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We present a new optoelectronic architecture intended for chaotic optical intensity generation. The principle relies
on an electro-optic nonlinear delay dynamics, where the nonlinearity originates from an integrated four-wave
optical interferometer, involving two independent electro-optic modulation inputs. Consequently, the setup
involves both two-dimensional nonlinearity and dual-delay feedback dynamics, which results in enhanced chaos
complexity of particular interest in chaos encryption schemes. The generated chaos observed with large feedback
gains has a bandwidth ranging from 30 kHz to 13GHz and is confirmed by numerical simulations of the proposed
dynamical model and bifurcation diagram calculation. © 2011 Optical Society of America
OCIS codes: 190.3100, 060.4785, 250.4745.

Since the first successful demonstrations of optical chaos
cryptography [1,2], various architectures have been pro-
posed for the generation of chaotic optical carriers (see
[3] and references therein). Chaotic carriers form the
entropy source that is encrypting an information-bearing
signal. High complexity is a necessary condition when
security issues are concerned. This is achieved via a
high-dimensional generated chaotic motion. A suitable
class of chaotic systems for this purpose is the family of
delay-differential equations, that own mathematically an
infinite-dimensional phase space. Provided that this infi-
nite dimension is also associated with a strong nonlin-
earity, a huge number (potentially > 1000) of dimensions
may be actually visited by the chaotic attractor. The
corresponding motion thereby provides a hyperchaotic
encryption masking signal that may spectrally span from
a few kilohertz to more than 10GHz, with spectral fea-
tures that closely resemble those of a band-limited white
noise [4,5]. It has previously been shown that, when prop-
erly designed, Ikeda-like delay-differential systems [6]
can provide such a hyperchaotic carrier, using, for
example, integrated optics lithium niobate (LiNbO3)
Mach–Zehnder (MZ) modulators. These standard tele-
com devices perform unidimensional nonlinearity F≡

sin2, obtained from the transfer function of an electro-
optically tunable two-wave interferometer [7]. One issue
of such a chaos generator raised in the context of chaos
communications and security issues is the design of cus-
tomized electro-optic devices, in which electro-optically
tunable multiple-wave interferometer architectures
could lead to enhanced complexity of the obtained chao-
tic motions. Following this motivation, we propose here
to test such a complexity improvement via the use of an
unconventional but commercially available electro-optic
modulator: a quadrature phase-shift-keying (QPSK) mod-
ulator Fig. 1) originally designed for multiple-valued
digital modulation format for high-speed optical commu-
nications [8]. The QPSK modulator is precisely based on
a similar multiple-wave interference electro-optic modu-
lator, with independent modulation inputs, resulting in a
two-dimensional (2D) nonlinear modulation transfer

function [see Fig. 1(c)]. Moreover, the use of two inde-
pendent modulation RF electrodes allows one to design
a dual-delay feedback Ikeda-like architecture, which is
also expected to increase the complexity of the chaotic
motion. In the context of chaos communications, an
eventual eavesdropper would need to precisely identify
many more parameters (the hardware keys) in order to
reconstruct the nonlinear dynamics. This reconstruction
is so far, to our knowledge, the only proposed cryptana-
lysis approach that, first, enables the chaos synchroniza-
tion operation and, then, the decryption, provided the
physical parameters are known. Our aim is, therefore,
to propose a way to improve the dimensionality of the
chaos generator, and at the same to demonstrate the pos-
sibility for electro-optic chaos generation [9] involving
customized multiple-wave electro-optic modulation.
The complete chaos generator is depicted in Fig. 2. In
order to derive the dynamical model of such a complex

Fig. 1. (Color online) QPSK modulator: (a) device architec-
ture, (b) physical model of the four-wave interferometer, and
(c) plot of the 2D nonlinear transfer function.
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nonlinear delay oscillator, we first need to model the non-
linear transformation. The latter is directly performed by
the modulation transfer function of the QPSK modulator
described in Fig. 1, which is ruling the output intensity
modulation with respect to the two electrical RF inputs.
As displayed in Fig. 1, the QPSK modulator is an inte-
grated optics (lithium niobate) device. It has five voltage
inputs: RF1 and RF2 (half-wave voltages are VπRF1;2),
which are dedicated to the RF modulation via v1ðtÞ and
v2ðtÞ; and DC1, DC2, and DC3 (half-wave voltages
VπDC1;2;3), which are dedicated to the bias voltages,
VB1, VB2, and VB3, that are used to set the rest point
of the 2D multiple-wave interference.
The output power of the QPSK modulator, which is

later detected by fast telecom photodiodes, is the time
average of the energy interference of the resulting elec-
tric field, that is,

