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A cupric oxide (CuO) nanocrystal-doped NaCl single crystal and a pure NaCl single crystal are grown by using the
Czochralski (Cz) method. A number of techniques, including X-ray diffraction (XRD), scanning electron microscopy
(SEM), energy dispersive X-ray (EDX) analysis, Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy,
optical absorption in the UV–visible range, and photoluminescence (PL) spectroscopy are used to characterize the obtained
NaCl and NaCl:CuO crystals. It is observed that the average radius of CuO crystallites in NaCl:CuO crystal is about 29.87
nm, as derived from the XRD data analysis. Moreover, FT-IR and Raman spectroscopy results confirm the existence of the
monoclinic CuO phase in NaCl crystal. UV–visible absorption measurements indicate that the band gap of the NaCl:CuO
crystal is 434 nm (2.85 eV), and it shows a significant amount of blue-shift (∆Eg = 1 eV ) in the band gap energy of CuO,
which is due to the quantum confinement effect exerted by the CuO nanocrystals. The PL spectrum of the NaCl:CuO shows
a broad emission band centred at around 438 nm, which is consistent with the absorption measurement.
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1. Introduction
Recently, interesting optical, electronic, and magnetic

size-dependent properties of semiconductor nanocrystals have
attracted extensive attention, not only because of their
quantum-confinement effects, which are very important for the
research of the fundamental physical properties depending on
dimensionality, but also because of their potential applications
in nano-electronics and nanodevices. Among the nanosemi-
conductors, cupric oxide (CuO) has attracted increasing in-
terest for both fundamental and practical reasons. It can be
widely used in applications such as gas sensors, magnetic stor-
age medium, electronics, solar-energy transformation, semi-
conductors, catalysis,[1–4] high-Tc superconductors,[5] and
field emission (FE) emitters.[6–9] CuO is a p-type semicon-
ductor with a narrow bandgap. It has been studied together
with the other copper oxides, especially on its applications as
a photothermally active and photoconductive compound. The
study of the optical properties of semiconductor nano-crystals
(NCs) in ionic solids can be very conveniently carried out on
the simplest compound alkali halides AX, where A denotes an
alkali cation and X a halogen anion. They offer a number of
advantages such as simple structure, high degree of chemical
purity, easy manipulation, and wide range of possible doping
impurities with different concentrations. On the other hand,
their high gap energy (∼ 10 eV) provides a large window for
optical spectroscopy studies. In addition, their diamagnetism
and their high electrical resistance allow the convenient use of

spin resonance methods. There are several studies address-
ing optical properties of alkali halide single crystals doped
with nano-crystals of semiconductors, such as NaCl:CuCl,
KCl:AgCl, KBr:ZnO, NaCl:CdS, and KBr:CdTe.[10–16] In ad-
dition, recently, a great number of studies have been stimulated
by alkali halides doped with metal ions like KCl:Ag, KCl:Au,
NaCl:Cu, and KCl:Cu.[17–19] In the present paper, we investi-
gate the doping effects of CuO nanocrystals on the structural
and optical properties of the NaCl single crystals experimen-
tally.

2. Experimental details
NaCl and NaCl:CuO were prepared using the Czochral-

ski (Cz) method. A given weight of NaCl powder was mixed
with 2 wt% CuO nanopowder, and this mixture was heated in
a crucible until they fused. The oven temperature was con-
trolled using a [REX-C100 SEPIES] controller and a plat-
inum/platinum radium (10%) thermocouple. The pulling rate
was in a range of 8–10 mm/h and a rotation speed of about
Vr = 1 rpm was used along the part (a) and Vr = 0 rpm along the
part (b) of NaCl:CuO crystal (see Fig. 1). As is well known,
crystal rotation is a dominant factor influencing the crystal-
melt interface.[20] In general, crystal rotation during the Cz
growth is mainly used to provide a symmetric temperature pro-
file. The last factor has a direct effect on the diameter of the
crystal as indicated in Fig. 1. The growth is carried out fol-
lowing the crystallographic 〈100〉 axis. The obtained crystals
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are cleaved into samples, each with face being parallel to the
(100) plane.

 

(a) Vr=1 rpm
  

(b) Vr=0 rpm
  

Fig. 1. (color online) Photograph of a NaCl:CuO single crystal.

XRD data were obtained using the Cu Kα radiation
(λ Kα = 1.5402 Å) and a graphite filter in a BRUKER-AXS D8
diffractometer. The structural analyses of NaCl and NaCl:CuO
samples were carried out using a (Jobin–Yvon) µ-Raman
spectrometer at room temperature (RT). The FT-IR investi-
gation was performed with Thermo-Nicolet equipment in the
4000–400 cm−1 range. For oxides, all bands have character-
istic frequencies between 1000 cm−1 and 400 cm−1. Optical
properties were studied using a UV–visible spectrophotometer
(Shimadzu, UV-3101). Furthermore, the PL was measured at
RT and the samples were excited by an argon laser (ionized
light Eexc = 313 nm) with an output power of 10 mW.

