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Abstract

In view of the second law of thermodynamics, the idealized process is usually
so selected as to be one of minimum available energy degradation. A measure of
departure from this ideal process is the entropy generation rate. In this paper, we
shall investigate this aspect concerning an adiabatic peristaltic pump. Our analysis
also exhibits the general features of a flow in a contracting tube. It is shown that
the dynamics of the system can be reduced to that of a classical Hagen-Poiseuille
flow with a source term in the continuity equation and an additional induced force
in the momentum equation.

In reference to exergy, the analysis reveals that peristaltic pumps generate more
entropy than steady walled tubes and are not, from this point of view, competitive
devices. The reason for this high-energy degradation is found in the dynamic
behavior. The flow rate is not constant along the tube, but increases as sections
downstream are reached. This results in high velocity gradients and therefore in
strong dynamic irreversibility, which is the prime entropy source of the system.
For the classical Hagen–Poiseuille flow, the entropy is mainly generated by heat
diffusion.

1. Introduction

The environment protection problems and the concern about energy savings
have recently motivated scientists to conduct analyses about the energy effi-
ciencies of various industrial and energy-consuming facilities. The optimiza-
tion of the operating conditions of these devices goes necessarily through the
minimization of the entropy generation rate according to the second law of
thermodynamics. This topic has occupied increasing attention in the past two
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decades and constitutes the subject of several publications and communica-
tions. Hereafter, we will summarize some of them.

Bejan [1, 2] presented the second law aspect of convection heat transfer.
He introduced the concept of entropy generation number and irreversibility
distribution ratio and presented entropy generation profiles for several config-
urations. Since then, numerous investigations have been performed for other
flow situations and thermal boundary conditions. Mahmoud and Fraser [3]
have investigated analytically the first and second law characteristics of fluid
flow and heat transfer inside a channel having two parallel plates with a finite
gap between them. The fluid is assumed to be non-Newtonian and follows the
power law model. It has been reported that the axial conduction term has a
negligible effect on the total entropy generation rate, which is significantly
affected by the viscous dissipation, the Prandtl number, and the temperature
difference. For a fluid index n < 1, maximum entropy generates at the center
and then decreases. For fluids having n > 1, a second maximum of the Bejan
number is observed inside the fluid region. These authors [4] conducted the
same investigation for cylindrical Couette flow with isoflux thermal bound-
ary conditions. They report that the entropy generation rate is higher near the
inner cylinder due to the presence of sharp velocity gradients. The location of
the minimum Bejan number shifts toward the outer cylinder as the velocity
ratio increases. In a subsequent paper [5], they compare the entropy gener-
ation rate of a fluid flow inside a channel of circular cross section with that
made of two parallel plates with the same gap. The fluid is non-Newtonian.
Tasnim et al. [6] investigated the entropy generation rate in a porous vertical
channel with hydro-magnetic effect and mixed convection flow. They report
that both walls act as strong concentrator of irreversibility. They introduced
a group parameter

(
ψ = U2

0μT0/�T2k
)

and showed that for ψ = 0, the fluid
friction irreversibility becomes zero and the entropy generation number falls
linearly toward the hot wall. For higher ψ (ψ = 8), fluid friction irreversibility
dominates and the entropy generation number rapidly increases with trans-
verse distance. Haddad et al. [7] studied the entropy generation due to laminar
forced convection of a Newtonian fluid in the entrance region of a concentric
annulus subject to different thermal boundary conditions. Entropy generation
is inversely proportional to both Reynolds number and entrance temperature.
They also show that increasing the Eckert number and/or the radius ratio will
increase the entropy generation. Finally, they report that thermal entropy gen-
eration is relatively dominant over viscous entropy generation. Lingen Chen
and coworkers [8] reexamined the historical background, and the state-of-the-
art of finite time thermodynamic theory and its applications, from the point of
view of both physics and engineering. The emphasis was on the performance
optimization of thermodynamic processes and devices including heat engines
and heat pumps and other processes. It is pointed out that the generalized op-
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timization theory is the development direction of finite thermodynamics in
the future. Michaelides and Michaelides [9] developed a new method for the
determination of friction factors through the computation of irreversibility
and entropy rate production. They extend the single fluid variable model to
include the entropy production in multiphase systems. They show that in a
two-phase system, the entropy dissipation is caused by two effects: the me-
chanical energy dissipation due to shear stresses and the hold-up effect due
to the non-uniform density. The latter is responsible for the higher rates of
dissipation observed in vertical pipe flows as compared with horizontal ones.

