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A B S T R A C T

The factors and mechanism which control the spatial patterns of heavy metals in groundwater and their effect
on human health could be identified with multivariate statistical methods and human health risk assessment.
Sampling wells are statistically classified into two cluster based on the similar characters in groundwater quality
using Q-mode cluster analysis (Q-mode CA). Two significant factors were extracted by principal component
analyses (PCA), explaining 64.19% of the total variance. These factors were in turn described by the clusters 1
and 2, respectively, resulting from the R-mode CA. PCA and CA revealed significant anthropogenic
contributions and water-rock interaction effects of the metals in groundwater. Health risk assessment factors
including chronic daily intake (CDI) and hazard quotient (HQ) indices were computed for child and adult. The
HQ indices of Cd and Pb in the both child and adult cases showed the value greater than the safe limits, which
cause the harmful health hazards and potential non-carcinogenic health risks to the human. Spatial variability
maps using ordinary kriging show that safe zones are mainly covered the west and south-western parts of the
study area, while the contamination zones are found to be concentrated in the east, north, and south-eastern
parts of the plain. The indicator kriging maps show highly uneven spatial pattern of Pb and Cd concentrations.
The probability maps reveal that more than 50% of the total area possessed the highest probability (0.8–1.0) of
exceeding the threshold values for Cd and Pb.

1. Introduction

Heavy metal (HM) contamination is one the significant health issue
in the world, due to indestructibility of metals and their impact on
living organism in concentration greater than thresholds. Therefore,
human and ecosystem health need to be assess frequently by monitor-
ing the concentration of heavy metals in the environment. Since, heavy
metals are not degradable biologically or chemically, they accumulate
in limited space or move over long distance. Heavy metals can occur
due to natural or anthropogenic sources. Natural sources including the
weathering of soils and rocks (Loska and Wiechula, 2003; Yazdi and
Behzad, 2009; Mahjoobi et al., 2010), then being transported by air
(Giuliano et al., 2007; Zorer et al., 2009) and water (Das and
Krishnaswami, 2007; Elmaci et al., 2007; Kar et al., 2008).
Anthropogenic activities are other heavy metal sources, which can
influence human health by affecting the on vegetation and food chain.

The possibility of incidence of an event which threatened human
and ecosystem health and the magnitude of harmful effects over a time

periods could be estimated using human health risk assessment
methods (Lim et al., 2008). Human could be exposed by heavy metals
in three main way, namely direct intake, inhalation and dermal
absorption through skin. According to the literature, ingestion and
dermal absorption are usual ways for water exposure (USEPA, 1989,
2004; Wu et al., 2009, 2010).

Estimation of spatial patterns of heavy metals contaminations in
groundwater is an important stepin the health risk assessment.
Geostatistical approaches applied to estimate heavy metals values at
unsampled location based on the collected data from sampling station
wells (Arslan, 2012). Geostatistics becomes one of the important
modelling methods in the studies of sustainability and management
in water resources (Baalousha, 2010; Zhou et al., 2011; Arslan, 2012).
Kriging is one of the geostatistical interpolation approaches consist of
several methods, including indicator kriging, simple kriging, ordinary
kriging and co-kriging, which commonly applied in estimating spatial
distribution of variables (Lee et al., 2007). Indicator kriging (IK) is an
appropriate non-parametric method, which can estimate a conditional
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cumulative distribution function at un-sampled location (Hassan et al.,
2011). Therefore, IK model shows the quantified probability of variable
exceed or not exceed a particular threshold.

In this study an IK approach was adopted for analyzing the spatial
pattern of heavy metals concentration in Ain Azel plain, Algeria.
Moreover, various multivariate statistical analysis such as principal
component analysis (PCA), R-mod and Q-mod cluster analysis are
applied for explanation of huge and complex water quality data in the
study area. The information was obtained by statistical analysis can be
useful for water resource management (Krishna et al., 2009).

The main aim of the present study is to identify the spatial pattern
and the possible sources of heavy metal concentrations in groundwater
to assess the impact on human health using the employment of
multivariate statistical methods and health risk assessment indices,
and geostatistical techniques.

2. Materials and methods

2.1. Characterization of the studied area

Ain Azel plain is placed in the eastern side of Algeria, which lies
between latitudes 35°78′1’’ N and 35°89′4’’ N, and longitudes 5°40′4’’ E
and 5°65′0’’ E (Fig. 1). The local weather of the area is semi-arid and
the mean of temperature and rainfall is 15.2 °C and 296 mm/year,
respectively (Belkhiri, 2013). Most of the population (more than
30,000) are concentrated in the Ain Azel town and the center of the
plain, and agriculture is the main economic activity in this area.

