
Scheduling real-time of the synchronous hybrid tasks under energy constraint

Akli Abbas, Hamid Hentous
Computer Science Department, M.P. School

BP 17, Bordj El Bahri, Algiers, Algeria
e-mail: {akliabbas, hentoush}@yahoo.fr

Tayeb Kenaza
Artificial Intelligence Laboratory, M.P. School

BP 17, Bordj El Bahri, Algiers, Algeria
e-mail: ken_tayeb@yahoo.fr

Abstract— In this paper, we are interested by the integration of
precedence and resources sharing constraints in the real time
scheduling of periodic and aperiodic tasks. We also treat the
problem of dynamic voltage scaling of the processor in the
same context. Many dynamic voltage scaling algorithms have
been proposed in the literature. However, these algorithms do
not consider the constraints of precedence and shared
resources on the scheduling of periodic and aperiodic tasks. In
this case, we propose two algorithms with the constraints cited
above. Experimental results show that the proposed algorithms
reduce the energy consumption under earliest deadline first
scheduling policy and the stack resource policy.

Keywords- Real time scheduling; embedded system;
resources precedence and constraints; periodic and aperiodic
tasks; power reduction.

I. INTRODUCTION
This paper treat the problem of scheduling real time of

the periodic and aperiodic tasks synchronous, under
constraint of energy in the embedded systems. These systems
often require periodic hard real-time tasks and aperiodic
tasks with soft deadlines. However, we must decrease their
response times, without compromising the execution of the
periodic tasks. Moreover, such systems generally need tasks
which are dependent and collaborate to realize the awaited
objectives from these systems. This collaboration is done by
the data exchange and/or the resource sharing. However, it
collaboration generates constraints of precedence and
resource sharing, which we must take into account in the
analysis of the scheduling of the tasks. These same systems
are characterized by their autonomous functioning, whose
energy supply is ensured by batteries. So the reduction of the
power consumption became crucial metric of optimization in
the design and the realization of such systems. The objective,
in this case, is not only to determine the order of execution of
the tasks under time constraints and synchronization, but also
to fix the frequency of the processor and the supply voltage.

The real-time system considered is composed by periodic
and aperiodic tasks. The tasks are scheduled in a system with
a single processor that supports variable frequency and
voltage levels. These tasks are synchronized by the
precedence induced by the communications and/or by the
access shared resources in a mutually exclusive manner by
the use of semaphores. In this paper, we call a system with
periodic and aperiodic tasks a hybrid task system.

This article is organized as follows: In section 2, we
summarize the related works. The concepts relating to
scheduling of the tasks, the constraints of synchronization
and variable speed processors will be detailed in section 3.
Our contribution concerning the scheduling of the
synchronous hybrid tasks will be discussed in section 4. In
section 5 we give two DVS algorithms to compute static
slowdown factors in the presence of task synchronization to
minimize the energy consumption of the system. The
experimental results will be discussed in section 6. We will
finish this article by a conclusion in section 7.

II. RELATED WORKS
In the literature, many algorithms were proposed in order

to treat the problem of real-time scheduling of the tasks. For
example, Liu et al. [1] have proposed the algorithm Earliest
Deadline First (EDF) with aim of scheduling the independent
periodic tasks, in [2] the author proposes an approach to treat
the precedence constraint under EDF policy. As well as the
constraints of precedence, the use of resources generates
difficulties related to the protection of the access to the
resources. To palliate these problems, resource access
protocols were proposed. We mention for example the Stack
Resource Policy (SRP) proposed by Baker in [3]. For the
scheduling of the aperiodic tasks, two solutions are used; that
is to say, by a treatment of background or the use of server
task. Among this last solution, we evoke the total bandwidth
server (TBS) [4]. The TBS solution is combined with
protocol SRP in [5, 6] in order to schedule the hybrid tasks
which access to critical resources. The DVS is one of the
most effective approaches in reducing the power
consumption of real-time systems. When the required
performance of the target system is lower than the maximum
performance, supply voltage can be dynamically reduced to
the lowest possible extent that ensures a proper operation of
the system. Recently, many voltage scheduling algorithms
have been proposed for hard real-time systems. Thus, when
EDF policy is used and in the case of attribution speed to
jobs tasks, Yao et al. proposed a polynomial algorithm
presented in [7], to enable the scheduling of periodic tasks in
order to minimize the power consumption. In the case of the
attribution of a single speed to all the tasks, Aydin et al. [8]
gave an approach based on the necessary and sufficient
condition suggested in [1]. When the tasks share critical
resources, Jejurikar et al. [9] presented an algorithm to
calculate the slowdown factors of the processor. The authors

