Treatment of Fishery Washing Water by Ultrafiltration

N. Mameri, * D. Abdessemed, D. Belhocine, H. Lounici

Laboratory of Biotechnology Polytechnic School of Algiers, 10, Avenue Pasteur El-Harrach, Algiers, Algeria

C. Gavach, J. Sandeaux & R. Sandeaux

Laboratoire des Matériaux et Procédés Membranaires, CNRS 1919, Route de Mendes, BP 5051 34090 Montpellier Cedex, France

(Received 16 October 1995; revised version received 18 March 1996; accepted 10 April 1996)

Abstract: The recovery and concentration of proteins from the waste water of a fish plant was achieved by ultrafiltration. Two UF modules equipped with Ceraver and Patterson Candy International (PCI) membranes were tested. Despite different cut-off values, similar apparent rejection coefficients (70% and 80% respectively) were obtained. Optimum economic conditions were established, corresponding to average transmembrane pressures of $2\cdot 2\times 10^5$ and $3\cdot 8\times 10^5$ Pa and tangential flow rates of 6·0 and 0·47 m s⁻¹ for Ceraver and PCI membranes, respectively. The protein concentration in the feed solution was increased from 5 to 35 g dm⁻³. The study showed that the method could reduce pollution due to organic matter by decreasing the value of the Biological Oxygen Demand after 5 days (BOD₅) by about 80%.

Key words: ultrafiltration, fish protein, concentration, economic optimization, environment

NOTATION

A	Membrane area (m2)
BOD,	Biological oxygen demand after 5 days (mg O ₂ dm ⁻³)
C_{o}	Initial feed concentration (g dm ⁻³)
C_{p}	Permeate concentration (g dm ⁻³)
COD	Chemical oxygen demand (mg O ₂ dm ⁻³)
g	Gravity constant (m s ⁻²)
J_{v}	Permeate flux (dm3 h-1 m-2)
K	Global cost per time unit (\$ s ⁻¹)
K_{e1}	Coefficient of investment cost for PCI mem- brane (\$ m ⁻² s ⁻¹)
K_{e2}	Coefficient of investment cost for ceraver membrane (\$ m ⁻² s ⁻¹)
$K_{\mathfrak{p}}$	Coefficient of energy cost (\$ J-1)
NTK	Nitrogen, total Kjeldahl (g dm ⁻³)

To whom correspondence should be addressed.

Pressure drop (Pa) Apparent rejection coefficient (%)

Tangential flow (m³ s⁻¹)

Permeate flow (m3 s-1)

Tangential flow rate (m s -1) UF

Ultrafiltration process

Final volume (dm3)

Initial volume (dm3)

1 INTRODUCTION

In countries such as Algeria, the fish processing industry is amongst the most polluting. The organic matter contained in waste wash waters represents 25% of the total fish proteins. Treatment of these effluents is useful both for reducing pollution and for recovering proteins.

Average transmembrane pressure (Pa)