See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/277412949

# Effects of chitin and its derivatives on human cancer cells lines

Article *in* Environmental Science and Pollution Research · May 2015 DOI: 10.1007/s11356-015-4712-3 · Source: PubMed

| CITATIONS<br>19 | 5 F                                                                                                        | READS |                                                               |
|-----------------|------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------|
| 8 autho         | rs, including:                                                                                             |       |                                                               |
|                 | Mustapha Mounir Bouhenna<br>Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (C | 0     | Rym Salah-Tazdaït<br>Mouloud Mammeri University of Tizi-Ouzou |
|                 | 6 PUBLICATIONS 23 CITATIONS                                                                                |       | 24 PUBLICATIONS 440 CITATIONS                                 |
|                 | SEE PROFILE                                                                                                |       | SEE PROFILE                                                   |
| 12.21           | Nadjib Drouiche                                                                                            |       | Nadia Abdi                                                    |
| J.              | Centre de Recherche en Technologie des Semi-conducteurs pour l'Energétique (C                              |       | National Polytechnic School of Algiers                        |
|                 | 158 PUBLICATIONS 2,689 CITATIONS                                                                           |       | 65 PUBLICATIONS 659 CITATIONS                                 |
|                 | SEE PROFILE                                                                                                |       | SEE PROFILE                                                   |
|                 |                                                                                                            |       |                                                               |
| Some of         | the authors of this publication are also working on these related projects:                                |       |                                                               |
| Project         | Cancer therapy by using new molecules View project                                                         |       |                                                               |

Biostimulation of biological processes using ultrasound View project

**RESEARCH ARTICLE** 

# Effects of chitin and its derivatives on human cancer cells lines

M. Bouhenna<sup>1</sup> · R. Salah<sup>1</sup> · R. Bakour<sup>2</sup> · N. Drouiche<sup>1,3</sup> · N. Abdi<sup>1</sup> · H. Grib<sup>1</sup> · H. Lounici<sup>1,4</sup> · N. Mameri<sup>1</sup>

Received: 18 December 2014 / Accepted: 13 May 2015 © Springer-Verlag Berlin Heidelberg 2015

**Abstract** The present study is focused on the effect of chitin derivatives against human cancer cell lines RD and Hep2. As an outcome from this research, chitin was cytotoxic at IC50= 400  $\mu$ g/ml and 200  $\mu$ g/ml against Hep2 cells and RD cells lines, respectively. Irradiated chitin had an IC50 value of 450  $\mu$ g/ml for Hep2 and an IC50 of 200  $\mu$ g/ml for RD. The lowest IC50 is attributed to chitosan, 300  $\mu$ g/ml in Hep2 and 190  $\mu$ g/ml in RD.

Keywords Chitin  $\cdot$  Chitosan  $\cdot$  Cytotoxicity  $\cdot$  Biopolymers  $\cdot$  Enzymatic hydrolysis

# Introduction

Chitin and chitosan are biopolymers of growing importance and have a significant impact on research and development in diverse fields such as in chemistry, biology, health, and the environment protection. Their outstanding properties explain the craze for these natural macromolecules extracted from

Responsible editor: Philippe Garrigues

N. Drouiche nadjibdrouiche@yahoo.fr; droui2@unesco-ihe.org

- <sup>1</sup> Unité de Recherche URIE, Ecole Nationale Polytechnique, 10 Avenue Pasteur El Harrach, Alger, Algeria
- <sup>2</sup> Université USTHB Bab El Zouar Alger, Bab Ezzouar, Algeria
- <sup>3</sup> Centre de Recherche en technologie des Semi-conducteurs pour l'Energétique (CRTSE). 2, Bd Frantz Fanon BP140, Alger – 7 merveilles, 16038 Alger, Algeria
- <sup>4</sup> Pôle Technologique, Université de BOUIRA, 10000 Bouira, Algeria