The literature review reveals that attention has so far focused on classical sys-
tems (Poiseuille, Couette, annulus. . . ); yet the contemporary trend in the field
of fluid flow tends toward systems with moving and/or deformable boundaries.
This trend is mainly motivated by the desire of the fluid mechanics scientific
community to contribute to viable solutions to problems dealing with biolog-
ical fluid systems. For a comprehensive review on this topic, see Heil [10],
Benyahia and Souidi [11], among others.

At variance with the dynamic problem, and to the knowledge of the authors,
scant attention has been paid to the thermal and thermodynamic aspects of
such systems. It is precisely the purpose of this article to highlight these
aspects. We consider a contracting tube closed at the upstream end by an adi-
abatic valve, the content is propelled downstream, into the adjoining sections
by the contraction of the wall. This phenomenon, called peristalsis, is particu-
larly observed in the cardiovascular pump. In fact, during the systolic phase of
the cardiovascular pump, the mitral valve is closed while the atrioventricular
valve is open. At this stage the ventricle forms a vessel with one end closed.

Peristalsis pumping also has a possibility of engineering applications; it has
been quite utilized for the transport of such fluids as slurries or corrosive
fluids when it is desirable to prevent them from coming into contact with the
mechanical parts of the pump [12]. Thus, the general analysis of this paper
seems interesting from both the theoretical and applicative points of view.

2. Mathematical formulation

2.1. General specifications

Consider the flow of an incompressible viscous fluid, with density ρ, kine-
matic viscosity ν, and conductivity k, moving through an adiabatic tube with
rectilinear axis and circular cross section of radius R0 (t). The tube is closed
at the upstream end by an adiabatic valve and extends far downstream. The
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x-axis coincides with the tube axis and with the origin at the center of the
valve. The model problem is illustrated in Figure 1.

Figure 1 Sketch of the contracting tube.

The governing equations are (see Appendix A):

∂ (ηu)

∂x
+ ∂ (ηw)

∂η
= � (1a)

∂u

∂τ
+ u

∂u

∂x
+ w

∂u

∂η
= −∂p

∂x
+ 1

Re

1

η
∂

∂η

(
η

∂u

∂η

)
+ F (1b)

∂p

∂η
= 0 (1c)

� = η (1 − f )
∂u

∂x
− ∂f

∂τ
(1d)

F = 1 − f 2

f 2

1

Re

1

η
∂

∂η

(
η

∂u

∂η

)
+ f − 1

f
w

∂u

∂η
+ (η − 1)

1

f

∂f

∂τ
∂u

∂η
(1e)

u (x, 1, τ) = u (0, η, τ) = w (x, 1, τ) = ∂u

∂η

∣∣∣∣
η=0

= p (0, τ) = 0

u (x, η, 0) = −2x
1

f

∂f

∂τ

∣∣∣∣
τ=0

⎫⎪⎪⎬
⎪⎪⎭ (1f)

The model solves the flow problem by recasting the governing equations into
the standard Hagen–Poiseuille form. An additional induced force F in the
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momentum equation, and a source term � in the continuity equation, account
for movement of the wall. To close the problem, we introduce the integral
form of the continuity equation (see Appendix A):

1∫
0

u (x, η, τ) ηdη =
∣∣f ′ (τ)

∣∣
f (τ)

x (2)

In terms of the physical variables, the energy equation is given by:

∂θ
∂τ

+ u
∂θ
∂x

+ w
∂θ
∂r

= 1

Pe

1

r

∂

∂r

(
r
∂θ
∂r

)
+ Ec

Re
ϕ

θ (x, r, 0) = 1; ∂θ
∂x

∣∣∣∣
x=0

= ∂θ
∂r

∣∣∣∣
r=0

= 0

∂θ
∂r

∣∣∣∣
r=r0(τ)

+ Bi.θw = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3)

2.2. Entropy generation rate

The entropy generation rate is partitioned into two components, heat diffusion
and viscous dissipation. In the entropy representation, it is given by

S = �∇
(

1

T

)(
−k �∇T

)
+ μ

T
� = k

( �∇T

T

)2

+ μ
T

�.

The first term measures the thermal energy degradation as heat diffuses from
high to low temperature regions; the second term gives the “destroyed” me-
chanical energy as kinetic energy is transformed into heat by viscous dissi-
pation.

Its dimensionless version is

s = S

Sk + Sμ
= 1

1 + Ec. Pr

(
1

θ + ω

)2
[(

∂θ
∂r

)2

+
(

∂θ
∂x

)2
]

+ Ec. Pr

1 + Ec. Pr

(
ϕ

θ + ω

)
(4)

Sk and Sμ are the diffusion and dissipation scaling parameters given by Sk =
k

R
2 and Sμ = μ

�T

(
V0
R

)2
, respectively. ω = T∞

T0−T∞ measures the temperature

difference.
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Finally, we introduce the Bejan number,

Bj (x, η, τ) =
k

(
⇀∇T
T

)2

k

(
⇀∇T
T

)2

+ μ
T�

. (5)

It gives the part of the entropy rate generated by heat diffusion.

