robustesse dans diverses situations réelles. Il est évident

que GA et PSO peuvent tous deux être efficaces dans l’optimisation des systèmes de

reconnaissance basés sur CNN, PSO montrant un avantage marginal par rapport à GA.

Mots clés : CNN, MNIST, GA, PSO, la reconnaissance des chiffres manuscrits . . .

Abstract

Convolutional Neural Networks (CNNs) for handwritten digit recognition are optimi-

zed using Genetic Algorithms (GA) and Particle Swarm Optimizations (PSOs). This paper

introduces a new preprocessing technique, skeletonization, that enhances the MNIST da-

taset and increases the performance of the model. With CNNs, the study achieved 98.92%

accuracy with GA and 98.98% accuracy with PSO on the traditional MNIST dataset, and

98.45% accuracy with GA and 98.51% accuracy with PSO on the enhanced dataset. Even

though the models applied to the traditional MNIST dataset are slightly more accurate,

the models based on the enhanced dataset with skeletonization show better generalization

and robustness in various real-world situations. It is evident from this that GA and PSO

can both be effective in optimizing CNN-based recognition systems, with PSO showing a

marginal advantage over GA.

Key words : CNN, MNIST, GA, PSO, handwritten digit recognition . . .

Table des matières

Table of contents i

Table of figures iv

List of Tables vi

Abreviations list vii

General Introduction 1

1 Optical Character Recognition 3

1.1 Introduction . 3

1.2 Optical Character Recognition . 3

1.2.1 Definition . 3

1.2.2 Historical . 4

1.2.3 Domain of application OCR . 5

1.2.4 Impact on society and industry . 6

1.2.5 Challenges . 7

1.3 Existing applications . 8

1.3.1 IScanner . 8

1.3.2 Google Lens . 8

1.3.3 Pen To Print . 8

1.3.4 Microsoft Lens . 8

1.3.5 Comparative . 9

1.4 OCR Phases : . 13

i

Table of contents

1.4.1 Pre-processing . 13

1.4.2 Segmentation Phase . 14

1.4.3 Normalization Phase . 15

1.4.4 Feature Extraction Phase . 16

1.4.5 Classification Phase . 16

1.5 Conclusion . 19

2 FORM RECOGNITION 20

2.1 Introduction . 20

2.2 Preprocessing for Form Recognition . 20

2.2.1 Introduction . 20

2.2.2 The Role of image Preprocessing 21

2.2.3 Exploring Image Preprocessing Methods 21

2.3 Deep Learning Approaches for Form Recognition 24

2.3.1 Introduction to Deep Learning . 24

2.3.2 Neural Networks Basics . 27

2.3.3 Deep Learning Architectures . 30

2.3.4 Data Preprocessing for Deep Learning 33

2.3.5 Training Deep Learning Models . 34

2.3.6 Evaluation and Performance Metrics 37

2.3.7 Deep Learning for Computer Vision 38

2.4 Conclusion . 39

3 Model Development and Performance Evaluation 40

3.1 Introduction . 40

3.2 Setup and Training Procedure . 40

3.3 Dataset . 41

3.3.1 Our Proposed Preprocessing for MNIST dataset 42

3.4 CNN models presentation . 44

3.4.1 Genetic Algorithm (GA) . 44

3.4.2 The Particle Swarm Optimization Algorithm (PSO) 45

3.4.3 Models Architecture . 45

3.4.4 Hyperparameters for each model . 46

ii

Table of contents

3.5 Experimental material and platforms . 48

3.5.1 Julia . 48

3.5.2 google colab . 49

3.5.3 Flux . 49

3.5.4 Plots . 49

3.5.5 Images . 50

3.6 Results and discussion . 50

3.6.1 CNN models with traditional MNIST dataset 50

3.6.2 CNN models with enhanced MNIST dataset 59

3.7 Comparison of models . 67

3.8 Comparison with other works . 68

3.9 Conclusion . 68

4 Implementation and develepment 69

4.1 Introduction . 69

4.2 Platform Overview . 69

4.3 Development Tools . 70

4.4 Configuration Used in the implementation : 71

4.5 Server-Side Development . 71

4.5.1 RESTful API . 71

4.5.2 RESTful APIs in Julia . 71

4.5.3 RESTful APIs in Python . 72

4.6 Client-Side Development . 73

4.6.1 React.js for the Frontend . 73

4.6.2 Tailwind Css . 74

4.7 Platform components . 74

4.8 Implementation . 75

4.9 Conclusion . 79

General Conclusion 80

Bibliography 82

iii

Table des figures

1.1 OCR phases[1] . 13

1.2 binarisation pre-processing[2] . 14

1.3 segmentation phase[3] . 15

1.4 normalization phase[4] . 16

1.5 Neural network[4] . 18

2.1 Thresholding image[5] . 22

2.2 Resizing image[4] . 22

2.3 (a) Original Image. (b) Converted to Grayscale. (c) Binarized image. (d)

Thinning and Skeletonization are done. (e) Noise Removed[6] 23

2.4 Skew Correction image[7] . 23

2.5 Lines Straightening image[8] . 24

2.6 Single Neuron Fanctionality[8] . 28

2.7 CNN [9] . 31

2.8 Life cycle of a Genetic Algorithm[10] . 34

2.9 Steps of a Genetic Algorithm[10] . 35

3.1 Random samples of each image class in dataset 42

3.2 Example of the dataset before and after the proposed preprocessing 43

3.3 CNN architecture optimezed by GA . 46

3.4 Accuracy Curve of CNN model optimized by GA 51

3.5 Loss Curve of CNN model optimized by GA 51

3.6 Confusion matrix of CNN model optimized by GA 52

3.7 ROC Curve of CNN model optimized by GA 53

iv

Table of figures

3.8 Classification report of CNN model optimized by GA 53

3.9 Accuracy curve of CNN model optimized by PSO 55

3.10 Loss curve of CNN model optimized by PSO 55

3.11 Confusion Matrix of CNN model optimized by PSO 56

3.12 ROC Curve of CNN model optimized by PSO 57

3.13 Classification Report of CNN model optimized by PSO 57

3.14 Comparison of CNN Model Performance with different optimization algo-

rithms . 58

3.15 Accuracy curve of CNN model optimized by GA 59

3.16 Loss curve of CNN model optimized by GA 60

3.17 Confusion matrix of CNN model optimized by GA 60

3.18 ROC curve of CNN model optimized by GA 61

3.19 Classification report of CNN model optimized by GA 62

3.20 Accuracy curve of CNN model optimized by PSO 63

3.21 Loss curve of CNN model optimized by PSO 63

3.22 Confusion matrix of CNN model optimized by PSO 64

3.23 ROC curve of CNN model optimized by PSO 65

3.24 Classification report of CNN model optimized by PSO 65

3.25 Comparison of CNN Model Performance with GA and PSO 66

3.26 Comparison of models . 67

4.1 General diagram of our platform system 70

4.2 Platfotm Components . 74

4.3 Steps to the HDR . 76

4.4 First step to the HDR . 76

4.5 Second step to the HDR . 77

4.6 Theerd step to the HDR . 78

4.7 Forth step to the HDR . 78

v

Liste des tableaux

1.1 comparision between application of OCR 12

1.2 Some important pre-processing operations 14

2.1 Comparative Analysis of AI, Machine Learning, and Deep Learning[11] . . 26

3.1 Distribution of images in the MNIST dataset across training and test sets . 41

3.2 Optimized Hyperparameters with the GA and Their Best Values 47

3.3 Optimized Hyperparameters with PSO and Their Best Values 47

3.4 Optimized Hyperparameters with the GA and Their Best Values 48

3.5 Optimized Hyperparameters with the PSO algorithm and Their Best Values 48

3.6 Comparison with other works . 68

vi

Abreviations list

OCR Optical Character Recognition

CNN Convolutional Neural Network

GAN Generative Adversarial Network

RNN Recurrent Neural Network

PSO Particle Swarm Optimization

ROC Receiver Operating Characteristic Curve

API Application Programming Interface

GA Genetic Algorithm

TPR True Positive Rate

FPR False Positive Rate

FP False Positive

TP True Positive

FN False Negative

TN True Negative

HDR Handwritten digits recognition

vii

General Introduction

The recognition of handwritten digits is an important field in artificial intelligence and

computer vision that has played a significant role in converting traditional paper-based

archives to electronic archives. Earlier, archives relied heavily on paper documents, which

were difficult to maintain and organized and required a large amount of storage space. The

advent of digital technology has enabled documents to be stored electronically, making

them more accessible, searchable, and manageable.

Individual writing styles present a significant challenge in this field. Unlike printed

characters, handwritten digits exhibit considerable variation in shape, size, slant. A variety

of factors contribute to this variability, including the rate at which the writer writes, the

situation at the time of writing, as well as cultural differences in the formation of digits.

It is particularly challenging to recognize digits with fine or delicate handwriting, as these

subtle strokes can be mistaken for background noise or incorrectly identified as different

digits.

To address these challenges, the project explored Convolutional Neural Networks (CNNs)

optimized using techniques such as Genetic Algorithms (GA) and Particle Swarm Opti-

mization (PSO). These methods aim to improve the model’s ability to generalize from

diverse training data and provide high performance on test datasets.

Additionally, our experiments were enhanced by using Julia, a programming language

that is less common but promising in the field of machine learning and scientific compu-

ting. Julia is known for its high performance and ease of use. Our aim with Julia is not

only to take advantage of these strengths, but also to explore new ways of optimising and

1

General Introduction

improving handwritten digit recognition.

This project is more than just developing a robust model for handwritten digit recogni-

tion. It aims to identify and overcome specific obstacles associated with fine handwriting

while experimenting with Julia for model building. This will not only contribute to the

advancement of handwritten character recognition technology, but also accelerate its im-

plementation.

The structure of this work is divided into four chapters :

— The first chapter introduces optical character recognition (OCR) and covers its de-

finition, historical background, applications, and challenges. We also review existing

OCR tools and outline the various stages of OCR.

— Our second chapter focuses on form recognition and discusses preprocessing tech-

niques, deep learning methods, and their applications in computer vision.

— The third chapter describes our experimental setup in detail, including the use of

Julia and Google Colab, and introduces CNN models trained using genetic algo-

rithms (GA) and particle swarm optimization (PSO) on the MNIST dataset. We

compare the results and present our proposed preprocessing methods.

— The final chapter details the development and testing of our platform, encompas-

sing the construction of a RESTful API that links multiple servers with the client

interface. We conclude with a comprehensive overview of the project’s success.

2

Chapitre 1
Optical Character Recognition

1.1 Introduction

Ever wondered how the human brain is able to process and analyze images so effort-

lessly ? As soon as we come into contact with a picture, our brains instinctively break it

down into recognizable chunks, allowing us to identify its various components effortlessly.

But have you ever wondered if computers could perform similar tasks ? If you are aware

that image processing is a branch of computer science that attempts to do the same thing

with computers. How does OCR work, and what are its challenges and phases ?

1.2 Optical Character Recognition

1.2.1 Definition

Optical Character Recognition (OCR) is a sub-field of image processing that deals with

the process of recognizing characters from an image (OCR). This approach examines an

image containing scanned text or handwritten characters and attempts to recall them

using a variety of algorithms[12].

1. The format of the handwritten text :

the format of the handwritten text can be :

— Isolated characters : This task involves the straightforward classification of

individual characters or numbers, independent of their context. It’s a relatively

simple task focused on identifying single characters without considering their

3

Chapter 1 Optical Character Recognition

surrounding context.

— Continuous characters : In contrast, recognition of continuous characters

involves identifying and interpreting sequences of characters or numbers within

a larger context, such as words, sentences, or paragraphs. It’s a more complex

task that requires algorithms and techniques to handle factors like variable

spacing, font styles, and contextual dependencies.

Isolated characters : This task involves the straightforward classification of indi-

vidual characters or numbers, independent of their context. It’s a relatively simple task

focused on identifying single characters without considering their surrounding context.

Continuous characters : In contrast, recognition of continuous characters involves iden-

tifying and interpreting sequences of characters or numbers within a larger context, such

as words, sentences, or paragraphs. It’s a more complex task that requires algorithms and

techniques to handle factors like variable spacing, font styles, and contextual dependen-

cies.

1.2.2 Historical

The development of retina scanners originates from early character recognition concepts,

which involved a framework for image transmission utilizing a mosaic of photocells. A si-

gnificant breakthrough occurred in 1890 with Nipkow’s invention of the sequential scanner,

laying the groundwork for modern television and reading machines. Initially, OCR tech-

nology was considered an aid for visually impaired individuals, but it soon evolved into a

vast field of research and development.

In 1929, a patent filed by Tauschek in Germany marks the first documented evidence of

an optical character recognition system. This innovation led to a US patent granted to

Tauschek in 1935, following an earlier public disclosure by Handel in 1933. Both early

machines employed template symbols on a circular disc, allowing light to pass through

specific cutouts. The image to be recognized was placed in front of the disc and illumina-

ted. Reflected light passing through the template holes was focused onto a photosens or

for detection.

The commercially available OCR systems can be categorized into four generations based

on their robustness, efficiency, and flexibility. The first generation OCRs, which emerged

4

Chapter 1 Optical Character Recognition

in the mid-1960s, could read only specific fonts and character shapes. The IBM 1418 was

the first widely marketed OCR of this generation, employing logical template matching

techniques.

The second generation of OCRs, available from the mid-1960s to mid-1970s, showed si-

gnificant improvements. These systems could recognize both machine-printed and hand-

written characters, although initially limited to numerals. The IBM 1287 exemplifies this

generation, incorporating both analog and digital technologies.

Subsequent advancements led to the development of third-generation OCRs between 1975

and 1985. These systems could handle a broader range of handwritten characters and

poor-quality prints, enhancing their utility for diverse applications.

The fourth generation OCRs are capable of processing complex documents with inter-

spersed text, mathematical symbols, and tables. They can recognize spontaneous hand-

written characters and handle low-quality noisy documents, such as photocopies, faxes,

and color documents. Modern OCR systems are now sophisticated enough to support

multiple languages, including Arabic, Chinese, Japanese, and Roman scripts.[13].

1.2.3 Domain of application OCR

Many applications of handwritten digit recognition and classification exist, including :

— Processing of checks and other financial documents using handwritten digit recog-

nition is becoming increasingly popular with banks and corporations.

