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Effect of milling conditions on structure and magnetic
properties of nanocrystalline cobalt
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Abstract

Milling process conditions are related to magnetic properties of nanocrystalline Co material. Experiments are carried out varying plateau
rotation and vial velocities. Coercivity, crystallite size and percentage of the cubic phase are analyzed using a statistical methodology based
on artificial neural network. Predicted results show that the combination of low plateau rotation velocity and high vial velocity can enhance
the cubic phase formation and consequently the coercivity.
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. Introduction

Among the traditional routes for plastic deformation, ball
illing has become a widespread technique for the pro-

essing of equilibrium and non-equilibrium powder mate-
ials [1]. Extensive research has been carried out during the
ast decades on the allotropic phase transformation of cobalt
2–4]. This metal undergoes a phase transition, from hcp to
cc, when it is heated to above the thermodynamic equilib-
ium temperature,Tt = 695 K. Moreover, pure fcc Co has been
btained at room temperature after a high-energy ball milling
rocess and in particles of nanometric sizes[5–8]. Indeed,
ince the hcp and fcc are both close packed structures, stack-
ng faults usually play a key role in all the models describing
he transformation, either when it is thermally activated or in-
uced by a cold-work process[2–4]. Stacking faults are also
nown to play a crucial role in the magnetic properties of
o-based hexagonal alloys used in longitudinal and perpen-
icular recording media and are usually considered to bring
bout a magnetic softening of this kind of materials[9].

In this study, coercivity Hc, crystallite size D and
hcp–fcc phase transformation (cubic phase ratio) are
lyzed using a statistical methodology based on artificial
ral network. The aim is to predict and quantify the relat
ships between these parameters and milling conditions
a large range of process variables, which are represent
few experimental sets. These include plateau rotation an
velocities.

2. Experimental procedure

Nanocrystalline Co was produced by ball milling. E
mental powders, with an average particle size of 50�m and
a mean grain size of 200̊A were introduced into a cylindric
tempered steel container (vial) of capacity 50 ml. Each
tainer was loaded with three quenched steel (type 10
balls (diameter 1.5 cm, mass 14 g). The containers
sealed with a Teflon O-ring and the milling conducted
stationary air without exchange with laboratory atmosph
The milling was carried out using the so-called G5 spec
∗ Corresponding author. Tel.: +333 84 58 3129; fax: +333 84 58 3286.
E-mail address:sofiane.guessasma@utbm.fr (S. Guessasma).

designed planetary high-energy machine which allows the
independent choice of the shock frequency and the shock
energy[9,10].

d.
921-5107/$ – see front matter © 2005 Elsevier B.V. All rights reserve
oi:10.1016/j.mseb.2005.01.011



66 N. Fenineche et al. / Materials Science and Engineering B 119 (2005) 65–70

The effective conditions during the mechanical alloying
were the rotation speed of the disc on which the containers
are fixed (Ω) and the rotation speed of the containers (ω).

The milling time was chosen to avoid excessive contam-
ination from the friction and the impacts between the balls
and the walls of the vials but this milling time is long enough
to obtain nanocrystalline cobalt.

The volume percent of theα(fcc) and the hexagonal close-
packedε(hcp) phases ratios are evaluated from the intensity
ratios:Ifcc/(Ihcp+ Ihcp) for fcc phase andIhcp/(Ihcp+ Ihcp) for
hcp phase. Experimental details, microstructure characteriza-
tion and magnetic measurements have been shown elsewhere
[10].

3. Artificial neural network

An artificial neural network was built to relate input pa-
rameters plateau rotation and vial velocities to output pa-
rameters (crystallite size, percentage of the cubic phase and
coercivity). Each of these parameters is indexed by a neuron
(Fig. 1). Each parameter is introduced in the network struc-
ture as a formatted value according to[11]

Ii = xi − ximin
i = 1, 2 (1)
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wherekandi are the indexes of neuron k in the forward layer
i.

Eq. (2) represents a nonlinear transformation of the input
of each neuron in the structure assuming a sigmoid profile.

Neurons are related to each other with the aid of numbers
translating the strength of the connection. These are called
weights:

Iki = wijkOkj + wi0k (3)

k, i, j are subscripts designing the layer number, forward and
backward layer, respectively,wi0k represents a bias term. The
summation is made onj values following Einstein notation.

