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Abstract— In this paper, we are interested by the integration of 
precedence and resources sharing constraints in the real time 
scheduling of periodic and aperiodic tasks. We also treat the 
problem of dynamic voltage scaling of the processor in the 
same context. Many dynamic voltage scaling algorithms have 
been proposed in the literature.  However, these algorithms do 
not consider the constraints of precedence and shared 
resources on the scheduling of periodic and aperiodic tasks. In 
this case, we propose two algorithms with the constraints cited 
above. Experimental results show that the proposed algorithms 
reduce the energy consumption under earliest deadline first 
scheduling policy and the stack resource policy. 

Keywords- Real time scheduling; embedded system; 
resources precedence and constraints; periodic and aperiodic 
tasks; power reduction. 

I.  INTRODUCTION 
This paper treat the problem of scheduling real time of 

the periodic and aperiodic tasks synchronous, under 
constraint of energy in the embedded systems. These systems 
often require periodic hard real-time tasks and aperiodic 
tasks with soft deadlines. However, we must decrease their 
response times, without compromising the execution of the 
periodic tasks. Moreover, such systems generally need tasks 
which are dependent and collaborate to realize the awaited 
objectives from these systems. This collaboration is done by 
the data exchange and/or the resource sharing. However, it 
collaboration generates constraints of precedence and 
resource sharing, which we must take into account in the 
analysis of the scheduling of the tasks. These same systems 
are characterized by their autonomous functioning, whose 
energy supply is ensured by batteries. So the reduction of the 
power consumption became crucial metric of optimization in 
the design and the realization of such systems. The objective, 
in this case, is not only to determine the order of execution of 
the tasks under time constraints and synchronization, but also 
to fix the frequency of the processor and the supply voltage. 

The real-time system considered is composed by periodic 
and aperiodic tasks. The tasks are scheduled in a system with 
a single processor that supports variable frequency and 
voltage levels. These tasks are synchronized by the 
precedence induced by the communications and/or by the 
access shared resources in a mutually exclusive manner by 
the use of semaphores. In this paper, we call a system with 
periodic and aperiodic tasks a hybrid task system. 

This article is organized as follows: In section 2, we 
summarize the related works. The concepts relating to 
scheduling of the tasks, the constraints of synchronization 
and variable speed processors will be detailed in section 3. 
Our contribution concerning the scheduling of the 
synchronous hybrid tasks will be discussed in section 4. In 
section 5 we give two DVS algorithms to compute static 
slowdown factors in the presence of task synchronization to 
minimize the energy consumption of the system. The 
experimental results will be discussed in section 6. We will 
finish this article by a conclusion in section 7. 

II. RELATED WORKS 
In the literature, many algorithms were proposed in order 

to treat the problem of real-time scheduling of the tasks. For 
example, Liu et al. [1] have proposed the algorithm Earliest 
Deadline First (EDF) with aim of scheduling the independent 
periodic tasks, in [2] the author proposes an approach to treat 
the precedence constraint under EDF policy. As well as the 
constraints of precedence, the use of resources generates 
difficulties related to the protection of the access to the 
resources. To palliate these problems, resource access 
protocols were proposed. We mention for example the Stack 
Resource Policy (SRP) proposed by Baker in [3]. For the 
scheduling of the aperiodic tasks, two solutions are used; that 
is to say, by a treatment of background or the use of server 
task. Among this last solution, we evoke the total bandwidth 
server (TBS) [4]. The TBS solution is combined with 
protocol SRP in [5, 6] in order to schedule the hybrid tasks 
which access to critical resources. The DVS is one of the 
most effective approaches in reducing the power 
consumption of real-time systems. When the required 
performance of the target system is lower than the maximum 
performance, supply voltage can be dynamically reduced to 
the lowest possible extent that ensures a proper operation of 
the system. Recently, many voltage scheduling algorithms 
have been proposed for hard real-time systems. Thus, when 
EDF policy is used and in the case of attribution speed to 
jobs tasks, Yao et al. proposed a polynomial algorithm 
presented in [7], to enable the scheduling of periodic tasks in 
order to minimize the power consumption. In the case of the 
attribution of a single speed to all the tasks, Aydin et al. [8] 
gave an approach based on the necessary and sufficient 
condition suggested in [1]. When the tasks share critical 
resources, Jejurikar et al. [9] presented an algorithm to 
calculate the slowdown factors of the processor. The authors 
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use the analytical condition of scheduling proposed in [3]. 
Shin et al. [10] suggested an algorithm to computation 
slowdown factors speed of the processor for a system with 
periodic and aperiodic tasks. Thus, many algorithms were 
developed for DVS approach to the real-time systems to 
scheduling the periodic tasks with different constraints. 
However, these algorithms do not consider the constraints of 
sharing critical resources and precedence in scheduling of 
hybrid tasks. 