3. Numerical analysis

We develop a special code to solve numerically the governing equations. It is
based on an implicit finite difference scheme. The inertia term is linearized
through a Taylor series expansion around the previous time step. The velocity
and temperature profiles being expected to be very steep near the wall, a non-
uniform grid, tight near η = 1, is considered. The coordinates (x, η) of the
nodal point (i,j) are given by

x = (i − 1) �x; η =
(

1 −
(

J − (j − 1)

J

)ε)
1 ≤ i ≤ I + 1, 1 ≤ j ≤ J + 1.

I and J are the total number of nodal points in the x and η directions, respec-
tively; ε is the grid coefficient. In order to respect the second-order precision,
a four-nodal point discretization for the second-order derivative and a three-
nodal point for the first order are performed. We finally use the Gaussian
elimination with partial pivoting method to solve the linear algebraic equa-
tion systems. To ensure grid-insensitive results, we conducted computations
for several values for J and ε. For J greater than 120, no appreciable changes
were noticed. As for the grid coefficient, the value of ε = 3 was retained. The
time step is chosen to both guarantee stability conditions and avoid excessive
computation time. The optimal time step is 2.10−3. Concerning stability, we
recall that, the numerical scheme being fully implicit, it is unconditionally
stable provided no reversed flow is present in the field. Indeed, during the
calculation procedure, no instability due to unlimited growth of the round-off
error was ever detected. The number of iterations within each time step in-
creases with time, though within reasonable limits (from 8 iterations for the
first time steps to 15 for the last ones with no under-relaxation factor). As to
consistency and convergence, we shall rely on validation and mass conserva-
tion tests.
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We turn now to the computation procedure. Equations (1a) and (2) are two
different forms of the same continuity equation and should not be solved
simultaneously. For x and τ fixed, we estimate the radial component of the
velocity profile w, then use Eqs. (1b)–(2) to calculate the axial velocity com-
ponent and the pressure. Equation (1a) gives the new value of the radial
component, which is compared to the previous one. We iterate until conver-
gence. Meanwhile, we check both the flow rate as we progress downstream
and the convergence rate of the velocity field. Once the velocity field has been
obtained, we proceed to determine from Eq. (3) the temperature field in the
physical coordinate system (x, r, τ) and, finally, the entropy generation rate
from Eq. (4).

4. Validation

The chief aim in this section is to assess the adequacy of the flow model.

Uchida and Aoki [13] propose an exact solution of the Navier–Stokes equa-
tions for unsteady flow in a semi-infinite contracting pipe. A full solution,
similar in both space and time, is obtained provided the radius of the pipe
varies in time as

R0 (t) = Rf (t) = R
√

1 − αt.

We retain this expression in what follows.

4.1. Code validation and mass conservation tests

The code is validated by performing a number of tests.

In Figure 2a, the streamlines obtained in the present study are compared with
those given by Uchida andAoki [13]. We note an excellent agreement between
the analytical and numerical solutions. Figure 2b compares the flow rate as

given by the numerical model q (x, τ) = 2πf 2
1∫
0

u (x, η, τ) ηdη (Simpson

integral adapted to a non-uniform grid), with that given by the theoretical
formulation q (x, τ) = 2πf

∣∣∣ df
dτ

∣∣∣ x = π |αx| (Appendix A).

The numerical results and the analytical solution coincide perfectly. These
two tests give great confidence in both, the model and the specific numerical
code.
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(a) (b)

Figure 2 (a) Streamlines for a contracting tube; (b) flow rate versus axial position.

5. Dynamic problem

5.1. Source term and velocity components

Figure 3a,b gives the axial and radial velocity profiles at various axial lo-
cations. The axial component presents the parabolic aspect of the Hagen–
Poiseuille flow with a linear increase along the axis. Concerning the radial
component, it is x invariant as predicted by the mathematical formulation
and contains an important physical concept, viz. the displacement thickness.
To compensate for the flow retardation caused by strong friction forces, the
transverse velocity increases in the near wall viscous region. Consequently,
the streamlines are displaced by a distance known in boundary layer theory as
the displacement thickness. On the axis, the transverse velocity component
falls to zero to meet the axially symmetrical flow configuration.

(a) (b)

Figure 3 (a) Axial velocity profiles; (b) radial velocity profiles.
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(a) (b)

Figure 4 (a) Profiles of � at three different axial locations; (b) averaged pressure force and induced
force F along the axis.