— The technology can also be used to read and recognize license plate numbers on

vehicles, which is particularly useful for law enforcement agencies and highway toll

companies.

— Systems of security use handwritten digit recognition to protect assets and sensitive

information, such as combination locks and PIN-based authentication systems.

— Automatic reading of handwritten digits using character recognition : Addresses on

envelopes, postal codes, telephone numbers on application forms are often read au-

tomatically using character recognition. In this way, large volumes of administrative

documents can be processed more efficiently and quickly.

5

Chapter 1 Optical Character Recognition

1.2.4 Impact on society and industry

Optical Character Recognition (OCR) is a transformative technology that has signifi-

cantly influenced both society and industry. Let’s delve into its impact :[14]

Efficiency and Automation :

- OCR automates the process of extracting text from printed documents, reducing

the need for manual data entry. This efficiency boost saves time and minimizes errors

compared to manual typing.

- Businesses can digitize vast amounts of paper-based information swiftly, making it ac-

cessible for further analysis and processing.

Cost Reduction :

- By streamlining data extraction and storage, OCR reduces costs associated with

manual data entry.

- Small businesses benefit from faster data processing and efficient data utilization, as

OCR eliminates the need for extensive human involvement.

Consistency and Accuracy :

- OCR ensures consistent results across multiple users and projects. Unlike humans,

it doesn’t suffer from fatigue or variations in performance.

- Improved data accuracy leads to better decision-making and reliable information.

Data Security and Storage :

- Digitized documents are easier to store, search, and retrieve. OCR contributes to

efficient data management.

- Enhanced security measures can be applied to digital records, safeguarding sensitive

information.

Industry-Specific Applications :

- Healthcare : OCR assists in digitizing patient records, prescriptions, and medical

reports, enabling efficient data sharing and analysis. - Automotive : OCR streamlines

6

Chapter 1 Optical Character Recognition

paperwork related to vehicle registration, insurance claims, and maintenance records.

- Finance : OCR automates invoice processing, expense management, and financial docu-

ment handling.

- Legal : Legal professionals use OCR to convert paper-based contracts, court documents,

and case files into digital formats.

1.2.5 Challenges

OCR is a challenging task due to multiple problems that complicate the process of

re-knowledge, among which are [15] :

— Document quality : a document that is faxed or photocopied multiple times is more

difficult to process than the original copy. Writing may become thinner or other-

wise thicker, degraded with missing parts of text or tasks that appear, openings or

closures of loops . . .

— Printing : a composite document is better than a document typed which, in turn,

is clearer than text from a printer dot matrix. An inkjet printer can introduce ink

stains and a spread of characters, a laser printer can generate lines or funds. . .

— The discrimination of form : depending on the style of the font used, its body and

fatness, the character changes its graphics. The number of shapes is all the more

important as the number of writing styles is high. In addition, several characters

have strong similarities.

— The medium of information, such as paper, also plays on performance recognition

by its quality : its grammage, granulation and color.

— Acquisition : real-time scanning often introduces distortions in the image. In the

offline case, the quality of the scanned text is a compromise between the variations

of the position (tilt, translation, shrinkage, etc.), the cleanliness of the glass of the

scanning device and its resolution.

7

Chapter 1 Optical Character Recognition

1.3 Existing applications

1.3.1 IScanner

The iScanner app is yet another example of cleverly leveraging an always-connected

camera to do more than just intelligently make photos look prettier. The app’s actually

designed to turn a smartphone’s camera into a document scanner by automating the

process of color-correcting and straightening documents snapped at an angle as well as

converting a page’s content to editable text using optical character recognition[16].

1.3.2 Google Lens

Google Lens is a visual search tool developed by Google that uses machine learning

to understand and analyze images and videos. It can be used to [17] :

— Identify objects.

— Translate text.

— Shop for product.

— Copy text.

— Get help with homework.

1.3.3 Pen To Print

Pen to Print is an application that utilizes Optical Character Recognition (OCR)

technology to convert handwritten text in images and PDFs into digital, editable format.

Available as a mobile app on Android and iOS, as well as an online OCR tool on the Pen

to Print website, this versatile tool offers the ability to convert handwritten material into

digital text with ease. With Pen to Print, users can store the scanned handwriting on any

digital platform or cloud service, making it accessible from anywhere [18].

1.3.4 Microsoft Lens

microsoft Lens (formerly Microsoft Office Lens) is a free mobile app available on An-

droid and iOS designed to enhance and make pictures of whiteboards and documents

readable. This versatile app offers features to trim images, enhance their quality, and

8

Chapter 1 Optical Character Recognition

convert them into various digital formats. With Microsoft Lens, users can capture text,

images, documents, and whiteboards, utilizing Optical Character Recognition (OCR) and

other technologies to digitize printed or handwritten text. The app allows users to convert

captured content into PDF, Word, PowerPoint, and Excel files, offering flexibility in how

information is utilized. Additionally, Microsoft Lens provides options to save content to

OneNote, OneDrive, or the local device, ensuring accessibility and easy sharing of digitized

materials. [19]

1.3.5 Comparative

The table below presents a comparison between the existing OCR platforms.

9

Chapter 1 Optical Character Recognition

Applications Advantages Disavantages

Google Lens -Convenience : Lens is a quick and easy

way to get information about the world

around you. - Versatility : Lens can

be used for a variety of tasks, from

identifying objects to translating text.

-Accuracy : Lens is constantly being

improved, and its accuracy is impres-

sive. -Offline functionality : Some Lens

features can be used offline, which is

handy when you don’t have an internet

connection.

-Limited functionality : Lens is

not perfect, and it may not al-

ways be able to identify objects

or translate text accurately. -

Privacy concerns : Some people

are concerned about the pri-

vacy implications of using Lens,

as it collects data about the

things you scan. -Reliance on

internet connection : Most of

Lens’s features require an inter-

net connection[20].

iScanner -Comprehensive Features : iScanner

offers a wide range of features in-

cluding OCR (Optical Character Re-

cognition), document scanning, edi-

ting, and sharing functionalities. -

Intuitive Interface : The app boasts

a user-friendly interface that effecti-

vely organizes its multitude of fea-

tures into easily accessible categories

like Scan, Edit, and Share. -Efficient

Document Testing : iScanner demons-

trates good performance in standard

document testing,providing mostly ac-

curate digitized text from various types

of documents[21].

-Accuracy : Accuracy can vary

depending on camera quality,

lighting, and app capabilities. -

File size : Scanned images can be

large, consuming device storage.-

Security : Pay attention to data

privacy policies, as some apps

may collect or share data. -

Limited features : Free versions

might have limited features like

scan quality, page limits, or

file formats. - Internet connec-

tion : Some features might re-

quire an internet connection for

functionality[22].

10

Chapter 1 Optical Character Recognition

-Unique Functionalities : Apart from

basic scanning, iScanner offers unique

features such as solving math pro-

blems and counting objects, adding va-

lue beyond traditional scanning apps. -

Text Blurring Feature : iScanner allows

users to blur out text on documents

with the ability to match the back-

ground color, offering enhanced privacy

and document manipulation options. -

Overall Strength : With its combina-

tion of features, performance, and user

experience, iScanner emerges as one of

the strongest choices among OCR apps.

Pen To Print -Readable to everyone, unlike some

handwritings that are hard to read

like cursive, scribbles and other illegible

writing. - Easy editing capabilities -

making changes, adding comments or

suggestions, deleting irrelevant parts,

reordering sections, spell-checking, and

more. -Easily stored, shared, and acces-

sed from various devices, providing un-

paralleled convenience and flexibility.

- Enables simplified searches through

large documents, making it easy to lo-

cate specific information quickly.

- the free version typically im-

poses limitations on conversions,

file sizes, and supported OCR lan-

guages, which may hinder high-

volume conversion needs or ad-

vanced usage. - Its susceptibility

to data breaches and malware at-

tacks necessitates the implemen-

tation of strong security mea-

sures, particularly when uploa-

ding sensitive information - the-

re’s a risk of unauthorized parties

accessing or storing your uploa-

ded data, necessitating compre-

hension of the app’s privacy po-

licy and restricting its use to trus-

ted content[23].

11

Chapter 1 Optical Character Recognition

Microsoft Lens -Straightforward Interface : Users ap-

preciate the simplicity of Microsoft

Lens, as it allows them to start scan-

ning documents without going through

sign-up processes or tours. -Minimal

Fuss : Unlike other apps that may have

introductory processes, Microsoft Lens

skips these steps and lets users focus

on scanning immediately. -Integration

with Microsoft Ecosystem : Users who

are already using Microsoft products

benefit from seamless integration with

apps like OneDrive, OneNote, Word,

and PowerPoint, making it easy to save

and import documents[24].

-Limited File Management : Mi-

crosoft Lens lacks robust file ma-

nagement features, such as the

ability to create folders or orga-

nize scans through sorting and fil-

tering options. -Basic Export Op-

tions : After editing documents,

the app directly leads users to

export options without provi-

ding additional file organization

capabilities. -OCR Accuracy :

While generally accurate, Micro-

soft Lens may have slight inac-

curacies, such as missing words

or letters, particularly when dea-

ling with complex documents like

books[24].

Table 1.1 – comparision between application of OCR

12

Chapter 1 Optical Character Recognition

1.4 OCR Phases :

In this section we describe the main important phases and architecture of optical

character recognition[13] like the image below show 1.1.

Figure 1.1 – OCR phases[1]

1.4.1 Pre-processing

The objective of pre-processing is to remove undesired characteristics or noise from an

image while preserving all significant information. Pre-processing techniques are essential

for color, grey-level, or binary document images that contain text and/or graphics. Given

that processing color images is computationally more intensive, most character recognition

systems employ binary or grey-scale images. Pre-processing minimizes inconsistent data

and noise, enhancing the image and preparing it for subsequent phases in OCR systems.

These are some important pre-processing operations :

13

Chapter 1 Optical Character Recognition

Processes Description

Binarization Separates image pixels as text or back-

ground1.2.

Noise Reduction Improves image quality by reducing noise.

Skew Correction Corrects document skew caused by image

capture devices.

Morphological Operations Add or remove pixels to characters, correc-

ting imperfections.

Thresholding Separates information from background in an

image.

Thinning and Skeletonisation Thinning reduces the width of characters to

one pixel, Skeletonisation regularizes the text

map.

Table 1.2 – Some important pre-processing operations

Figure 1.2 – binarisation pre-processing[2]

1.4.2 Segmentation Phase

Document segmentation is a critical pre-processing step in the implementation of an

OCR system. It involves classifying a document image into homogeneous zones, where each

zone contains only one type of information, such as text, a figure, a table, or a halftone

image. The accuracy of OCR systems is significantly influenced by the effectiveness of the

page segmentation algorithm employed1.3.

Document segmentation algorithms can be broadly categorized into three types :

— Top-down methods

14

Chapter 1 Optical Character Recognition

— Bottom-up methods

— Hybrid methods

Top-down methods segment a document by recursively dividing large regions into smal-

ler sub-regions. This process continues until a specified criterion is met, at which point the

segmentation halts, and the resultant sub-regions form the final segmentation. In contrast,

bottom-up methods begin by identifying interest pixels within the document. These

interest pixels are then grouped into connected components that form characters. These

characters are subsequently combined into words, lines, or text blocks. Hybrid methods

integrate both top-down and bottom-up approaches to leverage the advantages of both

strategies, aiming for improved segmentation accuracy and efficiency.

Figure 1.3 – segmentation phase[3]

1.4.3 Normalization Phase

As a result of the segmentation process, isolated characters are obtained, which are

then ready to proceed to the feature extraction phase. These isolated characters are ty-

pically resized according to the specific algorithms employed. The segmentation process

is crucial as it converts the image into an m × n matrix. These matrices are commonly

normalized by reducing their size and eliminating extraneous information from the image

while preserving all essential details1.4.

15

Chapter 1 Optical Character Recognition

Figure 1.4 – normalization phase[4]

1.4.4 Feature Extraction Phase

Feature extraction involves identifying and extracting relevant features from objects

or alphabets to construct feature vectors. These feature vectors are then used by classi-

fiers to match the input unit with the corresponding output unit. This process simplifies

classification, as the classifier can more easily differentiate between distinct classes by exa-

mining these features. According to Suen, there are two primary categories of features :

statistical features and structural features. In a character matrix, statistical features are

derived from the statistical distribution of each point, such as zoning, moments, crossings,

Fourier transforms, and projection histograms.

- Statistical features, also known as global features, are generally averaged and extrac-

ted from sub-images, such as meshes. Initially, statistical features were used to recognize

machine-printed characters.

- Structural or topological features pertain to the geometry of the character set being

analyzed. Examples of these features include convexities and concavities in the characters,

the number of holes in the characters, and the number of endpoints.

1.4.5 Classification Phase

OCR systems extensively utilize pattern recognition methodologies, which assign each

example to a predefined class. Classification is the process of assigning inputs to their

corresponding classes based on detected information, thereby creating groups with homo-

geneous characteristics and separating different inputs into distinct classes. Classification

is performed using stored features in the feature space, such as structural features, global

features, and others.

In essence, classification divides the feature space into several classes based on a deci-

16

Chapter 1 Optical Character Recognition

sion rule. The choice of classifier depends on several factors, including the number of free

parameters and the available training set. Researchers have explored various procedures

for OCR to enhance the accuracy and efficiency of classification.

Template Matching

Template matching is the simplest method for character recognition, based on compa-

ring stored templates against the character or word to be recognized. By analyzing shapes,

pixels, curvature, and other features, the matching operation determines the degree of si-

milarity between two vectors. A gray-level or binary input character is compared to a

standard set of stored templates. The recognition rate of this method is highly sensitive

to noise and input distortions.

Statistical Techniques

The theory of statistical decision involves statistical decision functions and a set of op-

timality criteria, which, for a given model of a specific class, can maximize the likelihood of

the observed pattern. The main statistical methods used in OCR include Nearest Neigh-

bor (NN), Likelihood or Bayes classifier, Clustering Analysis, Hidden Markov Modeling

(HMM), Fuzzy Set Reasoning, and Quadratic Classifier.

