People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

University of Akli Mohand Oulhaj — Bouira -
Faculty of Science and Applied Sciences

Computer science department

Master thesis

Computer science

Speciality: Computer Systems Engineering

Theme

Secure key management mechanism in Big Data

Supervised by Submitted by

e Mr. BOUDJELABA HAKIM e MR. BELGHIT Lounes

2023 /2024

Contents

Table of contents i
Table of figures i
List of Tables iii
Abbreviations list iv
General introduction 1
1 Key management 3
1.1 Imtroduction 3

1.2 Fundamentals of Cryptographic Keys 3
1.2.1 What is encryption?o 3

1.2.2 Cryptographic Keys L. 4

1.2.3 Digital Certificate 4

1.2.4 Types of Cryptographic Keys)

1.2.5 Key Length and Strength 6

1.2.6 Key Revocation and Renewal 6

1.3 Key Generation 7
1.3.1 Symmetric Key Generation 7

1.3.2 Asymmetric Key Pair Generation 8

1.4 Key Distribution Mechanisms 0L 10
1.4.1 Symmetric Key Distribution 10

1.4.2 Asymmetric Key Distribution 17

CONTENTS CONTENTS
1.5 Key Storage and Protection 19
1.5.1 Best Practices for Key Storage, 19

1.5.2 Key Management Systems, 20

1.5.3 Secure hardware storage L. 21

1.6 Conclusion 24
2 Key management in Big Data 26
2.1 Introduction 26
2.2 Fundamentals of Big Data 0L 26
221 WhatisBigData? oo 26
2.2.2 Characteristics of Big Data 27

2.3 Importance of Key Management in Big Data 28
2.3.1 Risks Associated with Inadequate Key Management 30

2.4 Challenges in Key Management for Big Data 31
2.5 Centralized Key Management Techniques in Big Data 32
2.5.1 Cloud Key Management Services 34
2.5.2 Hierarchical Key Management 35
2.5.3 Key Management Interoperability Protocol (KMIP) 37
2.5.4 Centralized Blockchain-based Key Management 39
2.5.5 Advantages of centralized key management 42
2.5.6 Inconveniences of centralized key management 43

2.6 Decentralized Key Management Techniques in Big Data 44
2.6.1 Distributed Key Management Systems (DKMS) 45
2.6.2 Bring Your Own Key 47
2.6.3 Decentralized Blockchain-based Key Management 49
2.6.4 Advantages of Decentralized key management 51
2.6.5 Inconveniences of Decentralized key management 52

2.7 Conclusion 53
3 Proposed Approach 54
3.1 Imtroduction 54
3.2 Proposed Idea for Key Management, 54
3.2.1 Methodology behind our proposed solution 56

CONTENTS CONTENTS

3.2.2 Enhancements and Distinctions Compared to Traditional Methods .

3.2.3 Technical background o000
3.3 Evaluation
3.3.1 Evaluation Metrics and Criteria
3.3.2 Simulations
3.3.3 Analyze of the Results
3.4 Validation
3.4.1 Queue Theory
3.4.2 Key Metricso
3.4.3 Comparison of Queuing Models
3.4.4 Analysis Using Queue Theory
3.5 Conclusion

General conclusion

Bibliography

60
62
69
69
70
80
82
82
82
83
83
87

88

90

Appreciation

I would like to extend my deepest appreciation to all those who have played a crucial
role in my journey.

To my incredible family, whose love and support have been the cornerstone of my
success:

To my mother, thank you for your endless patience, wisdom, and encouragement.
Your belief in me has been a constant source of strength and inspiration.

To my father, thank you for your unwavering confidence in my abilities and your
steadfast support. Your hard work and dedication have been a guiding light throughout
my life.

To my wonderful friends, thank you for your companionship, laughter, and encour-
agement. Your friendship has been a source of immense joy and has helped me through
both good times and bad.

To my dedicated teachers, thank you for your tireless efforts and commitment to our
education. Your knowledge, passion, and guidance have been instrumental in shaping our
futures. Your support has not only helped us achieve our academic goals but also inspired
us to strive for excellence in all aspects of our lives.

With heartfelt gratitude and sincere appreciation.

Belghit Lounes

Dedications

I dedicate this project to everyone who has contributed to its completion and success.

To my mentors and supervisors, your guidance and wisdom have been invaluable.
Thank you for your patience, your insightful feedback, and your unwavering support
throughout this journey.

To my colleagues and peers who collaborated and shared their knowledge, your team-
work has made this project a rewarding experience.

To my family and friends, thank you for your constant encouragement and under-
standing during the many long hours spent working on this project.

This project would not have been possible without each and every one of you.

Belghit Lounes

Abstract

Our project introduces a sophisticated key management solution tailored for Big Data
environments, comprising a Double Key Management Center (KMC) architecture with
static Load Balancers and a blockchain-based public record system. This innovative
approach addresses the complexities of key management by efficiently distributing cryp-
tographic key operations between the Issuer and Verifier KMCs, guided by predefined
routing rules set by the static traffic checker. This ensures optimal resource utilization
and scalability without the need for real-time adjustments. Meanwhile, the blockchain-
based public record system guarantees transparency, auditability, and security by im-
mutably logging all key management transactions. Through a rigorous evaluation process
encompassing simulations, experiments, and real-world testing, we validate the solution’s
effectiveness across performance metrics, scalability, reliability, security, and auditability,
ultimately providing a robust and efficient key management infrastructure tailored to the

demands of modern Big Data applications.

Résumé

Notre projet introduit une solution sophistiquée de gestion des clés adaptée aux en-
vironnements Big Data, comprenant une architecture KMC (Double Key Management
Center) avec controle du trafic statique (load balacer) et un systeme d’enregistrement
public basé sur la blockchain. Cette approche innovante aborde les complexités de la
gestion des clés en répartissant efficacement les opérations de clés cryptographiques entre
I’émetteur et le vérificateur, guidés par des regles de routage prédéfinies définies par le
vérificateur de trafic statique. Cela garantit une utilisation optimale des ressources et
une évolutivité sans besoin d’ajustements en temps réel. Pendant ce temps, le systeme
d’enregistrement public basé sur la blockchain garantit la transparence, l'auditabilité,
et la sécurité en enregistrant immuablement toutes les transactions de gestion des clés.
Grace a un processus d’évaluation rigoureux comprenant des simulations, des expériences
et des tests en situation réelle, nous validons l'efficacité de la solution a travers les mesures
de performance, I'évolutivité, la fiabilité, la sécurité et I'auditabilité, En fin de compte,
fournir une infrastructure de gestion des clés robuste et efficace adaptée aux exigences des

applications Big Data modernes.

.];

L e Ay ceral DU Sl Gaas lslate Gy 1) Sl Lisg e iy
ko L5 fe JB ple Jov pllaly U 5 0 SUjlee e Lrgall Aslall 3] 50
Chae Slladd Judll o5l Pl e plall 5] ol Sl ~dl s 4l
s 33aml] am g3l aeleds s ‘Cﬁju‘“ 5ax 5 ag C".:L'a.l&J&Mj S e on anidl
093 poesl) LabBy jlsall V1 pamz¥l i Mag el s 11 Gise Yny QI
Lol M) Pl ey ¢ I I PRV A IO TN I I (VR SN B R E e
slas 1o Jezad P g oaVly 33 LBy L3les)]) ks & o S
OhlsYly O)bxdly S5l el &)lo fwu LW Pl e el Kay dagd)1 5,1
(oo ly ZBsislly ¢ amsdl TGy Y Gyl e T S e GEaT W <2l
Sl Laras dosae Wby 98 Lt §)00) &8 Ll QLA 3 oy Lo 5] &Gy
Aoud) L BULY oladas

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Encryption and Decryption method [1] 4
A pictorial depiction of the Needham-Schroder protocol[2] 11
Diffie-Hellman Key Exchange [3] 14
HKDF key derivation [4] 16
Asymmetric Key Cryptography Distribution [5] 19
How a hardware security module works [6] 23
trusted platform modules [7] oo 24
Characteristics of Big Data [8] 29
centralized key management [9] Lo 33
Cloud Key Management Service [10] 35
Hierarchical Key Management [11] 36
Key Management Interoperability Protocol [12] 38
Centralized Blockchain-based Key Management [13] 42
Distributed Key Management Systems [14] 45
Decentralized Blockchain-based Key Management [15] 50
Global architecture for our proposal 56
Cross-KMC Synchronization 58
Sequence diagram of creation, update, and deletion of keys 59
Sequence diagram for other Operations 60
Public Record (Blockchain) [16] 62
Our Public Record(Blockchain) architecture 64

Network Monitoring [17] Lo 65

Table of figures

3.8 Load Balancers architecture [18]00 66
3.9 Results for Single KMC (Traditional Method) 73
3.10 Results Two KMCs with Blockchain Synchronization 76
3.11 Results Two KMCs without Blockchain Synchronization 79
3.12 Percentage of Failure accordingto RPS 81
3.13 Average Response Time according to RPS 82

3.14 Avrage Stay Time vs Arival rate for M/M/1 and M/M/2 86

i

List

3.1
3.2
3.3

of Tables

Results for Single KMC (Traditional Method)
Results Two KMCs with Blockchain Synchronization

Results for using two KMCs without blockchain synchronization

il

Abbreviations list

KMS Key Management System

TLS Transport Layer Security

SSL Secure Socket Layer

AES Advanced Encryption Standard
DES Data Encryption Standard
3DES Triple DES

RSA Rivest—Shamir—Adleman

ECC Elliptic Curve Cryptography
CRL Certificate Revocation List
DSA Digital Signature Algorithm

WEP Wired Equivalent Privacy
WPA Wi-Fi Protected Access

PSK Pre-Shared Keys

EAP Extensible Authentication Protocol
APs Access points

KDC Key Distribution Centers

TGT Ticket Granting Ticket

TGS Ticket Granting Server
SSO Single Sign-On

PKI Public Key Infrastructure
CA Certificate Authority

v

Abbreviations list

RA
OCSP
EAP
KDF
CRLs
OCSP
ACLs
RBAC
TPMs
HSMs
TPMs
HKM
KMIP
CKM
DKMS
HSMs
RBAC
BYOK
AWS
DDoS
KMC
SDN
CDNs
AS
TEE
MACs

Registration Authority

Online Certificate Status Protocol
Extensible Authentication Protocol
Key Derivation Functions
Certificate Revocation Lists
Online Certificate Status Protocol
Access Control Lists

Role-based Access Control
Trusted Platform Modules
Hardware Security Modules
Trusted Platform Modules

Hierarchical Key Management

Key Management Interoperability Protocol

Centralized Key Management

Distributed Key Management Systems

Hardware Security Modules
Role-Based Access Control
Bring Your Own Key

Amazone Web Services
Distributed Denial of Service
Key Management Center
Software-defined Networking
Content Delivery Networks
Authentication Server

Trusted Execution Environment

Message Authentication Codes

Abbreviations list

MU

MUBF
ARTBF
ARTAF
95TH
RECOVER
NF

RPS

max users
max users before failure

average response time before failure
average response time after failure
95th percentile time

Does the system recover

no failure

request per second

vi

General introduction

In the era of big data, the management and security of cryptographic keys have become
critical concerns for organizations handling vast amounts of sensitive information. As
data volumes grow exponentially, ensuring the confidentiality, integrity, and availability
of data through effective key management practices is paramount. Cryptographic keys are
essential for securing data at rest and in transit, making their management a cornerstone

of any comprehensive data security strategy.

Key management encompasses the processes of generating, distributing, storing, and
rotating cryptographic keys, as well as revoking and destroying them when no longer
needed. Traditional key management systems often struggle to cope with the sheer scale
and complexity of modern data environments. These systems need to handle high trans-
action volumes, provide robust access controls, and ensure continuous availability and
reliability. Additionally, they must integrate seamlessly with various data storage and

processing platforms, including cloud services and distributed systems.

Big Data environments, characterized by their volume, velocity, and variety, present
unique challenges for key management. The scale of data necessitates efficient and scalable
key management solutions that can handle high throughput and low latency requirements.
Furthermore, the distributed nature of Big Data platforms requires a key management
infrastructure that can operate reliably across multiple nodes and geographic locations.
Ensuring data security in such environments demands innovative approaches to key man-

agement that can address these challenges effectively.

General introduction

Security is another crucial aspect of key management in big data. With the increas-
ing sophistication of cyber threats, it is essential to protect cryptographic keys from
unauthorized access and misuse. This involves implementing strong authentication and
authorization mechanisms, as well as ensuring the integrity and auditability of key man-
agement operations. The use of advanced technologies, such as blockchain, can enhance
the security and transparency of key management processes by providing immutable and

verifiable records of all key-related activities.

Moreover, regulatory compliance is a significant driver for effective key management.
Organizations must adhere to various data protection regulations and standards, such as
GDPR, HIPAA, and PCI DSS, which mandate strict controls over cryptographic keys and
their management. Failure to comply with these regulations can result in severe penalties
and damage to an organization’s reputation. Therefore, a robust key management solution
must also facilitate compliance by providing comprehensive audit trails and supporting

regulatory reporting requirements.

The management of cryptographic keys in Big Data environments is a complex yet
vital task that underpins the security and integrity of data. As data volumes continue
to grow and cyber threats evolve, developing scalable, efficient, and secure key manage-
ment solutions is essential for safeguarding sensitive information and ensuring compliance
with regulatory standards. This project aims to address these challenges by exploring
innovative approaches to key management that are tailored to the demands of Big Data

environments.

Chapter

Key management

1.1 Introduction

In the digital era, safeguarding sensitive information is paramount due to prevalent
cyber threats. Key management is crucial, encompassing the generation, distribution, use,
storage, and disposal of encryption keys. These keys are vital for secure communication,
data protection, and access control across various systems. However, challenges such as
ensuring key uniqueness, preventing theft, and managing keys in diverse environments like
cloud and IoT persist. Effective key management requires a thorough understanding of
principles and the application of suitable technologies and policies. This chapter explores
key management components, from generation to storage, guided by industry standards,

best practices, and practical examples.

1.2 Fundamentals of Cryptographic Keys

1.2.1 What is encryption?

Encryption is a way of scrambling data so that only authorized parties can understand
the information. In technical terms, it is the process of converting human-readable plain
text to incomprehensible text, also known as cipher text. In simpler terms, encryption
takes readable data and alters it so that it appears random. Encryption requires the
use of a cryptographic key: a set of mathematical values that both the sender and the

recipient of an encrypted message agree on[19] ,as shown in Figurel.l.

Chapter 1 Key management

Ciphertext
Plaintext Plaintext

o

Different keys are used to encrypt
and decrypt messages

Figure 1.1: Encryption and Decryption method [1]

1.2.2 Cryptographic Keys

Cryptographic keys are an essential component of cryptography, serving as mathemat-
ical parameters used in cryptographic algorithms to encrypt, decrypt, authenticate, or
digitally sign data. These keys are strings of binary digits, typically represented in a

readable format like hexadecimal or base64 [19].

1.2.3 Digital Certificate

A digital certificate is an electronic document used to prove the ownership of a public
key. It is issued by a trusted entity known as a Certificate Authority (CA). The certificate
contains information about the key, the identity of its owner (individual, organization,
or device), and the digital signature of the CA that verifies the certificate’s contents.
Digital certificates are essential for establishing secure communications over the inter-
net, such as in HT'TPS, where they enable encrypted connections and authenticate the
identity of websites to prevent fraud and ensure data integrity and confidentiality. They
play a crucial role in public key infrastructure, facilitating secure online transactions and

communications [20].

Chapter 1 Key management

1.2.4 Types of Cryptographic Keys

There are two main types of encryption: symmetric and asymmetric. Asymmetric

encryption is also referred to as public key encryption.

In symmetric encryption, there exists a singular key, and all parties involved in commu-
nication utilize the identical (secret) key for both encryption and decryption. Asymmetric
encryption uses two keys, one of which is used for encryption and the other for decryption.
The decryption key is kept private, while the encryption key is shared publicly for anyone
to use. Asymmetric encryption is a foundational technology for TLS (also known as SSL)

21].

symmetric encryption

Symmetric encryption employs a single key for both encryption and decryption, mak-
ing it fast and efficient for handling large data sets. The key’s symmetric nature means
its holder can encrypt and decrypt data. However, securely distributing the key poses
a challenge, as compromising it risks unauthorized access to encrypted data. Common
symmetric algorithms like AES[22], DES, and 3DES|[23], widely used in various appli-
cations, ensure data confidentiality. Symmetric encryption, unlike asymmetric methods,
offers speed advantages but demands careful key management. Nonetheless, it remains
a cornerstone of secure data transmission, balancing efficiency with the need for robust

protection against unauthorized access [24].

asymmetric encryption

Asymmetric encryption employs pairs of keys: a public key, shared openly, and a private
key, kept secret. Encrypted data with the public key can only be decrypted with the
private key, and vice versa, ensuring secure communication. It’s vital for SSL/TLS, digital
signatures, and key exchange. Popular algorithms include RSA[25], Diffie-Hellman|[26],
and Elliptic Curve Cryptography [27]. This system enables safe transmission over insecure
channels: messages encrypted with the public key can only be decoded by the intended
receiver possessing the private key. Asymmetric encryption safeguards sensitive data in
various applications, maintaining confidentiality and integrity in digital communications

[28].