crustacean shells, considered so far as waste. Chitin is a linear polymer which has a similar structure to cellulose, but it is an amino polysaccharide with acetamide groups, C-2 instead of the hydroxyl (Benhabiles et al. 2012; Laribi-Habchi et al. 2015). Its chemical structure is a sequence of monomeric units linked by a glycosidicbond (1-4) N-acetyl-(beta)-D-glucosamine. Recently, chitin extraction from marine debris is expanding. Chitin has the major advantage of being non-toxic, biodegradable, biocompatible, and bioactive and allows many applications in a variety of fields: food (Benhabiles et al. 2012), agriculture, water treatment (Zemmouri et al. 2011), cosmetics, and the biomedical and pharmaceutical field. Lately, this type of molecule has been used for the fight against cancer (Salah et al. 2013). Antitumor effects of chitin and its derivatives have been the subject of several studies (Lee et al. 2005). This work treats the improvement of the extraction of chitin, and its derivatives with antitumor properties, from shrimp shells. Therefore, the cytotoxicity (IC50) of an irradiated chitin and chitosan was evaluated for two human cancer cell lines: Hep2 (Human larynx carcinoma cell line) and RD (Human embryo rhabdomyosarcoma cell line) at various concentrations of chitin and its derivatives.

#### Experimental

All chemicals used in this study were analytical grade and purchased from Sigma Chemical Co. (St. Louis Mo). Shrimp shells were obtained from a seafood restaurant. In addition, it was confirmed that all shells came from a single group of shrimp "Parapeneuslongirostris." Test materials shrimp shells were obtained from a seafood restaurant. It was confirmed that all shells were from a single species of shrimp Parapenaeus longirostris.

## Test materials

Shrimp shells were obtained from a seafood restaurant. It was confirmed that all shells were from a single species of shrimp Parapenaeus longirostris.

### **Chitin extraction**

For extraction of chitin, shrimp shells were washed under running warm tap water to remove soluble organics, adherent proteins, and other impurities. The shells where then collected and boiled in water for 1 h to remove the tissue, followed by drying in an oven (Prolabo, model Volca MC18, French) at 160 °C for 2 h to make them more brittle and breakdown the crystalline structure. At the end, the dried shells were ground micro into a fine powder using a standard grinder (Model KU-2, PredomMesko, Skarzyskoka, Poland).

After that, the powder was demineralized to remove the calcium carbonate. For that, only dilute hydrochloric acid (1.5 M) was used to prevent hydrolysis of chitin within 30 min of incubation.

## Preparation of chitin and chitosan

- The shrimp shells were first stripped of their legs and antennae, washed, and boiled in water for an hour. After that, they were dried at 163 °C in an oven (Prolabo, model Volca MC18, France). The dry tissues could be removed easily.
- 2. Next stage is "quenching." The shell was heated in an oven at 80 °C for 48 h and cooled down immediately in iced acetone (Mukherjee 2001). Finally, the dried shells were grounded into a fine powder using a standard grinder (Model KU-2, PredomMesko, SkarzyskoKam., Poland). Demineralization calcium carbonate, calcium phosphate, and other mineral salts found in shell waste were extracted with dilute acids. Calcium carbonate constitutes the main inorganic component of the shells. To remove the calcium carbonate, only diluted hydrochloric acid at a concentration ranged from 0.25 to 2.5 M was used to prevent hydrolysis of chitin (No and Meyers 1995) with a reaction time varying from 5 to 150 min. The ratio of dried shells to acid solution used during the extraction of chitin ranged from 1/5 to 1/30 (w/v).

The experiments were carried out at room temperature under constant stirring speed of 150 rpm. The decalcified shells were collected on a 250- $\mu$ m sieve, washed with tap water and neutralized with deionized water, and then oven dried at 80 °C overnight. The rate of demineralization was evaluated by determining the ash contents in the solids.

### Deproteinization

Similar experimental conditions were applied for the demineralization of dried shells. The sodium hydroxide concentration varied from 0.5 to 3 M, the reaction time ranged from 20 to 150 min, and the temperature varied from 20 to 70 °C. The ratio of dried shells to aqueous sodium hydroxide solution used during the extraction of chitin ranged from 1/5 to 1/30 (w/v).