In Figure 4a, we report the profiles of the source � at three different positions
along the axis. We note that it is independent of the axial position x in con-
formity with Eq. (1d). These results are in perfect agreement with the linear
increase of the flow rate, as reported above (Appendix A).

Figure 4b reveals that the magnitude of the mean induced force increases
linearly with the axial position x and opposes the accelerating pressure force.
At this stage, it might be convenient to comment upon the action of the wall on
the dynamics of the flow.The contraction of the tube results in a linear increase
of the fluid velocity u and velocity gradient ∂u

∂r as we progress downstream,
i.e., an increase in the inertia and viscous forces, respectively.These additional
forces are precisely what the induced force F expresses.

5.2. Steady case

In order to examine the effects of peristalsis on the entropy generation rate,
we shall consider the classical Hagen–Poiseuille flow case regarded as a ref-
erence state. The results are compared with those obtained for the contracting
tube.

6. First and second law of thermodynamics

We present and analyze on physical grounds a selected set of graphical results.
The set includes, in addition to temperature profiles, the entropy rate averaged
over the cross section:

〈s (x, τ0)〉 = 2

1∫
0

s (x, η, τ0) ηdη, (6)
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the integrated entropy generation rate:

〈〈s (τ0)〉〉 = 2

xm∫
0

⎛
⎝ 1∫

0

s (x, η, τ0) ηdη

⎞
⎠dx, (7)

the mean Bejan number:

〈Bj (x, η, τ)〉 =
〈k
(

⇀∇T
T

)2

〉

〈k
(

⇀∇T
T

)2

+ μ
T�〉

. (8)

The computations are performed for ω = 50. The profiles are plotted at
x = xm/3 and τ0 = 0.437 corresponding to f = 0.75.

6.1. Effects of the Biot number (Bi)

The Biot number regulates the heat exchange with the reservoir at T∞. It
affects a thin near-wall region where viscous dissipation is the most effective.
We analyze the effects for intermediate values of Eckert, Prandtl, and Reynolds
numbers: Ec = 0.1, Pr = 7, Re = 50.

A closer examination of the thermal wall boundary condition, Eq. (3), reveals
that for small values of Bi, the wall acts as an adiabatic surface, the fluid
and wall temperatures rise in response to the heat generated by viscous dis-
sipation. For large Bi, the system loses more heat to the cooler surroundings,
maintaining the temperature of the fluid and that of the wall at a relatively
low level. For Bi = 102, the thermal resistance 1/h∞ is low and the wall
assumes the temperature of the surroundings: (θw = 0). These results are re-
ported in Figure 5a. Owing to the value of Pr, heat penetration does not reach
the centerline where the fluid maintains its initial temperature (θ0 = 1).

Figure 5b depicts the evolution along the axis of the mean fluid temperature
(mixing cup temperature) with Bi as a parameter. As expected, the curves
exhibit a parabolic aspect with respect to x. Increasing Bi results in more heat
leaving the system and then to lower fluid and wall temperatures.

The evolution along the axis of the entropy generation rate averaged over
the cross section is given in Figure 5c. Large values of Bi result in a greater
entropy generation rate owing to a larger temperature gradient at the wall and
lower fluid temperature. For smaller values of Bi, heat is hardly evacuated and
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(a) (b)

(c) (d)

(e)

Figure 5 (a) Temperature profiles for different values of Bi; (b) mixing cup temperature versus x
for different values of Bi; (c) averaged entropy generation rate versus x for different values of Bi;
(d) volumetric entropy generation rate versus Bi; (e) averaged Bejan number versus x for different
values of Bi.

maintains the fluid temperature at a sufficiently high level to keep the entropy
generation rate relatively low.

Going back to Eq. (4), we note that for ω 
 θ, with ω = 50, θ ≤ 3,
the dynamic component of the entropy generation rate, which is the major
component, varies like ϕ, i.e., like x2. This is illustrated by the quadratic
aspect of the curves.

J. Non-Equilib. Thermodyn. 2009 · Vol. 34 · No. 2
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Figure 5d gives the evolution of the integrated entropy generation rate versus
Bi. It indicates that the major component of the entropy generation rate is
the dynamic component as stated above. An increase in Bi results in two
antagonistic effects: on the one hand, the entropy rate increases due to lower
fluid temperature and, on the other hand, the region of entropy production,
i.e., sharp temperature gradient, shrinks. These two effects inhibit each other,
resulting in an integrated averaged entropy generation rate almost insensitive
to Bi.