Chapter 1 Key management

1.2.5 Key Length and Strength

The key length, or key size, denotes the bits in a cryptographic key for encryption, crucial
for safeguarding sensitive data. However, security isn’t solely about length, it significantly
impacts encryption strength [29]. Brute force attacks pose a serious threat, where adver-
saries systematically try all possible keys to decrypt data. Consider the Caesar cipher:
with only 26 possible keys, it’s vulnerable. Modern ciphers employ longer keys, like 128
bits, resulting in an astronomical number of possible keys, making brute force attacks im-
practical. For instance, a 128-bit key yields 2128 = 340, 282, 366, 920, 938, 463, 463, 374, 607
,431,768,211,456, rendering brute force attacks computationally infeasible even for the

most powerful computers [30].

key lengths in the context of symmetric and asymmetric algorithms

1. Symmetric Cryptography: Typically, common key lengths such as 128, 192,
and 256 bits are utilized. Among these, a 128-bit key is widely regarded as secure
for most applications, balancing security and computational efficiency. However,
in cases demanding heightened security, such as military or government systems,
key lengths of 256 bits or even higher are employed to ensure maximum protection

against cryptographic attacks [31].

2. Asymmetric Cryptography: Asymmetric algorithms utilize pairs of keys: a pub-
lic key for encryption and a corresponding private key for decryption. The security
of these algorithms relies on mathematical properties such as factorization or dis-
crete logarithms. Common key lengths vary depending on the algorithm used. For
RSA, key lengths of 2048 bits are recommended for keys used until 2030, while 3000
bits are suggested for keys used beyond 2022. For Elliptic Curve Cryptography
(ECC), roughly half the key length provides effective security [31].

1.2.6 Key Revocation and Renewal

Key revocation: Key revocation is crucial for invalidating compromised, expired, or
unnecessary public key certificates or symmetric encryption keys, preventing unauthorized
access and maintaining data security. Compromised keys pose serious risks, enabling at-

tackers to intercept communications, impersonate users, or access sensitive data. Expired

Chapter 1 Key management

keys can disrupt communication or data access, while unnecessary keys clutter the sys-
tem, increasing the risk of misuse. Various methods ensure key revocation: Certificate
Revocation Lists (CRLs) are commonly used for public key certificates, listing revoked cer-
tificates for verification. Online Certificate Status Protocol (OCSP) allows direct queries
to Certificate Authorities (CAs) about certificate status. Symmetric encryption keys are
managed through Key Management Systems (KMS), enabling deletion or marking as in-
valid. These practices ensure only authorized and current keys are utilized, enhancing

overall security [32].

Key renewal: This is an extension of the validity period of an expiring certificate.
It safeguards against interruptions in secure communications and services. The renewal
process generates a new key and distributes it to replace the revoked one. Key renewal is
essential for ensuring the security and integrity of Public Key Infrastructure (PKI) and

encryption systems [33].

e For public key certificates, the common method is to use a certificate renewal pro-
cess. Certificate holders can request a new certificate from the CA before the old

one expires.

e Renewal prevents disruptions in secure communications and services by ensuring

that certificates remain valid.

e The process involves generating a new certificate with an extended validity period.

1.3 Key Generation

1.3.1 Symmetric Key Generation

Symmetric key encryption relies on a singular secret key that is utilized for both encryption
and decryption.

Symmetric keys are typically generated using a cryptographicly secure random number
generator. The length of the key is critical to security. Common key lengths comprise
of 128 bits (16 bytes) or 256 bits (32 bytes) Longer keys provide greater security, but
they may have an impact on performance. Using OpenSSL, we can generate a random

symmetric key using the following command:

Chapter 1 Key management

OpenSSL rand 128 > symkeyfile.key

This creates a 128-bit key and stores it in the symkeyfile.key file. On Unix-like systems,

we can also use /dev/random to generate random bytes and create a symmetric key.

The process of key exchange becomes imperative once the symmetric key has been
generated. Methods include secure channels, pre-shared keys, and key derivation from a

passphrase.

1.3.2 Asymmetric Key Pair Generation

Asymmetric key encryption involves a pair of keys: a public key for encryption and a

private key for decryption. Here is how the key pairs are generated in some algorithms :
1. RSA (Rivest—Shamir-Adleman) [34]:

(a) Choose Two Prime Numbers:

e Select two large prime numbers, denoted as p and q.

e These primes serve as the foundation for the RSA key pair.
(b) Calculate the Modulus (n):

e Compute the product of p and ¢: (n =p-q).

e The modulus (n) is used in both the public and private keys.
(c) Calculate Euler’s Totient Function (¢(n)):

e Calculate (¢p(n) =(p—1)-(¢—1)).

e Euler’s totient function represents the count of positive integers less than

n that are coprime (have no common factors) with n.
(d) Choose the Public Exponent (e):

e Select a small positive integer e such that:

- (1 <e<g(n)).

— e is coprime with ¢(n) (i.e., (ged(e, d(n)) = 1)).
e The public key consists of (e,n).

(e) Calculate the Private Exponent (d):

e Find an integer d such that:

Chapter 1 Key management

— (d-e=1 (mod ¢(n))).
— In other words, d is the modular multiplicative inverse of e modulo
o(n).
e The private key consists of (d,n).

(f) Key Pair Creation:

e The public key is (e,n), where e is the chosen exponent and n is the

modulus.

e The private key is (d, n), where d is the calculated exponent and n remains

the same.
2. ECC (Elliptic Curve Cryptography) [27]:

(a) Components of ECC:

e Elliptic Curves: These curves are defined by an equation in the form of a

Diophantine equation.

Finite Fields: ECC operates over finite fields (modulo arithmetic).

Base Point (G): A fixed point on the curve used for key generation.

Private Key (d): A random integer.

Public Key (Q): Calculated as (Q = d - Q).
(b) Key Generation:

i. Generate a private key (d) randomly.

ii. Compute the public key (Q) using (Q = d - G).
(¢) Encryption and Decryption: To encrypt a message:

i. Represent the message as a point on the curve (usually using a hash func-
tion).
ii. Multiply the point by the recipient’s public key.
To decrypt:

i. Multiply the received point by the recipient’s private key.
3. DSA (Digital Signature Algorithm) [35]:

(a) Select Prime Numbers:

Chapter 1 Key management

e Choose a large prime number, denoted as p (typically with 1024 or 2048
bits).
e Select another prime number, ¢, such that ¢ divides p — 1.

(b) Generate Private Key:

e Pick a random number, k, where 1 < k < ¢ — 1.

e Compute r as: r = (¢"mod p)mod q where g is a generator (a fixed value).
(¢) Compute Public Key:

e Calculate y (the public key) as: y = g*mod p where x is the private key.
(d) Key Pair:

e The private key consists of x.

e The public key consists of p, ¢, ¢g, and y.

1.4 Key Distribution Mechanisms

1.4.1 Symmetric Key Distribution

Symmetric key cryptography involves the use of a single key for both the encryption and

decryption of data. Here’s a rundown of common methods for symmetric key distribution:

Pre-shared Keys

Keys are distributed manually or through a secure channel before communication be-
gins. This method is common in scenarios where the number of communicating parties is

limited and known in advance [36].
1. Characteristics of Pre-Shared Keys:

e The secret or key format can vary. It might be a password, a passphrase, or a

hexadecimal string.

e All cryptographic systems employ pre-shared keys to safeguard communication

flow.

e These keys are crucial for ensuring confidentiality in crypto systems.

2. Security Considerations:

10

Chapter 1 Key management

e While sufficiently long and randomly chosen pre-shared keys can resist practical

brute-force attacks, they can still be compromised if one end is breached.

e Choosing strong keys is essential. Avoid patterns and use random key choices

to make brute-force attacks as difficult as possible.

e Avoid using non-cryptographically secure pseudo-random number generators

for key generation.

Key Distribution Centers (KDC)

A KDC is a centralized service that manages and distributes cryptographic keys for
secure communication between entities (such as users or services) within a network. It
ensures that users and services can securely authenticate themselves and establish secure
sessions without directly exchanging sensitive information like passwords, as shown in

Figure 1.2 [37].

Party Party
A B

<1>7 E(K, [ID_ID NI]) — g

- — E(K,. [Kg ID,. ID, NI E(K [K 1D])]) —

C}} E(K,. [Kg, 1D, 1) F.

As encrypted by KDC for delivery to B

- E(Kg. N2)

®

CST) E(Kg. N2+ 1) L

Figure 1.2: A pictorial depiction of the Needham-Schroder protocol[2]

11

Chapter 1 Key management

1. Components of a KDC:

e Authentication Server (AS): The AS is the initial point of contact for a user
or service seeking authentication. It verifies the user’s identity and issues a

ticket-granting ticket (TGT).

e Ticket Granting Server (TGS): The TGS is responsible for granting service
tickets to users or services. It verifies the TGT and issues service tickets for

specific services.

e Database: The KDC maintains a database containing user and service infor-

mation, including their secret keys.
2. How Kerberos Works with a KDC:

(a) A user logs in and requests authentication from the AS.
(b) The AS verifies the user’s credentials and issues a TGT.

(¢) The user presents the TGT to the TGS when requesting access to a specific

service.
(d) The TGS validates the TGT and issues a service ticket.

(e) The user presents the service ticket to the desired service, which grants access.
3. Benefits of KDC and Kerberos:

e Single Sign-On (SSO): Users authenticate once and can access multiple services

without re-entering credentials.

e Strong Authentication: Kerberos uses symmetric encryption and avoids trans-

mitting plain text passwords.

e Mutual Authentication: Both the client and server authenticate each other.

Public Key Infrastructure (PKI)

Public key infrastructure encompasses everything used to establish and manage public
key encryption. It involves software, hardware, policies, and procedures for the creation,

distribution, management, storage, and revoking of digital certificates [38].
1. Digital Certificates:

12

Chapter 1 Key management

A digital certificate cryptographically links a public key with the device or user

who owns it.

It helps authenticate users and devices and ensures secure digital communica-

tions.

A certificate authority (CA) is a trustworthy source that issues digital certifi-

cates.

Think of them as digital passports that verify the sender’s identity.
2. Components of PKI:

e Certificate Authority (CA):

— The CA issues, stores, and signs digital certificates.

— It signs the certificate with its private key and publishes the public key for

verification.

Registration Authority (RA):

— The RA verifies the identity of users or devices requesting digital certifi-

cates.

— It can be a third party or the CA itself.

Certificate Database:

— Stores digital certificates and metadata (e.g., validity period).

Central Directory:

— Securely indexes and stores cryptographic keys.

Certificate Management System:

— Manages certificate delivery and access.
3. Use Cases:

e Web Security:

— PKI secures and authenticates traffic between web browsers and servers.

— It ensures privacy and verifies sender identity.

e Internal Communications:

13

Chapter 1

Key management

— PKI can secure messages within an organization.

— Ensures confidentiality and integrity.

Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange is a mathematical method that allows two parties to

securely establish a shared secret key over an insecure channel without directly transmit-

ting the key themselves [26].

e Origin and Pioneers: The Diffie-Hellman key exchange was conceived by Ralph

Merkle and named after Whitfield Diffie and Martin Hellman. Published in 1976, it

was one of the earliest practical examples of public-key exchange within cryptogra-

phy.Prior to this, secure communication required exchanging keys through physical

means, like paper lists transported by trusted couriers.

Diffie-Hellman key exchange

Alice

random a

k =(g)*=g" mod p

Bob

random b

k=(g*)°=g*modp

Both Alice and Bob have the same key k, without sending it on the network

Figure 1.3: Diffie-Hellman Key Exchange [3]

e How It Works: Here is how Diffie-Hellman operates, as shown in Figure 1.3:

1. Setup:

14

Chapter 1 Key management

— Both parties agree on publicly available parameters: a large prime number

p and a base g.
2. Private Keys:

— Each party chooses a secret private key. Let’s call these private keys a and

b for the two parties.
3. Public Keys:
— Using the agreed-upon parameters and their private keys, each party cal-
culates their public key:
x Party A computes A = g* mod p.

* Party B computes B = ¢® mod p.
4. Exchange Public Keys:

— Both parties exchange their calculated public keys A and B over the public

channel.
5. Shared Secret:
— Finally, both parties independently compute the shared secret key using
their own private key and the other party’s public key:
x Party A computes S = B* mod p.

* Party B computes S = A® mod p.

e Applications: Diffie-Hellman is used to secure various Internet services. It pro-
vides the basis for authenticated protocols and offers forward secrecy in Transport
Layer Security (TLS) ephemeral modes. Security Considerations: Research suggests
that some parameters used in DH Internet applications may not be strong enough to
prevent compromise by well-funded attackers. However, it remains a fundamental

building block for secure communication.

Physical Delivery

In some cases, especially for highly sensitive information, symmetric keys may be phys-

ically delivered using secure couriers or hardware tokens to ensure confidentiality.

15

Chapter 1 Key management

Key Derivation

Key derivation functions play a crucial role in encryption protocols, such as TLS, by

securely deriving session keys from the principle key [39].

: uty
Bob

D
]]

S TR -

iy

=l

Figure 1.4: HKDF key derivation [4]

16

Chapter 1 Key management

how it work:

1. Master Key Generation: Initially, a secure master key is generated through a
key establishment protocol. This master key is shared between the communicating
parties, often established through asymmetric encryption and authenticated key

exchange mechanisms.

2. Parameters for KDF: Both parties agree on parameters for the key derivation
function. These parameters might include the master key, additional data (such as

nonces or identifiers), and possibly some other context-specific information.

3. Key Derivation: Using the agreed-upon parameters, the key derivation function
computes session keys. This function takes the master key and other inputs and
produces session keys that are unique to the current session. The function is designed
to be computationally expensive to resist brute-force attacks and ensure that the

derived keys are indistinguishable from random.

4. Session Key Usage: The derived session keys are then used for encrypting and
decrypting the data exchanged during the session. Since these keys are unique to
the session and derived from the master key, even if one session key is compromised,

it doesn’t affect the security of other sessions.

5. Periodic Renegotiation: Depending on the protocol, session keys might be rene-
gotiated periodically to enhance security. This involves re-deriving new session keys

using the same master key but possibly different parameters or additional data.

1.4.2 Asymmetric Key Distribution

Asymmetric key cryptography, also known as public-key cryptography, involves the use
of two keys, one public and one private. These keys are mathematically related, but
they are different. The public key is disclosed plainly, whereas the private key is kept
confidential [40].

1. Key Generation: The first step is to generate a key pair: a public key and a

private key. This is usually done by the intended recipient of encrypted messages.

17

Chapter 1 Key management

2. Public Key Distribution: The public key is then distributed to anyone who needs
to send encrypted messages to the recipient or verify the sender’s digital signatures.

Public keys can be freely distributed without compromising security.

3. Private Key Protection: The private key is kept securely by the recipient. It

should never be shared with anyone else.

4. Encryption: When someone wants to send an encrypted message to the recipient,
they use the recipient’s public key to encrypt the message. Only the recipient, who

holds the corresponding private key, can decrypt the message.

5. Digital Signatures: If the recipient wants to sign a message to prove its authen-
ticity, they use their private key to create a digital signature. Anyone with access
to the public key can verify that the signature was created by the holder of the

corresponding private key.

6. Certificate Authorities (Optional): In many cases, a trusted third party known
as a Certificate Authority (CA) is involved in the distribution of public keys. CAs
issue digital certificates, which bind public keys to the identities of their owners,

providing additional assurance of authenticity.

7. Key Revocation: If a private key is compromised or no longer needed, it should
be revoked. This typically involves updating certificate revocation lists (CRLs) or
using mechanisms such as the Online Certificate Status Protocol (OCSP) to inform

users that the key is no longer trusted.

18

Chapter 1 Key management

=

=y = User register for

[4 =
accessing the file
x = o ~ -
. } -~ :

Y
II
F 4

=l
= = e Y, -
22 ..f'f d KM% Retrieves and Cloud /\‘\.'
7 E{D . M : = J .
E =|E | stores file/data slorage 'l
E == ! N d
E=|5 \ L) /
&z E N e /
-; : _-‘: ./-\--_ o E_/ /
£ 2|3 (E— —X .
o= 1 CA
L H|T N
2 f| e J
£ o™ \,_ _\ J //
32 ™ L
- % a5 /
R s o .

[| e Cloud environment

L= i

1=

o

|tl;5_'1\',q: 5 for |_|]1|.' waclin 5

a file in cloud storage

Data owner

Figure 1.5: Asymmetric Key Cryptography Distribution [5]

1.5 Key Storage and Protection

Storage and protection are key aspects of encryption and security. Keys are used to
encrypt and decrypt data, authenticate users, and ensure communication integrity. Proper
storage and protection of keys is of great importance for preventing unauthorized access
and maintaining information security.

Here are some key principles and practices for key storage and protection:

1.5.1 Best Practices for Key Storage

When it comes to key storage, especially in the context of cybersecurity, adhering to
best practices is crucial for maintaining the security and integrity of sensitive information.

Here are some guidelines to follow when storing keys [41]:

e Encryption: Keys themselves should be encrypted when stored to prevent unau-
thorized access. Encryption adds an extra layer of security, ensuring that even if
an attacker gains access to the storage medium, they cannot use the keys without

decryption.