After this process, the material was filtrated, washed, and dried, as previously described in the demineralization process. In order to evaluate the extent of deproteinization, the protein concentration in the supernatant was determined according to Biuret's method (Fine 1935) which remains as the most widely used method for protein determination.

### Bleaching

The chitin residue was mixed with acetone at a solid/solvent ratio of 1:10 (w/v) for 10 min, filtered, dried for 2 h at room temperature, and followed by bleaching with 0.315 % NaOCl during 5 min at the same solid/solvent ratio (No and Meyers 1995). The discolored chitin was washed and filtered as described beforehand.

# Deacetylation

The conversion of chitin to chitosan involved deacetylation, a suggested process by other researches (Mirada, et al. 2002 and Kurita et al. 2003). For the purpose of N-deacetylation, 1 g of purified shrimp chitin was treated with 10 ml of 50 % sodium hydroxide solution at 140 °C for 60 min. After filtration, it was washed until neutral pH with deionized water and oven dried at 80 °C overnight.

# Characterization of chitin and chitosan

Ashes were determined by incineration of 1 g sample in a muffle furnace at 900 °C for the duration of 2.5 h (Mirada et al. 2002). The calculation of ashes allowed the determination of the final yield of shell demineralization (Rao et al. 2000).

Total proteins in the solid fraction were determined according to the Kjeldahl procedure (A.O.A.C 1990). The final yield of shell deproteinization was then deduced (Rao et al. 2000). The degree of deacetylation (DD) was assessed by using the method FTIR spectroscopy (Sabnis and Block 1997). The infrared spectra of the samples were recorded with an infrared Fourier spectrometer of 380 Nicolets, type in transmission mode in the spectral range of 4000 to 400 cm<sup>-1</sup>. For each spectrum, 64 scans were performed with a resolution of 4 cm<sup>-1</sup>. The spectra were processed by the software OMNIC<sup>®</sup>. The DD was calculated using Baxter's equation (Baxter et al. 1992). The different degrees of acetylation (DA) of polysaccharides were calculated using the following equation:

$$DA = (A1655/A3450) \times 100/1.33$$
(1)

With A1655 and A3450absorbances at 1655  $\text{cm}^{-1}$  of the amide I-band, this is a measure of N-acetyl groups and at 3450  $\text{cm}^{-1}$  of hydroxyl band, indicating the internal standard for correction.

The factor 1.33 is the value of A1655/A3450 when all groups of the polymer are N-acetylated. The degree of deacetylation (DD) is deduced from the following equation (Khan et al. 2002).

$$DD = 100 DA \tag{2}$$

The viscosity-average molecular weight, Mv, was determined with an Ubbelohde viscosimeter (Technico, ASTM D. 445) at room temperature with constant k= 0.01 cS/s. To measure the viscosity, the chitosan was

dissolved in a mixture of acetic acid and 0.2 M sodium acetate 0.3 M, while chitin was dissolved in a mixture of LiCl and dimethylacetamide 5 % (Mirada, et al. 2002). The average molecular weight of the polymer prepared in this work was determined using the Mark-Houwink equation:

$$[\mu] = K(Mv)^a \tag{3}$$

### Cytotoxicity assay

Cytotoxicity assay of Hep2 and Rd cells line

Hep2 (Human larynx carcinoma cell line) cell line and Rd (Human embryo rhabdomyosarcoma cell line) cell lines were obtained from Pasteur Institute of Algeria.

These cells were maintained in MEM supplemented with 10 % of FBS, 2 mM of glutamine, 100  $\text{UIcm}^{-3}$  of penicillin, and 100 g cm<sup>-3</sup> of streptomycin. Cultures



**Fig. 1** a Effect of the concentration of HCl on extent of demineralization (ambient temperature solid/solvent 1/20 (g/ml), t=24 h). b Effect of reaction times on extent of demineralization (ambient temperature;

[HCl] 1.5 M; solid/solvent 1/15 (g/ml)). **c** Effect of solids to solvent ratio on extent of demineralization (ambient temperature; [HCl] 2 M; 1 g of solid; t=30 min)

 Table 1
 The optimized conditions for demineralization of 1 g shells

| Temperature | Time  | Volume      | Concentration |
|-------------|-------|-------------|---------------|
| (°C)        | (min) | of HCl (ml) | of HCl (M)    |
| Ambient     | 30    | 15          | 2             |

were maintained in a humidified atmosphere with 5.5 %  $CO_2$  at T=37 °C.