PoutðtÞ ¼ hjEoutðtÞj2i ¼ Pin · F ½v1ðtÞ; v2ðtÞ�: ð1Þ
The input electric field can be written as EinðtÞ ¼ffiffiffiffiffiffiffi
Pin

p
expðiω0tÞ, where Pin is the optical power of the

CW laser beam at the input of the QPSK modulator, while
ω0 ¼ 2πc=λ0 is the angular frequency of the laser source
(central wavelength λ0 ≃ 1:55 μm), c being the velocity of
light in vacuum. The function F ½v1; v2� is the normalized
2D nonlinear transformation performed by the QPSK
modulator with respect to its RF input voltages v1 and
v2. Considering the interferences related to the various
optical paths depicted schematically in Fig. 1, the output
electric field EoutðtÞ of the QPSK modulator is given by

EoutðtÞ ¼
EinðtÞ
2

× f1þ eiφ1ðtÞ þ ½1þ eiφ2ðtÞ�eiϕ3g; ð2Þ

where ϕk ¼ πVBk=ð2VπDCkÞ (with k ¼ 1, 2, 3) and φkðtÞ ¼
πvkðtÞ=ð2VπRFkÞ þ ϕk (with k ¼ 1, 2) are the various elec-
tro-optically induced phase shifts associated to the differ-
ent optical paths. After some straightforward algebra, it
can be deduced that the 2D nonlinear transfer function of
the QPSK modulator is

F ½v1ðtÞ; v2ðtÞ� ¼
1
2
fcos2 ϕ3 þ cos2½φ1 − φ2 − ϕ3�

þ 2 cosϕ3 cos½φ1 − φ2 − ϕ3�
× cos½φ1 þ φ2�g; ð3Þ

which corresponds to a periodic bidimensional land-
scape as can be seen in Fig. 1(c). Here lies one of the
specific interests of this 2D transfer function: it depends
on more parameters than a conventional MZ modulator,
and it can be, in principle, designed by any kind of cus-
tomized multiple-wave integrated optics interferometer.
Moreover, the two modulation branches of the QPSK
modulator allow for a dual-loop configuration, thereby
adding another degree of complexity through the two
corresponding time delays.

Once this QPSK modulator is integrated in a delayed
opto-electronic oscillator, as depicted in Fig. 2, the whole
system consists of (i) the QPSK modulator described
above, with VπRF1 ¼ 5:84V and VπRF2 ¼ 6:08V, (ii) two
fiber delay lines performing time delays equal to T1 ¼
61 ns and T2 ¼ 60 ns, (iii) two fast photodiodes with a
conversion factor of S1;2 ¼ 2V=mW, (iv) two RF drivers
with gains G1;2 of 18 dB, (v) two band-limiting bandpass
filters with bandwidths ranging from f L1 ¼ 50 kHz to
f H1 ¼ 13GHz for the first loop, and from f L2 ¼ 30 kHz
to f H2 ¼ 13GHz for the second, (vi) attenuation factors
η1 and η2, which gather the optical and electrical losses in
each loop, and (vii) a 1 × 2 optical coupler that enables us
to feed a fraction of the QPSK modulator optical output
into each loop (a 2 × 2 coupler could also be useful for
the message insertion).