2009 Third International Conference on Sensor Technologies and Applications

978-0-7695-3669-9/09 $25.00 © 2009 IEEE

DOI 10.1109/SENSORCOMM.2009.122

240

use the analytical condition of scheduling proposed in [3].
Shin et al. [10] suggested an algorithm to computation
slowdown factors speed of the processor for a system with
periodic and aperiodic tasks. Thus, many algorithms were
developed for DVS approach to the real-time systems to
scheduling the periodic tasks with different constraints.
However, these algorithms do not consider the constraints of
sharing critical resources and precedence in scheduling of
hybrid tasks.

III. PRELIMINARIES
This section describes the system model and variable

speed processors.

A. System Model
We consider a single processor system compound by a

set of periodic tasks noted T={t1…,tn} and by a set of
aperiodic tasks noted Ta= {ta1…,tam}. The periodic tasks are
modeled by the 4-tuple ti={r0,i, Ci, Di, Pi} such as r0,i is the
first request time of the task ti, Ci is the worst case execution
time (WCET), Di is the relative deadline and Pi is the period
of the task with Di ≤ Pi. Its kth absolute deadline is di,k = rk,i
+Di. Each invocation of the task is called a job and the kth
job of task ti is denoted as ti,k. A periodic task set is said to be
schedulable if all jobs meet their deadline. The processor
utilization by periodic tasks set, ܷ ൌ ∑ ௜ܥ ௜ܲ⁄௡

௜ୀଵ ൑ 1 is a
necessary condition for the feasibility of any schedule. As for
the aperiodic tasks, they are modeled by a 1-tuple tai={Cai},
where Cai is the execution time. An aperiodic task set is
specified by the mean arrival rate λ and the mean service rate
µ. The system has a set of shared resources which are
accessed by the periodic and aperiodic tasks in a mutually
exclusive manner by using semaphores. When a task has
been granted access to a shared resource, it is said to be
executing in its critical section. The kth critical section of task
ti or tai which uses a Rk resource is represented as βi, k. We
say a task is blocked if the task has to wait for a lower
priority task to release a shared resource and the task holding
the resource is called the blocking task. Note that the amount
of time a task ti is blocked is referred to as the task blocking
time noted Bi. With the specified task information and a
given resource access protocol, the maximum blocking time
for a task can be computed. The majority of real-time
applications require communications between the periodic
tasks, which introduce precedence constraints. Thus, we say
that there is a precedence constraint between the task ti and
the task tj or ti precedes tj, noted (ti →tj), if tj must await the
end execution of ti to begin its own execution. We assume
that the periodic tasks have an atomic form (i.e. normal
form), in such way that the waiting of messages by a task are
in beginning, and the emission of messages are at the end of
the task. We assume also that the precedence constraints
between tasks are simple (i.e. ti →tj ⇒ Pi = Pj).

B. Variable speed processors
A wide range of processors support variable voltage and

frequency levels. Voltage and frequency levels are tightly
coupled. So the important point to note is when we perform a
slowdown, we change both the frequency and voltage of the

processor. We assume that the speed can be varied
continuously from Smin to the maximum supported speed [9].
We normalize the speed to the maximum speed to have a
continuous operating range of [Smin, 1], where Smin = fmin/fmax
with the minimum and maximum frequencies represented by
fmin and fmax respectively.

IV. SCHEDULING OF THE SYNCHRONOUS HYBRID TASKS
We consider in this section the problem of the scheduling

of the synchronous hybrid tasks. The objective is to have an
order of execution of the tasks which guarantee the respect of
deadline, the use of the critical resources in mutual exclusion
and the respect of the precedence constraints by the periodic
tasks, and to allow, as far as possible, to have a better
response time by aperiodic tasks that are also using the
critical resources in mutual exclusion.