Neural Networks :

Character classification is a problem that aligns with heuristic reasoning, as humans

recognize characters and documents through knowledge and experience. Neural networks,

which are inherently heuristic, are therefore well-suited for this type of problem. A neural

network is a computational architecture that consists of a massively parallel intercon-

nection of adaptive node processors. The output from one node influences the next node

in the network, and the final decision depends on the complex interactions of all nodes.

Due to its parallel nature, a neural network can perform computations at a higher rate

compared to traditional methods. Neural network architectures can be categorized into

feed-forward neural networks and feedback neural networks1.5.

17

Chapter 1 Optical Character Recognition

Figure 1.5 – Neural network[4]

Kernel Methods :

Among the most important kernel methods are Support Vector Machines (SVMs).

Techniques such as Kernel Fisher Discriminant Analysis (KFDA) and Kernel Principal

Component Analysis (KPCA) also utilize kernel methods. SVMs are one of the most

widely used and effective supervised learning techniques, suitable for both binary and

multi-class classification. In classification techniques, the data set is conventionally divided

into training and testing sets. The objective of SVM is to develop a model that accurately

predicts the outcomes for the test set. The enhancement rule for SVM is to maximize

the width of the margin between classes, which is the empty region around the decision

boundary defined by the distance to the nearest training example.

Combination Classifier :

Different classification strategies have their own particular advantages and shortco-

mings. Thus ordinarily various classifiers are consolidated together to solve a given classi-

fication problem. Matei, Oliviu, Petrica C. Pop, and H. Vălean by utilizing neural networks

and k-Nearest Neighbor, proposed Optical character recognition in real environments such

as electricitymeters and gas-meters.

18

Chapter 1 Optical Character Recognition

1.5 Conclusion

As a result of the quest to emulate the brain’s image processing capabilities, OCR

was developed. Even with its challenges, OCR continues to advance, offering promising

solutions to tasks such as document digitization and automated data extraction. It is be-

coming increasingly apparent that the intersection of human cognition and computational

intelligence will open up new avenues of exploration and innovation in the field of image

processing and optical character recognition.

19

Chapitre 2
FORM RECOGNITION

2.1 Introduction

Form recognition is a critical component in the field of document processing, enabling

the automated identification and extraction of structured data from scanned documents,

images, and digital forms. This chapter delves into the methodologies and techniques used

to preprocess and recognize forms accurately. By leveraging advances in both traditional

image preprocessing methods and modern deep learning approaches, we aim to enhance

the precision and efficiency of form recognition systems.

The chapter begins by exploring the essential preprocessing steps required for form recog-

nition, emphasizing the significance of preparing images for subsequent analysis. Following

this, we introduce deep learning techniques, which have revolutionized the field of com-

puter vision, providing robust solutions for form recognition tasks. We discuss the basics

of neural networks, various deep learning architectures, and the importance of data pre-

processing in training effective models. The chapter concludes with a discussion on the

evaluation metrics used to measure the performance of form recognition systems, high-

lighting the advancements and future directions in this domain.

2.2 Preprocessing for Form Recognition

2.2.1 Introduction

Image preprocessing is the process of manipulating raw image data into a usable and

meaningful format. It allows you to eliminate unwanted distortions and enhance specific

20

Chapter 2 FORM RECOGNITION

qualities essential for computer vision applications. Preprocessing is a crucial first step to

prepare your image data before feeding it into machine learning models[25].

2.2.2 The Role of image Preprocessing

let’s explore why the image preprocessing is necessary :

— Enhanced Model Performance :By preprocessing images, image analysis algo-

rithms perform better. By mitigating noise, inconsistencies, and outliers present in

images, we create a cleaner and more reliable dataset for analysis. This results in

improved accuracy of image processing tasks, reduced risk of overfitting to irrelevant

details, and enhanced ability to generalize patterns across images.

— Reliable Insights and Interpretability :When images are preprocessed, they

yield more reliable insights and make image analysis algorithms more interpretable.

When images are cleaned, enhanced, and standardized through preprocessing tech-

niques, underlying patterns and structures become more discernible. This facilitates

better decision-making in image interpretation and aids in understanding the factors

influencing the algorithm’s predictions.

— Robustness to Real-World Scenarios :Preprocessing images contributes to the

robustness of image analysis algorithms in real-world scenarios. Often, real-world

images have variations in lighting, perspective, and quality, which require prepro-

cessing techniques. By preparing images through preprocessing, we ensure that al-

gorithms can cope with diverse environmental conditions encountered during de-

ployment, leading to more reliable and consistent performance[26].

2.2.3 Exploring Image Preprocessing Methods

There are several techniques used in image preprocessing

1. Thresholding : Thresholding is a method that transforms a grayscale image into a

binary image (black and white) by selecting a threshold value. Pixels darker than the

threshold are assigned to black, while pixels lighter than the threshold are assigned

to white 2.1. This technique is effective for images characterized by high contrast

and uniform lighting conditions.[27].

21

Chapter 2 FORM RECOGNITION

Figure 2.1 – Thresholding image[5]

2. Resizing : Resizing images to a consistent size is important for machine learning

algorithms to work properly. You’ll want all your images to be the same height and

width, usually a small size like 28x28 or 64x64 pixels,like the image show 2.2 [27].

Figure 2.2 – Resizing image[4]

3. Grayscaling : Converting color images to grayscale can simplify your image data

and reduce computational needs for some algorithms[28].Like column (b)from image

2.3

4. Binarization : Binarization converts grayscale images to black and white by thresholding[28].Like

column (c)from image 2.3

5. Noise reduction : Techniques like Gaussian blurring, median blurring, and bila-

teral filtering can reduce noise and smooth images.

Normalizing pixel values to a standard range like 0 to 1 or -1 to 1 helps algorithms

work better[28].Like column (e)from image 2.3

6. Thinning and Skeletonization : This step is performed for the handwritten text,

as different writers use different stroke widths to write. This step makes the width

of strokes uniform.Like column (d)from image 2.3

22

Chapter 2 FORM RECOGNITION

Figure 2.3 – (a) Original Image. (b) Converted to Grayscale. (c) Binarized image. (d)

Thinning and Skeletonization are done. (e) Noise Removed[6]

7. Skew Correction : While scanning or taking a picture of any document, it is

possible that the scanned or captured image might be slightly skewed sometimes

2.4. For the better performance of the OCR, it is good to determine the skewness

in image and correct it[29].

Figure 2.4 – Skew Correction image[7]

8. Lines Straightening : When the lines are curvy as in the case of the above image,

it may result in OCR issues and can cause issues with line segmentation and text re-

arrangement. Hence, detecting the curved lines and straightening them will improve

our OCR results2.5 [29].

23

Chapter 2 FORM RECOGNITION

Figure 2.5 – Lines Straightening image[8]

2.3 Deep Learning Approaches for Form Recognition

2.3.1 Introduction to Deep Learning

— What is Deep Learning ?

Deep learning is the branch of machine learning which is based on artificial neural

network architecture. An artificial neural network or ANN uses layers of intercon-

nected nodes called neurons that work together to process and learn from the input

data.

In a fully connected Deep neural network, there is an input layer and one or more

hidden layers connected one after the other. Each neuron receives input from the

previous layer neurons or the input layer. The output of one neuron becomes the

input to other neurons in the next layer of the network, and this process continues

until the final layer produces the output of the network. The layers of the neural

network transform the input data through a series of nonlinear transformations,

allowing the network to learn complex representations of the input data[30].

— The using of Deep Learning :

Deep learning can be used for supervised, unsupervised as well as reinforcement

machine learning. it uses a variety of ways to process these[30].

— Supervised Learning : Neural networks learn from labeled datasets to make

predictions or classifications, minimizing errors through backpropagation. Com-

mon tasks include image classification, sentiment analysis, and language trans-

lation using algorithms like Convolutional and Recurrent Neural Networks.

— Unsupervised Learning : Neural networks uncover patterns or cluster un-

labeled data. Autoencoders and generative models are utilized for tasks such

as clustering, dimensionality reduction, and anomaly detection.

24

Chapter 2 FORM RECOGNITION

— Reinforcement Learning : Agents learn to maximize rewards by interacting

with environments. Deep reinforcement learning algorithms like Deep Q Net-

works and Deep Deterministic Policy Gradient (DDPG) excel in tasks such as

robotics and game playing.

— A Comparative Analysis : AI, Machine Learning, and Deep Learning :

25

Chapter 2 FORM RECOGNITION

Aspect Artificial

Intelligence (AI)

Machine Learning

(ML)

Deep Learning

(DL)

Definition A broad field

encompassing the

simulation of human

intelligence by

machines.

A subset of AI that

enables systems to

learn from data.

A subset of ML

focused on neural

networks with many

layers.

Scope Includes ML, DL, and

other techniques like

rule-based systems.

Involves algorithms

that improve over

time with data.

Involves complex

neural networks for

high-level feature

extraction.

Techniques Used Rule-based systems,

search algorithms,

ML, DL, expert

systems.

Regression,

classification,

clustering, decision

trees.

Convolutional Neural

Networks (CNNs),

Recurrent Neural

Networks (RNNs),

Transformers.

Data Dependency Can operate with less

data or predefined

rules.

Requires large

datasets to improve

performance.

Requires massive

amounts of labeled

data for training.

Computational

Power

Varies widely ;

generally less

intensive than DL.

Moderate

computational

requirements.

High computational

power required

(GPUs, TPUs).

Training Time Generally shorter

than DL but varies.

Moderate training

time.

Can be very long due

to complex networks

and large data sets.

Applications Robotics, game

playing, expert

systems, natural

language processing

(NLP).

Spam detection,

recommendation

systems, image

recognition,

predictive analytics.

Advanced image and

speech recognition

Table 2.1 – Comparative Analysis of AI, Machine Learning, and Deep Learning[11]

26

Chapter 2 FORM RECOGNITION

2.3.2 Neural Networks Basics

1. Introduction to Neural Networks :The term ”deep learning” refers to a class

of neural network models characterized by their multilayered architecture, consis-

ting of interconnected units called neurons. This chapter aims to deliver a pre-

cise and exhaustive introduction to the functioning of these neurons and all their

components[31].

2. Neuron Structure : Neural networks consist of layers of similar neurons. Most

have at least an input layer and an output layer. The program presents the input

pattern to the input layer. Then the output pattern is returned from the output

layer. What happens between the input and an output layer is a black box. By

black box, we mean that you do not know exactly why a neural network outputs

what it does. At this point, we are not yet concerned with the internal structure

of the neural network, or the black box. Many different architectures define the

interaction between the input and output layer[32].

(a) Input Layer :Receives the input values[33].

(b) Hidden Layer(s) :A set of neurons between the input and output layers. There

can be a single or multiple layers.Usually, it has one neuron, and its output

ranges between 0 and 1, that is, greater than 0 and less than 1.

(c) Output Layer :Usually, it has one neuron, and its output ranges between 0 and

1, that is, greater than 0 and less than 1[33].

(d) Weights :The weights of the neuron allow you to adjust the slope or shape of

the activation function[32].

(e) Bias :Programmers add bias neurons to neural networks to help them learn

patterns. Bias neurons function like an input neuron that always produces the

value of 1. Because the bias neurons have a constant output of 1, they are

not connected to the previous layer. The value of 1, which is called the bias

activation, can be set to values other than 1. However,1 is the most common

bias activation. Not all neural networks have bias neurons[32].

27

Chapter 2 FORM RECOGNITION

Figure 2.6 – Single Neuron Fanctionality[8]

The image 2.6 above present : Y : The final value of the node.

W : Represents the weights between the nodes in the previous layer and the output

node.

X : Represents the values of the nodes of the previous layer. B : Represents bias,

which is an additional value present for each neuron. Bias is essentially a weight

without an input term. It’s useful for having an extra bit of adjustability which is

not dependent on the previous layer.

H : Represents the intermediate node value. This is not the final value of the node.

f() : Called an Activation Function, it is something we can choose. We will go

through its importance later.

3. Activation Functions : In neural network programming, activation or transfer

functions establish bounds for the output of neurons. Neural networks can use many

different activation functions. We will discuss the most common activation functions

in this section.

Choosing an activation function for your neural network is an important considera-

28

Chapter 2 FORM RECOGNITION

tion because it can affect how you must format input data [8].

— Linear Activation Function : The most basic activation function is the

linear function because it does not change the neuron output at all. Equation

2.1 shows how the program typically implements a linear activation function :

f(x) = x (2.1)

— Hyperbolic Tangent Activation Function : The hyperbolic tangent func-

tion is also a very common activation function for neural networks that must

output values in the range between -1 and 1. This activation function is simply

the hyperbolic tangent (tanh) function2.2 :

f(x) = tanh(x) =
ex − e−x

ex + e−x
(2.2)

— Sigmoid Activation Function : The sigmoid or logistic activation function

is a very common choice for feedforward neural networks that need to output

only positive numbers2.3 :

f(x) =
1

1 + e−x
(2.3)

— The Softmax Function : Softmax is usually found in the output layer of a

neural network. The softmax function is used in classification neural networks.

The neuron that has the highest value claims the input as a member of its

class. Because it is a preferable method, the softmax activation function forces

the output of the neural network to represent the probability that the input

falls into each of the classes 2.4 :

softmax(x)i =
exi∑K
j=1 e

xj

(2.4)

— The ReLU Function : Introduced in 2000 by Teh Hinton, the rectified linear

unit (ReLU) has seen very rapid adoption over the past few years. Prior to the

ReLU activation function, the hyperbolic tangent was generally accepted as

the activation function of choice. Most current research now recommends the

ReLU due to superior training results. As a result, most neural networks should

utilize the ReLU on hidden layers and either softmax or linear on the output

layer. Equation 2.5 shows the very simple ReLU function :

f(x) = max(0, x) (2.5)

29

Chapter 2 FORM RECOGNITION

4. Forward Propagation : Forward propagation is the process in a neural network

where the input data is passed through the network’s layers to generate an output.

Forward propagation is essential for making predictions in neural networks. It cal-

culates the output of the network for a given input based on the current values of

the weights and biases. The output is then compared to the actual target value to

calculate the loss, which is used to update the weights and biases during the training

process.

5. Backpropagation : Backpropagation is one of the most common methods for trai-

ning a neural network. Rumelhart, Hinton, Williams (1986) introduced backpro-

pagation, and it remains popular today. Programmers frequently train deep neural

networks with backpropagation because it scales really well when run on graphi-

cal processing units (GPUs). To understand this algorithm for neural networks, we

must examine how to train it as well as how it processes a pattern.