Base on the geological map (Fig. 2), several geological formation
belong to Triassic, Jurassic, Cretaceous, Miocene and Mio-Plio-
Quaternary existed in the study area (Guiraud, 1973; Vila, 1980)
(Fig. 2). The Triassic formation is constructed by evaporite rocks, such
as gypsum, anhydrite and halite, clay and carbonate minerals (lime-
stone and dolomite). The Jurassic formation is formulated by lime-
stone, dolomite and marl. Clay, marl, limestone and dolomite are
formed the Cretaceous formation. The Miocene formation is consti-
tuted by limestone, sandstone, dolomite and conglomerate. The Mio-
Plio-Quaternary formation shows a heterogeneous continental detrital
sedimentation. Exist two poly-metallic mines (lead and zinc) in the
study area, the first is Kherzet Youcef in the west (it was abandoned
after the disaster of June 2, 1990) and the second is Chaaba el Hamra
in the south of the plain. The presence of the mines indicated that the
study area is very rich by minerals. The mines belong to a mining
district Pb-Zn. They are characterized by simple paragenesis with
sphalerite (ZnS), galena (PbS) and marcasite are the major minerals
(Boutaleb, 2001).

The aquifer is extended in the alluvial plain of the Mio-Plio-
Quaternary and recharge by stream water flows from different reliefs
surrounding the depression inter-mountainous of Ain Azel. Large
numbers of wells with different depths from 8 to 38 m were con-
structed in the plain, which mostly apply for drinking and irrigation
(Belkhiri, 2013).

2.2. Groundwater sampling and analysis

In Ain Azel plain, around 18 groundwater samples were carried out
from Mio-Plio-Quaternary aquifer in March 2008 (Fig. 1), which
mainly supply for domestic and agricultural purposes. The ground-
water samples were collected after pumping for 10 min and collected
using 4 L acid-washed polypropylene containers. Each sample is
immediately filtered on site through 0.45 µm filters on acetate cellu-
lose. Then the filtered samples are transferred into 100-cm3 polyethy-
lene bottles and immediately acidified to pH < 2 by the addition of
MerckTM ultrapure nitric acid (5 ml 6N HNO3). The samples were
analyzed for Al, Cd, Cu, Fe, Pb and Zn using standard procedures by
(APHA, 2005). The electrical conductivity (EC), pH and the tempera-
ture (T) were measured by multi-parameter WTW (P3 MultiLine pH/

LF-SET). The heavy metals are specified by Graphite Furnace Atomic
Absorption Spectrophotometer (Perkin-Elmer AAnalyst 700) using
multi element Perkin-Elmer standard solutions.

2.3. Multivariate Statistical analysis

Multivariate statistical analysis is an appropriate approach for
classifying, modelling and interpreting larg data set in environmental
monitoring programs and water quality assessment studies (Liu et al.,
2003). Initial information about groundwater quality characterization
came from the basic statistics and correlation analysis. Moreover,
multivariate statistical analysis, including cluster analysis (CA) and
principal component analysis (PCA) were applied on the dataset. In
water quality studies, it is important to find the interrelationship in
huge groundwater dataset and extracted the important factors influen-
cing groundwater quality, which was used to infer the hypothetical
sources of heavy metals (Narany et al., 2014). Therefore, principal
component analysis was used on groundwater quality dataset, which
also useful to minimized the number of variables with a high loading on
each component, thereby facilitating the interpretation of PCA results.

Moreover, samples with similar heavy metal contents could be
identified and classified based on the cluster analysis (Panda et al.,
2006). CA was formulated based on the Ward-algorithmic method, and
the Euclidean distance was employed for measuring the distance
between clusters of similar metal contents. Q-mode CA was performed
to identify clusters of similar sites on the basis of similarities within a
class, whereas R-mode CA was used to determine the association of
different water quality parameters as well as the sources and processes
with which they were associated. All the data were statistically analyzed
using the SPSS software (version 17.0 for Windows) and Statistica v10.
The maps were prepared using ArcGIS computer package.

2.4. Human health risk assessment

Regarding to health risk assessment, the chronic risk level was
determined using chronic daily intake (CDI) indices and hazard
quotient (HQ) indices.