Figure 5e presents the evolution of the averaged Bejan number along the axis.
In the vicinity of the valve, the flow rate is low and entropy is affected only
by heat diffusion: for large Bi, 〈Bj〉 approaches 1. Downstream, the flow rate
builds up and momentum diffusion becomes the main entropy source resulting
in 〈Bj〉 approaching zero.

In subsequent analysis, we shall consider an isolated system (Bi = 0), so only
internal irreversibilities due to heat and momentum diffusion within the fluid
are of interest.

6.2. Effects of the Reynolds number

The Reynolds number affects principally the dynamics of the flow. We analyze
its impact on the system for water (Pr = 7) and moderate viscous dissipation:
(Ec = 0.1).

Figure 6a compares the temperature profiles for different values of Re.

The heat source term in the energy equation is governed by the parameter
Ec/Re. As Re increases, a larger amount of heat generated by viscous dissipa-
tion in the near wall region is convected downstream, resulting hence in lower
local fluid and wall temperatures. Meanwhile, as Re increases for fixed Pr,
the thickness of the entropy region (sharp temperature gradient), depending
on the Peclet number, gets thinner. Near the axis, no viscous dissipation is
present and the temperature remains unchanged

In Figure 6b, we report the volumetric entropy generation rates versus Re. It
indicates that the major component of entropy generation rate is the dynamic
component. It increases with Re, owing to both an increase in the velocity
gradient near the wall and a lower fluid temperature level. As to the heat en-
tropy generation rate, it is controlled by both temperature and temperature
gradient with opposite effects. For small values of Re (Re < 100), the tem-
perature is the determining factor. An increase in Re reduces the temperature
of the fluid and results in larger entropy generation. In the range of large Re,
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(a) (b)

(c)

Figure 6 (a) Temperature profiles for different values of Re; (b) volumetric entropy generation rates
versus Re; (c) volumetric entropy generation rates versus Re (steady case).

the temperature remains unchanged over nearly the entire field (θ = 1 for all
Re > 100) and is no longer the influencing factor.

As Re increases, regions of sharp temperature gradient (region of entropy pro-
duction) narrow and result in decreasing integrated entropy generation rate.

To grasp the effect of a wall’s movement on entropy generation, we turn to the
stationary case. Figure 6c reports the volumetric entropy generation rates.

At variance with the unsteady case, the heat diffusion is the mean entropy
generation component. The figure reveals that maximum entropy generates at
intermediate values of Re (700 < Re < 1000). The observations described
above for the unsteady case hold for this stationary case. At low Re, the
relative high fluid temperature maintains the entropy generation rate at a low
level; at the other limit, the effects of the gradients take place and result
in less entropy generation as Re increases. Finally, the analysis reveals that
peristalsis is a great entropy generator process and this is due essentially to
dynamic irreversibilities.
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6.3. Effects of the Prandtl number (Pr)

The Prandtl number characterizes the fluid. It is the ratio of the momentum
diffusion coefficient over the thermal diffusion coefficient. We analyze its
effects for Ec = 0.1, Re = 50.

Figure 7a shows the fluid temperature profiles with Pr as a parameter.

For small Pr (Pr < 0.1) the thermal diffusion coefficient (k/ρc) is large and
heat generated by viscous dissipation near the wall diffuses through the fluid
and reaches the centerline, where the temperature increases slightly. This
results in nearly uniform temperature profiles. For large values of Pr, the
thermal resistance

(
R/k
)

is strong enough to prevent heat from diffusing
through the fluid. We observe a sharp increase in the temperature near the
wall, where velocity gradients and then dissipation function are significant.
The centerline temperature remains unchanged. We note also that the wall
temperature increases continuously with Pr.

In Figure 7b, the volumetric entropy generation rates are plotted against
Pr. The figure shows that thermal irreversibility increases with Pr up to
Pr ≈ 10, then decreases due to higher temperatures near the wall. Dynamic

(a) (b)

(c)

Figure 7 (a) Temperature profiles for different values of Pr; (b) volumetric entropy generation rates
versus Pr; (c) averaged Bejan number versus x for different values of Pr.
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irreversibility is an increasing monotonic function of Pr, owing to the co-
efficient Pr · Ec/1 + Pr · Ec, principally at low Pr where we observe a sharp
increase. It is the determinant entropy source. These results are confirmed by
the behavior of the averaged Bejan number as given in Figure 7c.

For all Pr, 〈Bj〉 is less than 1 and reveals that the major component in entropy
generation is the dynamic component.

6.4. Effects of the Eckert number (Ec)

Eckert number is a measure of the kinetic energy transformed into heat by
viscous dissipation.We analyze its effects for intermediate value of the Prandtl
number: Pr = 7 (water), Re = 50.

