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Abstract— In this paper the Model Predictive control (MPC) for 

the improvement of the power system stability is presented. 

Particularly, the paper focus on the application of the MPC 

technique to regulate the power output of the generators when 

the system is subject to fault and disturbances.  

The application on the Single machine infinite bus equipped with 

Thyristor Controlled Series Capacitor device is carried out to 

show the advantage of the proposed technique. 

 
Index Terms—MPC, TCSC, SMIB and Transient Stability. 

  

I. INTRODUCTION 

EVERAL control problems can be formalized under the 

form of optimal control problems having discrete-time 

dynamics and costs that are additive over time. Model 

Predictive control (MPC) is an approach to solve such 

problems. MPC was originally designed to exploit an 

explicitly formulated model of the process and solve in a 

receding horizon manner a series of open-loop deterministic 

optimal control problems [1], [2]. The main motivation behind 

the research in MPC was initially to find ways to stabilize 

large-scale systems with constraints around some equilibrium 

points (or trajectories) [3][4].  

MPC is an advanced method of process control that has been 

in use in the process industries such as chemical plants and oil 

refineries since the 1980s. Model predictive controllers rely on 

dynamic models of the process, most often linear empirical 

models obtained by system identification. 

The models used in MPC are generally intended to represent 

the behavior of complex dynamical systems. The additional 

complexity of the MPC control algorithm is not generally 

needed to provide adequate control of simple systems, which 

are often controlled well by generic PID controllers. Common 

dynamic characteristics that are difficult for PID controllers 

include large time delays and high-order dynamics. 

MPC models predict the change in the dependent variables of 

the modeled system that will be caused by changes in the 

independent variables. In a chemical process, independent 

variables that can be adjusted by the controller are often either 
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the setpoints of regulatory PID controllers (pressure, flow, 

temperature, etc.) or the final control element (valves, 

dampers, etc.). Independent variables that cannot be adjusted 

by the controller are used as disturbances. Dependent variables 

in these processes are other measurements that represent either 

control objectives or process constraints. 

MPC uses the current plant measurements, the current 

dynamic state of the process, the MPC models, and the 

process variable targets and limits to calculate future changes 

in the independent variables. These changes are calculated to 

hold the dependent variables close to target while honoring 

constraints on both independent and dependent variables. The 

MPC typically sends out only the first change in each 

independent variable to be implemented, and repeats the 

calculation when the next change is required. 

While many real processes are not linear, they can often be 

considered to be approximately linear over a small operating 

range. Linear MPC approaches are used in the majority of 

applications with the feedback mechanism of the MPC 

compensating for prediction errors due to structural mismatch 

between the model and the process. In model predictive 

controllers that consist only of linear models, the superposition 

principle of linear algebra enables the effect of changes in 

multiple independent variables to be added together to predict 

the response of the dependent variables. This simplifies the 

control problem to a series of direct matrix algebra 

calculations that are fast and robust. 

When linear models are not sufficiently accurate to represent 

the real process nonlinearities, several approaches can be used. 

In some cases, the process variables can be transformed before 

and/or after the linear MPC model to reduce the nonlinearity. 

The process can be controlled with nonlinear MPC that uses a 

nonlinear model directly in the control application. The 

nonlinear model may be in the form of an empirical data fit 

(e.g. artificial neural networks) or a high-fidelity dynamic 

model based on fundamental mass and energy balances. The 

nonlinear model may be linearized to derive a Kalman filter or 

specify a model for linear MPC. 