The CDI through water ingestion was calculated according to the
modified equation from (USEPA, 1992; Chrostowski, 1994):

CDI C DI
BW

= *
(1)

where C, DI and BW represent the concentration of HM in water (µg/l),
average daily intake rate (2 l/day) and body weight (72 kg), respectively
(USEPA, 2005).

The HQ for non-carcinogenic risk can be calculated by the following
equation (USEPA, 1999):

HQ CDI
RfD

=
(2)

where, based on the USEPA database the oral toxicity reference dose
values (RfD) are 7.0E-01, 5.0E-04, 3.7E-02, 3.0E-01, 3.6E-02, 3.0E-
01 mg/kg-day for Al, Cd, Cu, Fe, Pb and Zn, respectively (USEPA,
2005).

The scale of chronic risk level (HQ) based on average daily intake
(CDI) and reference dose (mg/kg-day) is classified based on the ratio of
CDI/RfD indicating≤1 (no risk) if > 1≤5 (low risk), if > 5≤10 (medium
risk) and if > 10 (high risk).

2.5. Geostatistical interpolation methods

Geostatistics is a section of applied statistics expand by Matheron
(1971), that deals with estimation and modelling of spatial pattern
using of regionalized variables, which fall between random variables
and completely deterministic variables (Ahmed, 2007). Geostatistical
interpolation methods, such as kriging estimate unknown values from
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data taken at specific locations. Kriging is a best linear unbiased
estimator, which can apply to describe and model spatial patterns,
predict values at un-sampled location, and assess the uncertainty
associated with estimated values at the un-sampled locations
(McCoy, 2004).

2.5.1. Ordinary kriging
Ordinary kriging (OK) was applied to interpolate predictive maps of

groundwater quality parameters for un-sampled locations. The spatial
dependency between nearby observations could be determined with
variogram, which is an one-half the variance of the difference between
the attribute values at all points separated by h as follows:
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N h
Z μ h Z μˆ ( ) = 1
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(3)

where, γ hˆ ( ) is the variogram for distance h; N(h) represent the
number of data pairs for that lag h, and Z(μi) and Z (μi+h) are the
values of the regionalized variable of interest at location μi and μi+h,

respectively. In the next step, the computed experimental semivario-
gram values were fitted in exponential semivariogram model.

2.5.2. Indicator kriging
In the geostatistical techniques, the probability of attribute value is

not greater than a specific limitation (Zk) was estimated using indicator
kriging (IK) U (Goovaerts, 2000).

⎧⎨⎩
⎫⎬⎭I μ Z if Z μ Z k m

Otherwise
( ; ) = 1 ( ) ≤ , = 1, 2,…,

0k
k

(4)

Z(u) is transformed into an indicator variable with binary distribu-
tion.

2.5.3. Cross validation
Prediction performances were assessed by cross validation. The

measured data are decreased one at time and re-estimated from the
rest of data. Observed and estimated values are then compared using
standardized mean error (SEM) and root mean square error (RMSE).

Fig. 1. Location map of the study area (a), Geology map (b) and the sampling wells (c).
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For a model to provide accurate prediction SEM should be close to zero
and RMSE should be as small as possible.

3. Results and discussion

3.1. Groundwater quality

The main descriptive statistics of physicochemical parameters in
groundwater were given presented in Table 1. The pH values varied
between 6.9 and 7.9 with mean pH of 7.4 for groundwater. All the

Fig. 2. Scatter diagram of the concentrations of the metals vs. pH.

Table 1
Statistical parameters for selected metal distribution in groundwater.

Parameters Min Max Mean SD Cv Skewness Kurtosis WHO

EC 830 2730 1451 557 38.40 1.14 0.46 1500
T 14 18 16 1.4 8.64 −0.41 −1.43 25
pH 6.9 7.9 7.4 0.3 3.47 0.21 −0.24
Al 10 90 51 22 43.69 0.44 −0.42 30
Cd 9 165 66 45 67.65 0.98 0.19 3
Cu 56 430 241 102 42.25 0.05 −0.27 2000
Fe 55 499 255 116 45.56 0.19 −0.23 300
Pb 17 292 87 69 79.32 1.92 3.92 10
Zn 45 276 148 60 40.47 0.25 0.12 3000

All values are in μg/l except pH, T (°C) and EC (µSiemens/cm).

Fig. 3. Q-mod cluster analysis.

Table 2
Mean value of heavy metal in the two groups (μg/l).

Groups Al Cd Cu Fe Pb Zn

Group 1 43 70 185 303 60 133
Group 2 63 61 330 180 129 171

Fig. 4. R-mod cluster analysis.

