Contents lists available at ScienceDirect

International Journal of Biological Macromolecules

j ourna I h o mepa ge: www.elsevier.com/locate/ijbiomac

Fucans from a Tunisian brown seaweed *Cystoseira barbata*: Structural characteristics and antioxidant activity

Sabrine Sellimi^{a,*}, Nabil Kadri^b, Veronique Barragan-Montero^b, Hocine Laouer^c, Mohamed Hajji^a, Moncef Nasri^a

^a Laboratoire de Génie Enzymatique et de Microbiologie, Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax, B.P. 1173, 3038 Sfax, Tunisia

^b Laboratoire de Glycochimie et Reconnaissance Moléculaire, UMR 5032, Université Montpellier II, ENSCM, 8, rue de l'Ecole-Normale, 34296 Montpellier Cedex, France

^c Laboratoire de Valorisation des Ressources Biologiques Naturelles, Faculté des Sciences Naturelles et de la Vie UFA, Sétif, Algeria

article in fo

Article history: Received 12 December 2013 Received in revised form 18 February 2014 Accepted 19 February 2014 Available online 28 February 2014

Keywords: Cystoseira barbata Fucans GC–MS 1 H-NMR ATR-FTIR Antioxidant activity

abstract

Sulfated polysaccharides from brown seaweeds are known to be a topic of numerous studies, due to their beneficial biological properties including antioxidant activity. Fucans were isolated from the brown sea- weed Cystoseira barbata harvested in Tunisia. ATR-FTIR and ¹H-NMR spectroscopies demonstrated that *C. barbata* sulfated polysaccharides (CBSP_s) consisted mainly of 3-linked-**a**-l-fucopyranosyl backbone, acetylated and mostly sulfated at C-4. Molar degrees of sulfation and acetylation of CBSPs were 0.79 and 0.27, respectively. Neutral sugars analysis determined by gas chromatography-mass spectrometry (GC–MS) showed that CBSPs were mainly composed of fucose (44.6%) and galactose (34.32%) with few amounts of other sugars such as glucose (7.55%), rhamnose (6.41%), xylose (4.21%) and mannose (2.91%). CBSP_s were examined for *in vitro* antioxidant properties using various antioxidant assays. CBSPs exhib- ited important DPPH radicalscavenging activity (100% inhibition at a concentration of 1.5 mg/ml) and considerable ferric reducing potential (24.62 mg ascorbic acid equivalents). Effective chelating activity and significant protection activity against hydroxyl radical induced DNA breakage were also recorded for CBSP_s. However, in the linoleate- \mathbf{b} -carotene system, CBSP_s exerted moderate antioxidant activity (62%) inhibition at a concentration of 1.5 mg/ml). Therefore, CBSP_s can

be used as a potent natural antioxidant in food industry or in the pharmaceutical field.

© 2014 Published by Elsevier B.V.