19

Chapter 1 Key management

e Access Control: Limit access to keys based on the principle of least privilege.
Only authorized users or applications should have access to keys, and access should
be tightly controlled using Access Control Lists (ACLs), Role-based Access Control

(RBAC), or similar mechanisms.

e Key Rotation: Regularly rotate keys to mitigate the impact of key compromise
or cryptographic vulnerabilities. Key rotation involves replacing old keys with new
ones at predefined intervals while ensuring seamless operation of systems and appli-

cations.

e Secure Transmission: When distributing keys, use secure channels such as en-
crypted connections (e.g., TLS) or secure protocols (e.g., HTTPS) to prevent inter-

ception or tampering during transmission.

e Auditing and Monitoring: Implement logging and monitoring mechanisms to
track key usage, detect suspicious activities, and facilitate forensic analysis in case
of security incidents. Regularly review logs and audit trails to ensure compliance

with security policies and regulations.

¢ Key Destruction: Properly manage the life cycle of keys, including secure deletion
or destruction when no longer needed. This prevents unauthorized access to sensitive

information, especially in the case of decommissioned systems or services.

e Secure Development Practices: Follow secure coding practices to avoid exposing
keys inadvertently in source code or configuration files. Use secure key storage APIs

provided by programming frameworks and libraries.

e Regular Security Assessments: Conduct regular security assessments, including
penetration testing and vulnerability scanning, to identify and address potential

weaknesses in key storage and protection mechanisms.

1.5.2 Key Management Systems

Implementing a strong key management system is critical. KMS provides a central plat-
form for generating, storing and distributing encryption keys safely. It often includes

features such as main rotation, access controls and audit capabilities. Key management

20

Chapter 1 Key management

systems play an important role in managing encryption keys within the encryption system.

Here are some important points about KMS [42]:

1. Definition KMS refers to the management of cryptographic keys, including their
generation, exchange, storage, use, destruction, and replacement. It encompasses

cryptographic protocol design, key servers, user procedures, and relevant protocols.

2. Purpose KMS ensures the secure handling of keys, which are essential for encryption,
decryption, and authentication. Proper key management is vital for maintaining

data confidentiality, integrity, and authenticity.
3. Components

e Key Generation: Creating strong cryptographic keys.
¢ Key Exchange: Securely sharing keys between parties.
e Key Storage: Safely storing keys to prevent unauthorized access.

e Key Usage: Properly using keys for encryption, decryption, and other cryp-

tographic operations.
¢ Key Rotation: Regularly replacing keys to enhance security.

e Key Destruction (Crypto-Shredding): Ensuring keys are securely deleted

when no longer needed.

1.5.3 Secure hardware storage

Keys should be stored in secure environments, such as hardware security modules
(HSMs), trusted platform modules (TPMs), or secure enclaves. These physical or vir-

tual devices provide tamper-resistant protection for keys and cryptographic operations.

Hardware Security Modules

Hardware Security Modules are specialized hardware devices designed to manage digital
keys, perform cryptographic operations, and provide secure storage for sensitive data such
as encryption keys, and digital certificates. They are used in various industries where

security is paramount, including finance, healthcare, government, and cloud services [43].

21

Chapter 1 Key management

Here are some key features and functions of HSMs:

e Key Management: HSMs securely generate, store, and manage cryptographic
keys used for encryption, decryption, digital signatures, and other cryptographic

operations.

e Secure Key Storage: HSMs provide a secure environment for storing crypto-
graphic keys, protecting them from unauthorized access and tampering. Keys
stored within an HSM are typically stored in encrypted form and are only accessible

through the HSM’s cryptographic operations.

e Hardware-based Security: HSMs utilize specialized hardware components and
security mechanisms to protect against various forms of attacks, including physical

tampering, side-channel attacks, and software-based attacks.

e Cryptographic Operations: HSMs can perform a wide range of cryptographic
operations, including encryption, decryption, digital signing, key generation, and
key wrapping/unwrapping. These operations are performed securely within the

HSM, ensuring the confidentiality and integrity of sensitive data.

e Compliance and Auditing: HSMs often support compliance requirements such
as FIPS 140-2, PCI DSS, and GDPR by providing features such as audit logging,

tamper-evident seals, and role-based access control.

e Integration with Applications: HSMs can be integrated with various applica-
tions and systems using standard cryptographic APIs such as PKCS#11, Microsoft
CNG, and Java JCE, allowing applications to offload cryptographic operations to
the HSM for improved security.

e High Availability and Scalability: HSMs are designed for high availability and
scalability, with features such as redundant components, fail over mechanisms, and

support for clustering and load balancing.

22

Chapter 1 Key management

How Hardware Security Modules Work

1. Request a cryptographic
operation (e.q., sign a

digital certificate) — 2. Securely sign the certificate

using your private key within the
W E: HSM's isolated environment

=1

~

3. Provide the resulting m Hardware

output (e.g., the signed |=; cecur

digital certificate) — EC:IInIty
Module

Figure 1.6: How a hardware security module works [6]

Trusted platform modules

Trusted Platform Modules (TPMs) are specialized hardware components used to en-
hance the security of computing devices. They are typically integrated into the mother-
board of a device, such as a computer or a smartphone. TPMs provide a secure environ-
ment for storing cryptographic keys[44].

Here are some key features and functionalities of TPMs:

e Secure Storage: TPMs provide a secure area, often called a ”secure enclave,”
where cryptographic keys and other sensitive data can be stored. This storage is
isolated from the main system memory and inaccessible to unauthorized software

Oor users.

e Hardware-based Security: Unlike software-based security solutions, TPMs oper-
ate at the hardware level, making them more resistant to attacks that target software
vulnerabilities. This hardware-based approach enhances the overall security of the

system.

e Key Management: TPMs can generate, store, and manage cryptographic keys
used for various security purposes, such as encryption, authentication, and digital
signatures. These keys are protected within the TPM and can be used without
being exposed to the rest of the system.

e Secure Boot: TPMs can verify the integrity of the system firmware, boot loader,

and operating system during the boot process. This helps prevent unauthorized

23

Chapter 1 Key management

modifications to the boot process, such as the installation of malware or unautho-

rized software.

e Remote Attestation: TPMs can generate a cryptographic attestation of the sys-
tem’s configuration and integrity, which can be used to prove the trustworthiness of
the system to external entities. Remote attestation enables secure communication

and collaboration in distributed computing environments.

e Secure Execution Environment: Some TPMs support the execution of secure
code within a trusted execution environment (TEE). This allows sensitive operations
to be performed in a secure and isolated environment, protecting them from attacks

and unauthorized access.

Network Device

ﬁ Host CPU
Attestation
Measured digests e Sign the PCR request
extend to PCRs """""""""""" _ values and nonce h
\ & ﬁ
- Altestaiion attestation
@ Infineon response
server from

service provider

Storage/
Flash

Figure 1.7: trusted platform modules [7]

1.6 Conclusion

Cryptographic key management is vital for modern information system security. This
chapter explored its importance, principles, and practices. We covered encryption keys,
distinguishing between symmetric and asymmetric types, and their roles in data confiden-
tiality, integrity, and authenticity. The entire key life cycle (from generation to disposal)
was discussed, along with best practices. Key generation techniques, distribution mecha-

nisms, and storage strategies were examined to highlight key management’s multifaceted

24

Chapter 1 Key management

nature. Emphasizing strong practices to mitigate security risks and ensure compliance,
we acknowledged evolving challenges. The next chapter will delve into key management

in Big Data , focusing on advanced techniques, emerging trends, and practical strategies.

25

Chapter

Key management in Big Data

2.1 Introduction

In today’s era of rapid data growth and digital transformation, effective cryptographic
key management is essential for ensuring the integrity, confidentiality, and accessibility of
sensitive information in Big Data ecosystems. As organizations harness vast datasets to

drive innovation, robust key management practices become increasingly crucial.

This chapter examines the importance, challenges, and evolving approaches to key
management in Big Data . Amidst ubiquitous data breaches and stringent compliance
requirements, understanding key management principles is vital for navigating modern
data landscapes. We will start by exploring Big Data ’s fundamentals and its impact,
followed by the necessity for effective key management. Additionally, we will address the
challenges of securing cryptographic keys and evaluate emerging trends and technologies

that enhance key management in dynamic Big Data environments.

2.2 Fundamentals of Big Data

2.2.1 What is Big Data ?

The term ”Big Data ” refers to a vast and diverse array of data that cannot be effectively
managed by conventional data storage and processing systems. The term encompasses
a considerable quantity of information derived from diverse sources, including but not

limited to business procedures, machines, social media platforms, networks, and human

26

Chapter 2 Key management in Big Data

interactions. The significance of Big Data lies in its potential to furnish valuable insights

and facilitate decision-making across diverse domains [45].

2.2.2 Characteristics of Big Data

The key Characteristics of Big Data can be summarized as follows [46]:
e Volume:
— Definition: Big Data is characterized by its enormous size. It involves massive

volumes of data generated daily.

— Example: Facebook alone generates approximately a billion messages, records
4.5 billion “Like” button clicks, and uploads over 350 million new posts each

day.
— Handling: Big Data technologies can efficiently handle these large amounts
of data.

e Variety:

— Definition: Big Data can be structured, unstructured, or semi-structured. It
comes from diverse sources, including databases, PDF's, emails, audios, social

media posts, photos, videos, and more.
— Examples:

% Structured Data: Tabular data with well-defined columns stored in re-

lational databases.
x Semi-structured Data: Formats like JSON, XML, CSV, and email.

x Unstructured Data: Includes log files, audio files, and image files.

— Importance: Handling this variety of data is crucial for extracting meaningful

insights.
e Veracity:

— Definition: Veracity refers to the reliability and trustworthiness of data. It

involves filtering and managing data effectively.

27

Chapter 2 Key management in Big Data

— Example: Ensuring that data is accurate and can be used confidently for

analysis.
— Business Impact: Veracity is essential for business development and decision-
making.

e Value:

— Definition: Value represents the essential characteristic of Big Data . It’s
not just about processing or storing data; it’s about storing, processing, and

analyzing valuable and reliable information.
— Significance: Extracting actionable insights from data adds value to organi-
zations.
e Velocity:
— Definition: Velocity plays a crucial role. It refers to the speed at which data
is generated in real-time.
— Examples:

x Incoming data from application logs, business processes, networks, social

media sites, sensors, and mobile devices.

* Activity bursts and rapid changes.

— Purpose: Big Data velocity ensures timely access to critical information.

2.3 Importance of Key Management in Big Data

Key management is paramount when it comes to Big Data , due to the vast volume,
velocity, and variety of data being generated and processed. In Big Data environments,
sensitive information is often stored, processed, and transmitted across various systems.

This makes it vulnerable to security threats. This is why key management is crucial [47]

[48]:
e Data Integrity and Confidentiality:

— Key management plays a pivotal role in ensuring the integrity and confiden-

tiality of data.

28

Chapter 2 Key management in Big Data

S5V's
OF DATA)
zitl ‘a0
VOLUME frg‘ VALUE
Amount of Data v Worth of Data
/ i

VELOCITY VERACITY

Diversity of Data Speed of Accuracy of Data
Data Generation

Figure 2.1: Characteristics of Big Data [8]

— In Big Data environments, vast amounts of sensitive information are processed
and stored. Properly managed encryption keys help protect this data from

unauthorized access and tampering.
— Without robust key management, data integrity can be compromised, leading
to incorrect insights and decisions.

e Regulatory Compliance:

— Big Data often involves handling personal information, financial records, and

other sensitive data.

— Compliance with data protection laws (such as GDPR, HIPAA, or CCPA) is
essential. Proper key management ensures that data encryption adheres to

regulatory requirements.

— Failure to comply can result in hefty fines and reputational damage.
e Secure Data Sharing and Collaboration:

— Organizations collaborate and share data across departments, partners, and

cloud services.

29

Chapter 2 Key management in Big Data

— Effective key management enables secure data sharing by allowing authorized

parties to access encrypted data.
— Without proper key management, sharing encrypted data becomes cumber-
some and risky.

e Protection Against Insider Threats:

— Insiders, including employees, contractors, or vendors, can pose security risks.

— Adequate key management ensures that only authorized personnel can access

sensitive data.

— Without it, insiders might misuse or leak encryption keys, leading to data

breaches.
e Scalability and Performance:

— Big Data systems handle massive volumes of information.

— Efficient key management practices allow for scalability without compromising

performance.

— Well-managed keys facilitate seamless encryption and decryption operations.

2.3.1 Risks Associated with Inadequate Key Management

There are several risks associated with poor key management practices [49]:
e Data Breaches:

— Weak key management can lead to data breaches.

— If encryption keys are compromised, attackers can decrypt sensitive data, ex-

posing it to unauthorized parties.

— Breaches can result in financial losses, legal consequences, and damage to rep-

utation.
e Unauthorized Access:

— Inadequate key management allows unauthorized users to gain access to en-

crypted data.

30

Chapter 2 Key management in Big Data

— Without proper controls, anyone with access to the keys can decrypt and view

sensitive information.

— This jeopardizes data privacy and security.
e Data Loss:

— Lost or mismanaged keys can render encrypted data permanently inaccessible.
— If keys are lost, data recovery becomes impossible.

— Organizations may lose critical information, affecting business continuity.
e Compliance Violations:

— Poor key management practices violate data protection regulations.
— Failure to protect encryption keys can result in non-compliance penalties.

— Organizations risk legal actions and financial penalties.
e Operational Disruptions:

— Inefficient key management processes can disrupt operations.
— Slow decryption due to poorly managed keys impacts system performance.

— Delays in accessing data hinder decision-making and productivity.

2.4 Challenges in Key Management for Big Data

Key management in Big Data environments poses several unique challenges due to the
scale, complexity, and distributed nature of the data. Here are some of the key challenges

150] [51] [52]:

1. Scalability: Big Data often involves massive datasets spread across numerous
servers and potentially even cloud platforms. Traditional key management systems

designed for smaller, on-premise setups struggle to handle this sprawl.

e Challenge: Keeping track of a vast number of keys spread across different

locations securely and ensuring all have proper access control.
e Impact: Increased risk of keys being lost or compromised due to the complex-

ity of managing them.

31

Chapter 2 Key management in Big Data

2. Diverse Data Sources: Big Data incorporates information from a wide variety
of sources, each with potentially unique security requirements. This heterogeneity

makes a one-size-fits-all key management approach impractical.

e Challenge: Developing and implementing different key management strate-
gies for various data types (structured, unstructured, etc.) while maintaining

consistency.

e Impact: There is an increased risk of vulnerabilities if specific data types

aren’t secured with appropriate key management practices.

3. Real-time Processing: Big Data often demands real-time analysis, making tradi-

tional key retrieval processes that might involve manual intervention a bottleneck.

e Challenge: Balancing the need for secure key access with the speed required

for real-time analytics.

e Impact: Potential delays in data processing or compromising security by using

less secure key access methods for speed.

e Key Rotation: With a larger attack surface, Big Data environments neces-
sitate even more frequent key rotation to minimize the damage if a key is
compromised. Managing this rotation across a vast number of keys securely

adds another layer of complexity.

e User Access Control: Granular access control becomes even more critical in
Big Data to ensure only authorized users have access to specific datasets and

the keys that unlock them.

2.5 Centralized Key Management Techniques in Big
Data

Centralized key management refers to the practice of managing encryption keys, which
are used to secure sensitive information within large-scale data environments, from a single
centralized location. Instead of distributing management responsibilities across various

systems or departments, all aspects of key management, including generation, storage,

32

Chapter 2 Key management in Big Data

access control, rotation, and auditing, are handled centrally. This approach ensures that
consistent security measures are applied across the organization’s Big Data infrastructure,

thereby simplifying management and enhancing data protection Figure 2.2 [53] [54].

K -
Q«*QK — ~ Applications Virtual Workloads
5 % ' .
g : ’
% . ,"
—dn— -, | o

j 5
L >
T izati
okenization File Servers
SafeNet KeySecure and Y —
SafeNet Virtual KeySecure for \, [N —)
Key Management and Storage 2 ===
(- — -] —=—
aE=r ==
(- — =] KMIP Clients
HSM

Figure 2.2: centralized key management [9]

33

Chapter 2 Key management in Big Data

2.5.1 Cloud Key Management Services

Cloud key management services are cloud-based services that help manage crypto-
graphic keys used to encrypt data. These services typically offer secure key storage, key
generation, key rotation, and key usage auditing capabilities. The Cloud Key Manage-
ment System allows users to encrypt their data stored in the cloud and control access to
the encryption keys, providing an additional layer of security for sensitive information, as

shown in Figure 2.3 [55] [56].

how it works:

Cloud Key Management Services work by providing a centralized platform for gen-
erating, storing, managing, and controlling cryptographic keys used for encryption and

decryption in cloud environments. Here’s a simplified explanation of how it works [57]:

e Key Generation: KMS generates cryptographic keys using strong random number
generators. These keys can be used for various cryptographic operations, such as

encryption, decryption, digital signing, and verification.

e Secure Storage: The generated keys are securely stored within the KMS infras-
tructure. This storage is typically designed with robust security measures to protect
the keys from unauthorized access, theft, or tampering. Hardware Security Modules

(HSMs) are often used to provide additional layers of protection for the keys.

e Key Management: KMS provides APIs or interfaces for managing the keys
throughout their life cycle. This includes tasks such as creating new keys, rotating
keys periodically to enhance security, revoking or disabling keys when necessary

(e.g., in case of compromise), and securely deleting keys that are no longer needed.

e Access Control: KMS enforces access controls to ensure that only authorized users
or applications can access the keys. Access policies can be defined to specify which
users or services have permission to perform specific cryptographic operations using

the keys.

e Encryption and Decryption: When an application or service needs to encrypt
data, it sends a request to the KMS, specifying the appropriate key and the data to
be encrypted. The KMS then retrieves the key, performs the encryption operation,

34

Chapter 2 Key management in Big Data

and returns the encrypted data to the requester. Similarly, when decryption is
required, the requester sends the encrypted data and the corresponding key to the

KMS, which performs the decryption operation and returns the plain text data.

e Auditing and Logging: KMS logs all key management activities, including key
creation, usage, rotation, and deletion. This auditing capability allows administra-
tors to track and monitor key usage, detect any suspicious activities, and ensure

compliance with security policies and regulations.

e Integration with Cloud Services: KMS services are often integrated with other
cloud services, allowing seamless encryption and decryption of data stored in databases,
object storage, or transmitted over networks within the cloud environment. This
integration simplifies the implementation of data security measures for cloud-based

applications and services.