Classic backpropagation has been extended and modified to give rise to many dif-

ferent training algorithms. In this chapter, we will discuss the most commonly used

training algorithms for neural networks. We begin with classic backpropagation and

then end the chapter with stochastic gradient descent (SGD).

2.3.3 Deep Learning Architectures

Deep learning architectures offer promising solutions. By leveraging neural networks,

these architectures can handle complex object detection tasks efficiently. They allow for

better training and yield superior results compared to traditional methods.

In the following sections, we delve into various deep learning architectures tailored for

object detection, exploring their designs and functionalities to address the challenges

posed by real-world scenarios.[34].

1. Convolutional Neural Networks (CNNs) :onvolutional networks (,), also

known asLeCun 1989 convolutional neural networks or CNNs, are a specialized

kind of neural network for processing data that has a known, grid-like topology.

Examples include time-series data, which can be thought of as a 1D grid taking

samples at regular time intervals, and image data, which can be thought of as a 2D

grid of pixels. Convolutional networks have been tremendously successful in practical

applications. The name “convolutional neural network” indicates that the network

30

Chapter 2 FORM RECOGNITION

employs a mathematical operation called convolution. Convolution is a specialized

kind of linear operation. Convolutional networks are simply neural networks that

use convolution in place of general matrix multiplication in at least one of their

layers [9].

Figure 2.7 – CNN [9]

The image 2.7 above present 2.7 :

(a) Input : The input to the CNN is an image with dimensions 28 × 28 and one

channel (grayscale).

(b) Conv 1 Convolution (5 x 5) kernel valid padding : In this phase, the

image is convolved with a 5×5 kernel, producing feature maps. ”Valid padding”

means that the convolution operation is performed only where the input and

the filter fully overlap, resulting in an output feature map size of 24× 24 with

n1 channels.

(c) Max-Pooling (2 x 2) : After convolution, max-pooling is applied with a 2×2

filter, reducing the spatial dimensions of the feature maps by half. This results

in feature maps of size 12× 12 with n1 channels.

(d) Conv 2 Convolution (5 x 5) kernel valid padding : Another convolutional

layer is applied similarly to the first one, resulting in a feature map size of 8×8

with n2 channels.

(e) Max-Pooling (2 x 2) : Max-pooling is applied again, reducing the spatial

dimensions to 4× 4 with n2 channels.

31

Chapter 2 FORM RECOGNITION

(f) Flattening : The feature maps are flattened into a one-dimensional vector,

which serves as the input to the fully connected layers.

(g) fc 3 Fully-Connected Neural Network ReLU activation : The flattened

vector is fed into a fully connected layer (fc 3) with ReLU activation. This

layer performs transformations to learn complex patterns from the flattened

features.

(h) fc 4 Fully-Connected Neural Network (with dropout) : Another fully

connected layer (fc 4) is employed, which further learns complex relationships

in the data. Dropout, a regularization technique, is applied to prevent overfit-

ting by randomly dropping some connections during training.

(i) n3 units (Output) : Finally, the output layer consists of n3 units, representing

the predicted classes or values. This phase generates the final output of the

CNN model.

2. Feedforward Neural Networks : Deep feedforward networks, also known as feed-

forward neural networks or multilayer perceptrons (MLPs), are fundamental models

in deep learning. The goal of a feedforward network is to approximate a function

f ∗. For instance, in a classifier, y = f ∗(x) maps an input x to a category y. A feed-

forward network defines a mapping y = f(x; θ) and learns the parameters θ that

yield the best function approximation [9].

3. Recurrent Neural Networks (RNNs) : Recurrent neural networks (RNNs) are

a family of neural networks designed for processing sequential data . Similar to

how convolutional networks are specialized for processing grids of values, such as

images, RNNs are specialized for processing sequences of values x(1), . . . , x(τ). Just

as convolutional networks can scale to images with large dimensions and variable

sizes, RNNs can scale to much longer sequences than would be practical for networks

without sequence-based specialization. Most recurrent networks can also handle se-

quences of variable length[9].

4. Generative Adversarial Networks (GANs)GANs are at the forefront of dis-

ruptions in DL and have been an active research topic recently. In a nutshell, a

GAN allows a network to learn from images that represent a real-world entity (say,

a cat or dog ; when we simply develop a DL model to classify between a cat and

a dog) and then generate a new image using the same features it has learned in

32

Chapter 2 FORM RECOGNITION

the process ; that is, it can generate a new image of a cat that looks (almost) au-

thentic and is completely different from the set of images you provided for training.

We can simplify the entire explanation for GAN into one simple task (i.e., image

generation). If the training time and the sample images provided during train are

sufficiently large, it can learn a network that can generate new images that are not

identical to the ones you provided while training ; it generates new images[35].

2.3.4 Data Preprocessing for Deep Learning

Data preprocessing is a crucial step in preparing data for deep learning models. It

involves various techniques to clean, transform, and enhance the raw data to improve

the model’s performance. Here’s an overview of key steps in data preprocessing for deep

learning :

1. Data Cleaning :Data cleaning involves fixing systematic problems or errors in

messy data. The most useful data cleaning involves deep domain expertise and

could involve identifying and addressing specific observations that may be incorrect.

There are many reasons data may have incorrect values, such as being mistyped,

corrupted, duplicated, and so on. Domain expertise may allow obviously erroneous

observations to be identified as they are different from what is expected, such as a

person’s height of 200 feet[36].

2. Photo Resize :The photos will have to be reshaped prior to modeling so that all

images have the same shape. This is often a small square image. There are many

ways to achieve this, although the most common is a simple resize operation that

will stretch and deform the aspect ratio of each image and force it into the new

shape. We could load all photos and look at the distribution of the photo widths

and heights, then design a new photo size that best reflects what we are most likely

to see in practice. Smaller inputs mean a model that is faster to train, and typically

this concern dominates the choice of image size. In this case, we will follow this

approach and choose a fixed size of 200 × 200 pixels[37].

3. Image augmentation : Once we have collected the images, many times we do

not have big enough dataset to train the algorithm. It also allows us to add the

generalization ability to the network and prevent it from overfitting. For Neural

Networks, we require more and more data, and image augmentation can help in

33

Chapter 2 FORM RECOGNITION

artificially increasing the training dataset by creating versions of images. It enhances

the ability of the models as the augmented images provide different variations along

with the original training dataset[36].

2.3.5 Training Deep Learning Models

1. Loss Functions : Loss is a measure of a model’s accuracy, representing the diffe-

rence between actual and predicted values. The function used to calculate this loss

is called the loss function. Different loss functions can yield different values for the

same loss, affecting the respective model’s performance[34].

2. Optimization Algorithms : Here are concise definitions for some common opti-

mization algorithms :

(a) Genetic Algorithms :

Figure 2.8 – Life cycle of a Genetic Algorithm[10]

Genetic Algorithms (GAs) are searching processes based on the principles of

natural selection and genetics. Typically, a simple GA consists of three opera-

tions : Selection, Genetic Operation, and Replacement. Initially, a population

is generated randomly. The fitness values of all chromosomes are evaluated by

calculating the objective function in a decoded form (phenotype). A group of

chromosomes (parents) is selected to generate offspring via genetic operations.

34

Chapter 2 FORM RECOGNITION

The offspring’s fitness is evaluated similarly to their parents. The chromosomes

in the current population are then replaced by their offspring based on a cer-

tain replacement strategy. This GA cycle repeats until a desired termination

criterion is reached, such as a predefined number of generations. If successful,

the best chromosome in the final population becomes a highly evolved solution

to the problem [10].

This is a summery steps of a Genetic Algorithm[2.9

Figure 2.9 – Steps of a Genetic Algorithm[10]

(b) Ant Colony Optimization : Ant System is the first Ant Colony Optimization

(ACO) algorithm proposed. Its main characteristic is that, at each iteration,

the pheromone values are updated by all the m ants that have built a solution

in the iteration itself. The pheromone τij, associated with the edge joining cities

i and j, is updated as follows [38] :

τij ← (1− ρ) · τij +
m∑
k=1

τ kij, (2.6)

where ρ is the evaporation rate, m is the number of ants, and τ kij is the quantity

of pheromone laid on edge (i, j) by ant k :

τ kij =

Q
Lk

if ant k used edge (i, j) in its tour,

0 otherwise,

(2.7)

where Q is a constant, and Lk is the length of the tour constructed by ant k.

In the construction of a solution, ants select the next city to visit through a

stochastic mechanism. When ant k is in city i and has so far constructed the

35

Chapter 2 FORM RECOGNITION

partial solution sp, the probability of going to city j is given by :

pkij =

ταij ·η

β
ij∑

l∈N(sp)

ταil ·η
β
il

if j ∈ N(sp),

0 otherwise,

(2.8)

where N(sp) is the set of feasible components, i.e., edges (i, l) where l is a

city not yet visited by ant k. The parameters α and β control the relative

importance of the pheromone versus the heuristic information ηij, which is

given by :

ηij =
1

dij
, (2.9)

where dij is the distance between cities i and j.

(c) Fuzzy Logic : Fuzzy logic is a branch of mathematics that allows for approxi-

mate reasoning rather than fixed and exact reasoning. In a fuzzy logic control

system, three main modules are involved [39] :

— Fuzzification module : Converts crisp inputs into fuzzy sets.

— Inference module : Applies a set of rules to the fuzzy sets to derive fuzzy

outputs.

— Defuzzification module : Converts the fuzzy outputs back into crisp

values.

3. Regularization : is a technique that reduces overfitting, which occurs when neural

networks attempt to memorize training data, rather than learn from it. Humans are

capable of overfitting as well. Before we examine the ways that a machine acciden-

tally overfits,we will first explore how humans can suffer from it[40].

4. Hyperparameter Tuning :Hyper-parameters, are the numerous settings for mo-

dels such as neural networks. Activation functions, hidden neuron counts, layer

structure, convolution, max-pooling and dropout are all examples of neural network

hyper-parameters. Finding the optimal set of hyper-parameters can seem a daunting

task, and, indeed, it is one of the most time-consuming tasks for the AI programmer.

However, do not fear, we will provide you with a summary of the current research on

neural network architecture in this chapter. We will also show you how to conduct

experiments to help determine the optimal architecture for your own networks[40].

36

Chapter 2 FORM RECOGNITION

2.3.6 Evaluation and Performance Metrics

1. Accuracy :is another measurement defined as the proportion of true instances re-

trieved, both positive and negative, among all instances retrieved. Accuracy is a

weighted arithmetic mean of precision and inverse precision. Accuracy can also be

high but precision low, meaning the system performs well but the results produ-

ced are slightly spread, compare this with hitting the bulls eye meaning both high

accuracy and high precision, see Formula 2.10 [41].

Accuracy =
TP + TN

TP + TN + FP + FN
(2.10)

2. Precision, Recall, F1-Score :Two metrics used for measuring the performance

of a retrieval system are precision and recall. Precision measures the number of cor-

rect instances retrieved divided by all retrieved instances, see Formula 2.11. Recall

measures the number of correct instances retrieved divided by all correct instances,

see Formula 2.12. Instances can be entities in a text, or a whole document in a do-

cument collection (corpus), that were retrieved. A confusion matrix, see Table 2.11

is often used for explaining the different entities.

Here follow the definitions of precision and recall, see Formulas2.11 and 2.12 respec-

tively [41].

Precision =
TP

TP + FP
(2.11)

Recall =
TP

TP + FN
(2.12)

The F-score is defined as the weighted average of both precision and recall depending

on the weight function β, see Formula 2.13. The F1-score means the harmonic mean

between precision and recall, see Formula 2.14, when it is written F-score it usually

means F1-score. The F-score is also called the F-measure. The F1-score can have

different indices giving different weights to precision and recall [41].

Fβ =
(1 + β2)× P ×R

β2 × P +R
(2.13)

With β = 1, the standard F-score is obtained, which is equivalent to the F1-score :

F1 = F =
2× P ×R

P +R
(2.14)

37

Chapter 2 FORM RECOGNITION

3. ROC Curve and AUC

A ROC curve is a two-dimensional plot that illustrates how well a classifier system

works as the discrimination cut-off value is changed over the range of the predictor

variable. The x axis or independent variable is the false positive rate for the predic-

tive test. The y axis or dependent variable is the true positive rate for the predictive

test. Each point in ROC space is a true positive false positive data pair for a discri-

mination cut-off value of the predictive test. If the probability distributions for the

true positive and false positive are both known, a ROC curve can be plotted from

the cumulative distribution function [42].

4. Confusion Matrix

A neural network trained for the MNIST data set should be able to take a hand-

written digit and predict what digit was actually written. Some digits are more

easily confused for others. Any classification neural network has the possibility of

misclassifying data. A confusion matrix can measure these misclassifications [40].

You can create a confusion matrix with the following steps [40] :

(a) Separate the dataset into training and validation sets.

(b) Train a neural network on the training set.

(c) Initialize the confusion matrix with all zeros.

(d) Loop over every element in the validation set.

(e) For every element, increase the cell corresponding to the expected class (row)

and the predicted class (column) in the confusion matrix.

(f) Report the confusion matrix.

2.3.7 Deep Learning for Computer Vision

Computer vision is a field of study focused on the problem of helping computers to

see.

1. Image Classification : Predict the type or class of an object in an image [34].

— Input : An image with a single object, such as a photograph.

— Output : A class label (e.g., one or more integers that are mapped to class

labels).

38

Chapter 2 FORM RECOGNITION

2. Object Localization : Locate the presence of objects in an image and indicate

their location with a bounding box [34].

— Input : An image with one or more objects, such as a photograph.

— Output : One or more bounding boxes (e.g., defined by a point, width, and

height).

3. Object Detection : Locate the presence of objects with a bounding box and types

or classes of the located objects in an image [34].

— Input : An image with one or more objects, such as a photograph.

— Output : One or more bounding boxes (e.g., defined by a point, width, and

height), and a class label for each bounding box.

4. Image Segmentation : Image segmentation is a computer vision technique that

partitions a digital image into discrete groups of pixels—image segments—to inform

object detection and related tasks. By parsing an image’s complex visual data into

specifically shaped segments, image segmentation enables faster, more advanced

image processing [43].