Figure 8a displays the temperature profiles with the Eckert number as a pa-
rameter.

For small Ec, no heat source is present within the system. The fluid maintains
its initial temperature all through (θ = 1). For large Ec, kinetic energy is
transformed into heat and we observe a substantial temperature rise as we
approach the wall where velocity gradient develops. The heat generated there
does not diffuse up to the axis in view of the value of Pr. In Figure 8b,
we report the volumetric entropy generation rates versus Ec. We notice that
the temperature effect overcomes the amplifying effect of the temperature
gradient for large values of Ec. In this region, the fluid temperature increases
with Ec and results in a smaller entropy generation rate. In the other limit, the
factor

Ec · Pr

1 + Ec · Pr

(a) (b)

Figure 8 (a) Temperature profiles for different values of Ec; (b) volumetric entropy generation rates
versus Ec.
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is most important and we observe an increase of the entropy generation rate
with Ec. Finally, we note that dynamic irreversibility is the main entropy
source.

7. Conclusion

In addition to analyzing the energy degradation in a peristaltic pump, the
present study exhibits the general features of a fluid flow in a contracting
tube. Several interesting conclusions are drawn:

The flow is with a unique and major velocity component and obeys the bound-
ary layer equations.The system reduces to the classical Hagen–Poiseuille flow
with a source term in the continuity equation and an additional induced force
in the momentum equation that account for the movement of the wall. The
former results in a linear increase of the flow rate as sections downstream are
reached; the latter tends to decelerate the flow through the inertia and viscous
components.

In order to predict which parameters are critical for determining the qual-
ity of a peristaltic pump, various numerical results have been presented and
analyzed. The study reveals that the heat exchange at the wall (Bi) does not in-
fluence greatly the exergy of the system, contrary to the dynamics of the flow
(Re) and/or the type of fluid (Pr). It reveals also that peristaltic pumps gen-
erate more entropy than steady walled tubes and are not competitive devices
from an exergetic efficiency standpoint. In these systems, the fluid carries
“low-quality” energy. The reason for this high-energy degradation is found in
the dynamic behavior. As mentioned above, the flow rate is not constant along
the tube, but increases as sections downstream are reached and leads to ex-
tremely high velocity and velocity gradients and therefore to strong dynamic
irreversibility, which is the prime entropy source of the system. For the classi-
cal Hagen–Poiseuille flow, the entropy is mainly generated by heat diffusion.

Nomenclature

Capital letters

Bi = Biot number: Bi = h∞R
k

Bj = Bejan number: Bj (x, η, τ) = k
(

1
T

∂T
∂R

)2

k
(

1
T

∂T
∂R

)2+μ
T

(
∂U
∂R

)2

Ec = Eckert number: Ec = V2
0

c(T0−T∞)
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F = Dimensionless induced force

P = Fluid pressure

P0 = inlet fluid pressure

Pr = Prandtl number: Pr = μc
k

Pe = Peclet number: Pe = Re. Pr

Q = Volumetric flow rate: Q (X) = 2πR0 (t)
∣∣∣ dR0

dt

∣∣∣X.

R = Radial coordinate

R = Initial radius of the tube

Re = Reynolds number: Re = R
2

α−1ν =
(

R
δμ

)2

R0 = Instantaneous radius of the tube: R0 (t) = R
√

1 − αt

S = Entropy generation rate

Sμ = Entropy scaling parameter (viscous dissipation): Sμ = μ
�T

(
U0
R

)2

Sk = Entropy scaling parameter (heat diffusion): Sk = k

R
2

T = Fluid temperature

T0 = Initial fluid temperature

T∞= Temperature of the surroundings

U = Axial velocity

V= Radial velocity

V0 = Characteristic velocity: V0 = αR

X = Axial coordinate

Xm = Tube’s length

Lower case letters

c = Specific heat

f = Dimensionless tube radius; f=
√

1 − αt
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h∞ = Heat convection coefficient

k = Thermal conductivity

p = Dimensionless pressure: p = P0−P
ρV2

0

q = Dimensionless flow rate

r = Dimensionless radial coordinate: r = R
R

s = Dimensionless entropy generation rate

u = Dimensionless axial velocity

v = Dimensionless radial velocity

w = Radial velocity :w = v − ∂f/
∂τ

x = Dimensionless axial coordinate

xm= Dimensionless tube’s length

�x = Uniform step size in the axial direction

Greek letters

α = Peristalsis strength

δμ = Dynamic boundary layer thickness

δθ = Thermal boundary layer thickness

ε = Grid coefficient

η = Stretched radial coordinate: η = R
R0(t) = r

f (τ)

