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Abstract

Milling process conditions are related to magnetic properties of nanocrystalline Co material. Experiments are carried out varying plateau
rotation and vial velocities. Coercivity, crystallite size and percentage of the cubic phase are analyzed using a statistical methodology based
on artificial neural network. Predicted results show that the combination of low plateau rotation velocity and high vial velocity can enhance
the cubic phase formation and consequently the coercivity.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction In this study, coercivity Hc, crystallite size D and the
hcp—fcc phase transformation (cubic phase ratio) are ana-
Among the traditional routes for plastic deformation, ball lyzed using a statistical methodology based on artificial neu-
milling has become a widespread technique for the pro- ral network. The aim is to predict and quantify the relation-
cessing of equilibrium and non-equilibrium powder mate- ships between these parameters and milling conditions over
rials[1]. Extensive research has been carried out during thea large range of process variables, which are represented by
last decades on the allotropic phase transformation of cobaltfew experimental sets. These include plateau rotation and vial
[2—-4]. This metal undergoes a phase transition, from hcp to velocities.
fcc, when it is heated to above the thermodynamic equilib-
rium temperaturel; = 695 K. Moreover, pure fcc Co has been
obtained at room temperature after a high-energy ball milling
process and in particles of nanometric sifes8]. Indeed,
since the hcp and fcc are both close packed structures, stack-
ing faults usually play a key role in all the models describing m
the transformation, either when it is thermally activated or in-
duced by a cold-work procefz-4]. Stacking faults are also
known to play a crucial role in the magnetic properties of
Co-based hexagonal alloys used in longitudinal and perpen-
dicular recording media and are usually considered to bring
about a magnetic softening of this kind of materi&ls

2. Experimental procedure

Nanocrystalline Co was produced by ball milling. Ele-
ental powders, with an average particle size ofu0and
a mean grain size of 20bwere introduced into a cylindrical
tempered steel container (vial) of capacity 50 ml. Each con-
tainer was loaded with three quenched steel (type 100C6)
balls (diameter 1.5cm, mass 14g). The containers were
sealed with a Teflon O-ring and the milling conducted in
stationary air without exchange with laboratory atmosphere.
The milling was carried out using the so-called G5 specially
designed planetary high-energy machine which allows the
* Corresponding author. Tel.: +333 84 58 3129; fax: +333 84 58 3286.  Independent choice of the shock frequency and the shock
E-mail addresssofiane.guessasma@utbm.fr (S. Guessasma). energy[9,10].
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The effective conditions during the mechanical alloying wherek andi are the indexes of neuron k in the forward layer
were the rotation speed of the disc on which the containersi.
are fixed €2) and the rotation speed of the containes’ ( Eq. (2) represents a nonlinear transformation of the input
The milling time was chosen to avoid excessive contam- of each neuron in the structure assuming a sigmoid profile.
ination from the friction and the impacts between the balls  Neurons are related to each other with the aid of numbers
and the walls of the vials but this milling time is long enough translating the strength of the connection. These are called

to obtain nanocrystalline cobalt. weights:

The volume percent of theg(fcc) and the hexagonal close-
packeds(hcp) phases ratios are evaluated from the intensity Ti = wiji Okj + wiok (3)
ratios:lscc/(Incp + Incp) for fcc phase anthep/(Incp+ Incp) for k, i, j are subscripts designing the layer number, forward and

hcp phase. Experimental details, microstructure characteriza4ygckward layer, respectively,o represents a bias term. The
tion and magnetic measurements have been shown elsewhergymmation is made arvalues following Einstein notation.
[10]. Initially, weight parameters are not known and are tuned in
order to decrease the difference between output layer values
(yi) and real case values corresponding to a submitted input
3. Artificial neural network case [j). Thus, calculation starts with

An artificial neural network was built to relate input pa-  w;; =1, E = }(ri —yi)?, i=13 (4)
rameters plateau rotation and vial velocities to output pa- 2
rameters (crystallite size, percentage of the cubic phase andvhereE is the system energy which represents the quadratic
coercivity). Each of these parameters is indexed by a neuronvariation of the error between real output valugsgnd pre-
(Fig. 1). Each parameter is introduced in the network struc- dicted valuesyj). The factor 1/2 is needed for derivation.