3. Results and discussion
XRD studies have been performed on samples of pure

NaCl and NaCl:CuO crystals to determine their crystallo-
graphic structure.

Figure 2 shows the XRD spectrum of a pure NaCl sin-
gle crystal, which exhibits two intense peaks located at 2θ =

31.73◦ and 2θ = 66.34◦. These two peaks correspond respec-
tively to the (200) plane and its harmonic (400). This result
indicates that pure NaCl crystallized in the cubic system with
the Fm3m symmetry space group as reported in the JCPDS 05-
0628 card. In addition, it indicates that the sample has a single-
crystal character, and confirms that the crystal is cleaved in the
direction parallel to the (100) plane.

The XRD spectrum of the CuO nanopowder is presented
in Fig. 3. The diffraction peaks are easily indexed as being
consistent with the monoclinic structure of CuO with lattice
constants a = 4.69, b = 3.42, c = 5.13 Å, β = 99◦52′, and
the C2/c symmetry space group as reported in the JCPDS
41-0254 card. The broadening of the major peaks indi-
cates the nanometric particle size, which is found to be about
15.5 nm. The crystallite size of CuO is estimated using Scher-
rer’s formula[21]

D =
0.9λ

B(θ)cos(θ)
, (1)

where D is the crystallite diameter, λ the wavelength, θghe
Bragg angle, and B(θ ) the full width at half maximum
(FWHM) of the peak.
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Fig. 2. XRD pattern of an NaCl single crystal (faces are parallel to the
(100) plane).
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Fig. 3. XRD pattern of the CuO nanopowder.

In Fig. 4, the typical XRD pattern of the NaCl:CuO sam-
ple is displayed. Besides the peaks related to the host (NaCl),
there are two peaks located at 2θ = 35.60◦ and 2θ = 59.13◦,
attributed to the CuO phase. The significant intensities of these
peaks indicate the high crystalline quality of CuO NCs. How-
ever, the other peaks of CuO are not visible, and this obser-
vation indicates that the crystallites of CuO display preferred
growth in these two directions. Fröhlich et al.[10] have already
proved that the axes of CuCl NCs are parallel to the axes of the
NaCl lattice. On the other hand, this result demonstrates the
incorporation of CuO NCs into the NaCl host and the absence
of peaks corresponding to other phases, such as CuCl, indicat-
ing that there is no chemical reaction between CuO and NaCl,
in spite of the high temperature of preparation. However,
the size of CuO NCs embedded in NaCl is almost doubled
(29.87 nm) as compared with that of CuO nanopowder. We
speculate that available conditions in environment of crystal
growth contribute to the growth process of CuO NCs. Table 1
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presents the average sizes of the crystallites corresponding to
each diffracting plane. The average radius is about 29.87 nm.
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Fig. 4. XRD pattern of an NaCl:CuO crystal.

Figure 5 displays an SEM micrograph of an NaCl:CuO
crystal. It exhibits a quasi-spherical shape of CuO crystallites
scattered on the surface of NaCl. The mean crystallite size
obtained using Scherrer’s formula is in all cases substantially
smaller than the dimension of the grain observed by the SEM
image, indicating that these grains are probably aggregates of
many crystallites of CuO. The Gibbs free energy of the surface
of NCs is usually high, and the NCs have the tendency toward
aggregate formation, thereby reducing the Gibbs free energy
of the surface.[22]
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Fig. 5. SEM micrograph of a NaCl:CuO crystal.
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Fig. 6. (color online) Typical EDX pattern of a NaCl:CuO single crystal.

The energy dispersive X-ray analysis (EDX) spectrum
(see Fig. 6) indicates the presence of Na, Cl, Cu, and O el-
ements, but the absence of other elements, demonstrating that
the NaCl:CuO single crystal has a very high purity.

Table 1. Crystallite sizes calculated from the XRD pattern.