5. Face Recognition : Face recognition is nothing new. We are born with a natural

capability to differentiate and recognize faces. It is a trivial task for us. We can

recognize people we know in any kind of background, different lights, hair color..[36].

2.4 Conclusion

Form recognition combines traditional image processing and advanced deep learning

techniques to enhance document processing accuracy. Preprocessing improves input data

quality, while deep learning offers robust solutions for complex tasks. This chapter outlined

the essential methods, from preprocessing to deep learning models, demonstrating their

integration for efficient form recognition. Future advancements will continue to refine these

approaches, further automating and optimizing document processing workflows.

39

Chapitre 3
Model Development and Performance

Evaluation

3.1 Introduction

The purpose of this chapter is to present our Convolutional Neural Network (CNN)

models, their performance, datasets, and a novel preprocessing technique. We describe

the structure of the CNN models and discuss the use of the MNIST dataset, enhanced

through a skeletonization preprocessing step. In this preprocessing, handwritten digits are

converted into skeletal forms, which can improve the accuracy of recognition. We com-

pare model performance using Genetic Algorithm (GA) and Particle Swarm Optimization

(PSO). Performance metrics such as accuracy, precision, recall, and F1-score demonstrate

significant improvements with our preprocessing method. A comprehensive overview of

our models, datasets, and proposed preprocessing technique is provided in this chapter.

3.2 Setup and Training Procedure

For our handwritten digit recognition project, we used the Google Colab platform,

leveraging only the CPU for our experiments. We implemented two approaches to generate

convolutional neural network (CNN) architectures : one model using a genetic algorithm

and another model using the particle swarm optimization (PSO) algorithm. Each approach

was run for 10 iterations. Each generated CNN architecture was trained for 20 epochs,

using the Adam optimizer and a batch size of 128. These experiments were designed

40

Chapter 3 Model Development and Performance Evaluation

to develop a CNN architecture that could correctly classify handwritten digits from our

dataset.

3.3 Dataset

In our work, we use the MNIST dataset, which consists of 70,000 28x28 black-and-

white images of handwritten digits extracted from two NIST databases. The training

dataset consists of 60,000 images, while the testing dataset comprises 10,000 images. The

dataset contains 10 classes, one for each digit from zero to nine. Additionally, we use 20%

of the training data as validation data.

The following table provides the distribution of images across the classes in the training

and test sets :

Classes Training image Test image

0 5923 980

1 6742 1135

2 5958 1032

3 6131 1010

4 5842 982

5 5421 892

6 5918 958

7 6265 1028

8 5851 974

9 5949 1009

Total 60 000 10 000

Table 3.1 – Distribution of images in the MNIST dataset across training and test sets

The performance of different algorithms and models in the field of image classifica-

tion can be evaluated by using the MNIST dataset, which is a widely used benchmark.

The uniform distribution of images across classes ensures that the dataset provides a

comprehensive evaluation of a model’s ability to recognize handwritten digits. Our expe-

rimentation and analysis of CNN models optimized using Genetic Algorithm and PSO is

41

Chapter 3 Model Development and Performance Evaluation

Figure 3.1 – Random samples of each image class in dataset

based on this dataset.

3.3.1 Our Proposed Preprocessing for MNIST dataset

As part of our project, we applied a preprocessing technique to the MNIST dataset

in order to enhance the dataset used for training. Specifically, we used a skeletonization

function from Python to transform the handwritten digits into their thinned, skeletal

forms. This preprocessing step modifies the original dataset to a thin-line representation,

potentially improving the model’s ability to recognize and differentiate between different

digits.

Purpose and Rationale :

The skeletonization process is designed to strip away extraneous pixel data, leaving

only the essential structure of each digit. This could prove especially advantageous for

the field of machine learning models, as it reduces noise and focuses on the most critical

features of the input data. By converting each digit to its skeleton form, we aim to make

it easier for the CNN model to identify and classify digits based on their core shapes

and patterns. Furthermore, this technology improves the model’s ability to detect thin

numbers. The preprocessed version makes the numbers look smaller and more concise.

This may result in the loss of some pixels, resulting in thinning or even disappearance of

parts of numbers. With this transformation, the model must learn and recognize numbers

even when they are reduced to their basic structure. As a result, the model will be more

durable and accurate in classifying accurate and complex numbers.

42

Chapter 3 Model Development and Performance Evaluation

Implementation Details :

We implemented the skeletonization using the skimage library in Python, which pro-

vides robust tools for image processing. The skeletonization function works by iteratively

thinning the image until only the skeletal structure remains. Here’s a brief outline of the

steps involved :

— Image Loading : Load the original MNIST images.

— Thresholding : Convert the images to binary format where the pixel values are either

0 or 1.

— Skeletonization : Apply the skeletonization algorithm to produce the thinned, ske-

letal version of each digit.

— Dataset Expansion : Increase the dataset size by augmenting the skeletonized images

with slight variations to improve model robustness.

Dataset Overview :

After preprocessing, the new dataset contains 140,000 images, 120,000 for training

and 20,000 for testing. This expansion and transformation of the dataset aim to provide

a more robust training set, helping the model to generalize better. Additionally, we use

20% of the 120,000 training images as validation data.

Visual Comparison :

Below are examples of the dataset before and after the proposed preprocessing :

Figure 3.2 – Example of the dataset before and after the proposed preprocessing

43

Chapter 3 Model Development and Performance Evaluation

3.4 CNN models presentation

In this work, we utilized two optimization algorithms : Genetic Algorithm and Particle

Swarm Optimization (PSO). These algorithms were employed to optimize the performance

of our model, ensuring efficient and effective training. We present these algorithms in detail

to highlight their roles in improving the model’s performance.

3.4.1 Genetic Algorithm (GA)

The concept of genetic algorithms is based on natural selection, and is used to find

optimal solutions to complex problems. Here’s a precis of the way it works :

— Population Initialization : We start by generating an initial population of hyper-

parameters randomly. A unique combination of hyperparameter values characterizes

every individual in the population.

— Fitness Evaluation : Each individual in the population is evaluated using a fitness

function. Our fitness measure is the accuracy of the CNN model using the test data.

— Parent Selection : The individuals in the population with the highest accuracy

are selected to become the parents of the next generation.

— Crossover : The selected parents are combined to create a new generation of indivi-

duals. Crossover involves taking the average of the hyperparameters of two parents

to produce a child.

— Mutation : A small percentage of the new population is subjected to mutation,

where minor random changes are made to the hyperparameters. This helps maintain

genetic diversity within the population and avoids local minima.

— Iterations : The steps of selection, crossover, and mutation are repeated over seve-

ral generations. With each generation, the population evolves towards the optimal

combination of hyperparameters.

— Final Result : After a certain number of generations, the algorithm returns the best

individual from the last generation, which is the combination of hyperparameters

that yielded the fine outcomes in phrases of accuracy.

44

Chapter 3 Model Development and Performance Evaluation

3.4.2 The Particle Swarm Optimization Algorithm (PSO)

In PSO, the optimal population size is determined by the social behavior of birds

flocking or fish schooling. Here’s a summary of how it works :

— Initialization : A swarm of particles is initialized, with each particle representing

a potential solution (learning rate, regularization parameter, and dropout rates).

— Objective Function : In our case, the CNN model’s negative accuracy on the

test data is used to evaluate each particle’s position. The goal is to minimize this

objective function, thereby maximizing the model accuracy.

— Velocity and Position Update : Every particle adjusts its position in the search

space by updating its velocity. The update is influenced by its own best-known po-

sition and the best-known positions of its neighbors. This process mimics the social

aspect of swarming behavior.

This step is implicitly handled by the ParticleSwarm() optimizer in the Optim li-

brary, which updates the particles’ positions and velocities based on the objective

function evaluations.

— Iterative Optimization : Iteratively updating positions and velocities, the par-

ticles gradually achieve the optimal hyperparameter set. During each iteration, the

fitness of the new positions is evaluated, and the particles’ personal best and the

global best positions are updated accordingly.

— Convergence : After a specified number of iterations, the algorithm converges on

the set of hyperparameters that yield the highest accuracy. The best hyperparame-

ters found by the swarm are then used to train the final model.

3.4.3 Models Architecture

CNN models in this study consist of several convolutions, pooling, and fully connected

layers. The architecture of the model is designed to efficiently extract features from the

input images and perform classification. Below is a detailed description of each layer in

the model :

— Input data : 28x28 grayscale images.

45

Chapter 3 Model Development and Performance Evaluation

Figure 3.3 – CNN architecture optimezed by GA

— First Convolutional Layer : 6 filters, each of size 5x5, followed by ReLU activa-

tion.

— First MaxPooling Layer : 2x2 pooling size.

— Second Convolutional Layer : 16 filters, each of size 5x5, followed by ReLU

activation.

— Second MaxPooling Layer : 2x2 pooling size.

— Flatten Layer : Converts the 2D matrix information to a vector.

— First Dense Layer : 120 units, followed by ReLU activation.

— Dropout Layer :In our models, the Dropout rate typically ranges between 0 and

0.5, depending on the hyperparameters of each specific model.

— Second Dense Layer : 84 units, followed by ReLU activation.

— Second Dropout Layer : In our models, the Dropout rate typically ranges between

0 and 0.5, depending on the hyperparameters of each specific model.

— Output Layer : 10 units (one for each class)

This model consists of 44,426 parameters, all of which are trained to recognize handwritten

numbers.

3.4.4 Hyperparameters for each model

We present in this section the hyperparameters obtained from GA and PSO for our

CNN models. The key hyperparameters identified include learning rate, weight decay, and

dropout.

46

Chapter 3 Model Development and Performance Evaluation

CNN models with traditional MNIST dataset

1. CNN model optimized by GA

Here, we present the CNN model hyperparameters optimized by genetic algorithm.

The table below (table 3.2)lists the hyperparameters, their respective ranges, and

the best values identified during the optimization process.

Hyperparameter Range Best Value

Learning Rate [0.0001 : 0.001] 0.0004

Weight Decay [0 : 0.001] 0

Dropout 1 [0 : 0.5] 0.1

Dropout 2 [0 : 0.5] 0.1

Table 3.2 – Optimized Hyperparameters with the GA and Their Best Values

2. CNN model optimized by PSO

Here, we present the CNN model hyperparameters optimized by PSO algorithm.

The table below (table 3.3)lists the hyperparameters, their respective ranges, and

the best values identified during the optimization process.

Hyperparameter Range Best Value

Learning Rate [0.0001 : 0.001] 0.0001

Weight Decay [0 : 0.001] 0

Dropout 1 [0 : 0.5] 0.2

Dropout 2 [0 : 0.5] 0.1

Table 3.3 – Optimized Hyperparameters with PSO and Their Best Values

CNN models with enhansed MNIST dataset

1. CNN model optimized by GA

Here, we present the CNN model hyperparameters optimized by GA. The table

below (table 3.4)lists the hyperparameters, their respective ranges, and the best

values identified during the optimization process.

47

Chapter 3 Model Development and Performance Evaluation

Hyperparameter Range Best Value

Learning Rate [0.0001 : 0.001] 0.0003

Weight Decay [0 : 0.001] 0

Dropout 1 [0 : 0.5] 0.14

Dropout 2 [0 : 0.5] 0.1

Table 3.4 – Optimized Hyperparameters with the GA and Their Best Values

2. CNN model optimized by PSO

Here, we present the CNN model hyperparameters optimized by PSO algorithm.

The table below (table 3.5)lists the hyperparameters, their respective ranges, and

the best values identified during the optimization process.

Hyperparameter Range Best Value

Learning Rate [0.0001 : 0.001] 0.0001

Weight Decay [0 : 0.001] 0

Dropout 1 [0 : 0.5] 0.2

Dropout 2 [0 : 0.5] 0.15

Table 3.5 – Optimized Hyperparameters with the PSO algorithm and Their Best Values

3.5 Experimental material and platforms

3.5.1 Julia

Julia is an open source high-level, high-performance dynamic programming language

designed at MIT for large-scale, partial-differential equation simulations and distributed

linear algebra.

Julia’s ability to support scientific computing makes it a good choice for designing ma-

chine learning models and AI simulations.

Compared to other platforms, Julia is known for being easy to use. Additionally, it is

acknowledged for its speed comparable to C, dynamic nature akin to Ruby, general ca-

pabilities like Python, statistical friendliness similar to R, powerful performance in linear

algebra like Matlab, and natural proficiency in string processing like Perl[44].

48

Chapter 3 Model Development and Performance Evaluation

3.5.2 google colab

Google Colab is a cloud-based platform provided by Google for collaborative coding,

where users can write, execute, and share code. It offers access to various computing

resources such as CPU, GPU, and TPU. Users can run machine learning models, analyze

data, and perform computational tasks using Jupyter notebooks without the need for

local setup or installation.

3.5.3 Flux

Flux.jl is a powerful and flexible machine learning library in Julia, known for its

simplicity and high performance. It offers an intuitive API for model building and training,

utilizing Julia’s JIT compilation for efficient execution. Flux.jl integrates well with other

Julia packages like CUDA.jl for GPU acceleration, making it suitable for both research

and production.

3.5.4 Plots

The Plots package in Julia is a versatile, high-level plotting tool designed to work

seamlessly with multiple plotting backends. Its goal is to provide powerful functionality

while remaining intuitive, allowing users to create sophisticated visualizations with mini-

mal code.

49

Chapter 3 Model Development and Performance Evaluation

3.5.5 Images

Julia’s Images package offers a complete framework for image processing and com-

puter vision tasks. It offers a rich set of tools for loading, manipulating, and analyzing

images with ease and efficiency. The package supports a wide variety of image formats and

integrates seamlessly with Julia’s ecosystem for scientific computing. Images.jl is highly

extensible, allowing users to implement custom algorithms and pipelines for their specific

needs. Both academic research and practical applications in image analysis can benefit

from its powerful combination of performance and flexibility.

3.6 Results and discussion

3.6.1 CNN models with traditional MNIST dataset

We discuss the results achieved using these hyperparameters, including the accuracy

and loss curves, the ROC curve, the confusion matrix, and the classification report.

CNN model with GA

First of all, we achieved an impressive test accuracy of 98.92%. The results clearly

indicate that the CNN model trained with optimized hyperparameters is effective.