KEY MANAGEMENT

— —
—_— _

4_
—>

Figure 2.3: Cloud Key Management Service [10]

2.5.2 Hierarchical Key Management

Hierarchical Key Management (HKM) organizes cryptographic keys in a hierarchy,

starting with a main "root” key from which other keys are derived. These derived keys

35

Chapter 2 Key management in Big Data

Top Level I @

Customer Main Key (CMK)

Intermediate l l
Level
’ = >~
Hourly Key Hourly Key
o~ o~ - ad o~ o~ - g
Connection Key Connection Key Data Key Data Key Data Key Log Key

Figure 2.4: Hierarchical Key Management [11]

are used for specific tasks like encrypting data or signing messages, enabling efficient and
secure key management with different levels of access control. This limits the impact of
a compromised key. In Big Data , HKM secures and controls access to sensitive data by
organizing encryption keys hierarchically. This method ensures security, scalability, and
granular access control in large-scale data systems dealing with massive data volumes [58]

[59][60] as shown in Figure 2.4.

How it works:

Here’s a simplified explanation of how HKM works [58] [61]:

e Root Key Generation: The process starts with generating a highly secure root
key. This key serves as the top-level key in the hierarchy and is typically stored in

a secure location, such as a hardware security module (HSM).

e Derivation of Intermediate Keys: From the root key, intermediate keys are
derived. These intermediate keys can represent different levels of the hierarchy or be

associated with specific data domains or services within the Big Data environment.

e Assignment of Leaf Keys: At the lowest level of the hierarchy, leaf keys are as-

signed. These keys are used for specific cryptographic operations, such as encrypting

36

Chapter 2 Key management in Big Data

or decrypting data, and are typically associated with individual pieces of data or

specific tasks within the Big Data system.

e Encryption and Decryption: When data needs to be encrypted or decrypted
within the Big Data system, the appropriate leaf key is used for the cryptographic
operation. The leaf keys may be dynamically generated as needed or pre-assigned

based on predefined policies.

e Access Control and Auditing: Access to keys at different levels of the hierarchy
is controlled through access control mechanisms. This ensures that only authorized
users or processes can access sensitive cryptographic material. Additionally, auditing
mechanisms may be employed to track key usage and detect any unauthorized access

attempts.

e Key Rotation and Management: Periodic key rotation and management prac-
tices are implemented to enhance security. This involves replacing old keys with
new ones, updating key metadata, and ensuring that encryption algorithms and key

lengths remain up-to-date with best practices.

2.5.3 Key Management Interoperability Protocol (KMIP)

KMIP serves as a universal language for cryptographic key management, facilitating
seamless communication between different components within a cryptographic infrastruc-
ture. It operates at a higher level of abstraction, enabling interoperability between diverse

key management systems, cryptographic devices, and applications [62].

At its foundation, KMIP defines a set of standardized operations for managing crypto-
graphic keys and related objects. These operations encompass key life cycle management
tasks such as creation, distribution, activation, deactivation, and destruction of keys, as

well as operations for managing key attributes, permissions, and usage policies [63].

One of the key features of KMIP is its support for a wide range of cryptographic algo-
rithms and key types, allowing organizations to manage keys used in symmetric encryp-

tion, asymmetric encryption, digital signatures, and other cryptographic operations. This

37

Chapter 2 Key management in Big Data

flexibility ensures compatibility with various cryptographic standards and requirements,

enabling organizations to adapt to evolving security needs and regulatory frameworks [64].

How it works:

The Key Management Interoperability Protocol works by defining a standardized set
of messages and operations for managing cryptographic keys and related objects. Here’s

a simplified overview of how it typically works [63]:

Client RadosGW KMIP 0OSD

create secret
key for key ID

upload object
with key [D

request secret
key for key ID

return secret
key

encrypt object
with secret key

<

store encrypted
object

Figure 2.5: Key Management Interoperability Protocol [12]

38

Chapter 2 Key management in Big Data

1. Initialization: When a KMIP client (such as an application or device) wants to
communicate with a KMIP server (a key management system), it initiates a con-

nection to the server.

2. Authentication: The client authenticates itself to the server using credentials such
as a username and password or through other authentication mechanisms supported

by KMIP, such as client certificates or authentication tokens.

3. Session Establishment: Once authenticated, the client and server establish a
session for communication. During this phase, they negotiate parameters such as

encryption algorithms and key lengths to ensure secure communication.

4. Key Operations: The client can then send requests to the server to perform

various key management operations, such as:

e Creating new cryptographic keys

Retrieving existing keys

Deleting keys

Updating key attributes (e.g., changing access permissions)

Performing cryptographic operations using keys stored on the server (e.g., en-

cryption, decryption, signing)

5. Response Handling: The server processes the client’s requests and sends back ap-
propriate responses, indicating the success or failure of the operations. If successful,

the response may also include requested data, such as keys or key metadata.

6. Session Termination: When the client no longer needs to communicate with the

server, it can terminate the session, freeing up resources on both sides.

2.5.4 Centralized Blockchain-based Key Management

Centralized Blockchain-based Key Management involves a central authority managing
cryptographic keys in a blockchain network. Unlike traditional systems where participants
manage their own keys, this centralized approach delegates the creation, distribution, and

revocation of keys to a single entity. This system ensures streamlined key management,

39

Chapter 2 Key management in Big Data

potentially enhancing security and efficiency by reducing the burden on individual par-

ticipants and centralizing control within the network. [65].

How it works:

In a Centralized Blockchain-based Key Management system, the process typically in-
volves the following steps [65] [66]:

1. Key Generation:
e The central authority employs cryptographic algorithms to generate pairs of
public and private keys for each participant.

e Public keys are shared openly and are used for verifying signatures and en-

crypting messages.

e Private keys are kept secret and are used for signing transactions and decrypt-
ing messages.

2. Key Distribution:

e Once keys are generated, they are securely distributed to participants. This
may involve encryption and secure channels to prevent interception.

e Participants may be authenticated through various means to ensure that keys
are delivered to the intended recipients.

3. Key Revocation:

e [f a participant’s key is compromised, lost, or if the participant is no longer au-
thorized to access the network, the central authority revokes the corresponding

key.

e Revocation prevents unauthorized access and fraudulent activities by invali-

dating compromised or outdated keys.
4. Key Recovery:

e In the event that a participant loses their private key or is unable to access it,

the central authority may provide a key recovery mechanism.

40

Chapter 2 Key management in Big Data

e This could involve identity verification procedures to ensure that only legiti-

mate participants regain access to their keys.
5. Key Rotation:
e Periodically, the central authority may enforce key rotation policies to enhance

security.

e Key rotation involves generating new key pairs for participants and replacing

existing keys.
e This mitigates the risk of long-term key exposure and potential compromise.
6. Centralized Monitoring and Control:
e The central authority maintains centralized oversight of key management pro-
cesses.

e [t monitors key usage, detects anomalies or suspicious activities, and enforces

security policies.

e This centralized control enables swift response to security incidents and ensures

compliance with key management protocols.

41

Chapter 2 Key management in Big Data

blockchain

- site

’
hash s "\ hash
: "
£y =
User’s key User’s key

WAy

Device’s and application keys Device’s and application keys

Figure 2.6: Centralized Blockchain-based Key Management [13]

2.5.5 Advantages of centralized key management

centralized key management (CKM) offers numerous advantages [67]:

e Simplified Key Management: Managing cryptographic keys in a centralized
manner simplifies key generation, distribution, rotation, and retirement processes. It
eliminates the need for disparate key management solutions across multiple systems

and platforms, reducing complexity and administrative overhead.

e Improved Compliance: Many industries are subject to regulatory requirements
mandating the protection of sensitive data through encryption and access controls.
CKM facilitates compliance with regulatory standards (such as GDPR, HIPAA, and
PCI DSS) by providing a centralized approach to key management, audit logging,

and access control enforcement.

e Efficient Resource Utilization: Centralized key management allows organiza-
tions to optimize resource utilization by consolidating key management functions

within a single system or service. This minimizes the need for redundant key man-

42

Chapter 2 Key management in Big Data

agement infrastructure and streamlines key-related operations, resulting in cost sav-

ings and operational efficiencies.

e Scalability and Flexibility: CKM solutions are designed to scale with the growing
needs of Big Data environments. They can accommodate large volumes of crypto-
graphic keys and support integration with various Big Data platforms, frameworks,
and cloud services, ensuring scalability and flexibility in key management opera-

tions.

e Resilience and Disaster Recovery: Centralized key management enhances re-
silience and disaster recovery capabilities by providing redundancy and backup
mechanisms for cryptographic keys. Organizations can implement robust key repli-
cation, backup, and recovery strategies to ensure continuous access to keys and data

in the event of system failures or disasters.

e Ease of Integration: CKM solutions are often designed to seamlessly integrate
with existing Big Data infrastructure, applications, and workflows. They provide
APIs, SDKs, and plugins that facilitate integration with popular Big Data platforms
(e.g., Hadoop, Spark, Kafka) and cloud services, enabling organizations to deploy

centralized key management without disrupting existing workflows or architectures.

2.5.6 Inconveniences of centralized key management

While centralized key management offers numerous advantages, it also comes with some

potential inconveniences and challenges [67]:

e Single Point of Failure: Centralizing cryptographic keys introduces a single point
of failure. If the centralized key management system experiences downtime or be-
comes inaccessible, it can disrupt data access and processing across the entire Big

Data environment, leading to potential service interruptions and operational issues.

e Security Risks: A centralized key management system becomes an attractive tar-
get for attackers. If compromised, it could result in unauthorized access to sensitive
cryptographic keys, leading to data breaches and confidentiality breaches. There-
fore, robust security measures, such as encryption, access controls, and monitoring,

must be implemented to mitigate these risks.

43

Chapter 2 Key management in Big Data

e Performance Bottlenecks: Depending on the scale and architecture of the cen-
tralized key management system, it may introduce performance bottlenecks, partic-
ularly during key retrieval and distribution operations. As the number of keys and
the volume of data increases, the centralized key management system may struggle
to keep up with the demands, impacting the overall performance of data processing

workflows.

e Complexity and Scalability Challenges: Implementing and managing a cen-
tralized key management system can introduce complexity, especially in large-scale
and distributed Big Data environments. As the volume of data and the number of
users/systems accessing the keys grow, managing key life cycle, access controls, and

compliance requirements can become increasingly complex and challenging to scale.

e Vendor Lock-In: Organizations that opt for proprietary, centralized key manage-
ment solutions may face vendor lock-in, limiting their ability to switch to alternative
solutions or migrate to different platforms in the future. Vendor lock-in can restrict
flexibility, increase dependency on specific vendors, and potentially lead to higher

costs in the long run.

2.6 Decentralized Key Management Techniques in

Big Data

Decentralized key management refers to managing cryptographic keys in a distributed
manner, avoiding reliance on a centralized authority. Traditional systems, like centralized
databases or cloud services, often have a single entity managing these keys, making them

potential targets for attacks or compromise [68].

In decentralized key management systems, control over cryptographic keys is distributed
among multiple participants or nodes in a network. This enhances security, resilience
against attacks, and privacy. Blockchain technology, often associated with decentralized
key management, uses cryptographic keys to control access to digital assets and execute
transactions. This ensures that no single entity controls the entire network, reducing the

risk of a single point of failure [69].

44

Chapter 2 Key management in Big Data

2.6.1 Distributed Key Management Systems (DKMS)

A Distributed Key Management System (DKMS) is a cryptographic framework that
handles the generation, distribution, storage, and maintenance of keys across intercon-
nected nodes or devices. Unlike centralized systems, DKMS spreads key management
across multiple entities, reducing single-point failure risks. It uses encryption algorithms,
authentication protocols, and access control to ensure secure key handling, protecting
data confidentiality, integrity, and availability. DKMS is essential in distributed environ-
ments like cloud computing, blockchain, IoT ecosystems, and multi-party communication

systems, ensuring robust security for sensitive information [70].

Distributed Key Management System
(DKMS) - Architectural Overview

UKDS-1 UKDS-2 UKDS-3 UKDS-4

© Gopyright IBM Corporation, 1995

Figure 2.7: Distributed Key Management Systems [14]

How it works

Let’s delve into more details about how a Distributed Key Management System operates

[70]:

45

Chapter 2 Key management in Big Data

1. Key Generation:

e DKMS employs secure random number generators and cryptographic algo-

rithms to generate keys with sufficient entropy and strength.

e Depending on the application requirements, DKMS may generate different
types of keys, such as symmetric keys for encryption and decryption or asym-

metric key pairs for digital signatures and key exchange.
2. Key Distribution:

e DKMS utilizes secure communication channels and protocols to distribute keys

to authorized entities.

e Key distribution mechanisms may include key agreement protocols like Diffie-
Hellman, where two parties can agree on a shared secret key without explicitly
transmitting it, or public key infrastructure (PKI) for distributing public keys

and certificates.
3. Key Storage:
e Keys are stored in secure repositories or cryptographic hardware modules to

prevent unauthorized access.

e Hardware Security Modules (HSMs) are often used to store and manage keys

securely, providing tamper-resistant hardware and cryptographic operations.

e Access controls are enforced to restrict key access to authorized users or appli-
cations, typically through role-based access control (RBAC) or cryptographic

access policies.
4. Key Rotation and Update:
e DKMS regularly rotates keys to limit exposure to potential compromise or

cryptographic attacks.

e Key rotation intervals and algorithms are carefully chosen based on security

requirements and best practices.

e Automated processes and protocols ensure seamless key rotation without dis-
rupting services, including mechanisms for distributing updated keys to rele-

vant parties.

46

Chapter 2 Key management in Big Data

5. Key Recovery:
e DKMS implements key recovery mechanisms to recover lost or corrupted keys
to maintain operational continuity.

e Key escrow services may be employed to securely store copies of keys, accessible

only under specific conditions or by authorized personnel.
e Multi-factor authentication and secure procedures are used to verify the iden-
tity of individuals requesting key recovery.
6. Key Revocation:
e DKMS provides mechanisms for revoking compromised or unauthorized keys
to prevent their misuse.

e Revocation processes are initiated based on security incidents, key compromise

events, or policy violations.

e Real-time revocation mechanisms, such as Certificate Revocation Lists (CRLs)
or Online Certificate Status Protocol (OCSP), enable immediate invalidation

of revoked keys.
7. Auditing and Monitoring;:
e DKMS includes comprehensive auditing and monitoring capabilities to track

key management activities and security events.

e Audit logs capture key-related operations, access attempts, and security inci-

dents for forensic analysis and compliance auditing.

e Monitoring tools provide real-time visibility into key usage patterns, anomalies,

and potential security threats, enabling proactive response and mitigation.

2.6.2 Bring Your Own Key

Bring Your Own Key (BYOK) is a cloud security practice where customers manage
their own encryption keys for encrypting data stored in the cloud. This gives customers
more control and ownership over their data security. By managing their encryption keys,

organizations can enforce stricter access controls and encryption policies, ensuring only

47

Chapter 2 Key management in Big Data

authorized users can decrypt sensitive data. BYOK also helps meet compliance require-
ments by demonstrating control over encryption keys. It is commonly used with cloud
services like storage and databases, but requires careful planning to maintain key integrity

and prevent unauthorized access or loss [71].

How it works:

Bring Your Own Key operates along these fundamental steps [72]:

e Key Generation: The customer generates encryption keys using their own key
management system (KMS) or cryptographic hardware module. These keys are

typically generated using strong cryptographic algorithms to ensure security.

e Key Import: The customer securely transfers the generated encryption keys to
the cloud service provider’s environment. This transfer usually occurs through a

secure channel, such as a secure API or encrypted file transfer.

e Key Registration: The cloud service provider registers the imported encryption
keys within their system. This involves storing metadata about the keys, such as

key identifiers and associated policies, in a secure manner.

e Data Encryption: When data is uploaded to the cloud service, it is encrypted
using the encryption keys provided by the customer. This ensures that the data
is protected with customer-controlled encryption keys rather than keys managed

solely by the cloud provider.

e Access Control: The cloud service provider enforces access controls to ensure that
only authorized users or applications can access the encrypted data. Access policies
are typically managed by the customer and enforced by the cloud provider’s access

control mechanisms.

e Key Usage: Whenever data needs to be decrypted, the encryption keys provided
by the customer are used to perform the decryption operation. This ensures that
the customer maintains control over the data encryption process and can revoke

access to the data by revoking or rotating the encryption keys as needed.

48

Chapter 2 Key management in Big Data

2.6.3 Decentralized Blockchain-based Key Management

Decentralized blockchain-based key management refers to a method of securely man-

aging cryptographic keys using blockchain technology in a decentralized manner.