Table 3
Results of principal component analysis to the heavy metals.

Heavy metals Factor 1 Factor 2

Al −0.63 −0.52
Cd −0.37 0.71
Cu −0.61 0.05
Fe 0.22 0.86
Pb −0.85 0.06
Zn −0.78 0.21
Eigenvalue 2.28 1.57
% Total of variance 38.04 26.16
Cumulative Eigenvalue 2.28 3.85
Cumulative % 38.04 64.19

Fig. 5. Projection of the variables on the factor-plane (1×2).
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water samples show neutral to slightly alkaline. The temperatures
varied from 14 to 18 °C with a mean of 16 °C. All samples show that the
values of the temperature were lower than the value fixed by WHO
(25 °C) (WHO, 2011). The electrical conductivity (EC) of water is
directly proportional to the salinity and could be used as an indicator of
ionic concentrations. The EC of groundwater changes between 830 and
2,730 μS/cm with a mean of 1,451 μS/cm, in the study area. The means
of Al, Cd, Cu, Fe, Pb, and Zn were 51, 66, 241, 255, 87, and 148 µg/l,
respectively (Table 1). Cadmium and lead were found to be above the
WHO standard limit (WHO, 2011) in all samples. Most of the samples
greater than the desirable limit of Al (83%), but only 39% of them
exceeded the desirable limit of Fe (WHO, 2011). Copper and zinc were
found to be lower than the maximum permissible limit of WHO
standard (WHO, 2011) in all water samples. Based on mean levels in
the water samples, the metals followed the decreasing concentration
order: Fe > Cu > Zn > Pb > Cd > Al. The metal load was computed as Al
+Cd+Cu+Fe+Pb+Zn (mg/l), which showed that around 67% of the
water samples plot in the field of near-neutral-low metal, whereas 33%
of the samples are characterized as near-neutral-high metal (Fig. 2).

3.2. Spatial similarities and sampling wells grouping

The spatial similarities and wells classification was detected using
Q-mod cluster analysis. Samples in the same group contain the similar
characteristics respect to the analyzed parameters. Two main groups
can be distinguished in the dendrogram shown in Fig. 3. The Table 2
shows that the increases of the most of heavy metals (Al, Cu, Pb and

Zn) from the first group to the second group.
The first group was composed of the wells 1, 3, 4, 5, 6, 7, 8, 9, 10,

12, and 13 and concerns 61% of the water samples. The average of
electrical conductivity for this group is 1250 μS/cm. In this group
concentrations order are Fe > Cu > Zn > Cd > Pb > Al. Group 1 in-
cluded samples with the highest concentrations of Fe and Cd. The
mean concentrations of Fe and Cd are 303 and 70 μg/l, respectively
(Table 2).

The second group was represented by the wells 2, 11, 14, 15, 16, 17,
and 18, and it occupies 39% of the water samples, where the mean of

Fig. 6. Projection of the wells on the factor-plane (1×2).

Table 4
Chronic daily intake (CDI) indices for heavy metals.

Group 1 Group 2

Child Min Max Mean SD CV Min Max Mean SD CV

Al 0.001 0.006 0.003 0.001 41.986 0.003 0.007 0.005 0.002 37.552
Cd 0.001 0.013 0.006 0.004 64.988 0.001 0.012 0.005 0.004 77.398
Cu 0.005 0.024 0.015 0.006 39.727 0.017 0.035 0.027 0.006 22.596
Fe 0.015 0.040 0.024 0.008 31.247 0.004 0.031 0.015 0.009 62.196
Pb 0.002 0.008 0.005 0.002 40.725 0.001 0.024 0.010 0.008 74.037
Zn 0.004 0.017 0.011 0.004 38.958 0.007 0.022 0.014 0.005 39.729

Adult Min Max Mean SD CV Min Max Mean SD CV
Al 0.000 0.005 0.002 0.001 64.988 0.000 0.004 0.002 0.001 77.398
Cd 0.002 0.008 0.005 0.002 39.727 0.006 0.012 0.009 0.002 22.596
Cu 0.005 0.014 0.008 0.003 31.247 0.002 0.011 0.005 0.003 62.196
Fe 0.001 0.003 0.002 0.001 40.725 0.000 0.008 0.004 0.003 74.037
Pb 0.001 0.006 0.004 0.001 38.958 0.002 0.008 0.005 0.002 39.729
Zn 0.000 0.002 0.001 0.000 41.986 0.001 0.003 0.002 0.001 37.552

Fig. 7. Box plot of HQ for child (a) and adult (b).
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EC is 1766 μS/cm. The mean heavy metals in this group followed a
descending order as: Cu > Fe > Zn > Pb > Al > Cd. The water samples of

this group characterized by high concentrations of Cu, Zn, Pb and Al.
The mean values of Cu, Zn, Pb and Al are 330, 171, 129 and 63 μg/l,
respectively (Table 2).