To study the inhibitory effect of chitin, chitosan, and the irradiated chitin, cells were seeded in 24-well plates. After a 24-h growth, cells were treated with varying concentrations of the test molecules (1, 50, 250, 500, 1000, 1500, 2000, 2500, and 3000  $\mu$ g/ml). The cells were incubated at 37 °C for a period of 24 h and then stained with trypan blue to test the viability after 48 h culture. All the experiments and measurements were done in triplicate.

# Trypan blue exclusion assay

About 300  $\mu$ l of cell suspension was sampled and mixed with an equal volume of trypan blue. The total number of live cells was then counted using a hemocytometer under light microscopy. The cytotoxic activity was calculated by the following equation, established by Cuesta et al. (2003).





### **Results and discussions**

# Extraction, demineralization, and deproteinization of chitin

The shells contained relatively high protein content (49 %) and ash (35 %) on a dry weight. These values were in agreement with those obtained in other studies (No and Meyers 1995). However, it should be noted that these results are not constant because quantitative and qualitative changes in chitin may be observed in crustaceans due to the physiological stage of the organism or seasonal variations and according to the species (Fernandez-Kim 2004). The extent of demineralization ranged from 84 to 100 % (wt/wt) as a result of varying HCl concentrations, reaction time, and solid solvent ratios (Fig. 1). Demineralization of the dried shrimp shells was achieved with 1.5 N HCl and 30 min reaction time at ambient temperature (Table 1). The deproteinization reaction occurred at low concentrations of NaOH and its peak at 2 M. The deproteinization was proportional to the reaction time up to 90 min (Fig. 2). In addition, a plateau was reached. The deproteinization can be performed at room temperature, but it is optimal at 55 °C. The optimal volume of NaOH to deproteinize the shrimp shells was about 20 ml. The deproteinization shell Parapenaeus longirostrisis was achieved by using the optimum experimental conditions

Environ Sci Pollut Res

| Table 2 | The optimized | conditions for | r deproteinization | of 1 | g of shells |
|---------|---------------|----------------|--------------------|------|-------------|
|---------|---------------|----------------|--------------------|------|-------------|

| Temperature | Time  | Volume of | NaOH              |
|-------------|-------|-----------|-------------------|
| (°C)        | (min) | NaOH (ml) | concentration (M) |
| 55          | 90    | 20        | 2                 |

20 ml of 2 M NaOH at 55 °C, stirring during 90 min and a ratio solid/solvent of 1/20 g/ml (Table 2).

# Molecular weight and deacetylation degree of chitin and chitosan

The viscosity-average molecular weight, Mv, of chitin obtained in this study was determined to be 350, 000 Da and equal to 20,050 Da for chitosan. The irradiated chitin molecular weight at a dose of 210 kGy is 11 300 Da (Dziril et al. 2015).

The deacetylation degree of chitosan and chitin was calculated by infrared spectrophotometry. DD are approximately 60, 39, and 17 % for chitosan, chitin, and for the irradiated chitin, respectively (Figs. 3, 4, and 5).

The infrared spectrophotometry results of chitin are similar to those found by Brugnerotto et al. (2001). However, the results of infrared spectrophotometry of chitosan differ from those already published (Hurt et al. 2014). This difference is probably due to the partial reactions of chitin deacetylation.