The dynamics of the microwave oscillation can be
described in terms of the dimensionless variable xkðtÞ ¼
πvkðtÞ=2VπRFk ¼ φkðtÞ − ϕk (with k ¼ 1, 2). The normal-
ized dynamics is thus ruled by the following integro-
differential nonlinear delayed equation:

xk þ τk
dxk
dt

þ 1
θk

Z
t

t0

xkðξÞdξ ¼ βkF ½x1ðt − TkÞ; x2ðt − TkÞ�;

ð4Þ

where βk ¼ πηkSkGkP=2VπRFk is the normalized loop
gain, while τk ¼ 1=ð2πf HkÞ and θk ¼ 1=ð2πf LkÞ are the
two characteristic time scales of the bandpass filter.
Equation (4), therefore, represents a set of two coupled
second-order differential equations.

This model has been numerically integrated using the
predictor–corrector algorithm. A bifurcation diagram has
been plotted to illustrate the qualitative dynamical behav-
ior of the system as a function of the feedback gains. For
the sake of simplicity, we have focused on the dynamics
of only the first loop, when its gain β1 is varied using
the variable attenuator, while β2 is kept constant. In
Fig. 3(a), it is experimentally observed that, as the gain
is increased, the system undergoes a cascade of bifurca-
tions until it reaches the state of fully developed chaos.
This kind of behavior is well known in delay systems, and
it has earlier been shown to follow a typical route to
chaos through a primary Hopf bifurcation, eventually
followed by other more exotic bifurcations, resulting,
for example, in the occurrence of chaotic breathers [5],
but finally leading rapidly to the desired chaotic motions
for high enough feedback strength. This phenomenology
has been recovered through numerical simulations
in Fig. 3(b). We have also numerically computed the
entropy of the chaotic signal using the formula Ω ¼
−

P
N
i¼1 pi log2 pi, where N is the number of motion

Fig. 2. (Color online) Experimental setup. LD, laser diode;
QPSK-M, quadrature phase-shift-keying modulator; RF Amp,
radio-frequency amplifier; PD, photodiode; SMF, single-mode
fiber; OC, optical coupler; Att, variable attenuator.
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amplitude bins, while pi is the probability density asso-
ciated to the ith bin. It appears in Fig. 3(c) that, owing to
the QPSK 2D nonlinearity, the entropy saturates very
rapidly (as soon as β ∼ 0:7) and muchmore abruptly com-
pared to standard Ikeda dynamics (single loop entropy
evolution, dashed curve).
The experimental time trace of the chaotic RF variable

is also displayed in Fig. 4(a), along with its power spec-
trum [Fig. 4(b)]. This output variable is strongly high
dimensional, its dimension being roughly of the order
of T1=τ1 ∼ 5000 [10]. It is particularly noteworthy that
the spectrum of the chaotic dynamics spans at up to
13GHz, and that there are no spectral signatures arising
from cavity resonances or from relaxation oscillations
(see the zoomed insets, where no delay modulation at
1=T ≃ 16MHz can be observed).
In conclusion, we have proposed a new architecture

for the generation of wideband chaos, based on the 2D
nonlinearity of a QPSK modulator. We have shown
how this integrated component increases the dynamical
complexity, and we have proposed a model to investigate
its various dynamical properties. Further investiga-
tions will focus on the integration of this QPSK-based

oscillator in an emitter–receiver configuration, in view of
chaos communications [3,7,11]. However, beyond cryp-
tographic applications, the statistical properties of this
hyperchaotic signal can also be used for other applica-
tions, such as the ultrafast (>10Gsamples=s) generation
of quasi-random Gaussian distributed numbers, or as
a deterministic probe signal for ultrawideband radar
systems.
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Fig. 3. (Color online) Bifurcation diagrams [(a) experiment
and (b) numerics] of the probability density function (PDF)
of the solution trajectory x1ðtÞ, as β1 is increased, with
ϕ1 ¼ 1:59 rad, ϕ2 ¼ 0:39 rad, ϕ3 ¼ −0:11 rad, and β2 ¼ 1:1.
(c) Corresponding entropy Ω1 (numerics; dashed curve, single
loop entropy, i.e., for β2 ¼ 0).

Fig. 4. (Color online) (a) Experimental time series for
β1 ¼ 5:0, and amplitude probability distribution (right plot;
linear, lower axis; log scale, upper axis) [other parameters
identical as in Fig. 3(a)]. (b) Corresponding RF power density
spectrum (1MHz resolution).
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