3.3. Heavy metals grouping

R-mod cluster analysis was also performed to visualize heavy
metals grouping in the groundwater dataset, and the results are shown
in Fig. 4 as a dendrogram. Fig. 4 displays two clusters: (1) Cu-Zn-Pb-
Al; (2) Fe-Cd. The concentrations of Cu, Zn, Pb and Al are increased
from the first group to the second group and the highest values are
observed in the center of the plain with higher intensity of population.
Fe and Cd concentrations are decreased from group 1 to group 2 and
the high concentrations are observed around the plain and near to the
mountains.

3.4. Principal component analysis (PCA)

The source of the heavy metals can be identified using the PCA. The
important factors which influenced groundwater quality and the
percentage of the variance were calculated by the extracting the

Table 5
Hazard quotient (HQ) indices for heavy metals.

Group 1 Group 2

Child Min Max Mean SD Min Max Mean SD

Al 0.001 0.008 0.005 0.002 0.005 0.010 0.007 0.003
Cd 2.583 26.637 11.256 7.315 1.453 24.538 9.871 7.640
Cu 0.122 0.657 0.404 0.160 0.465 0.938 0.719 0.162
Fe 0.051 0.134 0.082 0.025 0.015 0.102 0.048 0.030
Pb 0.388 6.547 1.768 1.668 0.000 4.327 1.925 1.635
Zn 0.012 0.056 0.036 0.014 0.012 0.074 0.021 0.018

Adult Min Max Mean SD Min Max Mean SD
Al 0.000 0.004 0.002 0.001 0.002 0.004 0.003 0.001
Cd 0.889 9.167 3.873 2.517 0.500 8.440 3.396 2.629
Cu 0.042 0.226 0.139 0.055 0.159 0.323 0.247 0.056
Fe 0.017 0.046 0.028 0.008 0.005 0.035 0.017 0.010
Pb 0.208 0.779 0.463 0.189 0.133 2.253 0.992 0.735
Zn 0.004 0.019 0.012 0.005 0.008 0.025 0.015 0.006

Fig. 8. Spatial distribution map of health risk for cadmium (a) and lead (b) in child case.
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eigenvalues and eigenvectors from the correlation matrix.
The results indicate that there were two eigenvalues higher than

one and that these two factors explain 64.19% of the total variance
(Table 3). The first factor explains 38.04% of the total variance and
loads heavily on Pb, Zn, Al and Cu, supported by cluster 1 (Figs. 5 and
6). This result can be supported by the existence of two polymetallic
mines, namely Kherzet Youcef and Chaaba el Hamra in the study area.
These metals were mainly contributed by natural sources and agricul-
tural activities. Factor 2 exhibited higher loadings of Fe and Cd,
accounts for 26.16% of the total variance, duly supported by cluster 2
(Figs. 5 and 6). These metals were predominantly contributed by
natural sources. PCA confirmed and completed the results obtained by
CA. Overall, PCA and CA demonstrated significant natural sources and
anthropogenic contributions of the heavy metals in groundwater.

3.5. Human health risk assessment

The basic information about the age, food habit, body weight and
health problem of local people in the study area was collected during
the study, which clearly indicate that the groundwater used as drinking

water by the local people. Therefore, health risk assessment like
chronic daily intake (CDI) and hazard quotient (HQ) were also
calculated to evaluate the impact of heavy metals on human health in
the study area.