To provide a comprehensive evaluation of the model’s performance, we present the

following results :

1. Accuracy and Loss Curves

In the figure 3.4 , both training and test sets have accuracy curves over 20 epochs.

The training accuracy represented by the blue line, while the red line represents

the test accuracy. There is a slight dip in accuracy at first, which is normal as the

model learns and adjusts its weights. The training accuracy quickly improves and

stabilizes around 99.8%, indicating that the model is learning well from the training

data. The test accuracy shows some fluctuations but generally remains high, around

98.9%, demonstrating good generalization to unseen data.

50

Chapter 3 Model Development and Performance Evaluation

Figure 3.4 – Accuracy Curve of CNN model optimized by GA

Figure 3.5 – Loss Curve of CNN model optimized by GA

Figure 3.5 shows the loss curves for both the training and validation sets over 20

epochs. The blue line represents the training loss, while the red line represents the

validation loss. Initially, both training and test loss are relatively high, with the

validation loss showing more variability. As training progresses, the training loss

decreases steadily, reaching a low value of 0.004 at the end of the 20 epochs. The

validation loss also decreases but shows more fluctuations compared to the training

loss, ending at a value of 0.05. Overall, the model demonstrates strong performance,

with both training and test losses significantly reduced by the end of the training

period.

51

Chapter 3 Model Development and Performance Evaluation

2. Confusion Matrix

The confusion matrix for the model is shown in Figure 3.6.

The diagonal elements of the confusion matrix represent the instances that were

Figure 3.6 – Confusion matrix of CNN model optimized by GA

correctly classified by the model.

The off-diagonal elements represent the misclassified instances, providing insight

into specific classes where the model may have difficulty distinguishing between

similar digits.

In general, the confusion matrix substantiates the high performance of the CNN

model optimized with the genetic algorithm in accurately classifying handwritten

digits.

3. ROC curve

The provided ROC curve graphically represents the performance of a classification

model, with the x-axis denoting the False Positive Rate (FPR) and the y-axis re-

presenting the True Positive Rate (TPR). This blue ROC curve illustrates a high

TPR over various thresholds and a low FPR over lower thresholds, as indicated by

a vertical ascent at the beginning and a horizontal run at the top. This signifies

exceptional model performance, close to the top left corner of the plot, which is

characteristic of a nearly perfect classifier. The dashed diagonal line serves as a ba-

seline, representing random guessing where TPR equals FPR. In comparison to a

52

Chapter 3 Model Development and Performance Evaluation

random guess classifier, the model shows excellent discriminatory power because the

ROC curve lies near the top left corner.Show figure 3.7 for a visual representation

of the ROC curve, which clearly demonstrates the model’s high performance and

excellent ability to distinguish between positive and negative classes.

Figure 3.7 – ROC Curve of CNN model optimized by GA

4. Classification Report

The classification report gives a comprehensive analysis of performance metrics for

every class in the digit recognition task. These metrics include precision, recall, and

F1-score, which are essential for evaluating the accuracy and effectiveness of the

model. The figure below shown the results :

Figure 3.8 – Classification report of CNN model optimized by GA

53

Chapter 3 Model Development and Performance Evaluation

The model performs exceptionally well across all classes, as indicated by the overall

precision, recall, and F1-score values of 0.9892. Specifically, the presicion is 0.9893.

The report indicates that the model maintains a high level of performance consis-

tently across all digit classes, with slight variations. For instance, class 4 has the

highest precision (0.9990), while class 9 has the lowest precision (0.9783). Never-

theless, all classes exhibit strong performance metrics, demonstrating the model’s

robustness and accuracy in recognizing handwritten digits.

CNN model with PSO

First of all, we achieved an impressive test accuracy of 98.98%. It is clear from these

results that the CNN model trained with the optimized hyperparameters is effective.

For the purpose of providing a comprehensive evaluation of the performance of the

model, we present the following results :

1. Accuracy and Loss Curves

The graph provided shows the accuracy of a CNN model optimized using the PSO

algorithm over 20 epochs, with separate lines representing training and test accu-

racy. The training accuracy starts at approximately 98% and consistently increases,

reaching around 99.8% by the 20th epoch. The model improves its performance with

each epoch as it learns from the training data. The validation accuracy also shows

a positive trend, starting near 97.7% and reaching approximately 98.95% by the

20th epoch. The results demonstrate that the PSO algorithm effectively optimizes

the CNN model, achieving high accuracy on both training and validation datasets.

The final accuracies of 99.8% for training and 98.95% for validation data reflect the

model’s strong learning. Show figure 3.9 to visualize the accuracy trends.

54

Chapter 3 Model Development and Performance Evaluation

Figure 3.9 – Accuracy curve of CNN model optimized by PSO

Initially, both training and validation loss values start relatively high, around 0.05

and 0.07 respectively. By the 20th epoch, the training loss has decreased steadily,

reaching approximately 0.005, indicating that the model is effectively minimizing

error. The validation loss also shows a significant reduction, reaching around 0.03

by the 20th epoch. Overall, the graph shows that the PSO algorithm effectively

reduces both training and validation losses, with the final values indicating a strong

learning capability and good generalization performance of the CNN model. Show

figure 3.10

Figure 3.10 – Loss curve of CNN model optimized by PSO

55

Chapter 3 Model Development and Performance Evaluation

2. Confusion Matrix

The confusion matrix shows the model’s performance in classifying handwritten

digits from the MNIST dataset when optimized using the Particle Swarm Opti-

mization (PSO) algorithm. Classification accuracy is high across all classes, with

diagonal values close to 100%. For instance, the correct classifications for digit ’0’

are 977 out of 980, and for digit ’1’, they are 1130 out of 1135. Misclassifications

are minimal, as indicated by the low off-diagonal values. For example, digit ‘3’ is

misclassified as digit ‘5’ only 4 times, and digit ‘8’ as digit ‘3’ 3 times.

Some specific misclassification trends are observed, such as digit ‘5’ being confused

with digit ‘3’ 9 times and with digit ‘6’ 1 time. Digit ‘4’ is misclassified as ‘9’

14 times, which is slightly higher compared to other classes. Despite these minor

misclassifications, the overall performance is highly consistent, with the majority of

predictions being correct.Show figure 3.11.

Figure 3.11 – Confusion Matrix of CNN model optimized by PSO

3. ROC Curve

The ROC curve for the PSO-optimized model demonstrates excellent performance,

with the curve closely following the left-hand border and the top border of the plot,

indicating a high true positive rate and a low false positive rate. Its near-perfect

classification ability is evident in an AUC (area under the ROC curve) close to 1.0,

demonstrating high precision, recall, and overall performance.Show figure 3.12.

56

Chapter 3 Model Development and Performance Evaluation

Figure 3.12 – ROC Curve of CNN model optimized by PSO

4. Classification Report

The classification report for the PSO-optimized CNN model demonstrates exceptio-

nal performance in classifying handwritten digits from the MNIST dataset. In all

classes, the model achieves high precision, recall, and F1-scores, with overall metrics

of 0.9898. This indicates the model’s accuracy in making correct predictions and its

effectiveness in identifying positive instances. The consistently high scores across

all digit classes reflect the model’s robustness and reliability in distinguishing bet-

ween different handwritten digits with minimal errors. Figure 3.13 provides detailed

values for each class.

Figure 3.13 – Classification Report of CNN model optimized by PSO

57

Chapter 3 Model Development and Performance Evaluation

Comparison of results

To compare the performance of the two CNN models, one optimized using a genetic

algorithm (GA) and the other using particle swarm optimization (PSO), we examine

the provided metrics and the accompanying bar chart. As depicted in the chart, both

optimization techniques yield extremely high accuracy, precision, recall, and F1 scores.

Specifically, the accuracy for the GA-optimized model is 98.92%, while the PSO-optimized

model achieves a slightly higher accuracy of 98.98%.

According to the confusion matrices for both models, the GA model underperforms in

some classes compared to the PSO model, which has fewer misclassifications. For instance,

in class 2, the GA model misclassifies more samples compared to the PSO model. This

trend is consistent across other classes, indicating that the PSO model might be better

at distinguishing between different digits, especially in challenging cases.

The precision, recall, and F1 scores for both models are also extremely close, with

the PSO model having marginally better scores across these metrics. This suggests that

while both models perform exceptionally well, the PSO model has a slight edge in terms

of generalizing better to the test data.

Overall, the comparison highlights that while both optimization algorithms are effec-

tive, PSO provides a marginal improvement in performance metrics. The provided image

further visualizes this comparison, showing the detailed breakdown of these metrics for

each model. Here is figure 3.14 presenting the detailed breakdown of these metrics :

Figure 3.14 – Comparison of CNN Model Performance with different optimization al-

gorithms

58

Chapter 3 Model Development and Performance Evaluation

3.6.2 CNN models with enhanced MNIST dataset

CNN model with GA

1. Accuracy and Loss Curves

Graph showing in figure 3.15 CNN accuracy over 20 epochs for training and vali-

dation datasets. The training accuracy, depicted by the blue line, starts at approxi-

mately 97.66%, steadily increasing to around 99.5% by the 20th epoch, indicating

that the model is effectively learning from the training data. The validation accu-

racy, shown by the orange line, begins at about 96.6% steadily increasing to around

98.4%. This demonstrates that the model is not only learning well from the training

data but also generalizing effectively to the validation data.

Figure 3.15 – Accuracy curve of CNN model optimized by GA

In Figure 3.16, we show the CNN’s loss values over 20 epochs for both the training

and validation datasets. The training loss, represented by the blue line, starts at a

low value and continues to decrease, with minor fluctuations, ending around 0.008 at

the 20th epoch. Based on this consistent decline, the model is effectively minimizing

the training data error. The validation loss, shown by the orange line, begins at a hi-

gher value (0.1), reaching approximately 0.06 by the 20th epoch. Overall, the model

demonstrates strong performance, with both training and test losses significantly

reduced by the end of the training period.

59

Chapter 3 Model Development and Performance Evaluation

Figure 3.16 – Loss curve of CNN model optimized by GA

2. Confusion matrix

Overall, the confusion matrix of this model indicates that the model is performing

well, with most samples correctly classified. However, there are classes, particularly

classes 3, 5, and 9, where classification errors are slightly more pronounced. This

could indicate similarities between these classes or shared features that make the

distinction more challenging for the model.The figure 3.17 represents the detailed

confusion matrix.

Figure 3.17 – Confusion matrix of CNN model optimized by GA

3. ROC curve

Based on the ROC curve(show figure 3.18), the blue line shows the performance of

60

Chapter 3 Model Development and Performance Evaluation

the classification model, while the dashed line shows the results of random guessing.

It plots the True Positive Rate (TPR) towards the False Positive Rate (FPR). The

curve begins at (0,0), sharply rises to (0,1), then runs parallel to the y-axis to

(1,1), indicating perfect performance where TPR equals 1 and FPR equals 0. The

Area Under the Curve (AUC) measures the model’s ability to differentiate between

positive and negative classes, with 1 representing perfect classification. As the ROC

curve closely hugs the top-left corner, its AUC is nearly 1, indicating near-perfect

performance. The dashed line acts as a baseline for random guessing, which the blue

curve significantly surpasses. According to the ROC curve, the classification model

performs exceptionally well, nearly perfectly differentiating positive from negative

classes with a high level of accuracy.

Figure 3.18 – ROC curve of CNN model optimized by GA

4. Classification report

In the classification report represented by the figure 3.19, each class has its precision,

recall, and F1-score calculated, reflecting how well the model predicts each specific

class. For most classes, the precision and recall values are very high, typically above

0.98, indicating that the model is highly accurate in its predictions and correctly

identifies true positives while minimizing false positives and false negatives.

Class 0 through Class 9 show minor variations in their scores, with Class 5 and Class

9 having slightly lower precision and recall compared to the other classes. Despite

these minor discrepancies, the overall precision, recall, and F1-score for the model

stand at 0.9845, showcasing the model’s robust performance and generalization ca-

61

Chapter 3 Model Development and Performance Evaluation

pabilities across the dataset. This high overall performance metric suggests that the

model is reliable and performs consistently well across different classes.

Figure 3.19 – Classification report of CNN model optimized by GA

CNN model with PSO

1. Accuracy and Loss Curves

The graph illustrates the accuracy of a CNN model over 20 epochs, depicting both

training and validation accuracy. The training accuracy, represented by the blue line,

starts around 97.9% and shows a steep increase during the first few epochs, leveling

off around 99.5% by the 20th epoch, suggesting effective learning from the training

data. The orange line, which represents the validation accuracy, begins close to

97.6% and gradually increases to around 98.6% by the 20th epoch. Despite showing

minor fluctuations, this suggests some variability in the model’s performance when

dealing with unseen data. These accuracy curves demonstrate that the CNN model

achieves high accuracy on both training and validation datasets. The final accuracies

of 99.5% for training and 98.6% for validation data reflect the model’s strong learning

and generalization capabilities. Show figure 3.20 to visualize the model’s learning

process and performance trends over the epochs.

62

Chapter 3 Model Development and Performance Evaluation

Figure 3.20 – Accuracy curve of CNN model optimized by PSO

The ”Loss vs Epoch” graph (figure 3.21) shows the training and validation loss of a

CNN model over 20 epochs. The training loss, depicted by the blue line, decreases

significantly from approximately 0.06 at the first epoch to around 0.01 by the 20th

epoch, indicating effective learning and reduction of errors on the training data. The

validation loss, represented by the orange line, also decreases initially but shows some

fluctuations between epochs 10 and 20, settling at approximately 0.045 by the final

epoch. These fluctuations suggest variability in the model’s performance on unseen

data. Despite this, the overall trend of decreasing validation loss indicates that the

model is generalizing well, although not as smoothly as on the training data. The

final epoch shows a validation loss of 0.045 and a training loss of 0.01.