A. Precedence constraints
We exploit the approach which was proposed in [2] in

order to consider the precedence constraints that exist
between periodic tasks during the use of EDF policy. This
policy is based on assignments of priority following the
temporal parameters of tasks. Thus, the idea is to assign to a
task, which must precede another, a priority lower than the
task preceding it. This approach suggests the modification of
the request time and deadline so that the precedence
constraints are implicitly respected. These modifications are
operated as follows:

• Computation of request time:

଴,௜ݎ

כ ൌ ݔܽ݉ ቄݎ଴,௜, ଴,௝ݎ௧௝→௧௜൛ݔܽ݉
כ ൅ ௝ൟቅ (1)ܥ

From the tasks without predecessors and while going
down to the tasks of which all the predecessors were
treated.

• Computation of deadline:

௜ܦ

כ ൌ ݉݅݊ ቄܦ௜, ݉݅݊௧௜→௧௝൛ܦ௝
כ െ ௝ൟቅ (2)ܥ

From the tasks without successors and while going up
to the tasks of which all the successors were treated.

We note that these modifications are operated in off-line
i.e. before the effective scheduling of the tasks. Moreover,
we must consider in the continuation that the deadline of a
task can be lower than its period, and requests times are
different following the modifications operated previously.

B. Precedence and resource constraints
We choose to use the SRP protocol [3] to manage

resource access in mutual exclusion and, in addition, to
compute the maximum blocking time for a task, with taking
into account the constraints precedence. This protocol is
based on some principles, which are summarized as follows:

• In addition to its priority, each task is been allotting
statically (off-line), a parameter π called preemption
level. These levels are assigned in a way inversely
proportional to the relative deadline.

241

• Each resource is been assigning dynamically a
ceiling value noted CRk, determined by the maximum
value of the preemption levels of the active tasks
needing more than the unit available resource Rk.

ோ௄ܥ ൌ ௞ሽ (3)ܴ ݊݅ ݀݁݇ܿ݋݈ܾ ܾ݁ ݊ܽܿ ௜ݐ/௜ߨ௜ሼݔܽ݉

• The system ceiling noted Π, is the maximum value
of the ceilings resources in use.

• A task ti, can preempt task tj if the following
conditions are verified:
a)- Its absolute deadline di is lower than that of tj.
b)- The preemption level of ti is higher than of tj.
c)- Its preemption level is higher than the system
ceiling.

Baker established in [2] a sufficient condition to verify
scheduling of the periodic tasks as follows:

∑ ;i=1…n ׊ Cj

Dj
+ Bi

Di
≤1i

j=1 (4)

Bi represents the maximum blocking time of the task ti, it
is equal to the biggest duration of the critical section of the
periodic tasks, which have a lower preemption level than that
of tasks ti and it uses a resource having the ceiling value
higher or equal to the preemption level of ti.

To consider the precedence constraints, we suggest that
the tasks having lower preemption level considered are those
not on relations, directly or indirectly, by constraints of
precedence with the task ti. This duration is given by the
following formula:

 B
i
=max

j, k {β
j,k
/π

i
>π

j ∧ C
Rk ≥ π

i ∧ t
j ∉{succ of t

i
}} (5)

Where βj, k represents the critical section of task tj, which
have a lower preemption level πj than that of tasks ti and
which use a resource having the ceiling CRk value higher or
equal to the preemption level of ti. The task tj is considered if
it is not included in the set of predecessors or successors of ti.

C. Aperiodic tasks
When the system is composed by periodic and aperiodic

tasks which share critical resources, we consider the two
following approaches:

1) First approach: We consider that the aperiodic tasks
are managed by a server task which is the higher priority
periodic task and its execution time is equal to the sum of
the execution times of the aperiodic tasks. With each
activations of this server, it treats the aperiodic tasks
blocked in the queue, according to policy FIFO (first in first
out), until exhaustion of its execution time.

To analyze the scheduling of the synchronous hybrid
tasks, we used sufficient condition of scheduling established
by Baker in [3], which we adapted as follows:

;i=1…n+1 ׊ ∑ Cj Dj⁄ + Bi Di⁄ ≤1 ௜
j=1 (6)

Where, n+1 represents the number of periodic tasks with
the task server. When Bi is calculated referring to (5).