In this paper; the theoretical description of MPC is provided 

and an application to SMIB equipped with TCSC is illustrated 

with various projection length where it is demonstrated that 

the prediction horizon choice is difficult. Prediction too far 

into the future is computationally expensive and sometimes 

not useful due to plant uncertainty. 
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II. MODEL PREDICTIVE CONTROL 

1) Theory behind MPC 

MPC is based on iterative, finite horizon optimization of a 

plant model. At time t the current plant state is sampled and a 

cost minimizing control strategy is computed (via a numerical 

minimization algorithm) for a relatively short time horizon in 

the future: [t, t + T]. Specifically, an online or on-the-fly 

calculation is used to explore state trajectories that emanate 

from the current state and find (via the solution of Euler-

Lagrange equations) a cost-minimizing control strategy until 

time t + T. Only the first step of the control strategy is 

implemented, then the plant state is sampled again and the 

calculations are repeated starting from the now current state, 

yielding a new control and new predicted state path. The 

prediction horizon keeps being shifted forward and for this 

reason MPC is also called receding horizon control. 

Although this approach is not optimal, in practice it has given 

very good results. Much academic research has been done to 

find fast methods of solution of Euler-Lagrange type 

equations, to understand the global stability properties of 

MPC's local optimization, and in general to improve the MPC 

method. To some extent the theoreticians have been trying to 

catch up with the control engineers when it comes to MPC[1]. 

 

 
Fig. 1.  A discrete MPC scheme. 

 

1) Principles of MPC 

Model Predictive Control (MPC) is a multivariable control 

algorithm that uses: 

 an internal dynamic model of the process 

 a history of past control moves and 

 an optimization cost function J over the receding 

prediction horizon, 

to calculate the optimum control moves. 

The optimization cost function is given by: 

 

min
u[1:::k]2U

J =

NpX

k=1

wx(r[k]¡ x[k])2 +

NpX

k=1

wu¢u[k]2]min
u[1:::k]2U

J =

NpX

k=1

wx(r[k]¡ x[k])2 +

NpX

k=1

wu¢u[k]2]   (1) 

without violating constraints (low/high limits) 

  

With: 

 

x[k]x[k] controlled variable (e.g. measured temperature) 

r[k]r[k]  reference variable (e.g. required temperature) 

u[k]u[k]  manipulated variable (e.g. control valve) 

wxwx weighting coefficient reflecting the relative of xx 

wuwu weighting coefficient reflecting the relative of uu 

UU     is the set of control values 

NpNp   is the projection length 

III. APPLICATION 

A) Test  system (SMIB) 

The MPC control is applied on the SMIB power system with 

TCSC as shown in Fig. 2 The input control of this system study is 

the TCSC’s reactance. The synchronous generator is delivering 

power to the infinite-bus through a double circuit transmission 

line and a TCSC. In Fig. 2, VtVt and EbEbare the generator terminal 

and infinite bus voltage respectively; XTXT , XLXL and XTHXTH 

represent the reactance of the transformer, transmission line per 

circuit and the Thevenin’s  impedance of the receiving end 

system respectively. 

 

 

Fig. 2 Single-machine infinite-bus power system with TCSC 

 

The synchronous generator is represented by model 1.1, i.e. 

with field circuit and one equivalent damper winding on q-

axis. 

 

The machine equations with AVR are [5]: 
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For more details, the readers are suggested to refer [5,6]. 

 

Fig. 3.  SMIB without control 

(A three phase fault is applied at the generator terminal busbar at t = 1 sec 
and cleared after 5 cycles. The original system is restored upon the fault 

clearance and an increment of Power demande from 0.6 pu to 1 pu at 5 sec) 
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It is clear from Fig. 3 that without TCSC modulation the 

system is very stressed and oscillatory.  

 

The MPC strategy will be used in next, where the controlled 

variable is the electrical power (x[k] = Pe[k]x[k] = Pe[k]) and the 

manipuled variable is the TCSC’s reactance (u[k] = xTCSC[k]u[k] = xTCSC[k]

). kk is the sample time.  The weighting coefficient are 

wx = 0:1wx = 0:1 and wu = 0:1wu = 0:1. 