Initially, weight parameters are not known and are tuned in
order to decrease the difference between output layer values
(yi) and real case values corresponding to a submitted input
case (Ii). Thus, calculation starts with

wijk = 1, E = 1

2
(ri − yi)

2, i = 1, 3 (4)

whereE is the system energy which represents the quadratic
variation of the error between real output values (ri) and pre-
dicted values (yi). The factor 1/2 is needed for derivation.

Weight update is performed by back-propagating the gra-
dient ofE from the output layer to the input layer. Weight
correction is performed assuming the quick propagation al-
g
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here Ii is the input formatted value of parameteri, xmax
ndxmin are the maximum and minimum values associ

o parameteri. These are summarized inTable 1.
Input and output values for each neuron in structure

elated as follows:

ki = 1

1 + e−Iki
(2)

able 1
he neural computation parameters

arameter Optimized value

idden layers 2
earning rule Quick propagatio

arameter Optimized values

ω (rpm) Ω (rpm)

nputs (I = 2)
Minimum 45 135
Maximum 440 385

arameter Optimized valu

irst layer (N1) Varied
econd layer (N2) Varied

arameter Optimized values

D (�m) C (%) Hc (Oe)

utputs (O= 3)
Minimum 0 0 0
Maximum 250 100 400
orithm[12]:

wt
ki = δt

ki

δt−1
ki − δt

ki

�wt−1
ki (5)

here�wt
ki andδt

ki is the weight correction and error at s
for neuronk of layer i.

Experimental sets are submitted to the neural networ
il a stabilization of the residual error is obtained at the ou
attern. To this stabilization, a stopping criterion is app
oncerning a fixed calculation duration, which is 1000
les. Neural number in both hidden layers is optimized
equently by comparing residual errors for each struc
or a given optimization, the number of experiments mu

arge enough to fix the weight values. Following the pr
bly approximately correct (PAC) theory[13], this numbe
ust be ten times larger than weight values in the net

tructure:

P = 10W (6)

hereNP is the number of experiments andW is the numbe
f weights in the network structure.

Instead of considering PAC theory which is quite res
ive, other authors suggested several expressions base
orrelation to input and output patterns[14]. This brings the
umber of experiments to rescannable value:

H ∈
[

NPNS

NI + NS
,

2NSNP

NI + NS

]
(7)

hereNH is the number of neurons in the hidden lay
P is the number of cases submitted to the networkNI
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Fig. 1. Evolution of the optimization error as function of the size of the test sets.

andNS are the number of neurons in the input and output
layers.

Other studies permitted to estimate the number of experi-
ments as falling within the range[11]:

W < NP ≤ 5W (8)

In the case of this study, the number of experiments was nine
(Table 2). The experimental sets were considered as origi-
nal sets enlarged to take into account the standard deviation

associated to input and output parameters[11]:

(Oj, Ij)new = (Ok, Ik)original ± ALEA()(σ(ok), σ(ik)) (9)

whereO andI are related to neurons in the input and output
layers, j and k are the indexes of samples in the new and
original databases, respectively, ALEA() is a random number
generator producing a Gaussian distribution around 0, andσ

is the standard deviation associated to input and output units.
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Table 2
Experimental and predicted results of crystallite size, coercivity and percent-
age of the cubic phase as function of milling conditions for nanocrystalline
Co material

ω (rpm) Ω (rpm) Experimental predicted relative
scatter (%)

D (�m) C (%) Hc

50 150 111 0 135
112 1 134

1.3 – 0.8
200 150 136 0 137

135 2 138
1.0 – 0.8

400 150 203 45 196
203 45 196

0.2 0.1 0.1
50 250 86 8 51

83 7 53
3.2 13.2 3.8

200 250 74 11 37
77 10 37
4.6 7.5 0.4

400 250 76 11 32
76 12 31
0.1 4.9 3.5

50 350 82 8 50
81 9 48
1.1 9.3 4.2

200 350 76 12 29
75 12 34
0.7 2.9 15.7

400 350 73 14 29
73 14 27
0.2 2.3 5.7

The ratio of enlargement depends on the variability of
the process and varies generally between 5 and 20. In this
study, this ratio was fixed to 15, permitting to obtain 135 new
samples.