ture as a formatted value according1d] Weight update is performed by back-propagating the gra-
. dient of E from the output layer to the input layer. Weight
I = Xi — Ximin . _ 1,2 (1) correction is performed assuming the quick propagation al-
Xi = Ximin gorithm[12]:
wherel; is the input formatted value of parameigmax r
andXmin are the maximum and minimum values associated Aw},; = T’”,Aw};i—l (5)
to parameter. These are summarized Tlable 1 ki O
Input and output values for each neuron in structure are whereAw!, ands;; is the weight correction and error at step
related as follows: t for neuronk of layeri.
1 Experimental sets are submitted to the neural network un-
Ori = 1rele 2) til a stabilization of the residual error is obtained at the output

pattern. To this stabilization, a stopping criterion is applied
concerning a fixed calculation duration, which is 1000 cy-
cles. Neural number in both hidden layers is optimized con-
sequently by comparing residual errors for each structure.

Table 1
The neural computation parameters

Parameter Optimized values o 4 given optimization, the number of experiments must be
Hidden layers 2 _ large enough to fix the weight values. Following the prob-
Leaming rule Quick propagation 551y annroximately correct (PAC) theofg3], this number
Parameter Optimized values must be ten times larger than weight values in the network
structure:
w (rpm) £2 (rpm)
Inputs (=2) Np = 10W (6)
Minimum 45 135 . . .
Maximum 440 385 whereNp is the number of experiments akdis the number
of weights in the network structure.
Parameter Optimized values Instead of considering PAC theory which is quite restric-
First layer (1) Varied tive, other authors suggested several expressions based on a
Second layerNy) Varied correlation to input and output patterfigt]. This brings the
o number of experiments to rescannable value:
Parameter Optimized values
D (um) C (%) Hc (Oe) Ny e [ NpNs 7 2NsNp ] @)
Outputs O=3) Ny + Ns N|+ Ns

Minimum 0 0 0

Masdmum 250 100 400 whereNy is the number of neurons in the hidden layers.

Np is the number of cases submitted to the netwdik.
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Fig. 1. Evolution of the optimization error as function of the size of the test sets.

and Ng are the number of neurons in the input and output associated to input and output paramefig:
layers.

Other studies permitted to estimate the number of experi- (0;, 1)), .., = (Ok. I)original = ALEAQ (o (0x), o(ix))  (9)
ments as falling within the randé1]:

W < Np < 5W ®) WhereQ andl are relatgd to neurons in the ir_1put and output
layers,j andk are the indexes of samples in the new and
In the case of this study, the number of experiments was nineoriginal databases, respectively, ALEA() is arandom number
(Table 3. The experimental sets were considered as origi- generator producing a Gaussian distribution around Ogand
nal sets enlarged to take into account the standard deviationis the standard deviation associated to input and output units.
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Table 2 T T T T T T T
Experimental and predicted results of crystallite size, coercivity and percent- 0‘8'“ il
age of the cubic phase as function of milling conditions for nanocrystalline 074 4
Co material Train procedure
w (rpm) £2 (rpm) Experimental predicted relative ® 0'6—_ o ]
scatter (%) c—; 0.5 i
D (um) C (%) Hc T o4l d ]
50 150 111 0 135 T -
112 1 134 % 0.31 D 1
13 - 08 & ol a C ]
200 150 136 0 137 - ] . He
135 2 138 0.1 i -
1.0 — 08 1
400 150 203 45 196 0.04 # .
203 45 196 0.0 0?1 0!2 0{3 0?4 0?5 OTB O.‘7 0.‘8 0.9
0.2 01 01
50 250 86 8 51 (a) Predicted value
83 7 53 0.35 T d T v T v T T d
3.2 132 38 e
200 250 74 11 37
77 10 37 0.30+ O
4.6 7.5 04 Test procedure
400 250 76 11 32 L 0.25+ 4
76 12 31 s
0.1 4.9 35 B o020
50 350 82 8 50 ’ux:: = 7
81 9 48 E
11 93 42 8 0.154 3 D i
200 350 76 12 29 3 C
A
75 12 34 A A He
07 29 157 0.104 : )
400 350 73 14 29 2
73 14 27 0.05 e r
0.2 2.3 57 0.05 0.10 0.15 0.20 0.25 0.30 0.35