 

 

u[k] =

8
><

>:

+0:8£ xline if xTCSC ¸ +0:8£ xline

¡0:2£ xline if xTCSC · ¡0:2£ xline

xTCSC[k] otherwise

u[k] =

8
><

>:

+0:8£ xline if xTCSC ¸ +0:8£ xline

¡0:2£ xline if xTCSC · ¡0:2£ xline

xTCSC[k] otherwise

 

 

We use the cost function (1) with N = 4 (for 0.004 seconds 

projection into the future), wx = 1wx = 1 and wu = 1wu = 1. Also, we 

assume at each time instant that the reference input remains 

constant while we project into the future; this is equivalent to 

assuming that our evaluation of which controller is best is 

based on the reference input being constant. 

 
Fig. 4.  SMIB with  MPC (N=4) – Electrical power and TCSC reactance 

 
Fig. 5.  SMIB with  MPC (N=4) – Voltage profile 

 

 
Fig. 6.  SMIB with  MPC (N=4) – internal angle 

 

 
Fig. 7.  SMIB with  MPC (N=4) – machine speed 

 

To see how the MPC strategy operates, see Figure 4. Here, we 

see that we get a slower rise-time. It was possible to tune the 

MPC performance by adjusting wxwx and wuwu. 

 

B) Effects of Planning Horizon Length 

Next, we return to using the parameters for the nominal plant 

and study the effect of changing the projection length N with 

all the same choices.  In particular, we plot the tracking 

energy. 
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Fig. 8.  Tracking energy vs. projection length NN  

. 

as shown in Fig. 8 and 9. This range of N was chosen by 

adding more points where the values of the tracking and 

control energy changed fast.  

These plots show some justification for the choice of N = 2 in 

our simulations. This choice did not cost too much 

computational complexity in projecting into the future, and yet 

gave a low tracking error (our main objective), with a 

reasonable amount of control energy. If you are not concerned 

about computational complexity, you may want to further 

increase the planning horizon, to get a similar value for the 

tracking energy, but with even lower control energy.  

 

 

Fig. 9.  Control energy vs. projection length NN  

 

Why did the values of the control energy change so quickly 

around the value of N = 4? Why does the tracking energy 

increase in the region from N = 10 to N = 16? Why is it the 

case that the control energy increases from N = 5 to N = 25? In 

general, how do you change the shape of the plots? Clearly, 

changing the w1 and w2 weights will change the shape, and 

hence, what choices you might make for what you call a 

―best‖ value of N. The model used for prediction, and the 

types of controllers that are simulated into the future will also 

change the shape. Moreover, the reference input can change it. 

Even though the generation of such plots can help you choose 

the planning horizon, it does not completely solve the 

problem. It simply provides insights. 

 

Finally, in some cases it is possible that longer planning 

horizons can actually degrade performance since the longer 

you simulate into the future with an inaccurate model, the less 

reliable the predictions tend to be. Hence, the optimization for 

plan choice can become inappropriate for selecting a good 

plan. 

IV. CONCLUSION 

In this paper, the application of MPC strategy to improve 

the stability of the SMIB plant via the TCSC modulation is 

performed and discussed , also the impact of projection length 

on the  Control energy and tracking error is presented.    

 

 

 

 

 

V. APPENDIX 

System data: All data are in pu unless specified  otherwise. 

Generator:H = 3:542H = 3:542, D = 0;Xd = 1:7572;Xq = 1:5845D = 0;Xd = 1:7572;Xq = 1:5845, 

X0
d = 0:4245;X0

q = 1:04; T 0
do = 6:66; T 0

qo = 0:44;

Ra = 0; Pe = 0:6;Qe = 0:02224; ±0 = 44:370:

X0
d = 0:4245;X0

q = 1:04; T 0
do = 6:66; T 0

qo = 0:44;

Ra = 0; Pe = 0:6;Qe = 0:02224; ±0 = 44:370:  

Exciter: KA = 400; TA = 0:025sKA = 400; TA = 0:025s 

Transmission line: 
R = 0;XL = 0:8125;XT = 0:1364;XTH = 0:13636;

G = 0;B = 0;

R = 0;XL = 0:8125;XT = 0:1364;XTH = 0:13636;

G = 0;B = 0;  
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