III. PRELIMINARIES 
This section describes the system model and variable 

speed processors. 

A. System Model 
We consider a single processor system compound by a 

set of periodic tasks noted T={t1…,tn} and by a set of 
aperiodic tasks noted Ta= {ta1…,tam}. The periodic tasks are 
modeled by the 4-tuple ti={r0,i, Ci, Di, Pi} such as r0,i is the 
first request time of the task ti, Ci is the worst case execution 
time (WCET), Di is the relative deadline and Pi is the period 
of the task with Di ≤ Pi. Its kth absolute deadline is di,k = rk,i 
+Di. Each invocation of the task is called a job and the kth 
job of task ti is denoted as ti,k. A periodic task set is said to be 
schedulable if all jobs meet their deadline. The processor 
utilization by periodic tasks set, ܷ ൌ ∑ ௜ܥ ௜ܲ⁄௡

௜ୀଵ ൑ 1 is a 
necessary condition for the feasibility of any schedule. As for 
the aperiodic tasks, they are modeled by a 1-tuple tai={Cai}, 
where Cai is the execution time. An aperiodic task set is 
specified by the mean arrival rate λ and the mean service rate 
µ. The system has a set of shared resources which are 
accessed by the periodic and aperiodic tasks in a mutually 
exclusive manner by using semaphores. When a task has 
been granted access to a shared resource, it is said to be 
executing in its critical section. The kth critical section of task 
ti or tai which uses a Rk resource is represented as βi, k. We 
say a task is blocked if the task has to wait for a lower 
priority task to release a shared resource and the task holding 
the resource is called the blocking task. Note that the amount 
of time a task ti is blocked is referred to as the task blocking 
time noted Bi. With the specified task information and a 
given resource access protocol, the maximum blocking time 
for a task can be computed. The majority of real-time 
applications require communications between the periodic 
tasks, which introduce precedence constraints. Thus, we say 
that there is a precedence constraint between the task ti and 
the task tj or ti precedes tj, noted (ti →tj), if tj must await the 
end execution of ti to begin its own execution. We assume 
that the periodic tasks have an atomic form (i.e. normal 
form), in such way that the waiting of messages by a task are 
in beginning, and the emission of messages are at the end of 
the task. We assume also that the precedence constraints 
between tasks are simple (i.e. ti →tj ⇒ Pi = Pj). 

B. Variable speed processors 
A wide range of processors support variable voltage and 

frequency levels. Voltage and frequency levels are tightly 
coupled. So the important point to note is when we perform a 
slowdown, we change both the frequency and voltage of the 

processor. We assume that the speed can be varied 
continuously from Smin to the maximum supported speed [9]. 
We normalize the speed to the maximum speed to have a 
continuous operating range of [Smin, 1], where Smin = fmin/fmax 
with the minimum and maximum frequencies represented by 
fmin and fmax respectively. 

IV. SCHEDULING OF THE SYNCHRONOUS HYBRID TASKS 
We consider in this section the problem of the scheduling 

of the synchronous hybrid tasks. The objective is to have an 
order of execution of the tasks which guarantee the respect of 
deadline, the use of the critical resources in mutual exclusion 
and the respect of the precedence constraints by the periodic 
tasks, and to allow, as far as possible, to have a better 
response time by aperiodic tasks that are also using the 
critical resources in mutual exclusion. 

A. Precedence constraints 
We exploit the approach which was proposed in [2] in 

order to consider the precedence constraints that exist 
between periodic tasks during the use of EDF policy. This 
policy is based on assignments of priority following the 
temporal parameters of tasks. Thus, the idea is to assign to a 
task, which must precede another, a priority lower than the 
task preceding it. This approach suggests the modification of 
the request time and deadline so that the precedence 
constraints are implicitly respected. These modifications are 
operated as follows: 

• Computation of request time: 
 
଴,௜ݎ

כ ൌ ݔܽ݉ ቄݎ଴,௜, ଴,௝ݎ௧௝→௧௜൛ݔܽ݉
כ ൅  ௝ൟቅ                  (1)ܥ

 
From the tasks without predecessors and while going 
down to the tasks of which all the predecessors were 
treated. 

• Computation of deadline: 
 
௜ܦ

כ ൌ ݉݅݊ ቄܦ௜, ݉݅݊௧௜→௧௝൛ܦ௝
כ െ  ௝ൟቅ                     (2)ܥ

 
From the tasks without successors and while going up 
to the tasks of which all the successors were treated. 