2) Second approach: The second approach of
scheduling of the aperiodic tasks is based on the idea
developed by Caccamo et al. in [5]. The authors suggested
assigning at each aperiodic request a deadline and a
preemption level so that they can be scheduled by SRP
protocol with the use of the total bandwidth server noted
TBS. The attribution of deadline is done as follows:

 dk=max(rk, dk-1)+ Cak
Us

 (7)

Where rk is the invocation date of the kth job task
aperiodic, Cak its execution time, dk-1 the deadline of the
precedent job (d0 = 0) and Us is the load of the server used.
This load admits for value, Us= 1-U . This attribution of
deadline respects the fact that the use of the processor by the
aperiodic ones never exceeds the value of the server.

As for the preemption level, it is calculated as follows:

=כߨ Us
Cak

 (8)

For the analysis of the scheduling of the synchronous
hybrid tasks, we consider the sufficient condition which was
proposed by Lipari et al. in [6] such as the tasks are in
ascending order of their preemption levels; the analytical
condition is as follows:

 U+Us ൑ 1 (9)

,݅׊ 1 ൑ ݅ ൑ ௜ܦ ,݊ ൒ ∑ ൜ඌ
൫஽೔ି஽ೕ൯

௉ೕ
ඐ ൅ 1ൠ௜

௝ୀଵ ௝ܥ ൅
,ሼ0ݔܽ݉ ௜ܤ െ 1ሽ൅ܵሺ௜ሻܦ௜ ௦ܷ (10)

With S(i) is the selection function which takes as values:

 ܵሺ௜ሻ ൜0 ݂݅ ߨ௜ ൒ כߨ

௜ߨ ݂݅ 1 ൏ (11) כߨ

Where π* represents the maximum preemption level of
the aperiodic tasks, πi is the preemption level of the periodic
task ti. Di is the deadline of the task ti, Dj and Pj are
respectively the deadline and the period of the periodic task tj
having a preemption level lower than that of ti. U is the
processor utilization by periodic tasks and Us is the load of
the server used. Bi is calculated referring to (5).

V. COMPUTATION OF TASK SLOWDOWN FACTORS
In this section, we compute task slowdown factors in the

presence of hybrid tasks synchronization. We present two
algorithms which are used to compute slowdown factors
according to the two approaches presented previously.

A. Algorithm I
Shin et al. [10] gave an algorithm to solve the problem of

the determination of the task slowdown factors, to reduce the
power consumption during the scheduling of the periodic

242

and aperiodic tasks. This algorithm determines two
slowdown factors to determine the speed of execution of the
tasks. The first relates to the periodic tasks noted Sp, when
the other noted Ss relates to the aperiodic tasks. However,
authors do not consider constraints of resources and
precedences.

For the determination of the slowdown factors, we based
on the model presented in the second approach. We
formulate the problem as follows:

Given: U, Us, η, ρ, {t1…,tn} of n periodic tasks with

their characteristics (Ci, Pi, Bi)

Find: Ss, Sp which minimize energy E;

ܧ ൌ ܵ௣
ଶ כ η ൅ ܵ௦

ଶ ρ (12) כ

Subject to:

 U Sp⁄ + Us Ss⁄ =1 (13)

,݅ ׊ 1 ൑ ݅ ൑ ݊, ௜ܦ ൒ ∑ ൜ඌ
஽೔ –஽ೕ

௉ೕ
ඐ ൅ 1ൠ௜

௝ୀଵ
஼ೕ

ௌ೛
൅

 max ൜0, Bi
S p

-1ൠ +SሺiሻDi
Us
Ss

 (14)

 With 0<Ss and Sp<1 (15)

Where refer to (9), η is the average workload ratio of
periodic tasks (η = U/n), ρ is the average workload ratio of
aperiodic tasks (ρ= λ /µ) and Sp and Ss are the two slowdown
factors.