θ = Dimensionless fluid temperature

θw = Dimensionless wall temperature

μ =Dynamic viscosity

ν = Kinematic viscosity

ρ = Fluid density

τ = Dimensionless time, τ = αt

ω =Temperature parameter: ω = T∞
T0−T∞
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� = Source term (continuity equation)

� = Dimensional dissipation function

ϕ = Dimensionless dissipation function:

ϕ = ( ∂u
∂r

)2 + 2
[(v

r

)2 + ( ∂v
∂r

)2 + (∂u
∂x

)2
]

Symbols

〈 〉 Average over cross section: 〈( )〉=
2π

R0(t)∫
0

()RdR

πR2
0(t)

= 2
1∫
0

( ) ηdη

〈〈( )〉〉 =Average over volume: 〈〈( )〉〉=
2π

R0(t)∫
0

Xm∫
0

( )RdRdX

πR2
0(t)Xm

=2
xm∫
0

[
1∫
0

( ) ηdη
]
dx

Appendix A

The classical axisymmetric cylindrical Navier–Stokes equations for a viscous
incompressible fluid read:

∂ (RU)

∂X
+ ∂ (RV)

∂R
= 0

∂U

∂t
+ U

∂U

∂X
+ V

∂U

∂R
= −1

ρ
∂P

∂X
+ ν∇2U

∂V

∂t
+ U

∂V

∂X
+ V

∂V

∂R
= −1

ρ
∂P

∂R
+ ν∇2V

∂T

∂t
+ U

∂T

∂X
+ V

∂T

∂R
= k

ρc
∇2T + �

ρc

∇2 = ∂2

∂X2
+ 1

R

∂

∂R

(
R

∂

∂R

)

� =
(

∂U

∂R

)2

+ 2

[(
∂U

∂X

)2

+
(

∂V

∂R

)2

+
(

V

R

)2
]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A1)

We formulate the problem in dimensionless terms by scaling the dependent
and independent variables with the following reference quantities: R ≡ initial
tube’s radius; V0 ≡ initial wall velocity; t = RV−1

0 .
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The dimensionless variables are then:

r = R

R
, x = X

R
, τ = t

t
, u = U

V0
, v = V

V0
.

Likewise, we consider the dimensionless pressure and temperature: p = P−P0
ρV2

0
,

θ = T−T∞
T0−T∞ , with P0 being the inlet pressure and T0 the initial temperature;

T∞ is the ambient temperature.

Equation (A1) reduces then to:

∂ (ru)

∂x
+ ∂ (rv)

∂r
= 0

∂u

∂τ
+ u

∂u

∂x
+ v

∂u

∂r
= −∂p

∂x
+ 1

Re
∇2u

∂v

∂τ
+ u

∂v

∂x
+ v

∂v

∂r
= −∂p

∂r
+ 1

Re
∇2v

∂θ
∂τ

+ u
∂θ
∂x

+ v
∂θ
∂r

= + 1

Re Pr
∇2θ + Ec

Re
ϕ

∇2 = ∂2

∂x2 + 1

r

∂

∂r

(
r
∂

∂r

)

ϕ =
(

∂u

∂r

)2

+ 2

[(
∂u

∂x

)2

+
(

∂v

∂r

)2

+
(v

r

)2
]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A2)

where Re and Pr are the classical Reynolds and Prandtl numbers; Ec is the
Eckert number.

The volume flow rate past a section x is supplied by the fluid which was
contained in the now diminished volume of pipe between x = 0 and x, i.e.,

q (x, τ) = Q(x,τ)

V0R
2 = 2π

r0(τ)∫
0

u (x, r, τ) rdr = 2πr0 (τ)
∣∣∣dr0(τ)

dτ

∣∣∣ x, from which we

deduce the integral form of the continuity equation:

r0(τ)∫
0

u (x, r, τ)r.dr = r0 (τ)

∣∣∣∣dr0 (τ)

dτ

∣∣∣∣ x
The dimensionless mean flow velocity is given by

〈u (x, τ)〉 = q (x, τ)

πr2
0 (τ)

= 2x
1

r0 (τ)

∣∣∣∣dr0 (τ)

dτ

∣∣∣∣ , (A3)
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and indicates that the axial velocity component is proportional to x. As to the
radial component, it can be easily seen from the continuity equation and the
wall velocity that it is x invariant. These results simplify greatly the governing
equations.