Blockchain technology provides an ideal platform for decentralized key management
due to its inherent properties of transparency, immutability, and decentralization. In a
blockchain-based key management system, cryptographic keys are stored on the blockchain
in a tamper-proof and transparent manner. Access to these keys is controlled by smart

contracts, which enforce predefined rules and conditions for key management.

One common application of decentralized blockchain-based key management is in cryp-
tocurrency wallets. In this scenario, users have control over their private keys, which are
used to access and transfer their digital assets. By storing these keys on a blockchain in
a decentralized manner, users can mitigate the risk of losing access to their funds due to

centralized failures or security breaches .

Another application is in secure communication systems, where users can exchange en-
crypted messages using decentralized key management protocols. By leveraging blockchain
technology, these systems can ensure the integrity and confidentiality of communication

channels without relying on centralized authorities [69] [73].

How it works:

The steps for implementing decentralized blockchain-based key management are as follows|74]

[73]:

e Key Generation: Users generate a pair of cryptographic keys - a public key and a
private key. The private key is kept secret and is used to sign transactions or decrypt
messages, while the public key is shared publicly and is used to verify signatures or

encrypt messages.

e Blockchain Registration: Users register their public keys on a blockchain network.
This registration process typically involves creating a transaction that includes the

public key and broadcasting it to the network.

49

Chapter 2 Key management in Big Data

THOHTHD

Layer 2: Blockchain Management
T =y —

Layer 1: Node Management

Figure 2.8: Decentralized Blockchain-based Key Management [15]

e Smart Contract Deployment: Smart contracts are deployed on the blockchain to
manage key-related operations. These smart contracts define rules and conditions

for key management, such as who can access the keys and under what circumstances.

e Access Control: The smart contracts enforce access control policies based on prede-
fined rules. For example, a smart contract might specify that only the owner of a

private key can initiate transactions using that key.

e Key Usage: When a user wants to use their private key to sign a transaction or
decrypt a message, they interact with the smart contract on the blockchain. The
smart contract verifies that the user is authorized to use the key based on the

predefined rules.

e Transaction Verification: Transactions initiated by users are broadcasted to the

blockchain network. These transactions include cryptographic signatures generated

20

Chapter 2 Key management in Big Data

using the private key. Other nodes on the network verify the signatures using the

corresponding public keys stored on the blockchain.

e Consensus: The blockchain network reaches consensus on the validity of transactions
through mechanisms such as proof-of-work or proof-of-stake. Valid transactions are

added to the blockchain in a sequential and immutable manner.

e Key Revocation: In case a user wants to revoke access to their keys (for example, in
the event of a compromised private key), they can interact with the smart contract
to revoke the associated public key. Once revoked, the key cannot be used for further

transactions.

e Key Recovery: Some systems may incorporate key recovery mechanisms to help
users regain access to their keys in case of loss or compromise. These mechanisms
typically involve using additional cryptographic techniques, such as multi-signature

schemes or secret sharing, to securely recover the keys.

2.6.4 Advantages of Decentralized key management

Decentralized key management offers many advantages over centralized approaches [75]:

1. Enhanced Security: With decentralized key management, there is no single point
of failure. Even if one node is compromised, the entire system’s security is not
compromised because the keys are distributed across multiple nodes. This makes it

more difficult for attackers to gain unauthorized access to sensitive data.

2. Improved Privacy: Decentralized key management can enhance privacy by lim-
iting the number of entities that have access to encryption keys. This reduces the

risk of unauthorized access to sensitive data and helps protect user privacy.

3. Resilience and Fault Tolerance: Decentralized systems are more resilient to
failures because they distribute key management tasks across multiple nodes. If one
node fails or goes offline, the system can continue to operate using the keys stored

on other nodes.

4. Scalability: Decentralized key management can scale more easily than centralized

approaches. As the volume of data increases or the number of users grows, additional

51

Chapter 2 Key management in Big Data

nodes can be added to the network to handle the increased load without sacrificing

performance or security.

5. Reduced Dependency on Trust: In a decentralized key management system,
trust is distributed across multiple nodes rather than relying on a single trusted
authority. This reduces the risk of abuse or misuse of authority by any single entity

and increases the overall trustworthiness of the system.

6. Compliance and Regulatory Compliance: Decentralized key management can
help organizations comply with regulatory requirements related to data security
and privacy. By distributing key management responsibilities, organizations can
demonstrate a higher level of control and accountability over their data encryption

practices.

2.6.5 Inconveniences of Decentralized key management

While decentralized key management offers many advantages, it also presents some

challenges and inconveniences [76] [77]:

e Complexity: Decentralized key management systems tend to be more complex
than centralized ones. Coordinating key distribution, synchronization, and ac-
cess control across multiple nodes requires sophisticated protocols and mechanisms,

which can increase implementation and maintenance complexity.

e Key Recovery: In a decentralized system, if a node storing encryption keys be-
comes inaccessible or compromised, key recovery can be challenging. Ensuring that
keys can be recovered without compromising security requires careful planning and

robust mechanisms for key backup and recovery.

e Coordination Overhead: Managing encryption keys across multiple nodes re-
quires coordination and communication among those nodes. This coordination over-
head can introduce latency and performance bottlenecks, particularly in large-scale

distributed systems with a high volume of data transactions.

e Potential for Misconfiguration: Decentralized key management systems may

be more susceptible to misconfiguration errors, as the responsibility for key man-

52

Chapter 2 Key management in Big Data

agement is distributed across multiple entities. A misconfigured node could lead to

security vulnerabilities or data breaches if not properly identified and addressed.

e Regulatory Compliance: Decentralized key management systems may pose chal-
lenges in terms of regulatory compliance, particularly in highly regulated industries
such as finance or healthcare. Ensuring compliance with data protection regulations
while distributing key management responsibilities across multiple entities requires

careful planning and adherence to relevant compliance requirements.

2.7 Conclusion

In conclusion, managing cryptographic keys in Big Data is a complex challenge requir-
ing careful consideration and innovative solutions. This chapter explored the interplay
between vast volumes, varied sources, and the dynamic nature of Big Data , highlighting
the need for robust key management to ensure confidentiality, integrity, and availability.
We discussed the inadequacies of traditional key management techniques in Big Data
environments and emphasized the importance of emerging trends and technologies for
scalability, agility, and efficiency. The next chapter will present our proposed approach,
focusing on a framework designed to address these multifaceted challenges with scalability,

agility, and efficiency in mind.

23

Chapter

Proposed Approach

3.1 Introduction

In the preceding chapters, we explored key management’s importance in ensuring data
integrity, confidentiality, and availability within modern computing environments. We
examined established methods and best practices for key management, highlighting its

role in protecting sensitive information from unauthorized access and malicious attacks.

Building on this, we investigated key management within the Big Data domain, ad-
dressing the challenges posed by the scale, speed, and diversity of data. We assessed

conventional approaches and identified areas for improvement.

Now, we aim to develop more robust, efficient, and scalable key management solutions
for Big Data . This chapter presents our vision, combining established principles, emerging

technologies, and new methodologies.

3.2 Proposed Idea for Key Management

We offer a unique approach based on the notion of a Double Key Management Center
(KMC). This novel technique aims to improve the security, transparency, and scalability of
key management processes by utilizing blockchain technology (Public Record (Blockchain)

system).

o4

Chapter 3 Proposed Approach

At the center of our proposed design are two interconnected KMCs that play unique
but complementary functions in the key management life cycle. These KMCs’ major job
is to produce, store, distribute, and revoke cryptographic keys for securing data assets in

the Big Data ecosystem.

The first KMC, termed the ”Issuer KMC,” is responsible for the initial provisioning and
distribution of cryptographic keys to authorized entities within the system. It serves as the
centralized authority for key generation and management, ensuring that keys are securely

disseminated to legitimate users and revoked promptly upon request or expiration.

The second KMC, known as the ”Verifier KMC”, operates in tandem with the issuer
KMC to validate the authenticity and integrity of cryptographic keys in real-time. It
serves as a decentralized watchdog, continuously monitoring the key life cycle and detect-

ing anomalies or unauthorized modifications that may compromise data security.

A Public Record (Blockchain) system built upon blockchain technology is central to the
synchronization and coordination of these dual KMCs. By leveraging the immutable and
decentralized nature of blockchain, we establish a tamper-resistant ledger that records all

key management transactions and interactions between the issuer KMC and the verifier

KMC.

This blockchain-based public record serves as a shared source of truth, enabling seam-
less communication and synchronization between the two KMCs while preserving data
integrity and auditability. Any updates or modifications to key management operations
are cryptographically hashed and appended to the blockchain, providing a verifiable trail

of activity for compliance and forensic analysis.

Furthermore, our proposed solution incorporates a ”static Load Balancer” mechanism
to optimize key management operations based on network load and resource availabil-
ity. This intelligent algorithm dynamically monitors traffic within the KMCs, assessing
key generation, distribution, and verification requests in real-time. When congestion or
saturation is detected in one KMC, the static Load Balancer automatically redirects in-
coming requests to the KMC with less traffic, ensuring efficient resource utilization and

minimizing latency.

95

Chapter 3 Proposed Approach

In essence, our Double KMC architecture with a blockchain-based public record system
and static Load Balancer functionality represents a paradigm shift in key management for
Big Data environments. By combining the benefits of centralized control with decentral-
ized validation, transparency, and dynamic resource allocation, we offer a comprehensive

solution that addresses the multifaceted challenges of key management in the digital age.

Issuer KMC Verifier KMC

traffic checker
(load balancer)

public record (blockchain) Blg Data service

= s
2\
Main router -
for system

Figure 3.1: Global architecture for our proposal

3.2.1 Methodology behind our proposed solution

This is an explanation of guiding ideas and the process of our suggestions solution 3.3

3.4:

e Request Initiation: The process commences with a request originating from a user
or a Big Data service within the ecosystem, necessitating access to cryptographic

keys managed by the KMC.

26

Chapter 3 Proposed Approach

¢ Routing to static Load Balancer: Upon receipt of the request, it is directed to
the static Load Balancer component, which acts as the gateway for incoming key
management requests. The Load Balancer analyzes the current network load and
resource utilization across both Issuer and Verifier KMCs to determine the optimal

destination for processing the request.

e Traffic Assessment: Leveraging real-time monitoring and analytics capabilities,
the Load Balancer evaluates the traffic congestion and saturation levels within each
KMC. It assesses factors such as key generation, distribution, and verification loads,

as well as available computational resources and network bandwidth.

e Decision Making: Based on the traffic assessment results, the Load Balancer se-
lects the KMC with the least congestion and optimal resource availability as the tar-
get destination for processing the incoming request. This decision aims to minimize

latency, maximize throughput, and ensure efficient utilization of KMC resources.

e Request Forwarding: Once the destination KMC is determined, the Load Bal-
ancer forwards the incoming request to the selected KMC for further processing.
The request is transmitted securely over the network to maintain confidentiality

and integrity throughout transit.

e Key Management Operations: Upon receiving the forwarded request, the des-
tination KMC performs the requisite key management operations, such as key gen-
eration, distribution, or verification, as per the request type. These operations
adhere to established security protocols and access control mechanisms to safeguard

sensitive cryptographic assets.

e Public Record (Blockchain) Update: If the requested operation involves the
creation, update, or deletion of cryptographic keys, the destination KMC updates
the blockchain-based public record accordingly. This update includes details of
the operation, such as the type of operation, key identifiers, timestamps, and any

relevant metadata.

e Cross-KMC Synchronization: Following the Public Record (Blockchain) up-
date, the destination KMC propagates the changes to the other KMC (Issuer or

Verifier) to ensure consistency and synchronization of key management activities.

o7

Chapter 3 Proposed Approach

This cross-KMC synchronization process helps maintain a unified view of key man-
agement operations across the entire architecture, mitigating the risk of discrepan-

cies or inconsistencies (figure 3.2).

Source KMC Destinati
(Issuer/ estination Public
~ KMC(Issuer/ Record
Verifier) Vi ;
erifier) (blockchain)

,
|

i |
! I I
! I I
' | I
I I
I I
| I

Request Check Public Record

Response Check Public Record

A

Request
Cross-KMC Synchronization

<

Update

Figure 3.2: Cross-KMC Synchronization

¢ Response Delivery: Following the completion of key management operations and
Public Record (Blockchain) updates, the destination KMC generates a response
containing the requested cryptographic keys or verification outcomes. The response
is securely transmitted back to the originating user or Big Data service ,ensuring

end-to-end data protection and integrity.

e Audit and Logging: Throughout the process, all interactions and transactions

are logged and recorded in the blockchain-based public record system, facilitating

28

Chapter 3 Proposed Approach

auditability, accountability, and forensic analysis. This immutable ledger serves as
a comprehensive audit trail, capturing key management activities, traffic patterns,

and decision-making rationale.

i . Issuer/ .
US;; S'g static Load Verifier Public
Service Balancer KMC Xaeer

, y
i i i !
I I ! !
I I ! !
. | | |
| 1 !
I ! !
! 5 !

(1) Request

(2) Traffic Assessment
]

] (3) Decision

(4) Forward Request (5) Key Management
P

Operations

(6) Public Record Update

(7) Cross-KMC Sync

.

(8) Response

A

Figure 3.3: Sequence diagram of creation, update, and deletion of keys

29

Chapter 3 Proposed Approach

_ . Issuer/
Us;arglg Statllc Load Verifier
oo Balancer KMC

1 1 !
I | I
1 I !
I I :
' |

| |
| |
| |
i '

(1) Request

-

(2) Traffic Assessment

>

] (3) Decision

(4) Forward Request (5) Key Management
> Operations

A

|
|
(8) Response i
|
|

Figure 3.4: Sequence diagram for other Operations

3.2.2 Enhancements and Distinctions Compared to Traditional

Methods

Our approach presents several notable improvements and distinctions from existing

methods of key management in Big Data environments:

e Efficient Resource Utilization: By dynamically routing key management re-
quests to the KMC with the least traffic, the proposed approach optimizes resource
utilization and minimizes latency. This ensures that computational resources are

efficiently distributed, leading to enhanced system performance and responsiveness

60

Chapter 3 Proposed Approach

compared to static allocation methods.

e Scalability and Flexibility: The use of a Double KMC architecture allows for
seamless scalability to accommodate growing data volumes and user demands. New
KMC instances can be added to the system as needed, and traffic can be dynamically
distributed across them based on real-time assessments, ensuring that the system

remains agile and responsive to changing workload patterns.

e Enhanced Security and Transparency: Integration with a blockchain-based
public record system offers enhanced security and transparency compared to tradi-
tional centralized logging mechanisms. The immutable nature of blockchain ensures
that all key management transactions are tamper-proof and auditable, providing a

transparent record of activity for compliance and forensic analysis purposes.

e Decentralized Validation: The Verifier KMC acts as a decentralized valida-
tion mechanism, continuously monitoring key management operations and detecting
anomalies or unauthorized modifications. This distributed approach enhances the
resilience of the system against insider threats and ensures that cryptographic keys

are protected from unauthorized access or manipulation.

e Real-time Traffic Assessment: The inclusion of a static Load Balancer com-
ponent enables real-time assessment of network load and congestion, allowing for
dynamic routing of key management requests to the most suitable KMC. This proac-
tive approach minimizes the risk of performance bottlenecks and ensures that key

management operations are executed in a timely and efficient manner.

e Cross-KMC Synchronization: Cross-KMC synchronization ensures consistency
and coherence of key management activities across the entire architecture. Updates
to the Public Record (Blockchain) are propagated to all KMC instances, maintaining
a unified view of key management operations and mitigating the risk of discrepancies

or inconsistencies between them.

61

Chapter 3 Proposed Approach

3.2.3 Technical background
Blockchain Public Record

A blockchain public record is a distributed and immutable ledger maintained by a net-
work of decentralized nodes that chronologically records transactions or data in blocks
and links them together using cryptographic hashes. This ledger is openly accessible and
transparent to all participants within the network, providing a verifiable and tamper-
resistant record of transactions or data entries. Consensus mechanisms ensure agreement
among network participants regarding the validity and order of transactions, while cryp-
tographic techniques ensure the security and integrity of the recorded information [78].
Integration with a blockchain-based public record system offers enhanced security and
transparency compared to traditional centralized logging mechanisms. The immutable
nature of blockchain ensures that all key management transactions are tamper-proof and

auditable, providing a transparent record of activity for compliance and forensic analysis

purposes.
Block 1 Block 2 Block 3
e Data e Data e Data
« Hash o Hash « Hash
« Hash of the previous block « Hash of the previous block « Hash of the previous block

Hash: 023ZBB Hash: NM3PN5 Hash: BC298L
Previous hash: 03YT69 Previous hash: 023ZBB Previous hash: NM3PN5

Figure 3.5: Public Record (Blockchain) [16]

62

Chapter 3 Proposed Approach

Our Public Record(Blockchain) architecture

Our Public Record (Blockchain) architecture embodies a robust structure designed to
ensure the integrity and transparency of key management transactions. At its core, the

architecture includes:

1. Block ID: Each block in the public record is assigned a unique Block ID to legitimize

and secure its integrity. The Block ID is generated using the following formula:

Block ID = hash(Hash of Recent Data + Last Update Date -

+ List of Lines Updated + Initial Key) O

The initial key is unique for all Key Management Centers and is kept secure from
public access. This ensures that the blockchain is only updated by authorized
KMC’s. This formula ensures that the Block ID is a comprehensive and secure
identifier, incorporating the recent data state, the temporal marker, the detailed
change log, and a unique initial key for KMC’s. This multi-faceted approach to
generating the Block ID reinforces the authenticity and integrity of each block,

making it highly resistant to tampering and unauthorized alterations.