We give the solution to this problem by using Lagrange
transform as follows:

 Sp=U+Us ට
ρ

Us* η
 3 ; Sp=Us+U ටUs * η

ρ
3 (16)

B. Algorithm II
In this paragraph, we give an algorithm which calculates

the slowdown factor noted Sf when the first approach is used.
The slowdown factor is calculated so that the following
analytical condition is verified:

;i, i=1…n+1 ׊ ∑ Cj ሺD j * Sfൗ ሻ+ Bi ሺD i * Sf⁄ i

j =1 ሻ (17)

Algorithm II Computation of task slowdown factor Sf
1. T = {t1,…,tn} Given n tasks in non-increasing order of

their relative deadline with their characteristics (Ci, Di,
Bi)

2. X ← 0, Y← 0, i←1; V←0 {initialization}
3. while (i≤n) do
4. j ←1;

5. while (j ≤ i) do
6. X+= Cj / Dj ;
7. j← j+1 ;
8. end while
9. Y← Bi

 / Di ;
10. if (X+Y >1) then
11. Exit() ;
12. end if
13. V =max(V, X+Y);
14. X ←0 ;
15. i← i+1 ;
16. end while
17. Sf ← V

VI. EXPERIMENTAL RESULTS
This section describes simulations and the experimental

results carried out in order to evaluate the two approaches
described previously and to compare between the two
algorithms for the dynamic voltage scaling (DVS) developed
in the framework of our study. Overall the simulation results
were promising.

A. Environment and context of simulation
We developed a simulator program with VC++, in which

we implemented the EDF dynamic policy, SRP protocol and
algorithms that we had developed. To carry out simulations,
we randomly generated some Task-sets. For that, we
generated according to the uniform law characteristics
concerning the periodic tasks. Periods (Pi) are generated in
the interval [50, 80], the execution times (Ci) in the interval
[4, 8].

Resources Ri from 0 to 2 and the position of the critical
section is randomly generated. The length of the critical
section (β i,k) of the task ti that access to Rk is generated in the
interval [1, Ci]. The precedences of the task ti with other
tasks (from 0 to n-1).

For the aperiodic tasks, the interval of time between two
arrivals is Poisson process with parameter λ=0.01 and the
execution time is exponential process with parameter µ=0.25.
Such as 1/ λ is the average duration of the inter-arrivals, 1/µ
is the average duration of service. Theoretically response time
of the aperiodic tasks is calculated by Markov model M/M/1
which is (µ-λ)-1=4.16.

B. Results
We randomly generated four sets from 1 to 4 periodic

tasks with one aperiodic task in each set according to the
context specified previously then these sets were used to test
the two approaches and two algorithms.

We note that in the case of the first approach, we
generate also a task server having a high priority (having the
smallest deadline) and in the case of the second approach, we
assign to TBS a load equal to 0.6. The results of simulations
are given by the following tables and figure which allow us
to discuss some of them.

243

TABLE I. SLOWDOWN FACTORS BY ALGORITHM I (US=0.6)

Set
Algorithm I

Before slowdown factors After
Us U Tr1 Ss Sp Tr2 E. profit

1 0.6 0.097 4 0.710 0.627 5.637 0.303
2 0.6 0.175 4 0.792 0.723 5.060 0.225
3 0.6 0.290 4.018 0.928 0.820 4.322 0.110
4 0.6 0.349 4.022 0.982 0.897 4.090 0.051

TABLE II. SLOWDOWN FACTORS BY ALGORITHM II

Set
Algorithm II

Before slowdown factors After
U Tr1 Sf Tr2 E. profit

1 0.097 25.47 0.18 47 0.82
2 0.175 29.7 0.26 40.1 0.75
3 0.290 29.72 0.37 36.4 0.63
4 0.349 29.72 0.43 34.6 0.57

We notice that algorithm I (second approach) gives the

best average response time noted Tr and an energy profit in
raised compared to those of algorithm II (first approach).
That is due to the fact that we allotted a raised load to the
server TBS (Us=0.6).

However, when we allot a weak load to TBS (Us =0.05),
as shown by table 3, we note that the average response time
and the profit in energy is less significant than using the
second algorithm (first approach). This situation can occur if
the load induced by the periodic tasks is significant.

TABLE III. SLOWDOWN FACTORS BY ALGORITHM I (US=0.05)

Set
Algorithm I

Before slowdown factors After
Us U Tr1 Ss Sp Tr2 E. profit

1 0.05 0.097 10 0.1 0.2 71.2 0.853
2 0.05 0.175 5.59 0.13 0.28 53.9 0.775
3 0.05 0.29 6.46 0.19 0.39 45.2 0.66
4 0.05 0.349 7.35 0.22 0.45 42.3 0.601

The following table and graph show the variation of the
average response time and the energy profit according to the
load allotted to the server TBS during the scheduling of four
periodic and one aperiodic tasks in the case of using
algorithm I (second approach).