3.5.1. Chronic daily intake (CDI) indices
The results of CDI values are summarized in Table 4. The CDI

values in the first group water changed from 0.001 to 0.006 for Al,
0.001–0.013 for Cd, 0.005–0.024 for Cu, 0.015–0.040 for Fe, 0.002–
0.008 for Pb and 0.004–0.017 mg/kg-day for Zn for child. Whereas, for
adult CDI values were ranging from 0.000 to 0.005 for Al, 0.002–0.008
for Cd, 0.005–0.014 for Cu, 0.001–0.003 for Fe, 0.001–0.006 for Pb
and 0.000–0.002 mg/kg-day for Zn, respectively. Therefore, the toxi-
city of HM mean concentrations in the group 1 for child and adult were
found in the order of Fe > Cu > Zn > Cd > Pb > Al and Cu > Cd > Pb >
Fe=Al > Zn, respectively. The high CDI values in child may be
attributed to the stage of health risk on human health. Similarly, the
CDI values in the second group water used for drinking purpose ranged
from 0.003 to 0.007, 0.001–0.012, 0.017–0.035, 0.004–0.031, 0.001–
0.024 and 0.007–0.022 mg/kg-day for Al, Cd, Cu, Fe, Pb and Zn for

Fig. 9. Spatial distribution map of health risk for cadmium (a) and lead (b) in adult case.
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child. Whereas, in the case of adult the CDI values fluctuated from
0.000 to 0.004, 0.006–0.012, 0.002–0.011, 0.000–0.008 and 0.001–
0.003 mg/kg-day for Al, Cd, Cu, Fe, Pb and Zn respectively (Table 4).
The order of toxicity for both child and adult was found in the order of
Cu > Fe > Zn > Pb > Cd=Al and Cd > Cu˭Pb > Fe > Zn=Al, respectively.

3.5.2. Hazard quotient (HQ) indices
The mean HQ index values for Al, Cd, Cu, Fe, Pb, and Zn in the first

group of water samples for child were 0.005, 11.256, 0.404, 0.082,
1.768, and 0.036, while that of adults were 0.002, 3.873, 0.139, 0.028,
0.463, and 0.012, respectively. Similarly, in the second group of water
samples the mean HQ index values were 0.007, 9.871, 0.719, 0.048,
1.925, and 0.021 for child and 0.003, 3.396, 0.247, 0.017, 0.992, and
0.015 for adult, respectively. Therefore, the toxicity of HM mean
concentrations for both child and adult in first and second group were
found in order, Cd > Pb > Cu > Fe > Zn > Al (Fig. 7a, b).

Table 5 presented HQ risk value for the groups relating to adult and
child, respectively. Accordingly, the human health risk assessment of
Al, Cu, Fe, and Zn showed HQ values suggesting an acceptable level of
non-carcinogenic adverse health risk in most samples of the two
groups. However, in contrast, note that Cd and Pb showed HQ values
indicating an unacceptable non-carcinogenic health risk. Cd and Pb
show risk value (HQ) > 1.0 indicates the potential of an adverse effect
to human health and need for more strict control of use. Usage of

drinking water contain of lead in greater values rather than the limited
standard could be cause of delays in physical and mental development
in in six-year-old children or under (USEPA, 2011).

In the case of child, an HQ value of Cd varies from 2.583 to 26.637
and 1.453–24.538 in first and second groups, respectively. Based
Fig. 8a, HQ of Cd in all sampling wells of the both groups, were higher
than 1, implying that Cd may cause adverse health and non-carcino-
genic health risks to the children. Similar to child, HQ of Cd varies from
0.889 to 9.167 in first group and 0.5–8.440 in the second group, for
adult, which were higher than 1, in 94.5% of sampling wells. Based on
the cadmium health risk distribution maps in the child and adult cases
(Figs. 8a and 9a), high risk of cadmium could be observed in the
southern region (Dj. Fourhal and mine of Chaaba el Hamra) and
eastern region (mine of Kherzet Youcef), which might be principally
caused by natural deposits. Cd concentrations are also remarkably
higher than maximum threshold (5ppb) (USEPA, 2011), which has the
potential to cause kidney, liver, and bone damages in long-term usages
in drinking water. The HQ indices for cadmium decreased gradually
toward western region. Moreover, HQ indices of Pb varied from 0.388
to 6.547 in the first group, and from 0 to 4.327 in the second group in
the child case and varied from 0.208 to 0.779 in the first and from
0.133 to 2.253 in the second group in the adult case. Around 70% of
sampling wells in the child case (first and second groups) and around
60% of sampling wells in the adult case (the second group) showed
unacceptable non-carcinogenic health risk level for Pb. However, in
contrast, all the sampling wells belong to the first group in adult case
had no significant non-carcinogenic health risk from Pb. The HQ maps
of Pb for the child and adult cases showed that HQ indices of Pb mainly
increase from eastern region (mine of Kherzet Youcef) to central of
plain (Figs. 8b and 9b), which might be caused by both anthropogenic
activities and erosion of natural deposits, such as metalliferous and
gangue minerals (Belkhiri et al., 2010, 2011). Therefore, the current
study has indicated the necessity of developed precaution to Pb
exposure during critical periods in children’s development, because

Table 6
Cross-validation results for ordinary kriging method.