# Study of the inhibitory effect of chitin and its derivatives against cancer cell lines

Figures 6 and 7 indicate that chitin and its derivatives showed a marked inhibition of the growth of Hep2 and RD cells after 24 h of contact. It is also observed that chitin and its derivatives exerted a dose-dependent inhibition. Indeed, as the later figures show, cell viability decreased and hence the cytotoxicity of chitin, irradiated chitin, and chitosan have increased with an augmentation of the tested molecules concentrations. The results clearly showed that chitin was cytotoxic with an IC50=400  $\mu$ g/ml (Table 3), and the total cytotoxicity (100 %) is reached at a concentration of 2000 µg/ml for Hep2 cells. For RD line (Table 4), the IC50 is 200 µg/ml and total cytotoxicity (100 %) is not reached even at a concentration of 3000 µg/ml. Compared to other derivatives, the lowest IC50 is attributed to chitosan. Indeed, it was 300 µg/ml in Hep2 and 190 µg/ml in RD. The death of all cells was observed at a concentration of 3000 µg/ml, whereas it was not reached for Hep2. The results of the antiproliferative effect of chitin and its derivatives on the Hep2 line outlined that the chitosan has an IC50=  $300 \ \mu g/ml$ ; all tested molecules have an IC50 range of 400 to 500 µg/ml. The effect of tested molecules on cells of the RD line was slightly different from the results obtained for Hep2. Indeed, one can notice that the IC50 of molecules tested on RD are smaller than those observed in Hep2 and vary from 190 to 300  $\mu$ g/ml. In both cases, there is an antiproliferative



Fig. 3 Infrared spectrum of chitin



Fig. 4 Infrared spectrum of the irradiated chitin

effect on cancer cells. Chitosan has the lowest IC50 and therefore the greater efficiency. The difference in cytotoxicity on the two lines with respect to the different molecules tested may be related to their morphological and structural characteristics but also the effectiveness of their damage compensation system. Moreover, effectiveness of chitosan may be attributed to its cationic polyelectrolyte character and thus its positive charges. In fact, the presence of amine groups in the units of D-glucosamine added a feature to chitosan compared to other polysaccharides. Chitosan acquires positive charge at pH 6.2, allowing it to bind the negatively charged molecules (lipids, collagen glycosamunoglycans, lignosulfonates,



Fig. 5 Infrared spectrum of chitosan



Hep2 cells

alginates, and DNA) by electrostatic interactions; and thus a complex poly-electrolytes (CPE) may be formed. The formation and properties of these CPE strongly depend on pH, the DD of chitosan, and the two polymers load; (Gamzazade and Nasibov 2002). The formation of DNA/chitosan complex was demonstrated by Lee et al. (2005). Study focused on the cytotoxicity of cationic chitosan derivatives against human cancer cell lines. It concluded that the cytotoxicity is probably due to interactions between the negative charges groups of tumor cells and the positively charged groups of the derivatives. The same conclusion, as the previous authors, was given by Salah et al. (2013) who studied the cytotoxicity of chitosan derivatives by varying degrees of deacetylation towards human cancer cell lines. Many other authors (Aspden et al. 1997) also attributed the effectiveness of chitosan in its DD, its electric charge, morphology, and size. Salah et al. 2013 determined the passage of the molecule through the plasma membrane



Fig. 7 Cytotoxic effect of chitin, the irradiated chitin, and chitosan on RD cells

| Table 3       IC50 of chitin         and its derivatives       (11 - 2) | Molecules tested  | IC <sub>50</sub> (µg/ml) |  |
|-------------------------------------------------------------------------|-------------------|--------------------------|--|
| (Hep2)                                                                  | Chitosan          | 300                      |  |
|                                                                         | Chitin            | 400                      |  |
|                                                                         | Irradiated chitin | 450                      |  |
|                                                                         |                   |                          |  |

and cell wall. The passage through the pores of polar molecules is possible for MM <40 kDa. The results obtained with chitin have not reached the same conclusions as the latter, which is an uncharged molecule. It is interesting to note that all molecules have an inhibitory and cytotoxic effect against Hep2 and RD lines. It can be deduced that there are several types of interactions between the charged groups of molecules and tumor cells such as electrostatic interactions between the negative charges of groups of tumor cells and the positive charges of groups of molecules tested and also interactions between hydrophobic groups and tumor-derived cells.