We note that these modifications are operated in off-line 
i.e. before the effective scheduling of the tasks. Moreover, 
we must consider in the continuation that the deadline of a 
task can be lower than its period, and requests times are 
different following the modifications operated previously. 

B. Precedence and resource constraints 
We choose to use the SRP protocol [3] to manage 

resource access in mutual exclusion and, in addition, to 
compute the maximum blocking time for a task, with taking 
into account the constraints precedence. This protocol is 
based on some principles, which are summarized as follows: 

• In addition to its priority, each task is been allotting 
statically (off-line), a parameter π called preemption 
level. These levels are assigned in a way inversely 
proportional to the relative deadline. 
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• Each resource is been assigning dynamically a 
ceiling value noted CRk, determined by the maximum 
value of the preemption levels of the active tasks 
needing more than the unit available resource Rk. 
 
ோ௄ܥ ൌ  ௞ሽ          (3)ܴ ݊݅ ݀݁݇ܿ݋݈ܾ ܾ݁ ݊ܽܿ   ௜ݐ/௜ߨ௜ሼݔܽ݉
 

• The system ceiling noted Π, is the maximum value 
of the ceilings resources in use. 

• A task ti, can preempt task tj if the following 
conditions are verified: 
a)- Its absolute deadline di is lower than that of tj. 
b)- The preemption level of ti is higher than of tj. 
c)- Its preemption level is higher than the system 
ceiling. 

Baker established in [2] a sufficient condition to verify 
scheduling of the periodic tasks as follows: 

∑    ;i=1…n ׊                  Cj

Dj
+ Bi

Di
≤1i

j=1                                  (4) 

Bi represents the maximum blocking time of the task ti, it 
is equal to the biggest duration of the critical section of the 
periodic tasks, which have a lower preemption level than that 
of tasks ti and it uses a resource having the ceiling value 
higher or equal to the preemption level of ti. 

To consider the precedence constraints, we suggest that 
the tasks having lower preemption level considered are those 
not on relations, directly or indirectly, by constraints of 
precedence with the task ti. This duration is given by the 
following formula: 

   B
i
=max

j, k {β
j,k
/π

i
>π

j ∧ C
Rk  ≥ π

i   ∧  t
j ∉{succ of t

i
}}            (5) 

Where βj, k represents the critical section of task tj, which 
have a lower preemption level πj than that of tasks ti and 
which use a resource having the ceiling CRk value higher or 
equal to the preemption level of ti. The task tj is considered if 
it is not included in the set of predecessors or successors of ti. 

C. Aperiodic tasks 
When the system is composed by periodic and aperiodic 

tasks which share critical resources, we consider the two 
following approaches: 

1) First approach: We consider that the aperiodic tasks 
are managed by a server task which is the higher priority 
periodic task and its execution time is equal to the sum of 
the execution times of the aperiodic tasks. With each 
activations of this server, it treats the aperiodic tasks 
blocked in the queue, according to policy FIFO (first in first 
out), until exhaustion of its execution time. 

To analyze the scheduling of the synchronous hybrid 
tasks, we used sufficient condition of scheduling established 
by Baker in [3], which we adapted as follows: 

;i=1…n+1 ׊ ∑ Cj  Dj⁄ + Bi  Di⁄ ≤1   ௜
j=1                            (6) 

Where, n+1 represents the number of periodic tasks with 
the task server. When  Bi is calculated referring to (5). 

2) Second approach: The second approach of 
scheduling of the aperiodic tasks is based on the idea 
developed by Caccamo et al. in [5]. The authors suggested 
assigning at each aperiodic request a deadline and a 
preemption level so that they can be scheduled by SRP 
protocol with the use of the total bandwidth server noted 
TBS. The attribution of deadline is done as follows: 

                   dk=max(rk, dk-1)+ Cak
Us

                                       (7) 

Where rk is the invocation date of the kth job task 
aperiodic, Cak its execution time, dk-1 the deadline of the 
precedent job (d0 = 0) and Us is the load of the server used. 
This load admits for value, Us= 1-U . This attribution of 
deadline respects the fact that the use of the processor by the 
aperiodic ones never exceeds the value of the server.  