2θ /(◦) FWHM/(◦) (h k l) D/nm
35.60 0.262 (0 0 2) 32.08
59.13 0.332 (2 0 2) 27.67

Raman spectroscopy, which is sensitive to the local
atomic arrangements and the vibrations of the material,
has been widely used to investigate the structures of nano-
sized materials.[23,24] Figure 7 shows the Raman spectrum of
NaCl:CuO at RT. It can be seen from XRD patterns that the
CuO NCs have a monoclinic structure, which belongs to the
C2/c space group with two molecules per unit cell. There are
three Raman modes 1Ag+2Bg.[25,26] It can be seen from the
spectrum that there are three Raman peaks located at 283, 338,
and 647 cm−1, respectively. The peak at 283 cm −1 can be as-
signed to the Ag mode, while the peaks at 338 and 647 cm−1

can be ascribed to the Bg mode. On the other hand, the Ra-
man spectra of CuO nanopowder reported by Wang et al.[27]

and Dar et al.[28] exhibit that the intensity of the Ag mode is
more intense than those of the 2Bg modes. In contrast, the Ra-
man spectrum in this study shows that the Bg mode located at
around 338 cm−1 has the strongest intensity. This result may
be attributed to the constraints exerted by the NaCl matrix on
the CuO NCs.
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Fig. 7. Raman spectrum of NaCl:CuO.

Figure 8 displays the FT-IR transmission spectra of NaCl
and NaCl:CuO crystals. As is well known, the alkali halides
are transparent in the IR range, and Fig. 8(a) exhibits this prop-
erty clearly. However, the FT-IR spectrum of NaCl:CuO in
Fig. 8(b) shows four peaks located, respectively, at 437, 485,
546, and 605 cm−1 which are characteristics of vibrations
along the Cu–O bond.[29,30] These results confirm the inclu-
sion of the CuO phase in the NaCl host.
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Fig. 8. FT-IR spectra of pure NaCl and NaCl:CuO.

The optical absorption spectrum of a pure NaCl crystal,
represented in Fig. 9(a), shows that NaCl is transparent in
the visible region and has a strong absorption near ultravio-
let, and the optical band gap determined by the second deriva-
tive method[31] is EgNaCl = 6.42 eV (see Fig. 9(b)). On the
other hand, Fig. 10(a) shows the optical absorption spectrum
of NaCl:CuO, displaying a broad absorption peak centred at
434 nm (2.85 eV, see Fig. 10(b)) relative to the allowed direct
transitions which are dominant in the CuO NCs. This band gap
energy is consistent with the figure of 2.9 eV reported by Maji
et al.[32] for the CuO nanocrystals having a size of 20 nm. As
given by Santra et al.,[33] the monoclinic CuO bulk crystal has
a band gap energy of 1.85 eV, so CuO NCs has a blue-shift
of their absorption edge (∆EgCuO = 1 eV). This blue-shift is
caused by the well-known quantum confinement effect. The
Bohr radius of CuO semiconductor is 28.27 nm.[34] However,
even in the case where the confinement length (D = 29.87 nm)
is larger than the Bohr radius, there are interesting effects due
to the confinement of translational motion of the whole exci-
ton.
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Fig. 9. (a) Optical absorption spectrum of the pure NaCl crystal and (b)
Eg of the NaCl crystal, determined by the second derivative.

Figure 11 displays the PL spectrum of NaCl:CuO at RT. It
shows a broad emission band centred at 438 nm (2.83 eV) with

a blue-shift ∆Eg = 0.98 eV, which is in consistence with the
optical absorption measurement. A similar result is obtained
by Maji et al.[32] who observed an emission band centred at
406 nm for a CuO nanocrystal size of 20 nm when the excita-
tion wavelength was 325 nm. Moreover, the strong PL inten-
sity from the CuO NCs embedded in NaCl can be attributed to
their high crystallization and to their good surface, which is in
agreement with the XRD patterns of NaCl:CuO discussed ear-
lier. In addition, the NaCl single crystal is a suitable host for
studying the optical properties of CuO NCs in the UV–visible
range.
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Fig. 10. (a) Optical absorption spectrum of an NaCl:CuO crystal and
(b) Eg of CuO NCs determined by the second derivative.
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Fig. 11. Photoluminescence spectrum of an NaCl:CuO crystal.

4. Conclusions
In this paper, NaCl and NaCl:CuO crystals are success-

fully grown by the Cz method. Structural characterization by
XRD confirms the incorporation of monoclinic CuO NCs into
the NaCl host which retains its monocrystalline character. Fur-
thermore, the SEM image presents large quasi-spherical parti-
cles of the CuO NCs and the EDX analyses indicate the high
purity of the NaCl:CuO single crystal. On the other hand, Ra-
man and FT-IR spectra verify the Cu–O vibration mode. In
addition, the optical absorption exhibits a broadband that indi-
cates a size distribution and a blue-shift of the absorption edge
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compared with that from the bulk CuO. The PL spectrum at
RT shows a blue luminescence band located at 438 nm with a
shift toward the short wavelength. This blue-shift is due to the
quantum confinement effects of charges in CuO NCs.
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