# Characterization of chitin and its derivatives by infrared spectroscopy

The absorption spectra of chitin and chitosan prepared from Parapenaeuslongirostris shells exhibit the same peaks mentioned in the literature (Brugnerotto et al., 2001 and Kasaai 2008) (Figs. 3, 4, and 5). The FTIR spectra of chitin and chitosan have confirmed the extraction of chitin, and its deacetylation was realized satisfactory. Indeed, chitin and chitosan characteristic peaks are demonstrated. These are as follows:

- Strip of OH stretching vibration at 3450 cm<sup>-1</sup>:
- Band of CH stretching vibration between 2870 and \_  $2880 \text{ cm}^{-1}$ ;
- Bands of COC stretching vibration at 1030 or  $1070 \text{ cm}^{-1}$ ;
- The tape of the deformation vibration-CH2 bond at \_  $1420 \text{ cm}^{-1};$
- Strip antisymmetrical stretching vibration COC at  $1160 \text{ cm}^{-1}$ ;
- The band of the amide III between 1315 and 1320  $\text{cm}^{-1}$
- The band bending vibration of the NH-NH 2 between  $1620 \text{ and } 1630 \text{ cm}^{-1}$
- The band COC 890–900 cm<sup>-1</sup>glycosidic bond.

Effective deacetylation of chitin is translated by the displacement of the amide II band present at 1558.2 cm<sup>-1</sup> in the chitin to  $1572.4 \text{ cm}^{-1}$  in chitosan.

| Table 4IC50 of chitinand its derivatives (RD) | Molecules tested  | IC <sub>50</sub> (µg/ml) |
|-----------------------------------------------|-------------------|--------------------------|
|                                               | Chitosan          | 190                      |
|                                               | Chitin            | 300                      |
|                                               | Irradiated chitin | 200                      |

## Conclusions

This study revealed that the composition of the shell Parapenaeus longirotris is 39 % protein and 35 % minerals. The demineralization optimization of the Parapenaeus longirotris shell is achieved using 15 ml of 2 M HCl per gram of shells at room temperature with a stirring during 30 min and that the optimum deproteinization is achieved by using 20 ml of 2 M NaOH per gram of shells at 55 °C with stirring for a period of 90 min. The degree of chitosan and chitin deacetylation was determined by infrared spectrophotometry. DD are approximately 39 and 60 % for chitosan and chitin, respectively. The results obtained also demonstrated that chitin and its derivatives have a dose-dependent cytotoxic effect against Hep2 and RD cell lines, indicating that there are several types of interactions between the charged groups of molecules and tumor cells such as electrostatic interactions between the negative charges of tumor cells groups and the positive charges of groups tested and interactions between hydrophobic groups and tumor cells derived molecules. However, it would be of such interest to improve the properties of the molecules tested in the present study and to focus our future work on the optimization of the production processes. It would also be necessary to expand the range of cell lines studied and further investigate the chitin, chitosan, and their derivatives exact mechanisms of action on cancer cells. Consideration should be given subsequently to the possible resistance mechanism of cancer cells to the inhibitory effect of these substances.

#### References

- A.O.A.C. (1990) In: Horritz E (ed) Official methods of analysis (15th ed.). Washington, DC: Association of Official Analytical Chemists, method#930.15 p69, method #942.05 p70, method #962.09 p80
- Aspden TJ, Mason JDT, Jones NS, Lowe J, Skaugrud O, Ilum L (1997) Chitosan as nasal delivery systems: the effect of chitosan solutions on in vitro in vivo mucociliary transport rates in human turbinates and volunteers. J Pharm Sci 86:509–513
- Baxter A, Dillon M, Taylor KDA, Roberts GAF (1992) Improved method for IR determination of the degree of N-acetylation of chitosan. Inter J Biol Macromol 14:166–169
- Benhabiles MS, Abdi N, Drouiche N, Lounici H, Pauss A, Goosen MFA, Mameri N (2012) Protein recovery by ultrafiltration during isolation of chitin from shrimp shells Parapenaeus longirostris. Food Hydrocoll 32(1):28–34
- Benhabiles MS, Salah R, Lounici H, Drouiche N, Goosen MFA, Mameri N (2012) Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll 29:48–56
- Brugnerotto J, Lizardi J, Goyoolea F, Arguelles-Monal W, Desbrières J, Rinaudo M (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42:3569–3580