TABLE IV. VARIATION OF THE AVERAGE RESPONSE TIME AND THE
PROFIT ACCORDING TO THE VARIATION OF US

With an aim of showing the variation of average response

time and energy profit according to a load allotted to server
TBS, we normalized the average response times by the
maximum value, the result is shown by the following graph.

0

0,2

0,4

0,6

0,8

1

0,0
5

0,1
0

0,1
5

0,2
0

0,2
5

0,3
0

0,3
5

0,4
0

0,4
5

0,5
0

0,5
5

0,6
0

pro
fit

 vs
 re

sp
on

se
tim

e

Us

response time normalized Energy profit

Figure 1. Variation of the average response time and the profit according
to the variation of Us

VII. CONCLUSION
In this article, we proposed two algorithms for the

dynamic voltage scaling (DVS) in a context of realtime
scheduling of synchronous hybrid tasks. Constraints of
sharing resource and precedence were studied in a context of
minimization of energy. We showed that the two algorithms
gave convincing results in terms of simulations. According
to the experimentations done we can saw that our approaches
are promising.

REFERENCES

[1] C.L. Liu and J.W. Layland. “Scheduling algorithms for
multiprogramming in real-time environment”. Journal of the ACM,
1973, pp. 20(1): 46–61.

[2] J. Blazewicz “Scheduling dependent tasks with different arrival times
to meet deadlines” in E. Gelembre, H. Beiher Modelling and
performance evaluation of computer systeme Nort-holland,
amsterdem, 1976.

[3] T.P. Baker. “Stack-based scheduling of real-time processes”. The
Journal of Real-Time Systems, 1991, pp. 3 :67–99.

Us Tr1 UC1 Ss Sp Tr2 UC2
E.

profit
0.05 7.35 0.35 0.22 0.45 42.31 0.78 0.60
0.10 4.02 0.38 0.31 0.52 13.09 0.69 0.55
0.15 4.02 0.38 0.39 0.57 10.28 0.62 0.50
0.20 4.02 0.38 0.46 0.61 8.66 0.64 0.45
0.25 4.02 0.38 0.54 0.66 7.52 0.59 0.40
0.30 4.02 0.38 0.60 0.69 6.66 0.55 0.35
0.35 4.02 0.38 0.67 0.73 6.01 0.52 0.30
0.40 4.02 0.38 0.73 0.77 5.48 0.50 0.25

244

[4] M. Spuri and G.C. Buttazzo, “Efficient Aperiodic Service under
Earliest Deadline Scheduling", Proc.of the IEEE Real-Time Systems
Symposium, San Juan, Portorico, December 1994.

[5] M. Caccamo, G. Lipari, and G. Buttazzo, “Sharing resources among
periodic and aperiodic tasks with dynamic deadlines”, Proceedings of
the IEEE Real-Time Systems Symposium, Phoenix, Arizona, 1999,
pp. 284-293.

[6] G. Lipari and G. Buttazzo, “Schedulability analysis of periodic and
aperiodic tasks with resource constraints”, Journal of Systems
Architecture, 2000, Vol. 46, No. 4, pp. 327-338.

[7] F. Yao, A. J. Demers, and S. Shenker, “A Scheduling Model for
Reduced CPU Energy”, in IEEE Symposium on Foundations of
Computer Science, 1995, pp. 374-382.

[8] H. Aydin, R. Melhem, D. Mossé and P. Mejia-Alvarez, “Determining
optimal processor speeds for periodic real-time tasks with different
power characteristics“ Euromicro Conference on Real-Time Systems,
2001, pp. 225-232.

[9] R. Jejurikar and R. Gupta, “Energy Aware Task Scheduling with
Task Synchronization for Embedded Real Time Systems “, Proc. Int’l
Conf. Compilers, Architecture and Synthesis for Embedded Systems,
2002.

[10] D. Shin and J. Kim, "Dynamic Voltage Scaling of Periodic and
Aperiodic Tasks in Priority-Driven Systems," in Proc. ASPDAC'03,
Jan. 2004, pp. 653-658.

245