If u (r, t, x) = u (r, t) x and v (r, t) = v (r, t), Eq. (A2) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ru (r, τ) + ∂ (rv (r, τ))

∂r
= 0

∂u

∂τ
x + u2x + v

∂u

∂r
x = −∂p

∂x
+ 1

Re

1

r

∂

∂r

(
r
∂u

∂r

)
x

∂v

∂τ
+ v

∂v

∂r
− 1

Re

1

r

∂

∂r

(
r
∂v

∂r

)
= −∂p

∂r

(A4)

From the x momentum equation, we deduce that the pressure force in the axial
direction is a linear function of x:

∂p

∂x
= A (r, τ) x or p (x, r, τ) = 1

2
A (r, τ) x2 + B (r, τ) ,

with B(r,τ) = 0 to meet the inlet pressure boundary condition. As to the
radial momentum equation, we notice that both its left- and right-hand sides
depend on different sets of independent variables and are necessarily equal
to a constant. The constant is zero to meet the pressure condition on the
axis

(
∂p
∂r

∣∣∣
r=0

= 0
)

. The radial momentum equation reduces then to ∂p
∂r = 0,

which is simply the main characteristic of a boundary layer type flow. The
solutions of this model are exact in the sense that no approximations were
needed to simplify the full elliptic equations to their reduced boundary layer
form. The flow presents a principal direction in which convective transport is
dominant.

Next, assuming that the axial heat diffusion is negligibly small as compared
with the radial diffusion (large Peclet number), the energy equation reduces
to

∂θ
∂τ

+ u
∂θ
∂x

+ v
∂θ
∂r

= 1

Pe

1

r

∂

∂r

(
r
∂θ
∂r

)
+ Ec

Re
ϕ (A5)

and reveals that the temperature field is a quadratic function of x (recall that
ϕ ≈ x2).
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Finally, we express the radius of the tube as R0 (t) = Rf (τ) and introduce
the independent stretched variable η = R

R0(τ) = R
R f(τ)

= r
f (τ) along with the

radial velocity w = v − df
dτ . We use the composite derivatives rule,

∂

∂τ
= ∂

∂τ
− 1

f

df

dτ
∂

∂η
,

∂

∂x
= ∂

∂x
,

∂

∂r
= 1

f

∂

∂η
,

∂2

∂r2
= 1

f 2

∂2

∂η2
,

and express the governing equations in the new coordinate system (x, r, τ)

A. Continuity equation:

*Differential form: f
∂ (ηu)

∂x
+ ∂ (ηw)

∂η
+ ∂f

∂τ
= 0

Add on both sides of this equation the term ∂
∂x (ηu), then rearrange and end

up with:

∂ (ηu)

∂x
+ ∂ (ηw)

∂η
= � (x, η, τ)

� (x, η, τ) = η (1 − f )
∂u

∂x
− ∂f

∂τ

⎫⎪⎪⎬
⎪⎪⎭ (A6a)

**Integral form:

1∫
0

u (x, η, τ) ηdη =
∣∣f ′∣∣
f

x (A6b)

B. Momentum equation

∂u

∂τ
+ u

∂u

∂x
+ 1

f

(
w + ∂f

∂τ

)
∂u

∂η
− η

f

∂u

∂η
∂f

∂τ

= −∂p

∂x
+ 1

Re

1

f 2

1

η
∂

∂η

(
η

∂u

∂η

)
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Add on both sides of this equation w ∂u
∂η + 1

Re
1
η

∂
∂η

(
η ∂u

∂η

)
, rearrange, and end

up with

∂u

∂τ
+ u

∂u

∂x
+ w

∂u

∂η

= −∂p

∂x
+ 1

Re

1

η
∂

∂η

(
η

∂u

∂η

)
+ F

F (τ, x, η) = 1 − f 2

f 2

1

Re

1

η
∂

∂η

(
η

∂u

∂η

)

+ f − 1

f
w

∂u

∂η
+ 1

f
(η − 1)

∂u

∂η
∂f

∂τ
.

(A7)

In the physical (x, r, τ) coordinate system, the energy equation reads, with
θ = T−T∞

T0−T∞ ,

∂θ
∂τ

+ u
∂θ
∂x

+ w
∂θ
∂r

= 1

Re Pr
∇2θ + Ec

Re
ϕ

Ec = V2
0

c (T0 − T∞)
and Pr = μc

k

⎫⎪⎪⎬
⎪⎪⎭ . (A8)

The dimensionless boundary and initial conditions are given in the text.

Concerning the initial conditions, they must be chosen such that the system is
not too far from equilibrium solution to avoid numerical instability. It has been
observed that a zero initial axial velocity all along the tube does not meet this
condition, particularly downstream, owing to the instantaneous growth of the
flow rate. Instead, the limit as time goes to zero of the mean flow velocity, Eq.
(A3), turned out to be an excellent approximation for the initial axial velocity
and resulted in physically realistic results that certify the different validation
tests in Section 4.
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