As for the preemption level, it is calculated as follows: 

=כߨ                     Us
Cak 

                                                           (8) 

For the analysis of the scheduling of the synchronous 
hybrid tasks, we consider the sufficient condition which was 
proposed by Lipari et al. in [6] such as the tasks are in 
ascending order of their preemption levels; the analytical 
condition is as follows: 

                     U+Us ൑ 1                                                      (9) 

,݅׊ 1 ൑ ݅ ൑ ௜ܦ             ,݊ ൒  ∑ ൜ඌ
൫஽೔ି஽ೕ൯

௉ೕ
ඐ  ൅ 1ൠ௜

௝ୀଵ ௝ܥ  ൅
,ሼ0ݔܽ݉                                         ௜ܤ െ 1ሽ൅ܵሺ௜ሻܦ௜ ௦ܷ             (10) 

With S(i) is the selection function which takes as values: 

                    ܵሺ௜ሻ ൜0 ݂݅ ߨ௜ ൒ כߨ 

௜ߨ ݂݅ 1 ൏  (11)                                         כߨ 

Where π* represents the maximum preemption level of 
the aperiodic tasks, πi is the preemption level of the periodic 
task ti. Di is the deadline of the task ti, Dj and Pj are 
respectively the deadline and the period of the periodic task tj 
having a preemption level lower than that of ti. U is the 
processor utilization by periodic tasks and Us is the load of 
the server used. Bi is calculated referring to (5). 

V. COMPUTATION OF TASK SLOWDOWN FACTORS 
In this section, we compute task slowdown factors in the 

presence of hybrid tasks synchronization. We present two 
algorithms which are used to compute slowdown factors 
according to the two approaches presented previously. 

A. Algorithm I 
Shin et al. [10] gave an algorithm to solve the problem of 

the determination of the task slowdown factors, to reduce the 
power consumption during the scheduling of the periodic 
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and aperiodic tasks. This algorithm determines two 
slowdown factors to determine the speed of execution of the 
tasks. The first relates to the periodic tasks noted Sp, when 
the other noted Ss relates to the aperiodic tasks. However, 
authors do not consider constraints of resources and 
precedences. 

For the determination of the slowdown factors, we based 
on the model presented in the second approach. We 
formulate the problem as follows: 

 
Given: U, Us, η, ρ, {t1…,tn} of n periodic tasks with 

their characteristics (Ci, Pi, Bi)    

Find: Ss, Sp which minimize energy E; 

ܧ                  ൌ ܵ௣
ଶ כ η ൅ ܵ௦

ଶ  ρ                                   (12) כ

Subject to: 

         U Sp⁄ + Us Ss⁄ =1                                                      (13) 

,݅ ׊ 1 ൑    ݅ ൑   ݊, ௜ܦ   ൒ ∑ ൜ඌ
஽೔ –஽ೕ

௉ೕ
ඐ  ൅ 1ൠ௜

௝ୀଵ
஼ೕ

ௌ೛  
൅

                                            max ൜0, Bi
S p

-1ൠ +SሺiሻDi
Us
Ss

             (14) 

                         With  0<Ss   and   Sp<1                           (15) 

Where refer to (9), η is the average workload ratio of 
periodic tasks (η = U/n), ρ is the average workload ratio of 
aperiodic tasks (ρ= λ /µ) and Sp and Ss are the two slowdown 
factors. 

We give the solution to this problem by using Lagrange 
transform as follows: 

        Sp=U+Us    ට
ρ

Us*  η
   3   ;  Sp=Us+U    ටUs *  η

ρ
3              (16) 

B. Algorithm II 
In this paragraph, we give an algorithm which calculates 

the slowdown factor noted Sf when the first approach is used. 
The slowdown factor is calculated so that the following 
analytical condition is verified: 

 
;i,  i=1…n+1 ׊ ∑ Cj ሺD j *  Sfൗ ሻ+ Bi ሺD i  *  Sf⁄  i 

j =1 ሻ    (17) 
 

Algorithm II Computation of task slowdown factor Sf  
1. T = {t1,…,tn} Given n tasks in non-increasing order of 

their relative deadline with their characteristics (Ci, Di, 
Bi) 

2. X ← 0, Y← 0, i←1; V←0 {initialization} 
3. while    (i≤n)   do 
4.       j ←1; 

5.       while   (j ≤ i)   do 
6.   X+= Cj / Dj ; 
7.             j← j+1 ; 
8.       end while 
9.      Y← Bi

  / Di ; 
10.      if (X+Y >1) then  
11.               Exit()  ; 
12.      end if  
13.        V =max(V, X+Y);   
14.      X ←0 ;  
15.      i← i+1 ; 
16. end while  
17. Sf  ← V 

 

VI. EXPERIMENTAL RESULTS 
This section describes simulations and the experimental 

results carried out in order to evaluate the two approaches 
described previously and to compare between the two 
algorithms for the dynamic voltage scaling (DVS) developed 
in the framework of our study. Overall the simulation results 
were promising. 