By integrating these components, our Public Record (Blockchain) architecture pro-
vides a transparent, verifiable, and secure framework for managing key transactions,

ensuring stakeholders can trust the recorded data’s accuracy and integrity.

2. Hash of Recent Data: Each entry in the Public Record (Blockchain) is accom-
panied by a cryptographic hash representing the most recent data state. This hash
serves as a unique fingerprint of the data at a specific point in time, enabling quick
and efficient verification of data integrity. Any modification to the data will result in
a distinct hash value, alerting stakeholders to potential tampering or unauthorized

alterations.

3. Last Update Date: To provide visibility into the temporal aspect of key manage-
ment operations, the Public Record (Blockchain) includes a timestamp indicating
the date and time of the last update. This timestamp allows stakeholders to track
the chronological sequence of events and assess the recency of the recorded data.
Additionally, it facilitates auditing and forensic analysis by establishing a timeline

of key management activities.

63

Chapter 3 Proposed Approach

4. List of Lines Updated: For granular insight into the specific changes made to
the data, the Public Record (Blockchain) maintains a list of lines updated during
each transaction. This detailed log captures the precise modifications performed,
including additions, deletions, or alterations to key management parameters. By
documenting the individual lines affected by each update, stakeholders can pin-
point the exact nature and scope of changes, facilitating accountability and trouble

shooting.

@ Our public record
(Blockchain)

" block ID : 206947d9028737ec806781e9920b0db5

- Hash of recent data: ocsec3babfess592c085342e2f154180

' Last update date: 11/06/2024 at 14:07:30

' List of updated lines: [1.20,13]

Figure 3.6: Our Public Record(Blockchain) architecture

Load Balancer

A Load Balancer is a component or system responsible for monitoring and managing
network traffic within a computing environment. It analyzes incoming data packets,
requests, or messages to determine their source, destination, type, and other relevant
attributes. The primary purpose of a Load Balancer is to ensure efficient utilization
of network resources, optimize performance, and enforce security policies by inspecting,
filtering, and routing traffic based on predefined rules or criteria.

In essence, a Load Balancer acts as a traffic cop for network communications, directing
data flows to their intended destinations, enforcing access controls, and detecting anoma-

lies or suspicious activities that may indicate security threats or performance issues. It

64

Chapter 3 Proposed Approach

may incorporate various technologies and methodologies, including load balancing, access
control lists, deep packet inspection, and traffic shaping, to achieve its objectives. Overall,
a Load Balancer plays a critical role in maintaining the integrity, availability, and security

of network communications within an organization or computing environment|79].

) Network infrastructure

Multi{cloud (Data center)

Network monitoring

Network Internet
Admins

On-Prem Containers
servers

Figure 3.7: Network Monitoring [17]

Several technologies can be employed for traffic checking in a key management system.
The choice depends on factors such as scalability, real-time analysis requirements, and
integration capabilities. Here are some of the best technologies commonly used for traffic

checking [80] :

1. Load Balancers: Load balancers distribute incoming network traffic across multi-
ple servers to ensure optimal resource utilization and prevent overload on any single
server. They can perform traffic checking by monitoring server health and distribut-

ing requests based on predefined algorithms or policies [81] as shown in Figure3.8.

2. Anomaly Detection Systems: Anomaly detection systems use machine learning

algorithms to identify unusual patterns or behaviors in network traffic that may indi-

65

Chapter 3 Proposed Approach

LN
LV

E - JE . JE .1

Figure 3.8: Load Balancers architecture [18]

cate security threats or performance issues. These systems can be trained to detect
traffic spikes, unusual request patterns, or suspicious activities and take appropriate

actions to mitigate risks [82].

3. Content Delivery Networks (CDNs): CDNs cache content closer to end-users
to improve performance and reduce latency. They often include traffic management
features such as request routing, load balancing, and traffic optimization to ensure
efficient content delivery. CDNs can be leveraged for traffic checking by analyzing

request patterns and routing traffic based on predefined rules or policies [83] .

4. Software-defined Networking (SDIN): SDN allows for centralized management
and programmable control of network infrastructure using software-based controllers.
SDN controllers can dynamically adjust network traffic low based on real-time anal-
ysis of network conditions and performance metrics. They offer flexibility and scal-
ability in traffic management and can integrate with other security and monitoring

systems [84] .

5. API Gateways: API gateways act as intermediaries between clients and backend

66

Chapter 3 Proposed Approach

services, providing functionalities such as authentication, authorization, and traffic
management. They can perform traffic checking by inspecting incoming requests,
enforcing access policies, and routing requests to appropriate backend services based

on predefined rules or criteria [85].

6. Real-time Stream Processing Platforms: Real-time stream processing plat-
forms like Apache Kafka, Apache Flink, or Apache Storm enable the analysis of
continuous streams of data in real-time. They can be used for traffic checking by
processing network traffic data streams, detecting anomalies or patterns, and trig-

gering actions or alerts based on predefined rules or thresholds [86] .

7. Distributed Message Brokers: Distributed message brokers such as RabbitMQ
or Apache ActiveMQ facilitate communication between distributed applications or
services. They can be used for traffic checking by routing messages based on prede-
fined rules or criteria, ensuring efficient message delivery and load balancing across

distributed systems [87] .

8. Static methods: Static methods in traffic checking refer to predefined rules or
policies that dictate how incoming traffic is handled without considering real-time
conditions or dynamic factors. While not as flexible or adaptive as dynamic meth-
ods, static methods can still be effective in certain scenarios, particularly when the

traffic patterns are relatively stable and predictable [88].

Our choice

For our proposed key management system, we have chosen to implement a static
method. This decision is driven by several factors that make the static method the

best fit for our specific use case.

Why Static Method is the best choice:
1. Predictability and Simplicity:
e The static method provides a high degree of predictability and simplicity, which
is crucial for maintaining a stable and reliable key management system. By us-

ing predefined routing rules, we can ensure consistent behavior and straightfor-

ward management, reducing the complexity of our traffic-checking operations.

67

Chapter 3 Proposed Approach

2. Stable Traffic Patterns:

e In our key management environment, the traffic patterns are relatively stable
and predictable. The requests for key generation, distribution, and verification
follow a consistent pattern that can be effectively managed using static routing
rules. This stability allows us to confidently apply static methods without the

need for dynamic adjustments.
3. Reduced Complexity:

e Implementing a static method simplifies the overall architecture of our traffic
checking system. Without the need for real-time traffic analysis and dynamic
decision-making, we can avoid the added complexity and potential points of

failure that come with more sophisticated traffic management systems.
4. Ease of Implementation and Maintenance:

e Static methods are generally easier to implement and maintain compared to dy-
namic methods. The predefined rules and configurations can be set up quickly
and require minimal ongoing adjustments. This ease of implementation and
maintenance aligns with our goal of creating a robust and efficient key man-

agement system without excessive overhead.
5. Resource Efficiency:

e By using static routing rules, we can efficiently allocate resources and ensure
that our key management centers operate within their optimal capacity. This
method allows us to balance the load across KMCs without the need for con-
tinuous monitoring and adjustments, conserving computational and network

resources.
6. Security and Control:

e Static methods provide a high level of control over traffic routing, enhancing
the security of our key management operations. With predefined rules, we
can enforce strict access control policies and ensure that only authorized re-
quests are processed by the KMCs, reducing the risk of unauthorized access or

malicious activities.

68

Chapter 3 Proposed Approach

3.3 Evaluation

We will carry out a thorough assessment and validation procedure to guarantee the
efficiency and performance of our key management solution. This procedure will include
a mix of simulations and tests, along with the use of certain metrics and criteria to gauge

success.

3.3.1 Evaluation Metrics and Criteria

1. Performance Metrics

(a) Latency: Measure of the time taken to generate, distribute, and verify crypto-

graphic keys. Lower latency indicates a more efficient system.

(b) Throughput: Assess the number of key management operations that can be
handled per second. Higher throughput demonstrates the system’s capability

to handle high volumes of requests.
2. Scalability

(a) Load Testing: Evaluation of the system’s ability to scale by increasing the
number of requests and observing performance degradation or improvement.

This will help determine the system’s capacity to handle growth.
3. Reliability and Availability

(a) Uptime: Track the system’s availability and downtime. High uptime and low

downtime are critical for ensuring continuous operation.

(b) Failure Recovery: Test the system’s ability to recover from failures. This in-
volves simulating failures and observing how quickly and effectively the system

recovers.

4. Security

Item Integrity: Ensure the cryptographic keys are not tampered with during
generation, distribution, or storage. This will be validated through integrity

checks.

69

Chapter 3 Proposed Approach

(a) Access Control: Verify that only authorized users can perform key manage-
ment operations. This involves testing authentication and authorization mech-

anisms.
5. Auditability and Transparency

(a) Audit Logs: Check the completeness and accuracy of the blockchain-based
public record. Effective audit logs should provide a verifiable trail of all key

management activities.

(b) Transaction Integrity: Validate that all transactions recorded on the blockchain

are immutable and accurately reflect the key management operations.

3.3.2 Simulations

For our performance test, we utilized Locust, a powerful Python-based load-testing tool,
to simulate user traffic and evaluate the system’s robustness under varying conditions. We
designed three distinct scenarios, each tailored to assess different aspects of the system’s
performance and reliability. Within each scenario, we devised four specific test cases to
thoroughly examine the system’s behavior. The scenarios focused on handling varying
loads, where we incrementally increased the traffic to observe how the system scales. We
simulated the performance of our key management system under different load condi-
tions to compare the traditional single KMC approach with our proposed double KMC

architecture.

First scenario:

For our first evaluation, Here are the main details of the simulation:
e User Load: We added 10 users every second for 10 minutes.
e Maximum Users: The simulation reached a peak of 5900 users.

e Requests Per Second (RPS): The number of requests per second varied between

10 and 660 RPS throughout the simulation.

70

Chapter 3 Proposed Approach

Second scenario:

For our second evaluation, Here are the main details of the simulation:
e User Load: We added 100 users every second for 10 minutes.
e Maximum Users: The simulation reached a peak of 51900 users.

¢ Requests Per Second (RPS): The number of requests per second varied between
100 and 900 RPS throughout the simulation.
Third scenario:

For our third evaluation, Here are the main details of the simulation:
e User Load: We added 1000 users every second for 10 minutes.
e Maximum Users: The simulation reached a peak of 100000 users.

e Requests Per Second (RPS): The number of requests per second varied between

290 and 1100 RPS throughout the simulation.

Key Metrics Explained:

The information presented in the table provides a summary of the data represented
in the graphs.The metrics include maximum users (MU), maximum users before failure
(MUBF), average response time before failure (ARTBF), average response time after
failure (ARTAF), the 95th percentile response time (95TH), whether the system recovers
(RECOVER), and No Failure (NF), which indicates that no failure occurred during the

simulation.

Results for Single KMC (Traditional Method):

The table 3.1 provides the data represented in the graphs 3.9, and scenarios describe the
performance of a single Key Management Center (KMC) under different user loads.Here

is a detailed analysis:
1. First Scenario

e The system could handle up to 3540 users before experiencing failures.

71

Chapter 3 Proposed Approach

e The average response time increased from 3500ms before failure to 4000ms

after failure, indicating a performance degradation.

e The 95th percentile response time is quite high at 19000ms, suggesting that

most users experience significant delays.

e The system did not recover from failures during this scenario.
2. Second Scenario

e The system could handle up to 18300 users before failures started occurring.

e The average response time before failure was 12000ms and increased signifi-

cantly to 23814ms after failure.

e The 95th percentile response time jumped to 71000ms, indicating severe per-

formance issues for a majority of users.

e There was no recovery observed, which means the system struggled to handle

the load effectively.
3. Third Scenario

e The system managed up to 80000 users before failures were noted.

e The average response time before failure was extremely high at 45000ms, and

it doubled to 90000ms after failure.

e The 95th percentile response time reached 160000ms, which is critically high

and indicates that almost all users would experience unacceptable delays.

e The system did not recover, showing it couldn’t handle the maximum load

scenario effectively.

The results indicate that a single KMC setup is inadequate for handling high traffic
loads in a key management system. The significant performance degradation, high latency,

lack of recovery, and limited scalability highlight the need for a more robust solution.

72

Chapter 3

Proposed Approach

MU MUBF | ARTBF | ARTAF | 95TH RECOVER
10u/s 5900 3540 3500ms | 4000ms | 19000ms
100u/s | 51900 | 18300 | 12000ms | 23814ms | 71000ms
1000u/s | 100000 | 80000 | 45000ms | 90000ms | 160000ms
Table 3.1: Results for Single KMC (Traditional Method)

(a) Results for first scenario (b) Results for second scenario

(c) Results for third scenario

Figure 3.9: Results for Single KMC (Traditional Method)

73

Chapter 3 Proposed Approach

Key Findings with Two KMCs with Blockchain Synchronization:

The table 3.2 provides the data represented in the graphs 3.10, depicting the outcomes
of two Key Management Centers (KMCs) synchronized through blockchain technology.
The scenarios outlined herein delineate the efficacy of the Dubele KMC technology across

varying user loads.Here is a detailed analysis:
1. First Scenario
e The system handled a peak of 5900 users without encountering any failures,

indicating good stability at this load level.

e The average response time before reaching maximum users was 3000ms, which

increased to 4000ms after reaching the peak load.

e The 95th percentile response time was 16000ms, suggesting that 95% of the

requests were completed within this time frame.
e The system was able to recover after reaching the peak load, indicating re-
silience.
2. Second Scenario
e The system reached a peak of 51900 users, with failures beginning at 28900
users.

e The average response time before failures started occurring was 13164ms, which

increased to 20814ms after reaching the failure threshold.

e The 95th percentile response time was significantly higher at 70000ms, indi-

cating higher variability in response times under increased load.

e Despite encountering failures, the system was able to recover, showing its ca-

pability to handle higher loads with eventual recovery.
3. Third Scenario

e The system reached a peak of 100,000 users, with failures occurring at this

maximum load.

e The average response time before failures was quite high at 38000ms, and it

increased significantly to 86000ms after reaching the peak load.

74

Chapter 3 Proposed Approach

e The 95th percentile response time was extremely high at 170000ms, indicating
significant delays and performance degradation under maximum load condi-

tions.

e The system managed to recover even under extreme load, showing robustness

but also highlighting the performance limits.

The system shows strong performance and resilience, handling moderate to high loads
efficiently and recovering well even under extreme conditions. These results indicate
that the system is well-built and capable, though further optimization could enhance
performance at the highest load levels. Overall, the system’s performance is good and

demonstrates its reliability in various load scenarios.

MU MUBF | ARTBF | ARTAF | 95TH RECOVER

10u/s 5900 ‘ 3000ms | 4000ms | 16000ms

100u/s | 51900 | 28900 | 13164ms | 20814ms | 70000ms
1000u/s | 100000 | 100000 | 38000ms | 86000ms | 170000ms

Table 3.2: Results Two KMCs with Blockchain Synchronization

5

Chapter 3 Proposed Approach

Total Requests per Second 30 = Total Requests per Second

Response Times (ms) Response Times (ms)

Number of Users Hanber ol s Number of Users

(a) Results for first scenario (b) Results for second scenario

Total Requests per Second

Response Times (ms)

Number of Users

(c) Results for third scenario

Figure 3.10: Results Two KMCs with Blockchain Synchronization

76

Chapter 3 Proposed Approach

Results for using two KMCs without blockchain synchronization:

The table 3.3 provides the data represented in the graphs 3.11, depicting the outcomes of
two Key Management Centers without synchronized through blockchain technology. The
scenarios outlined herein delineate the performance of the Dubele KMC across varying

user loads.Here is a detailed analysis:
1. First Scenario:
e The system handled up to 5900 users without any failure. The average response
time before any potential failure was relatively low (2500ms).

e Even without actual failure, the system’s performance showed an increased

response time, highlighting potential performance bottlenecks at higher loads.

e The 95th percentile response time (18000ms) indicates that a small percentage
of requests experienced significant delays, suggesting possible inefficiencies or

contention in resource handling.

e The system was able to recover from simulated stress conditions.
2. Second Scenario:
e The system managed to support up to 51900 users, but failed after reaching

33600 users.

e The ARTBF increased significantly to 17600ms, indicating the system was
under considerable stress even before failing. After failure, the ART increased

dramatically to 36000ms, showing degraded performance.

e The 95th percentile time of 90000ms suggests severe performance degradation

for a significant portion of requests under heavy load.

e Despite these issues, the system managed to recover after failure, which is a

positive aspect of the system’s resilience.
3. Third Scenario:

e The system reached a maximum of 100000 users before failing, indicating that

this was the upper limit of its capacity in this scenario.

77

Chapter 3 Proposed Approach

e The ARTBF was extremely high at 42000ms, showing the system was strug-
gling significantly under load even before failure. Post-failure, the ART sky-

rocketed to 105000ms, reflecting severe performance issues.

e The 95th percentile time of 200000ms indicates that the vast majority of re-

quests faced substantial delays, highlighting major performance bottlenecks.

e Despite these severe conditions, the system’s ability to recover is notable, sug-

gesting robust failure management mechanisms.

the system exhibited varying degrees of performance and resilience across different
scenarios. its ability to withstand stress, recover from failure, and manage high loads

within certain limits underscores its overall reliability.