Figure 3.21 – Loss curve of CNN model optimized by PSO

63

Chapter 3 Model Development and Performance Evaluation

2. Confusion matrix

The confusion matrix shows the model’s performance in classifying handwritten

digits from a dataset. Classification accuracy is high across all classes, with most

values along the diagonal indicating correct classifications. For instance, digit ’0’ is

correctly classified 1952 times out of 1960, digit ’1’ is correctly classified 2247 times

out of 2270, and digit ’2’ is correctly classified 2028 times out of 2064. Misclassifica-

tions are minimal, with off-diagonal values indicating errors. For example, digit ’4’

is misclassified as digit ’9’ 13 times. Overall, the model shows strong performance,

with the majority of predictions being accurate and only a few misclassifications

present. Show figure 3.22 to visualize the distribution of predictions

Figure 3.22 – Confusion matrix of CNN model optimized by PSO

3. ROC curve

A high true positive rate and a low false positive rate are evidenced by the ROC

curve of the PSO-optimized model, which is closely tracing the top and left borders

of the plot. Its near-perfect classification capability is evident with an AUC (Area

Under the ROC Curve) approaching 1.0. Show figure 3.23.

64

Chapter 3 Model Development and Performance Evaluation

Figure 3.23 – ROC curve of CNN model optimized by PSO

4. Classification report

We note from the classification report shown in the figure 3.24, the precision values

ranging from 0.9669 to 0.9951, indicate the proportion of true positive predictions

among all positive predictions made for each class. Recall values, ranging from 0.9757

to 0.9959, reflect the proportion of true positives cor- rectly identified out of all actual

positives for each class. The F1-scores, combining precision and recall, range from

0.9781 to 0.9931, providing a balanced measure of the model’s accuracy for each

class. The overall metrics show an excellent perfor- mance with precision, recall,

and F1-score all at 0.985.

Figure 3.24 – Classification report of CNN model optimized by PSO

65

Chapter 3 Model Development and Performance Evaluation

Comparison of results

As shown in the provided results and chart, there is a subtle but notable difference

between the two models optimized with Genetic Algorithm (GA) and Particle Swarm Op-

timization (PSO). The PSO-optimized CNNmodel slightly outperforms the GA-optimized

model across all evaluated metrics. Specifically, the PSO model achieves an accuracy of

98.52%, marginally higher than the GA model’s 98.46%. Similarly, the precision, recall,

and F1 score for the PSO model all stand at 98.5%, compared to 98.4% for the GA model.

These consistent improvements suggest that the PSO model handles certain classes better,

as evidenced by fewer misclassifications in the confusion matrices. The bar graph visually

corroborates this, showing nearly identical performance with the PSO model having a

slight edge in all metrics. As a result, while both optimization techniques are effective,

the PSO-optimized model shows marginally superior performance, suggesting that PSO

might be a more effective optimization algorithm for this particular CNN model and

dataset.Show figure 3.25.

Figure 3.25 – Comparison of CNN Model Performance with GA and PSO

66

Chapter 3 Model Development and Performance Evaluation

3.7 Comparison of models

On the chart (figure 3.26), four models are compared based on their accuracy and

loss : PSO+MNIST, GA+MNIST, PSO+newMNIST, and GA+newMNIST. The first two

models use the standard MNIST dataset, while the latter two use an enhanced dataset

with preprocessing through skeletonization, resulting in a new dataset of 140,000 samples.

Observing the chart, we see that PSO+MNIST has an accuracy of 0.9900 and a loss of

0.0371, GA+MNIST has an accuracy of 0.9892 and a loss of 0.0478, PSO+newMNIST has

an accuracy of 0.9851 and a loss of 0.0518, and GA+newMNIST has an accuracy of 0.9812

and a loss of 0.0783. The models trained on the enhanced dataset (PSO+newMNIST

and GA+newMNIST) show a slight decrease in accuracy but are trained on a more

diverse set of shapes due to the preprocessing. This means they can recognize a wider

variety of patterns and are more robust to variations in the data. In practical terms,

although the losses are slightly higher, these models are better because they generalize

more effectively and recognize a broader range of patterns. This makes them particularly

suited to applications where varied pattern recognition is crucial.

In conclusion, despite a slight increase in loss, the PSO+newMNIST and GA+newMNIST

models are better because they benefit from the diversity and richness of the enhanced

dataset, improving their generalization ability and performance in varied real-world sce-

narios.

Figure 3.26 – Comparison of models

67

Chapter 3 Model Development and Performance Evaluation

3.8 Comparison with other works

The following table (3.6) presents a comparison with other works in the field

Reference dataset model accuracy

[45] MNIST CNN+KNN 98.80

[46] MNIST CNN 99.2

[47] MNIST CNN+gabor 98.78

[48] MNIST CNN 98.16

[49] MNIST MLP 97.32

[50] MNIST CNN 98.86

Our proposed method MNIST CNN+GA 98.92

MNIST CNN+PSO 98.98

MNIST+preprocessing CNN+GA 98.45

MNIST+preprocessing CNN+PSO 98.51

Table 3.6 – Comparison with other works

3.9 Conclusion

The conclusion of this chapter highlights the successful implementation and evaluation

of CNN models. By comparing Genetic Algorithm (GA) and Particle Swarm Optimiza-

tion (PSO), we demonstrate the effectiveness of our approach and the significant potential

of these optimization methods to enhance CNN-based recognition systems. This compre-

hensive overview provides valuable insights into the benefits of our preprocessing method

and the strengths of different optimization techniques in the context of handwritten digit

recognition.Furthermore, for our platform presented in the upcoming chapter, we have

chosen the CNN model optimized with PSO and the new dataset.

68

Chapitre 4
Implementation and develepment

4.1 Introduction

In this chapter, we will discuss the final part, which represents the implementation of

our project, based on the mechanisms mentioned above in the Third chapter(CNN model

optimized with PSO and the new dataset). This chapter consists of two parts : the first

presents the environment of our program, as well as the results of the tests that were

conducted.

4.2 Platform Overview

In the following illustration, we show how our system predicts an image by showing

each layer it must pass through 4.1. Beginning with image acquisition followed by prepro-

cessing steps such as binarization and skeletonization. The preprocessed image undergoes

segmentation into lines, words, and digits, which are then subjected to prediction and

location identification. Finally, the prediction results and digit locations are concatenated

to generate the final recognized output.

69

Chapter 4 Implementation and develepment

Figure 4.1 – General diagram of our platform system

4.3 Development Tools

VS Code :Visual Studio Code is a source code editor and an integrated development

environment (IDE) of Microsoft. It is open-source and cross-platform, meaning it runs

on Windows, Linux and Mac. It was designed for web developers, but it supports many

other programming languages such as C++, C#, Python, Java, etc. It offers many features

70

Chapter 4 Implementation and develepment

like syntax highlighting, auto-completion, error highlighting, code navigation, debugging,

versioning, integration with Git, and many more. It is also extensible using a wide variety

of extensions developed by the community, allowing developers to customize the editor

according to their needs [51].

4.4 Configuration Used in the implementation :

The configuration of the hardware used in our implementation is :

— ASUS VivoBook Core i7-8550U CPU @ 1.80GHz 1.99 GHz.

— RAM size 16 GB.

— 500GB Hard Drive Size.

— Windows 64-bit Exploitation System.

4.5 Server-Side Development

To ensure that our platform works effectively, we use a range of techniques and tech-

nologies, including

4.5.1 RESTful API

A REST API (also known as RESTful API) is an application programming interface

(API or web API) that conforms to the constraints of REST architectural style and allows

for interaction with RESTful web services.

We use RESTful APIs to integrate all the components of our application. Our platform

utilizes multiple programming languages, including Julia, Python, and JavaScript. RES-

Tful APIs provide a standardized and efficient way to enable communication and data

exchange between these diverse components. This approach allows us to maintain flexi-

bility and scalability while ensuring seamless interoperability across different parts of our

system [52]

4.5.2 RESTful APIs in Julia

This language is fast, dynamic, and fits the needs of a wide variety of platforms,

paradigms, and programming paradigms. Visit its website for details on its science, vi-

71

Chapter 4 Implementation and develepment

sualization, data science, and machine learning domains, as well as events and the open

source ecosystem.

In our application, Julia is employed primarily for server-side functionalities, model ma-

nagement, image preprocessing, and prediction tasks. Specifically, we use :

1. Genie.jl :

We utilize Genie.jl to ensure that our data transfers correctly and efficiently when

communicating with our Python API. By employing RESTful APIs, we facilitate

seamless and reliable data exchange between Genie.jl and Python.

2. BSON : Used to load our pre-trained machine learning model (our CNNs model)

stored in a BSON file.

3. Images and related libraries :These are used for loading, converting, and pre-

processing images to prepare them for prediction.

4. Flux : This library facilitates the prediction process using the loaded model.

5. JSON : Used for encoding the prediction results into JSON format, making it easy

to return responses from the server.

4.5.3 RESTful APIs in Python

Python is an interpreted, object-oriented, high-level programming language with dy-

namic semantics. Its high-level built in data structures, combined with dynamic typing

and dynamic binding, make it very attractive for Rapid Application Development, as well

as for use as a scripting or glue language to connect existing components together[53] .

Python is utilized extensively in our FastAPI application for various tasks, including :

1. FastApi is a modern, fast (high-performance), web framework for building APIs

with Python based on standard Python type hints [54].

2. Image Processing : Python’s OpenCV library (cv2) is employed for image proces-

sing tasks such as resizing, rotating, converting to grayscale, and applying various

filters. These operations are crucial for extracting text from images and enhancing

image quality.

3. HTTP Requests : Python’s requests library is used to make HTTP requests to an

external server endpoint (julia server) to obtain predictions for processed images.

72

Chapter 4 Implementation and develepment

4. Server Configuration and Deployment : Python is used to configure the server

settings and start the FastAPI application using the uvicorn ASGI server. Additio-

nally, the application is designed to run on the specified host and port for deploy-

ment.

4.6 Client-Side Development

In our application, the client-side development focuses on creating an intuitive, res-

ponsive, and dynamic user interface. We leverage modern frontend technologies to ensure

a seamless user experience. Below are the key technologies and techniques we employ :

4.6.1 React.js for the Frontend

1. Introduction to React.js : React.js is a popular JavaScript library for building

user interfaces, particularly for single-page applications where data dynamically

changes over time.React.js allows developers to create large web applications that

can update and render efficiently in response to data changes.

In our application, we use React.js to build an intuitive and responsive user interface.

Specifically, React.js enables us to Handle API Responses and Display Prediction

Results[55].

2. Integration with RESTful APIs Making HTTP calls to the backend server and

changing the user interface based on the result is how a React app consumes a

RESTful API. The fundamental procedures for using a RESTful API in React are

as follows :

— Install an HTTP request library, such as Axios.

— Specify the RESTful API endpoint URLs that you want to use.

— In your React project, create a component that will make the API call. This

can be a class-based component or a hook-based functional component.

— Make a request to the relevant endpoint using the HTTP request library, han-

ding in any necessary parameters or data.

— Process the API response by changing the state of the component with the

obtained data. If an error occurs, respond correctly to the error status.

— Render the changed state in the user interface of the component [56] .

73

Chapter 4 Implementation and develepment

4.6.2 Tailwind Css

Tailwind CSS is a CSS framework that provides a set of utility classes, enabling develo-

pers to create a wide range of styles without writing custom CSS. Instead of defining CSS

rules, you apply utility classes directly to your HTML elements. This approach stream-

lines the development process and offers great flexibility for customization.

In our application, we use Tailwind CSS to Rapidly Develop Styles,Customize Easily,Reduce

CSS Overhead [57].

4.7 Platform components

The image below 4.2 shows the interface of the OCR Platform. It consists of various

components that play a specific role in facilitating OCR (Optical Character Recognition)

and enhancing user interaction.

Figure 4.2 – Platfotm Components

1. Header

— Title : “THE OCR PLATFORM”

2. Options Panel (Left Sidebar)

— Crop all : A button to crop all selected images.

— Right rotation : A button to rotate the selected area to the right with 8 ◦.

74

Chapter 4 Implementation and develepment

— Left rotation : A button to rotate the selected area to the left with 8 ◦.

— Smart Erase : A button to intelligently erase parts where the user select in

the image.

3. Main Workspace (Center)

— Image Upload Area : A central area where users can drop images or click

to upload them. This is where the image to be processed will be displayed.

— Predict it : A button to run the OCR prediction on the selected area from

the image.

— Show Output Image : A button to run the image after the preprocessing

and the segmentation.

— Fetch Predictions : A button to fetch text predictions from the OCR process.

4. Filters Panel (Right Sidebar)

— Remove Shadows : A button to remove shadows from the image.

— Lighten : A slider to adjust the lightness of the image.

— Magic Color : A slider to enhance the colors in the image.

— Binarize :Convert the image to black and white by specifying a brightness

level cutoff.

5. Bottom Action Bar

— Save the coordinates : A button to save the coordinates of the processed

image area in .txt file.

4.8 Implementation

We design our platform to be simple and easy to use and in this section we will explain

the steps to get the prediction of an image with handwritten numbers.The flowchart below

4.3 illustrates the HDR process : starting from opening the platform, optionally adjusting

image settings, selecting the area, predicting, and finally fetching predictions or displaying

the output image.

75

Chapter 4 Implementation and develepment

Figure 4.3 – Steps to the HDR

Step 1 : Open the HDR PlatformLoad the image with handwritten num-

bers into the HDR platform. You will see the initial screen as shown in Figure

4.4

Figure 4.4 – First step to the HDR

76

Chapter 4 Implementation and develepment

Step 2 : Adjust Image Settings (Optional)

——— Use the filter options on the right to remove shadows, lighten the image, adjust

the magic color, or echo if needed (Figure 4.5) in our test we use the Binrize

slider to make the image black and white.

Figure 4.5 – Second step to the HDR

Step 3 : Select the Area

— Draw a box around the area containing the handwritten numbers to select it.

This area should encompass all the digits you want the OCR to recognize.In

our test we used Crop all button to select the full image from the options on

the left (Crop all, Right rotation, Left rotation, Smart Erase) they are used if

any adjustments to the selected area or image are needed.e (Figure 4.6).

77

Chapter 4 Implementation and develepment

Figure 4.6 – Theerd step to the HDR

Step 4 : Fetch Predictions and Show Output Image

— Click the ”Predict it” button to process the selected area and click the ”Fetch

Prediction” button to get the HDR predictions for the handwritten num-

bers,and click on the ”Show Output Image” button to show the image after

the segmentation and the preprocessing(Figure 4.7).