A. Environment and context of simulation 
We developed a simulator program with VC++, in which 

we implemented the EDF dynamic policy, SRP protocol and 
algorithms that we had developed. To carry out simulations, 
we randomly generated some Task-sets. For that, we 
generated according to the uniform law characteristics 
concerning the periodic tasks. Periods (Pi) are generated in 
the interval [50, 80], the execution times (Ci) in the interval 
[4, 8]. 

Resources Ri from 0 to 2 and the position of the critical 
section is randomly generated. The length of the critical 
section (β i,k) of the task ti that access to Rk is generated in the 
interval [1, Ci]. The precedences of the task ti with other 
tasks (from 0 to n-1).  

For the aperiodic tasks, the interval of time between two 
arrivals is Poisson process with parameter λ=0.01 and the 
execution time is exponential process with parameter µ=0.25. 
Such as 1/ λ is the average duration of the inter-arrivals, 1/µ 
is the average duration of service. Theoretically response time 
of the aperiodic tasks is calculated by Markov model M/M/1 
which is (µ-λ)-1=4.16. 

B. Results 
We randomly generated four sets from 1 to 4 periodic 

tasks with one aperiodic task in each set according to the 
context specified previously then these sets were used to test 
the two approaches and two algorithms. 

We note that in the case of the first approach, we 
generate also a task server having a high priority (having the 
smallest deadline) and in the case of the second approach, we 
assign to TBS a load equal to 0.6. The results of simulations 
are given by the following tables and figure which allow us 
to discuss some of them. 

 

243



 

 

TABLE I.  SLOWDOWN FACTORS BY ALGORITHM I (US=0.6) 

Set 
Algorithm I 

Before slowdown factors After 
Us U Tr1 Ss Sp Tr2 E. profit 

1 0.6 0.097 4 0.710 0.627 5.637 0.303 
2 0.6 0.175 4 0.792 0.723 5.060 0.225 
3 0.6 0.290 4.018 0.928 0.820 4.322 0.110 
4 0.6 0.349 4.022 0.982 0.897 4.090 0.051 

 

TABLE II.  SLOWDOWN FACTORS BY ALGORITHM II 

Set 
Algorithm II 

Before slowdown factors After 
U Tr1 Sf Tr2 E. profit 

1 0.097 25.47 0.18 47 0.82 
2 0.175 29.7 0.26 40.1 0.75 
3 0.290 29.72 0.37 36.4 0.63 
4 0.349 29.72 0.43 34.6 0.57 

 
We notice that algorithm I (second approach) gives the 

best average response time noted Tr and an energy profit in 
raised compared to those of algorithm II (first approach). 
That is due to the fact that we allotted a raised load to the 
server TBS (Us=0.6). 

However, when we allot a weak load to TBS (Us =0.05), 
as shown by table 3, we note that the average response time 
and the profit in energy is less significant than using the 
second algorithm (first approach). This situation can occur if 
the load induced by the periodic tasks is significant. 

 

TABLE III.  SLOWDOWN FACTORS BY ALGORITHM I (US=0.05) 

Set 
Algorithm I 

Before slowdown factors After 
Us U Tr1 Ss Sp Tr2 E. profit 

1 0.05 0.097 10 0.1 0.2 71.2 0.853 
2 0.05 0.175 5.59 0.13 0.28 53.9 0.775 
3 0.05 0.29 6.46 0.19 0.39 45.2 0.66 
4 0.05 0.349 7.35 0.22 0.45 42.3 0.601 

 
 

The following table and graph show the variation of the 
average response time and the energy profit according to the 
load allotted to the server TBS during the scheduling of four 
periodic and one aperiodic tasks in the case of using 
algorithm I (second approach). 

 
 
 
 
 

 

 

TABLE IV.  VARIATION OF THE AVERAGE RESPONSE TIME AND THE 
PROFIT ACCORDING TO THE VARIATION OF US 

 
With an aim of showing the variation of average response 

time and energy profit according to a load allotted to server 
TBS, we normalized the average response times by the 
maximum value, the result is shown by the following graph. 
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Figure 1.  Variation of the average response time and the profit according 
to the variation of Us 

VII. CONCLUSION 
In this article, we proposed two algorithms for the 

dynamic voltage scaling (DVS) in a context of realtime 
scheduling of synchronous hybrid tasks. Constraints of 
sharing resource and precedence were studied in a context of 
minimization of energy. We showed that the two algorithms 
gave convincing results in terms of simulations. According 
to the experimentations done we can saw that our approaches 
are promising. 
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