MU MUBF | ARTBF | ARTAF | 95TH RECOVER

10u/s 5900 ! 2500ms | 5000ms 18000ms

100u/s | 51900 | 33600 | 17600ms | 36000ms | 90000ms
1000u/s | 100000 | 100000 | 42000ms | 105000ms | 200000ms

Table 3.3: Results for using two KMCs without blockchain synchronization

78

Chapter 3 Proposed Approach

Total Requests per Second O e Total Requests per Second

%0

Response Times (ms) ° oo Response Times (ms)

Number of Users b Number of Users

(a) Results for first scenario (b) Results for second scenario

Total Requests per Second

Response Times (ms)

Number of Users

(c) Results for third scenario

Figure 3.11: Results Two KMCs without Blockchain Synchronization

79

Chapter 3 Proposed Approach

3.3.3 Analyze of the Results

In this analysis, we compare the performance of key management systems under dif-
ferent configurations, focusing on low, moderate, and high load scenarios. The key con-
figurations examined include two KMCs without blockchain synchronization, two KMCs
with blockchain synchronization, and a single KMC. Each configuration was evaluated
based on metrics such as maximum user capacity, average response time before failure,

95th percentile response time, and recovery capability.

Under low load conditions, all configurations reached a maximum of 5,900 users. How-
ever, two KMCs without blockchain synchronization demonstrated superior performance,
with a lower average response time before failure (2,500ms) compared to two KMCs with
blockchain (3,000ms) and a single KMC (3,540ms). The single KMC exhibited the highest
95th percentile time (19,000ms), indicating greater variability in response times. Addi-
tionally, both configurations with two KMCs were capable of recovering from failures,

whereas the single KMC was not.

When subjected to moderate load, both configurations with two KMCs handled up to
51,900 users, with two KMCs without blockchain synchronization supporting more users
before failure (33,600) than those with blockchain (28,900). Interestingly, the average
response time before failure was lower for two KMCs with blockchain (13,164ms) compared
to without (17,600ms). Both dual KMC setups managed to recover from failures, unlike
the single KMC, which again highlighted the limitations of a solitary KMC configuration

in terms of resilience.

Under high load, all configurations reached a maximum of 100,000 users. The perfor-
mance gap widened as two KMCs without blockchain synchronization experienced higher
average response times before failure (42,000ms) compared to two KMCs with blockchain
(38,000ms) and a single KMC (45,000ms). The 95th percentile time was highest for two
KMCs without blockchain synchronization (200,000ms), indicating potential bottlenecks.
Nevertheless, dual KMC configurations consistently recovered from failures, unlike the

single KMC setup.

80

Chapter 3 Proposed Approach

Percentage of Failure according to RPS

100 4+ —— 1 KMC
2 KMC

80+

60+

Failure (%)

40

20 A

I

T
0 200 400 600 800 1000
RPS

Figure 3.12: Percentage of Failure according to RPS

The simulation results reveal key insights into the performance, scalability, and relia-
bility of different KMC configurations in our proposed system. Utilizing two KMCs, with
or without blockchain synchronization, demonstrates superior scalability over a single
KMC. Dual KMC setups adeptly manage peak loads of up to 100,000 users, maintain-
ing reasonable response times. Conversely, single KMC configurations struggle under
increased loads, failing to recover from failures. Employing dual KMCs enhances system
performance and resilience. Dual KMC configurations effectively recover from failures
across various load conditions, unlike single KMC setups. Although blockchain integra-
tion slightly increases response time, it ensures consistent performance and reliability,
bolstering system stability. Using two KMCs, with or without blockchain, offers ben-
efits in scalability, reliability, and performance, especially under high-load conditions.
Blockchain synchronization enhances consistency and reliability despite minor response

time increases. as shown in Figure 3.12 and Figure3.13.

81

Chapter 3 Proposed Approach

Average Response Time according to RPS

— 1 KMC

14000 A SKHE

12000 -

10000 ~

8000

6000 +

Average Response Time with ms

4000

2000 +

T
0 200 400 600 800 1000
RPS

Figure 3.13: Average Response Time according to RPS

3.4 Validation

In validating our key management solution, we employed queue theory to model and
analyze the behavior of the system’s queuing processes. Specifically, we used queuing
models to simulate the arrival of key management requests, the processing of these requests
by the key management centers (KMCs), and the resulting queue lengths and waiting

times.

3.4.1 Queue Theory

Queue theory is a branch of applied mathematics that studies the behavior and char-
acteristics of waiting lines, or queues, in systems where entities arrive for service and
must wait before being served. It provides mathematical models and tools to analyze and
optimize the performance of queuing systems, such as determining average waiting times,

queue lengths, and system utilization [89].

3.4.2 Key Metrics

Two key metrics derived from queue theory that we utilized for validation are:

82

Chapter 3 Proposed Approach

1. Average Queue Lengths: This metric measures the average number of requests
waiting in the queue for service at any given time. It provides insights into the
congestion and workload of the system, helping to identify potential bottlenecks

and inefficiencies.

2. Average Stay Times: Average stay time refers to the average time that a request
spends in the system, including both waiting time in the queue and service time
by the KMCs. It quantifies the overall efficiency and responsiveness of the key
management process, reflecting the system’s ability to process requests in a timely

manner.

3.4.3 Comparison of Queuing Models
Single KMC (Traditional Method):

we considered it an M/M/1 model. This model represents a single-server queue with
Poisson arrivals (M) and exponentially distributed service times (M), with a maximum
queue length of 100,000 entities. In this model, there is a single server serving incoming

requests, and the queue has a finite capacity of 100,000 entities.

Our Solution:

we considered it an M/M/2 model.In contrast to the M/M/1 model, our solution model
represents a multi-server queue with Poisson arrivals (M) and exponentially distributed
service times (M), with a maximum queue length of 100,000 entities. In this model,
there are two servers (M/M/2), allowing for parallel processing of incoming requests and

potentially reducing waiting times and queue congestion.

3.4.4 Analysis Using Queue Theory

To evaluate the performance of our key management solution, we utilized a queue-based
algorithm to calculate key performance metrics such as average queue lengths and average
stay times. Our analysis focused on varying the arrival rate (A) between 10 and 1000

requests per second while keeping the service rate (1) constant at 600 requests per second.

83

Chapter 3 Proposed Approach

This service rate was determined through prior evaluations of our system’s processing

capabilities.

Algorithm for Calculation

we used the following formulas for our queue models:
1. For the M/M/1 Model

e Average Queue Length (L)

L, = 3.2
Py (32)
e Average Stay Time (W)
1
W=—— 3.3
T (3-3)
2. For M/M/2 Model
e Average Queue Length (L,)
)\2
L, = 3.4
"= e =) (34)
e Average Stay Time (V)
1
W = 2 (3.5)

pseudo code

In our study, we employed the aforementioned algorithm to compare the average cus-
tomer stay times between the MM1 queue model and our system, the MM2 queue model.
By defining the MM1Queue and MM2Queue classes, setting appropriate simulation pa-
rameters, and running simulations over a range of arrival rates, we collected comprehensive
results for both queuing systems. We extracted and analyzed the average stay times from
the results of each simulation, allowing us to effectively compare the performance and effi-
ciency of the MM1 model against our two-server MM2 model. The comparison highlights

the differences in how each system handles varying arrival rates.

84

10

11

12

13

14

15

16

17

18

Chapter 3 Proposed Approach

Define MM1Queue class with initialization, interarrival and service time
— generation, event processing, and simulation methods.
Define MM2Queue class with initialization, interarrival and service time
— generation, event processing, and simulation methods, including
— handling for two servers.
Set service_rate, simulation_time, and arrival_rates range for testing.
Define run_mml_simulation function to iterate over arrival_rates, create
< MM1Queue instance, simulate, and store results.
Define run_mm2_simulation function to iterate over arrival_rates, create
— MM2Queue instance, simulate, and store results.
Create empty lists mml_results and mm2_results to store simulation
- Tresults.
For each arrival_rate in arrival_rates:
Instantiate MM1Queue with arrival_rate and service_rate.

Simulate queue until simulation_time.

Append results to mml_results.
For each arrival_rate in arrival_rates:

Instantiate MM2Queue with arrival_rate and service_rate.

Simulate queue until simulation_time.

Append results to mm2_results.
Extract average_customer_stay from each result in mml_results.
Extract average_stay_time from each result in mm2_results.
Optionally, plot mml_average_stay_times and mm2_average_stay_times
— against arrival_rates for analysis.

End of algorithm.

Analysis Results

To analyze the results of the average queue lengths and average stay times for both the
single KMC and dual KMC models, we will look at how these metrics change with varying
arrival rates (A) and how they compare between the two configurations. The performance
metrics provide insights into the efficiency and scalability of each model under different

traffic conditions.

85

Chapter 3 Proposed Approach

In the single KMC model, the average queue lengths and stay times both increase
steadily with the arrival rate (\). As A approaches the service rate (u), the queue lengths
grow significantly, indicating higher congestion and longer waiting times. Initially, the
stay times increase slowly, but as A gets closer to u, the stay times rise rapidly, reflect-
ing increased latency and reduced system efficiency. This model clearly shows a direct

correlation between higher arrival rates and system performance degradation.

For the dual KMC model, the average queue lengths and stay times also increase with
A, but the rate of increase is lower compared to the single KMC model. This suggests that
the dual server configuration handles the load more effectively, resulting in less congestion
and lower latency. The gradual increase in stay times indicates that the dual KMC model
can manage higher loads more efficiently, demonstrating better scalability and system
performance. The static Load Balancer in the dual model effectively distributes the load,
preventing either server from becoming a bottleneck, which is evident from the more stable
average queue lengths and stay times. Overall, the dual KMC model shows significant

advantages in handling higher traffic loads and maintaining system performance.

Average Customer Stay Time vs Arrival Rate for M/M/1 and M/M/2 Queues

i

—— M/M/1 Average Customer Stay

057 — M/M/2 Average Customer Stay

0.4 4

e
w
L

Average Customer Stay Time
o
L8]
)

0.1+

0.04

T T T T T T
0 2000 4000 6000 8000 10000
Arrival Rate (lambda)

Figure 3.14: Avrage Stay Time vs Arival rate for M/M/1 and M/M/2

86

Chapter 3 Proposed Approach

3.5 Conclusion

In this chapter, we have presented our proposed key management solution for Big Data
environments, focusing on a Double Key Management Center (KMC) architecture with
a static Load Balancer and blockchain-based public record system. Our static method
for traffic checking was chosen for its simplicity, predictability, and ease of implementa-
tion, ensuring efficient resource utilization and consistent performance. The architecture
comprises several key steps, including request initiation, traffic assessment, optimal rout-
ing, key management operations, and cross-KMC synchronization, all coordinated by the

static Load Balancer.

Our evaluation and validation plan is comprehensive, involving performance metrics
such as latency and throughput, scalability tests under varying loads, and reliability
assessments through simulated failures. By addressing these critical aspects, we aim to
deliver a secure, efficient, and transparent key management infrastructure tailored to the

demands of Big Data environments, ensuring robust performance and high reliability.

87

(zeneral conclusion

In this project, we developed a robust and efficient key management solution tailored
for Big Data environments. Our proposed architecture, featuring a Double Key Manage-
ment Center (KMC) with a blockchain-based public record and a traffic checker for load
balancing, addresses the critical needs of scalability, security, reliability, and transparency

in key management.

The integration of a static method for traffic checking offers a predictable and straight-
forward approach, ensuring that incoming requests are efficiently routed based on prede-
fined rules. This decision enhances the system’s stability and simplicity, making it easier
to implement and maintain while still meeting the performance requirements of a Big

Datacontext.

Key features of our solution include:

e Scalability: The architecture can accommodate growing data volumes and user

demands, with the capability to add new KMC instances as needed.

e Security and Transparency: The use of a blockchain-based public record ensures
that all key management transactions are immutable and auditable, providing a high

level of security and transparency.

e Efficiency: The traffic checker component optimizes resource utilization by di-
recting requests to the least congested KMC, minimizing latency and maximizing

throughput.

88

General conclusion

¢ Reliability and Availability: The system is designed to maintain high uptime
and quick recovery from failures, ensuring continuous operation in a dynamic Big

Data environment.

Our evaluation and validation strategy, encompassing simulations, experiments, and
real-world testing, confirmed the effectiveness of our approach. Key performance metrics
such as latency, throughput, resource utilization, and system reliability were thoroughly
assessed, demonstrating that our solution meets the stringent requirements of modern key

management systems.

In conclusion, our key management solution provides a comprehensive, secure, and
efficient framework for managing cryptographic keys in Big Data environments. By ad-
dressing the challenges of scalability, security, and performance, we offer a robust infras-
tructure that can support the evolving needs of data-intensive applications and services.
This project lays the foundation for further innovations and improvements in key man-
agement, ensuring that the integrity and security of data are maintained in increasingly

complex and demanding digital landscapes.

However, several challenges remain in implementing and optimizing this technology.
One of the main issues is the potential bottleneck in blockchain-based public records,
which could affect performance as the number of transactions increases. Additionally,
the static method for traffic checking, while simple and stable, may not always adapt
optimally to highly dynamic traffic patterns. In the future, we aim to explore adaptive
and intelligent traffic management techniques, such as machine learning-based dynamic
load balancing, to further enhance system performance and efficiency. We also plan to
investigate scalable blockchain solutions or alternative distributed ledger technologies to
ensure the system remains efficient and responsive as it scales. These improvements will
help address current limitations and pave the way for even more robust and resilient key

management systems.

89

Bibliography

Vetal. Network encryption system market to witness stunning growth. .

Lingyu. Key distribution and management in enterprise private network environ-

ments, 2021. .

B-sidh protocol. .

Asecuritysite. Rsa encryption. .

Block diagram of the proposed framework. .

Rahul Kaur. Exploring growth trends in hardware security modules (hsm), 2024. .
Infineon Technologies AG. Infineon Optiga TPM. .

Big data and international trade: What is working and what we have learned. .
Enterprise network security. .

Key management service. .

Workato. Encryption key management, 2024.

Ceph Documentation. Ceph rados gateway with kmip integration. .
Blockchain-based key management system. .

oreilly. Distributed key management systems. .

Decentralized blockchain-based key management. .

public record. .

90

https://www.linkedin.com/pulse/network-encryption-system-market-witness-stunning-growth-vetal/
https://lingyu.blog/2021/09/26/%E4%BC%81%E4%B8%9A%E4%B8%93%E7%94%A8%E7%BD%91%E7%8E%AF%E5%A2%83%E4%B8%AD%E5%AF%86%E9%92%A5%E7%9A%84%E5%88%86%E5%8F%91%E5%92%8C%E7%AE%A1%E7%90%86/
https://www.researchgate.net/figure/B-SIDH-protocol-for-a-prime-p-such-that-Mp-1documentclass12ptminimal_fig2_362148569
https://asecuritysite.com/csharp/enc07
https://www.researchgate.net/figure/Block-diagram-of-the-proposed-framework_fig1_334070623
https://www.linkedin.com/pulse/exploring-growth-trends-hardware-security-modules-hsm-rahul-kaur-lbqhc/
https://www.infineon.com/cms/en/product/security-smart-card-solutions/optiga-embedded-security-solutions/optiga-tpm/
https://www.linkedin.com/pulse/big-data-international-trade-what-working-we-have-learnt-/
https://bangkoksystem.com/enterpise-network-security
https://www.open-telekom-cloud.com/en/products-services/core-services/key-management-service
https://docs.ceph.com/en/latest/radosgw/kmip/
https://www.sciencedirect.com/science/article/abs/pii/S1084804523001510
https://www.oreilly.com/library/view/enterprise-wide-security-architecture/0738402087/chapter-87.html
https://www.sciencedirect.com/science/article/abs/pii/S0140366422001220
https://www.dock.io/post/public-vs-private-blockchains

Bibliography

[17]

[18]

[19]

[20]

[21]

[22]

[20]

[27]

Networkmonitoring. .

PT. Network Data Sistem (NDS). Learn more about functions and how network load

balance works, 2024.
Cloudflare. What is encryption?

Kefeng Fan, Subing Zhang, and Wei Mo. A digital certificate application scheme in
content protection system for high definition digital interface. In 2009 Fifth Interna-
tional Conference on Information Assurance and Security, volume 2, pages 395-398.

IEEE, 2009.

Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-
Yves Strub, and Santiago Zanella-Béguelin. Proving the tls handshake secure (as it
is). In Advances in Cryptology—CRYPTO 2014: 34th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part Il 34, pages 235—
255. Springer, 2014.

Christophe Giraud. Dfa on aes. In Advanced Encryption Standard—AES: 4th Inter-
national Conference, AES 2004, Bonn, Germany, May 10-12, 2004, Revised Selected
and Inuvited Papers 4, pages 27-41. Springer, 2005.

Hamdan Alanazi, B Bahaa Zaidan, A Alaa Zaidan, Hamid A Jalab, Mohamed Shab-
bir, Yahya Al-Nabhani, et al. New comparative study between des, 3des and aes
within nine factors. arXiv preprint arXiw:1003.4085, 2010.

khanacademy. symmetric encryption.

Terry E Robinson. Hippocampal rhythmic slow activity (rsa, theta): A critical anal-
ysis of selected studies and discussion of possible species-differences. Brain Research

Reviews, 2(1-3):69-101, 1980.

Dan Boneh. The decision diffie-hellman problem. In International algorithmic number

theory symposium, pages 48—63. Springer, 1998.