- Cuesta A, Esteban MA, Meseguer J (2003) Tumouricidal activity of gilthead seabream (Sparus aurata L.) natural cytotoxic cells: the role played in vitro and in vivo by retinol acetate. Fish Shellfish Immunol 14:133–144
- Dziril M, Grib H, Laribi-Habchi H, Drouiche N, Abdi N, Lounici H, Pauss A, Mameri N (2015) Chitin oligomers and monomers production by coupling  $\gamma$  radiation and enzymatic hydrolysis. J Ind Eng Chem. doi:10.1016/j.jiec.2014.12.015
- Fernandez-Kim SO (2004) Physicochemical and functional properties of crawfish chitosan as affected by different processing protocols. Master Thesis, Department of Food Science. Seoul National University
- Fine J (1935) The Biuret method of estimating albumin and globulin in serum and urine. Biochem J 29:799–803
- Gamzazade AI, Nasibov SM (2002) Formation and properties of polyelectrolyte complexes of chitosan hydrochloride and sodium dextransulfate. Carbohydr Polym 50:339–343
- Hurt AP, Getti G, Coleman NJ (2014) Bioactivity and biocompatibility of a chitosan-tobermorite composite membrane for guided tissue regeneration. Int J Biol Macromol 64:11–16
- Kasaai MRA (2008) Review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy. Carbohydr Polym 71:497–508
- Khan TA, Peh KK, Chang HS (2002) Reporting degree of deacetylation of chitosan : the influence of analytical methods. J Pharm Pharm Sci 5:205–212
- Kurita K, Tomita K, Tada T, Ishii S, Nishimura SI, Shimoda K (2003) Squid chitin as a potential alternative chitin source: deacetylation behavior and characteristic. J Polym Sci, Part A: Polym Chem 31: 485–491
- Laribi-Habchi H, Bouanane-Darenfed A, Drouiche N, Pauss A, Mameri N (2015) Purification, characterization, and molecular cloning of an extracellular chitinase from Bacillus licheniformis stain LHH100 isolated from wastewater samples in Algeria. Int J Biol Macromol 72:1117–1128
- Lee SJ, Kim SW, Chung H, Park YT, Choi YW, Cho Y-H, Yoon MS (2005) Bioadhesive drug delivery system using glyceryl monooleate for the Intravesical administration of paclitaxel. Chemotherapy 51: 311–318
- Mirada H, Yaghobi N, Amanpour S, Ahmadi H, Mohagheghi MA, Hormozi F (2002) Preparation of chitosan derived from shrimp's shell of Persian Gulf as a blood hemostasis agent. Iran Polym J 11: 63–68
- Mukherjee DP (2001) Method for producing chitin or chitosan. United States Patents, 6,310,188
- No HK, Meyers SP (1995) Preparation and characterization of chitin and chitosan: a review. J Aquat Food Prod Technol 4:27–52
- Rao MS, Muňoz J, Stevens WF (2000) Critical factors in chitin production by fermentation of shrimp biowaste. Appl Microbiol Biotechnol 54(808–327):813
- Sabnis S, Block LH (1997) Improved infrared spectroscopic method for the analysis of degree of N-acetylation of chitosan. Polym Bull 39: 67–71
- Salah R, Michaud P, Mati F, Harrat Z, Lounici H, Abdi N, Drouiche N, Mameri N (2013) Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1. Int J Biol Macromol 52: 333–339
- Zemmouri H, Kadouche S, Lounici H, Hadioui M, Mameri N (2011) Use of chitosan in coagulation flocculation of raw water of Keddara and BeniAmrane dams. Water Sci Technol 11:202–210