(b)

Predicted value

Fig. 2. Linearity between predicted and experimental results in the case (a)

The ratio of enlargement depends on the variability of trainingand (b) test procedures. Test samples represents 55% from the whole
the process and varies generally between 5 and 20. In thisdatabase.

study, this ratio was fixed to 15, permitting to obtain 135 new

samples.

This compromise was found to be quite satisfactory as the
The validation of the ANN optimisation is included as test testand training results were found to converge. Linearity be-

sets which are submitted during the training process. Thesetween experimental and predicted responses was established
are a part of the optimisation but weight parameters are notas shown irFig. 2
corrected when submitting a test set. In such a way, several
runs were performed by varying the number of samples in
the test proceduré=ig. lillustrates the evolution of the op-
timisation error (i.e., residual error), which is a combination
of test and training errors, as function of the simulationtime.  The optimization process of the neural network permit-
When there is no test sample in the database, the optimisated to obtain a configuration with three neurons in the first
tion error was found to be the highest. This is particularly due hidden layer and four neurons in the second hidden layer
to the lack of information as can be seen frbig. la. When (Fig. 3). The residual error was 0.007 and 100% of the sub-
increasing the number of test samples, the optimisation errormitted cases were learnt correctly (output errors were less
decreases and stabilise for a test database representing a ratthan 5%).Table 2compares the predicted and experimen-
of 55% from the whole databasgig. 1c). Finally, when the tal results for crystalline size, percentage of cubic phase and
whole database was dedicated to training procedhige {d), coercivity. Average errors are 1, 6 and 4% for the studied pa-
the optimisation error is the lowest possible but the valida- rameters, respectively. The highest scatter for these does not
tion of the results is rendered difficult as no sample test was exceed 16%.
included. This risk of learning case by case is eliminated by By varying input values of the optimized ANN structure,
considering the optimised ANN structure considering a min- it is possible to establish the combined effeckbandw on
imal test database representing 55% of the total samples. crystallite size, cubic phase ratio and coerciviRigs. 4-6

4. Results and discussion
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Fig. 3. The optimized ANN structure considered in this study.
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Fig. 4. Predicted counterplot of crystalline size as function of the milling
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Fig. 6. Predicted counterplot of coercivity as function of the milling condi-
tions (2, w).

present, in a reduced form, the counterplots of the ANN re-
sponses in the defined parameter domaifable 1. It is
noticed that ANN response is more sensitivest@ariation
especially in the case of crystallite size and coercivity. Values
of plateau velocity greater than 0.4 (203 rpm) do not permit
to obtain significant effect. This result is validated by com-
paring the predicted results with those of Huang e{&]l.
for £2=160rpm {Table 3. Roughly speaking, the result of
Huang et al[8] put in evidence the formation of fcc phase
without quantifying accurately the percentage of the phase.
With the predicted results, it was possible to establish the
variation of the cubic phase with a large variation for
360 rpm.

Fig. 5 shows that only a small range &f andw permit
to increase the cubic phase proportion. The initial phase pro-
portion was about 50%, as determined by XRD anal€%
The formation of fcc Co was first attributed to the Fe contam-
ination arising from the steel balls and vials used during the
milling [15]. However, this possibility was ruled out when
the processing was carried out in agate vials and balls and
hcp Co was still partially converted to fcc ¢H0]. Recently,
Sortetal[16] showed that the stacking fault formation, rather
than the local temperature rise, the impurity contamination or
crystallite size reduction associated with the milling process,
is the main mechanism governing the hcp—fcc transformation
[16].

Table 3
The rolew of on the formation of the cubic phase
w (rpm)
124 243 361 440
Experimenta([8] hcp hcp hep>fcc fece>hep
98 86 58

Comparison between experimental and predicted result® fot 60 rpm.
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