Joppe W Bos, J Alex Halderman, Nadia Heninger, Jonathan Moore, Michael Naehrig,
and Eric Wustrow. Elliptic curve cryptography in practice. In Financial Cryptog-
raphy and Data Security: 18th International Conference, FC 2014, Christ Church,

91

https://www.wallarm.com/what/what-is-network-monitoring-definition-benefits-tools

Bibliography

[33]

[37]

[38]

[39]

Barbados, March 3-7, 2014, Revised Selected Papers 18, pages 157—-175. Springer,
2014.

cloudflare. asymmetric encryption.

gradenegger. key sizes.

nordpass. brute force attack.

justcryptography. symmetric and asymmetric key length.

Ismail Mansour, Gérard Chalhoub, Pascal Lafourcade, and Francois Delobel. Se-
cure key renewal and revocation for wireless sensor networks. In 39th Annual IEEE

Conference on Local Computer Networks, pages 382-385. IEEE, 2014.

Oksana OVCHARUK. Competencies as a key to educational content renewal. Reform
Strategqy for Education in Ukraine: FEducational Policy Rec ommendations.—Kyiv:

KIS, 2003.-280 pages., page 13, 2003.
webdevsplanet. how to generate rsa private and public keys.

David Pointcheval and Serge Vaudenay. On provable security for digital signature

algorithms. 1996.

Yong Li, Sven Schage, Zheng Yang, Florian Kohlar, and Jorg Schwenk. On the se-
curity of the pre-shared key ciphersuites of tls. In Public-Key Cryptography—PKC
2014: 17th International Conference on Practice and Theory in Public-Key Cryptog-
raphy, Buenos Aires, Argentina, March 26-28, 201/. Proceedings 17, pages 669—684.
Springer, 2014.

S Josefsson. Extended kerberos version 5 key distribution center (kdc) exchanges

over tcp. Technical report, 2007.
Russ Housley. Public key infrastructure (pki). The internet encyclopedia, 2004.

Frances F Yao and Yiqun Lisa Yin. Design and analysis of password-based key
derivation functions. In Topics in Cryptology—CT-RSA 2005: The Cryptographers’
Track at the RSA Conference 2005, San Francisco, CA, USA, February 14-18, 2005.
Proceedings, pages 245-261. Springer, 2005.

92

Bibliography

[40]

[41]

[42]

[44]

[45]

[47]

[49]

KV Pradeep, V Vijayakumar, V Subramaniyaswamy, et al. An efficient framework
for sharing a file in a secure manner using asymmetric key distribution management
in cloud environment. Journal of Computer Networks and Communications, 2019,

2019.

Elaine Barker and William Barker. Recommendation for key management, part 2:
best practices for key management organization. Technical report, National Institute

of Standards and Technology, 2018.

Amrita Ghosal and Mauro Conti. Key management systems for smart grid ad-
vanced metering infrastructure: A survey. IEEE Communications Surveys € Tuto-

rials, 21(3):2831-2848, 2019.

Johan Ivarsson, Andreas Nilsson, and AB Certezza. A review of hardware security

modules fall 2010. AB Certezza, Stockholm, SE, Tech. Rep., Dec, 2010.

Steven L Kinney. Trusted platform module basics: using TPM in embedded systems.
Elsevier, 2006.

David Lazer and Jason Radford. Data ex machina: introduction to big data. Annual

Review of Sociology, 43:19-39, 2017.

Abla Chaouni Benabdellah, Asmaa Benghabrit, Imane Bouhaddou, et al. Big data
for supply chain management: Opportunities and challenges. In 2016 IEEE/ACS
13th International Conference of Computer Systems and Applications (AICCSA),
pages 1-6. IEEE, 2016.

Thoyazan Sultan Algaradi and Boddireddy Rama. An authenticated key manage-
ment scheme for securing big data environment. International Journal of Electrical

and Computer Engineering (IJECE), 12(3):3238-3248, 2022.

Andreas Grillenberger and Ralf Romeike. Teaching data management: key com-
petencies and opportunities. KEYCIT 2014-Key Competencies in Informatics and
ICT, 2014.

Bethany Tellor, Lee P Skrupky, William Symons, Eric High, Scott T Micek, and

John E Mazuski. Inadequate source control and inappropriate antibiotics are key

93

Bibliography

[50]

[51]

[53]

[55]

[56]

[57]

determinants of mortality in patients with intra-abdominal sepsis and associated

bacteremia. Surgical infections, 16(6):785-793, 2015.

Muhammad Naeem, Tauseef Jamal, Jorge Diaz-Martinez, Shariq Aziz Butt, Nicolo
Montesano, Muhammad Imran Tariq, Emiro De-la Hoz-Franco, and Ethel De-La-
Hoz-Valdiris. Trends and future perspective challenges in big data. In Advances
in Intelligent Data Analysis and Applications: Proceeding of the Sizth Euro-China
Conference on Intelligent Data Analysis and Applications, 15-18 October 2019, Arad,
Romania, pages 309-325. Springer, 2022.

Uthayasankar Sivarajah, Muhammad Mustafa Kamal, Zahir Irani, and Vishanth
Weerakkody. Critical analysis of big data challenges and analytical methods. Journal
of business research, 70:263-286, 2017.

Nawsher Khan, Ibrar Yaqoob, Ibrahim Abaker Targio Hashem, Zakira Inayat,
Waleed Kamaleldin Mahmoud Ali, Muhammad Alam, Muhammad Shiraz, Abdul-
lah Gani, et al. Big data: survey, technologies, opportunities, and challenges. The

scientific world journal, 2014, 2014.

Qiong Zhang and Yuke Wang. A centralized key management scheme for hierarchi-
cal access control. In IEEE Global Telecommunications Conference, 2004. GLOBE-
COM’04., volume 4, pages 2067-2071. IEEE, 2004.

Saber Banihashemian, Abbas Ghaemi Bafghi, and Mohammad Hossien Yagh-
maee Moghaddam. Centralized key management scheme in wireless sensor networks.

Wireless Personal Communications, 60:463-474, 2011.

Mustapha Hedabou. Cloud key management based on verifiable secret sharing. In
Network and System Security: 15th International Conference, NSS 2021, Tianjin,
China, October 23, 2021, Proceedings 15, pages 289-303. Springer, 2021.

Yacine Felk. Confidential computing. Trends in Data Protection and Encryption

Technologies, pages 103-107, 2023.

B Thimma Reddy, K Bala Chowdappa, and S Raghunath Reddy. Cloud security
using blowfish and key management encryption algorithm. International Journal of

Engineering and Applied Sciences, 2(6):257892, 2015.

94

Bibliography

[58]

[62]

[63]

[64]

[65]

Smita Athanere and Ramesh Thakur. A review of chronological development in
group and hierarchical key management schemes in access control model: Challenges
and solutions. International Journal of Computer Networks and Applications, pages

84-102, 2022.
Kai Fan. Secure and private key management scheme in big data networking. 2017.

Elisa Bertino, Ning Shang, and Samuel S Wagstaff Jr. An efficient time-bound
hierarchical key management scheme for secure broadcasting. IEEE transactions on

dependable and secure computing, 5(2):65-70, 2008.

Yan Zhu, Gail-Joon Ahn, Hongxin Hu, Di Ma, and Shanbiao Wang. Role-based
cryptosystem: A new cryptographic rbac system based on role-key hierarchy. IEEFE
Transactions on Information Forensics and Security, 8(12):2138-2153, 2013.

Mir Ali Rezazadeh Baee, Leonie Simpson, and Warren Armstrong. Anomaly detec-
tion in the key-management interoperability protocol using metadata. IEEFE Open

Journal of the Computer Society, 2024.

Apoorva Banubakode, Pooja Patil, Shreya Bhandare, Sneha Wattamwar, and
Ashutosh Muchrikar. Key management interoperability protocol-based library for
android devices. In Artificial Intelligence and Evolutionary Computations in Engi-

neering Systems: Proceedings of ICAIECES 2017, pages 315-323. Springer, 2018.

Xixiang Lv, Yi Mu, and Hui Li. Key distribution for heterogeneous public-key cryp-
tosystems. Journal of Communications and Networks, 15(5):464-468, 2013.

Youliang Tian, Zuan Wang, Jinbo Xiong, and Jianfeng Ma. A blockchain-based
secure key management scheme with trustworthiness in dwsns. IEEFE Transactions

on Industrial Informatics, 16(9):6193-6202, 2020.

Jiaxing Li, Jigang Wu, Long Chen, Jin Li, and Siew-Kei Lam. Blockchain-based
secure key management for mobile edge computing. [EEE Transactions on Mobile

Computing, 22(1):100-114, 2021.

Nguyn Th Tuyt Trinh et al. A survey on optimization-based approaches to dynamic
centralized group key management. Journal of Science and Technology on Informa-

tion security, pages 54-62, 2023.

95

Bibliography

[68]

[69]

[70]

[71]

[72]

73]

[75]

[76]

Michael Egorov, MacLane Wilkison, and David Nunez. Nucypher kms: Decentralized
key management system. arXiv preprint arXiw:1707.06140, 2017.

Zhuo Ma, Junwei Zhang, Yongzhen Guo, Yang Liu, Ximeng Liu, and Wei He. An
efficient decentralized key management mechanism for vanet with blockchain. IEEFE

Transactions on Vehicular Technology, 69(6):5836-5849, 2020.

Tolga Acar, Mira Belenkiy, Carl Ellison, and Lan Nguyen. Key management in
distributed systems. Microsoft Research, pages 1-14, 2010.

Thomas Ulz, Thomas Pieber, Christian Steger, Sarah Haas, Holger Bock, and Rainer
Matischek. Bring your own key for the industrial internet of things. In 2017 IEEFE
International Conference on Industrial Technology (ICIT), pages 1430-1435. IEEE,
2017.

Sadia Syed and M Ussenaiah. Notice of violation of ieee publication principles: The
rise of bring your own encryption (byoe) for secure data storage in cloud databases.
In 2015 International Conference on Green Computing and Internet of Things (ICG-
CloT), pages 1463-1468. IEEE, 2015.

Mohamed Ali Kandi, Djamel Eddine Kouicem, Messaoud Doudou, Hicham Lakhlef,
Abdelmadjid Bouabdallah, and Yacine Challal. A decentralized blockchain-based

key management protocol for heterogeneous and dynamic iot devices. Computer

Communications, 191:11-25, 2022.

Soumyashree S Panda, Debasish Jena, Bhabendu Kumar Mohanta, Somula Rama-
subbareddy, Mahmoud Daneshmand, and Amir H Gandomi. Authentication and key
management in distributed iot using blockchain technology. IEEFE Internet of Things
Journal, 8(16):12947-12954, 2021.

Maissa Dammak, Sidi-Mohammed Senouci, Mohamed Ayoub Messous, Mo-
hamed Houcine Elhdhili, and Christophe Gransart. Decentralized lightweight group
key management for dynamic access control in iot environments. IEEE Transactions

on Network and Service Management, 17(3):1742-1757, 2020.

Sandro Rafaeli. A decentralized architecture for group key management. Computing

Department, Lancaster University, 2000.

96

Bibliography

[77]

[78]

[79]

[30]

[31]

[82]

[83]

[84]

Tanusree Sharma, Vivek C Nair, Henry Wang, Yang Wang, and Dawn Song. “i can’t
believe it’s not custodial!” usable trustless decentralized key management. ACM

ISBN 979-8-4007-0330-0/24/05, 2024.

Victoria L Lemieux. Blockchain and public record keeping: of temples, prisons, and

the (re) configuration of power. Frontiers in Blockchain, 2:5, 2019.

Alisha Cecil. A summary of network traffic monitoring and analysis techniques.

Computer systems analysis, pages 4-7, 2006.

lan F Akyildiz, Ahyoung Lee, Pu Wang, Min Luo, and Wu Chou. Research challenges
for traffic engineering in software defined networks. leee Network, 30(3):52-58, 2016.

Sambit Kumar Mishra, Bibhudatta Sahoo, and Priti Paramita Parida. Load balanc-
ing in cloud computing: a big picture. Journal of King Saud University-Computer

and Information Sciences, 32(2):149-158, 2020.

Animesh Patcha and Jung-Min Park. An overview of anomaly detection techniques:
Existing solutions and latest technological trends. Computer networks, 51(12):3448—
3470, 2007.

Athena Vakali and George Pallis. Content delivery networks: Status and trends.
IEEFE Internet Computing, 7(6):68-74, 2003.

Kamal Benzekki, Abdeslam El Fergougui, and Abdelbaki Elbelrhiti Elalaoui.
Software-defined networking (sdn): a survey. Security and communication networks,

9(18):5803-5833, 2016.

JT Zhao, SY Jing, and LZ Jiang. Management of api gateway based on micro-service
architecture. In Journal of Physics: Conference Series, volume 1087, page 032032.
IOP Publishing, 2018.

Wolfram Wingerath, Felix Gessert, Steffen Friedrich, and Norbert Ritter. Real-time
stream processing for big data. it-Information Technology, 58(4):186-194, 2016.

Vineet John and Xia Liu. A survey of distributed message broker queues. arXiv

preprint arXiw:1704.00411, 2017.

97

Bibliography

[88]

[92]

[93]

[95]

Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. Symnet:
Static checking for stateful networks. In Proceedings of the 2013 workshop on Hot

topics in middleboxes and network function virtualization, pages 31-36, 2013.

Ivo Adan and Jacques Resing. Queueing theory. Eindhoven University of Technology,
180, 2002.

cyberpedia. What is key length?

Anne VDM Kayem, Selim G Akl, and Patrick Martin. On replacing crypto-
graphic keys in hierarchical key management systems. Journal of Computer Security,

16(3):289-309, 2008.

Albert Treytl and Thilo Sauter. Hierarchical key management for smart grids. In
2015 IEEE International Symposium on Systems Engineering (ISSE), pages 496-500.
IEEE, 2015.

Mathias Bjorkqvist, Christian Cachin, Robert Haas, Xiao-Yu Hu, Anil Kurmus, René
Pawlitzek, and Marko Vukoli¢. Design and implementation of a key-lifecycle man-
agement system. In International Conference on Financial Cryptography and Data

Security, pages 160-174. Springer, 2010.

Gregory Linklater, Christian Smith, Alan Herbert, and Barry Irwin. Toward dis-
tributed key management for offline authentication. In Proceedings of the Annual
Conference of the South African Institute of Computer Scientists and Information

Technologists, pages 10-19, 2018.

Laurent Eschenauer and Virgil D Gligor. A key-management scheme for distributed
sensor networks. In Proceedings of the 9th ACM Conference on Computer and Com-

munications Security, pages 41-47, 2002.

Pinar Nuhoglu Kibar, Abdullah Yasin Giindiiz, and Buket Akkoyunlu. Implementing
bring your own device (byod) model in flipped learning: Advantages and challenges.

Technology, Knowledge and Learning, 25(3):465-478, 2020.

Abdulrezzak Zekiye and Oznur Ozkasap. Blockchain-based federated learning for
decentralized energy management systems. In 2023 Fifth International Conference

on Blockchain Computing and Applications (BCCA), pages 186-193. IEEE, 2023.

98

Bibliography

[98] Conghui Zhang, Yi Li, Wenwen Sun, and Shaopeng Guan. Blockchain based big
data security protection scheme. In 2020 IEEE 5th Information Technology and
Mechatronics Engineering Conference (ITOEC), pages 574-578. IEEE, 2020.

[99] amazon. bring your own key in aws kms. .

99

https://aws.amazon.com/fr/blogs/security/how-to-byok-bring-your-own-key-to-aws-kms-for-less-than-15-00-a-year-using-aws-cloudhsm/

	Table of contents
	Table of figures
	List of Tables
	Abbreviations list
	General introduction
	Key management
	Introduction
	Fundamentals of Cryptographic Keys
	What is encryption?
	Cryptographic Keys
	Digital Certificate
	Types of Cryptographic Keys
	Key Length and Strength
	Key Revocation and Renewal

	Key Generation
	Symmetric Key Generation
	Asymmetric Key Pair Generation

	Key Distribution Mechanisms
	Symmetric Key Distribution
	Asymmetric Key Distribution

	Key Storage and Protection
	Best Practices for Key Storage
	Key Management Systems
	Secure hardware storage

	Conclusion

	Key management in Big Data
	Introduction
	Fundamentals of Big Data
	What is Big Data ?
	Characteristics of Big Data

	Importance of Key Management in Big Data
	Risks Associated with Inadequate Key Management

	Challenges in Key Management for Big Data
	Centralized Key Management Techniques in Big Data
	Cloud Key Management Services
	Hierarchical Key Management
	Key Management Interoperability Protocol (KMIP)
	Centralized Blockchain-based Key Management
	Advantages of centralized key management
	Inconveniences of centralized key management

	Decentralized Key Management Techniques in Big Data
	Distributed Key Management Systems (DKMS)
	Bring Your Own Key
	Decentralized Blockchain-based Key Management
	Advantages of Decentralized key management
	Inconveniences of Decentralized key management

	Conclusion

	Proposed Approach
	Introduction
	Proposed Idea for Key Management
	Methodology behind our proposed solution
	Enhancements and Distinctions Compared to Traditional Methods
	Technical background

	Evaluation
	Evaluation Metrics and Criteria
	Simulations
	Analyze of the Results

	Validation
	Queue Theory
	Key Metrics
	Comparison of Queuing Models
	Analysis Using Queue Theory

	Conclusion

	General conclusion
	Bibliography