Figure 4.7 – Forth step to the HDR

78

Chapter 4 Implementation and develepment

4.9 Conclusion

This chapter discusses the implementation of our project in detail, detailing the various

components and technologies used. A brief overview of the platform was presented, as

well as a discussion of the development tools and configurations employed, as well as

a clarification of its operational mechanisms. As a result of the tests conducted, our

implementation has proven to be effective and robust, demonstrating that our project has

practical applications.

79

General Conclusion

This report presents a comprehensive evaluation of different Convolutional Neural Net-

work (CNN) models for the recognition of handwritten digits using the MNIST dataset.

Results demonstrate that optimization and preprocessing techniques can improve the

performance of models. On the standard MNIST dataset, the CNN model using Genetic

Algorithm (GA) achieved 98.92% accuracy, while the Particle Swarm Optimization (PSO)

model achieved 98.98% accuracy.

Moreover, our novel preprocessing technique, involving skeletonization, resulted in 98.45%

accuracy for CNN models with GA, and 98.51% accuracy for CNN models with PSO.

Although traditional MNIST dataset models produce slightly higher accuracy scores, en-

hanced MNIST dataset models with skeletonization are considered superior due to the

diversity and richness of the enhanced dataset. As a result of this improvement, they are

now more capable of generalizing and performing in a variety of real-world situations.

Integrated analyses of GA and PSO demonstrate that both have potential in optimizing

CNN-based recognition systems, with PSO demonstrating a marginal advantage. The

incorporation of skeletonization as a preprocessing step, despite its benefits, suggests

that further refinement and additional preprocessing strategies could lead to even greater

improvements.

Looking ahead, future work on this application should focus on several key areas for the

purpose of improving its robustness and versatility. Among the important directions is the

implementation of new preprocessing functions, such as rotations and scalings, to enrich

the dataset and improve the model’s generalization capabilities. Additionally, expanding

80

General Conclusion

the dataset to include letters and other characters will broaden the application’s scope

and utility.On the client side, users will be able to enter a template that will recognize only

variable characters and incorporate them into a PDF document. As an example, when a

postal check is numbered, the user will scan only the variable columns, simplifying the

process of numbering the check

As well, addressing the diversity of handwriting styles remains a key challenge. Future

iterations should aim to incorporate samples from a wider range of individuals to better

capture the variability in handwriting. The goal is to develop a method for seamlessly

integrating new handwriting samples into the training dataset, ensuring that the model

can accurately recognize characters written in different styles.

By further developing these aspects, the application can be further developed to sup-

port a wider range of handwritten characters and styles. This will ultimately lead to

a more robust and adaptable recognition system that can effectively handle real-world

handwriting variations.

81

Bibliographie

[1] Kumar, M., Jindal, M.K., Sharma, R.K. et al. Improved recognition results of offline

handwritten Gurumukhi characters using hybrid features and adaptive boosting. Soft

Comput 25, 11589–11601 (2021). https ://doi.org/10.1007/s00500-021-06060-1

consulté le 2024-02-15.

[2] Guedri marouane. La reconnaissance des chiffres manuscrits isolés en uti-

lisant l’apprentissage profond, 2022. http://dspace.univ-tebessa.dz:

8080/xmlui/bitstream/handle/123456789/1834/m%C3%A9moire%20%28HDRUDL%

29.pdf?sequence=1

Consulté le 2024-02-15.

[3] F. Bortolozzi L. S. Oliveira, E. Lethelier. Segmentation de caracteres manuscrits ba-

see sur une approche structurelle. https://www.etsmtl.ca/ETS/media/ImagesETS/

Labo/LIVIA/Publications/2000/OliveiraCIFED.pdf

Consulté le 2024-02-15.

[4] Hala Djerouni. Développement d’un système de reconnaissance de chiffres manuscrits,

2021. Projet de Fin d’Etudes Pour l’obtention du diplôme de Master en Informatique.

[5] https ://pyimagesearch.com/2021/11/22/improving-ocr-results-with-basic-image-

processing/

consulté le 2024-05-16.

[6] https ://towardsdatascience.com/pre-processing-in-ocr-fc231c6035a7

consulté le 2024-05-16.

[7] https ://medium.com/technovators/survey-on-image-preprocessing-techniques-to-

improve-ocr-accuracy-616ddb931b76

consulté le 2024-05-16.

82

http://dspace.univ-tebessa.dz:8080/xmlui/bitstream/handle/123456789/1834/m%C3%A9moire%20%28HDRUDL%29.pdf?sequence=1
http://dspace.univ-tebessa.dz:8080/xmlui/bitstream/handle/123456789/1834/m%C3%A9moire%20%28HDRUDL%29.pdf?sequence=1
http://dspace.univ-tebessa.dz:8080/xmlui/bitstream/handle/123456789/1834/m%C3%A9moire%20%28HDRUDL%29.pdf?sequence=1
https://www.etsmtl.ca/ETS/media/ImagesETS/Labo/LIVIA/Publications/2000/OliveiraCIFED.pdf
https://www.etsmtl.ca/ETS/media/ImagesETS/Labo/LIVIA/Publications/2000/OliveiraCIFED.pdf

Bibliography

[8] https ://medium.com/deep-learning-demystified/introduction-to-neural-networks-

part-1-e13f132c6d7e

consulté le 2024-05-16.

[9] Goodfellow Ian. Deep learning-ian goodfellow, yoshua bengio, aaron courville-google

books. 2016.

[10] Sangit Chatterjee, Matthew Laudato, and Lucy A Lynch. Genetic algorithms and

their statistical applications : an introduction. Computational Statistics & Data

Analysis, 22(6) :633–651, 1996.

[11] https ://www.coursera.org/articles/ai-vs-deep-learning-vs-machine-learning-

beginners-guide

consulté le 2024-05-16.

[12] Shubham Mendapara, Krish Pabani, and Yash Paneliya. Handwritten digit recog-

nition system. International Journal of Scientific Research in Computer Science,

Engineering and Information Technology, pages 76–85, 10 2021.

[13] Karez Abdulwahhab Hamad and Mehmet Kaya. A detailed analysis of optical charac-

ter recognition technology. International Journal of Applied Mathematics, Electronics

and Computers, 4 :244–249, 2016.

[14] Tarek Ahmed Ibrahim Abdelaziz and Urfa Fazil. Applications of integration of ai-

based optical character recognition (ocr) and generative ai in document understan-

ding and processing. Applied Research in Artificial Intelligence and Cloud Computing,

6(11) :1–16, Nov. 2023.

[15] Badr Al-Badr and Sabri A. Mahmoud. Survey and bibliography of arabic optical

text recognition. Signal Processing, 41(1) :49–77, 1995.

[16] https ://gizmodo.com/this-app-uses-your-phones-camera-to-automatically-count-

1846250188

consulté le 2024-02-23.

[17] https ://blog.google/products/google-lens/google-lens-features/

consulté le 2024-02-23.

[18] https ://pdf.wondershare.com/ocr/app-convert-handwriting-to-text.html

consulté le 2024-02-23.

83

Bibliography

[19] https ://play.google.com/store/apps/details ?id=com.microsoft.office.officelens

consulté le 2024-02-23.

[20] https ://brandingandbuzzing.com/google-lens-search-what-you-see/ : :text=Privacy

[21] https ://zapier.com/blog/best-mobile-scanning-ocr-apps/iscannerAccuracy : Accu-

racy can vary depending on camera quality, lighting, and app capabilities.

consulté le 2024-02-23.

[22] https ://support.therapynotes.com/article/99-tips-for-scanning-documents-and-

reducing-file-size : :text=Images

[23] https ://www.pen-to-print.com/

[24] https ://zapier.com/blog/best-mobile-scanning-ocr-apps/microsoft

consulté le 2024-02-23.

[25] https ://medium.com/@maahip1304/the-complete-guide-to-image-preprocessing-

techniques-in-python-dca30804550c

consulté le 2024-05-13.

[26] https ://nearlearns.medium.com/the-role-of-data-preprocessing-in-machine-

learning-why-its-necessary-702c06bd69c4

consulté le 2024-05-13.

[27] https ://medium.com/@maahip1304/the-complete-guide-to-image-preprocessing-

techniques-in-python-dca30804550c

consulté le 2024-05-13.

[28] https ://nextgeninvent.com/blogs/7-steps-of-image-pre-processing-to-improve-ocr-

using-python-2/

consulté le 2024-05-13.

[29] https ://medium.com/technovators/survey-on-image-preprocessing-techniques-to-

improve-ocr-accuracy-616ddb931b76

consulté le 2024-05-13.

[30] https ://www.geeksforgeeks.org/introduction-deep-learning/

consulté le 2024-05-16.

[31] John D Kelleher. Deep learning. MIT press, 2019.

[32] Jeff Heaton. Artificial intelligence for humans. (No Title), 2015.

84

Bibliography

[33] Jure Zupan. Introduction to artificial neural network (ann) methods : What they are

and how to use them. Acta Chimica Slovenica, 41, 01 1994.

[34] Vaibhav Verdhan. Computer Vision Using Deep Learning. Springer, 2021.

[35] Jojo Moolayil, Jojo Moolayil, and Suresh John. Learn Keras for deep neural networks.

Springer, 2019.

[36] Jason Brownlee. Deep learning for computer vision : image classification, object

detection, and face recognition in python. Machine Learning Mastery, 2019.

[37] Jason Brownlee. Data preparation for machine learning : data cleaning, feature se-

lection, and data transforms in Python. Machine Learning Mastery, 2020.

[38] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization. IEEE

computational intelligence magazine, 1(4) :28–39, 2006.

[39] https ://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119902881.fmatter

consulté le 2024-05-16.

[40] Sara Migliorini and Rostam J Neuwirth. The relevance of culture in regulating ai

and big data : the experience of the macao sar. In Elgar Companion to Regulating

AI and Big Data in Emerging Economies, pages 138–157. Edward Elgar Publishing,

2023.

[41] https ://link.springer.com/content/pdf/10.1007/978-3-319-78503-56.pdf

consultéle2024− 05− 16.

[42] Shengping Yang and Gilbert Berdine. The receiver operating characteristic (roc)

curve. The Southwest Respiratory and Critical Care Chronicles, 5 :34, 05 2017.

[43] https ://www.ibm.com/topics/image-segmentation

consulté le 2024-05-16.

[44] https://www.techopedia.com/definition/34833/julia-programming-language.

[45] Ayush Kumar Agrawal, A.K. Shrivas, and Vineet kumar Awasthi. A robust model

for handwritten digit recognition using machine and deep learning technique. In 2021

2nd International Conference for Emerging Technology (INCET), pages 1–4, 2021.

[46] Gaganashree J. S. Padmashali and Diksha Kumari. Handwritten digit recognition

using deep learning. International Journal of Research in Engineering, Science and

Management, 4(7) :182–185, Jul. 2021.

85

https://www.techopedia.com/definition/34833/julia-programming-language

Bibliography

[47] Md Zahangir Alom, Paheding Sidike, Tarek M. Taha, and Vijayan K. Asari. Hand-

written bangla digit recognition using deep learning, 2017.

[48] Md Jishan, Md Shahabub Alam, Afrida Islam, I. Mazumder, Khan Raqib Mahmud,

and Abul Azad. Characterization and recognition of handwritten digits using julia,

02 2021.

[49] https://www.geeksforgeeks.org/handwritten-digit-recognition-using-neural-network/.

[50] https://www.freecodecamp.org/news/deep-learning-with-julia/.

[51] https://bility.fr/definition-visual-studio-code/.

[52] https://www.redhat.com/en/topics/api/what-is-a-rest-api.

[53] https://www.python.org/doc/essays/blurb/.

[54] https://fastapi.tiangolo.com/.

[55] https://reactjs.org/.

[56] https://www.skillreactor.io/blog/integrating-react-app-with-a-rest-service/.

[57] https://dev.to/akashakki/tailwind-css-for-beginners-a-step-by-step-guide-3gff.

[58] https://www.geeksforgeeks.org/mnist-dataset/.

86

https://www.geeksforgeeks.org/handwritten-digit-recognition-using-neural-network/
https://www.freecodecamp.org/news/deep-learning-with-julia/
https://bility.fr/definition-visual-studio-code/
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.python.org/doc/essays/blurb/
https://fastapi.tiangolo.com/
https://reactjs.org/
https://www.skillreactor.io/blog/integrating-react-app-with-a-rest-service/
https://dev.to/akashakki/tailwind-css-for-beginners-a-step-by-step-guide-3gff
https://www.geeksforgeeks.org/mnist-dataset/

	Table of contents
	Table of figures
	List of Tables
	Abreviations list
	General Introduction
	Optical Character Recognition
	Introduction
	Optical Character Recognition
	Definition
	Historical
	Domain of application OCR
	Impact on society and industry
	Challenges

	 Existing applications
	IScanner
	Google Lens
	Pen To Print
	Microsoft Lens
	Comparative

	OCR Phases:
	Pre-processing
	Segmentation Phase
	Normalization Phase
	 Feature Extraction Phase
	Classification Phase

	Conclusion

	FORM RECOGNITION
	Introduction
	Preprocessing for Form Recognition
	Introduction
	 The Role of image Preprocessing
	 Exploring Image Preprocessing Methods

	Deep Learning Approaches for Form Recognition
	Introduction to Deep Learning
	Neural Networks Basics
	Deep Learning Architectures
	Data Preprocessing for Deep Learning
	Training Deep Learning Models
	Evaluation and Performance Metrics
	Deep Learning for Computer Vision

	Conclusion

	Model Development and Performance Evaluation
	Introduction
	Setup and Training Procedure
	Dataset
	Our Proposed Preprocessing for MNIST dataset

	CNN models presentation
	Genetic Algorithm (GA)
	The Particle Swarm Optimization Algorithm (PSO)
	Models Architecture
	Hyperparameters for each model

	Experimental material and platforms
	Julia
	google colab
	Flux
	Plots
	Images

	Results and discussion
	CNN models with traditional MNIST dataset
	CNN models with enhanced MNIST dataset

	Comparison of models
	Comparison with other works
	Conclusion

	Implementation and develepment
	Introduction
	Platform Overview
	Development Tools
	Configuration Used in the implementation:
	 Server-Side Development
	RESTful API
	RESTful APIs in Julia
	RESTful APIs in Python

	Client-Side Development
	React.js for the Frontend
	Tailwind Css

	Platform components
	Implementation
	Conclusion

	General Conclusion
	Bibliography