Models Cir Sph Tet Pen Exp Gau Qua Hol K- Bes J- Bes Sta

Cd- child case
ME 0.45 0.47 0.38 0.37 0.19 0.56 0.41 0.48 0.34 0.55 0.37
MSE 0.05 0.06 0.04 0.04 0.02 0.05 0.04 0.06 0.03 0.08 0.04
RMSSE 1.00 0.95 0.94 0.94 0.85 1.11 0.96 1.14 0.94 1.12 0.95
RMSE 4.99 4.94 4.93 4.97 5.12 4.84 5.01 5.11 4.99 5.08 4.96
ASE 5.28 5.38 5.40 5.42 6.04 4.81 5.49 4.66 5.46 4.68 5.41

Pb- child case

ME 0.00 0.07 0.07 0.05 0.05 0.00 0.03 0.04 0.00 0.05 0.00
MSE 0.00 0.05 0.05 0.04 0.03 0.01 0.02 0.04 0.01 0.05 0.01
RMSSE 0.95 1.00 1.00 0.99 1.00 0.97 0.96 0.96 0.96 0.97 0.97
RMSE 1.41 1.48 1.49 1.48 1.50 1.40 1.49 1.42 1.41 1.43 1.40
ASE 1.44 1.44 1.45 1.45 1.47 1.40 1.52 1.44 1.42 1.42 1.40

Cd- adult case

ME 0.16 0.16 0.17 0.15 0.17 0.20 0.16 0.30 0.18 0.27 0.20
MSE 0.04 0.04 0.04 0.05 0.04 0.00 0.02 0.01 0.00 0.00 0.00
RMSSE 0.69 0.68 0.68 0.68 0.85 0.86 0.74 0.91 0.90 0.90 0.86
RMSE 1.73 1.70 1.72 1.72 1.76 1.65 1.66 1.69 1.65 1.68 1.65
ASE 2.88 2.91 2.91 2.91 2.88 2.66 2.86 2.60 2.66 2.64 2.66

Pb- adult case

ME 0.03 0.02 0.02 0.02 0.02 0.07 0.01 0.01 0.01 0.02 0.02
MSE 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.01 0.00 0.01
RMSSE 0.80 0.81 0.81 0.82 0.82 0.85 0.80 0.85 0.85 0.84 0.85
RMSE 0.49 0.49 0.49 0.49 0.50 0.48 0.50 0.46 0.48 0.46 0.46
ASE 0.57 0.57 0.57 0.57 0.57 0.54 0.52 0.53 0.54 0.54 0.54

Cir: circular; Sph: spherical; Tet: tetra-spherical; Pen: penta-spherical; Exp: exponential; Gau: gaussian; Qua: quadratic;
Hol: hole-effect; K-Bes: K- Bessel; J-Bes: J- Bessel; Sta: stable.
ME: mean error; MSE: mean standardized error; RMSSE: root mean squared standardized error; RMSE: root mean square error;
ASE: average standardized error.

Table 7
Best-fitted variogram models of factor scores one and two.

Hazard quotient (HQ)
indices

Variogram Nugget (C0) Sill (C0+C) (C0/C0+C)*100

Cd (child case) Gaussian 4.2782 66.374 6.4%
Pb (child case) Gaussian 0.94073 2.0845 45.1%
Cd (adult case) K-Bessel 0.14453 0.74978 19.2%
Pb (adult case) K-Bessel 0.29120 0.58936 49%
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of long term health and arising from intrauterine to childhood
exposure Pb, often underactable at first only to manifest later in life.

HQ indices of four metals (Fe, Al, Cu, and Zn) for the adult and
child cases in the both group was below unity, which revealed the
metals do not have any adverse effect and non-carcinogenic health risk.

The results of geostatistical interpolation techniques show that the
Gaussian and K-Bessel models was found as the most accurate model
for Cd, Pb in child and adult cases, respectively (Table 6). Based on the
nugget-sill ratio, the percentage of the overall variance at a distance
smaller than the smallest lag interval, and represent the variance in the

model. If the ratio is less than 25%, the variable had strong spatial
dependence; if the ratio is between 25% and 75%, the variable has
moderate spatial dependence; and if greater than 75% the variable
show weak spatial dependence (Ahmadi and Sedghamiz, 2007). The
nugget-sill ratio indicates that HQ for Cd (in child and adult cases)
show strong spatial dependence and Pb (in child and adult cases) show
moderate spatial dependency (Table 7).