The validation of the ANN optimisation is included as test
sets which are submitted during the training process. These
are a part of the optimisation but weight parameters are not
corrected when submitting a test set. In such a way, several
runs were performed by varying the number of samples in
the test procedure.Fig. 1 illustrates the evolution of the op-
timisation error (i.e., residual error), which is a combination
of test and training errors, as function of the simulation time.

When there is no test sample in the database, the optimisa-
tion error was found to be the highest. This is particularly due
to the lack of information as can be seen fromFig. 1a. When
increasing the number of test samples, the optimisation error
decreases and stabilise for a test database representing a ratio
of 55% from the whole database (Fig. 1c). Finally, when the
whole database was dedicated to training procedure (Fig. 1d),
the optimisation error is the lowest possible but the valida-
tion of the results is rendered difficult as no sample test was
included. This risk of learning case by case is eliminated by
considering the optimised ANN structure considering a min-
imal test database representing 55% of the total samples.

Fig. 2. Linearity between predicted and experimental results in the case (a)
training and (b) test procedures. Test samples represents 55% from the whole
database.

This compromise was found to be quite satisfactory as the
test and training results were found to converge. Linearity be-
tween experimental and predicted responses was established
as shown inFig. 2.

4. Results and discussion

The optimization process of the neural network permit-
ted to obtain a configuration with three neurons in the first
hidden layer and four neurons in the second hidden layer
(Fig. 3). The residual error was 0.007 and 100% of the sub-
mitted cases were learnt correctly (output errors were less
than 5%).Table 2compares the predicted and experimen-
tal results for crystalline size, percentage of cubic phase and
coercivity. Average errors are 1, 6 and 4% for the studied pa-
rameters, respectively. The highest scatter for these does not
exceed 16%.

By varying input values of the optimized ANN structure,
it is possible to establish the combined effect ofΩ andω on
crystallite size, cubic phase ratio and coercivity.Figs. 4–6
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Fig. 3. The optimized ANN structure considered in this study.

Fig. 4. Predicted counterplot of crystalline size as function of the milling
conditions (Ω, ω).

Fig. 5. Predicted counterplot of cubic phase percentage as function of the
milling conditions (Ω, ω).

Fig. 6. Predicted counterplot of coercivity as function of the milling condi-
tions (Ω, ω).

present, in a reduced form, the counterplots of the ANN re-
sponses in the defined parameter domains (Table 1). It is
noticed that ANN response is more sensitive toω variation
especially in the case of crystallite size and coercivity. Values
of plateau velocity greater than 0.4 (203 rpm) do not permit
to obtain significant effect. This result is validated by com-
paring the predicted results with those of Huang et al.[8]
for Ω = 160 rpm (Table 3). Roughly speaking, the result of
Huang et al.[8] put in evidence the formation of fcc phase
without quantifying accurately the percentage of the phase.
With the predicted results, it was possible to establish the
variation of the cubic phase with a large variation forω >
360 rpm.

Fig. 5 shows that only a small range ofΩ andω permit
to increase the cubic phase proportion. The initial phase pro-
portion was about 50%, as determined by XRD analysis[10].
The formation of fcc Co was first attributed to the Fe contam-
ination arising from the steel balls and vials used during the
milling [15]. However, this possibility was ruled out when
the processing was carried out in agate vials and balls and
hcp Co was still partially converted to fcc Co[10]. Recently,
Sort et al.[16] showed that the stacking fault formation, rather
than the local temperature rise, the impurity contamination or
crystallite size reduction associated with the milling process,
is the main mechanism governing the hcp–fcc transformation
[

T
T

E p
P

C

16].

able 3
he roleω of on the formation of the cubic phase

ω (rpm)

124 243 361 440

xperimental[8] hcp hcp hcp > fcc fcc > hc
redicted percentage of hcp phase (%) 99 98 86 58

omparison between experimental and predicted results forΩ = 160 rpm.
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One can conclude that the most significant changes on
cubic phase ratio, crystallite size and consequently coercivity
were obtained forω/Ω � 1.

5. Summary

The effect of ball milling parameters on the microstructure
of Co and consequently on the magnetic properties has been
studied. The optimization process of the neural network has
shown a good correlation with the experimental results. The
combination of low values ofΩ and high vial velocitiesω can
enhance the cubic phase formation. Predicted results showed
that the most significant changes in the cubic phase ratio,
crystallite size and coercivity were observed forω/Ω � 1.
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