3.6. Heavy metals probability map

Indicator kriging used to generate groundwater probability map for
Cd and Pb as a significant heavy metals contaminant which effect child
and adult health in the study area. At each sampling well, measure-
ments were subjected to a continuous scale and converted to discrete
indicator variables with a value of either “1” or “0” (Sheikhy Narany
et al., 2013). Probability maps for Cd and Pb are shown in Fig. 10, and
best fit variogram models, cross validation, and nugget-sill ratio of
heavy metals are given in Table 8, respectively. Finding from nugget-

Fig. 10. Probability map of Cd (a) and Pb (b) concentration in the study area.

Table 8
Cross-validation and semivariogram model parameters for probability map of heavy
metals concentration.

Parameters Model ME RMSS Nugget Sill Nugget-sill ratio

Pb Spherical 0.007 1.343 0.0169 0.0757 22.4%
Cd Spherical 0.006 1.151 0.0227 0.3163 4.9%
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sill ratio in the present study indicated groundwater heavy metals to
have a strong spatial structure, because of all four heavy metals
parameters show nugget-sill ratio < 25% (Table 8). Gaussian model
was chosen as a best fitted model using cross validation.

Cadmium concentrations varied from 9 µg/L to 165 µg/L, with the
mean value 66 µg/L, which are higher than permissible value (5 µg/L
by USEPA (2011) and 3 µg/L by WHO (2011)). Based on the
probability map of cadmium concentration (Fig. 10a), more than
55% of the study area (mainly in eastern, northern, and south-eastern
sides) showed very strong probability (0.8–1.0) of exceeding the
threshold value for Cd. Regarding to the HQ indices results, these
areas showed high risk of cadmium concentration for child and adult.
Based on the Fig. 10a, probability of exceeding the threshold value for
Cd decreased gradually toward western side, where 10.4% of the area
showed very weak probability (0.0–0.2).

Lead concentration varied from 17 µg/L to 292 µg/L, with the mean
value 87 µg/L. Since the majority of sampling wells show lead
concentration higher than 10 µg/L (WHO, 2011), which was used as
the threshold value for human consumption, around 62% of the area
showed highest probability (0.8–1.0) of exceeding the threshold value
for Pb. The high predicted probabilities are located mainly in the east,
north-east and south-east region, which was identified as areas with
high HQ indices, especially for child (Fig. 10b). More than 18% and
20% of area showed strong probability (0.6–0.8) and moderate
probability (0.4–0.6) of exceeding threshold, respectively. Based on
the Fig. 10b, the problem of excess lead concentration mainly
decreased in west, south-west, and north-west sides of the study area.

4. Conclusion

In this study, multidisciplinary approach, including multivariate
statistical methods, health risk assessment, and geostatistics were used
to determine the main factors and mechanisms controlling the spatial
variation of heavy metals in groundwater and to assess the adverse
health effects on the population. Based on the multivariate statistical
analysis, two major groups were determined using Q-mod CA. the first
group represents 61% of the water samples with the highest concen-
trations of Fe and Cd and the second group occupies 39% of the water
samples and characterized by high concentrations of Cu, Zn, Pb and Al.
Two clusters were defined by R-mode CA: (1) Cu-Zn-Pb-Al; (2) Fe-Cd.
PCA identified two factors responsible for data structure explaining
64.19%of total variance. The first factor explains 38.04% of the total
variance and loads heavily on Pb, Zn, Al and Cu, supported by cluster 1.
Factor 2 exhibited higher loadings of Fe and Cd, accounts for 26.16% of
the total variance, duly supported by cluster 2. PCA and CA revealed
significant anthropogenic contributions and water-rock interaction
effects of the metals in groundwater. Human health risk could be
threatened by existence of heavy metals in drinking water. The results
of health risk assessment in the groundwater of study area indicated
that Cd and Pb had HQ> 1which were the main pollutants in the case
of child and adult, and could cause adverse health hazards and
potential non-carcinogenic health risks to the local people.
Application of indicator kriging methods revealed that the majority of
plain (more than 55%) face to very strong probability of Pb and Cd
concentration exceeding threshold values, which threated human
specially child health in the study area. Area with strong probability
of heavy metal concentrations need to be monitored strongly to prevent
human health hazard.
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