
A NEW APPROACH TO COMPONENT'S PORT MODELING

IN SOFTWARE ARCHITECTURE
Djamal BENNOUAR

1
, Tahar KHAMMACI

2
 and Abderrezak HENNI

3

1
Saad Dahlab University

LRDSI Lab; N° 8

09000 Blida, Algeria

dbennouar@gmail.com

2
LINA, Université de Nantes

2, Rue de la Houssinière,

44322, Nantes, France

khammaci@lina.univ-nantes.fr

3
Institut National d’Informatique

Oued Smar

16000, Algiers, Algeria

henni@ini.dz

Abstract:

Nowadays, Modeling of component's port is

typically based on interfaces, which heavily constrain

the definition of an application's architecture. This is

mainly due, to the fact that, software architecture

imported only the general concepts of its fundamental

elements from related fields such as computer and

network architecture, and did not show interests on how

these concepts are organized and used in these fields in

the process of defining miscellaneous architecture.

To limit the interface constrains we have defined a

port model, inspired from these related fields where the

activity of defining architecture has reached a high

degree of maturity. The port model is completely

independent from interface concept. It allows the free

manipulation of its internal structure and the

specification of various controls over port and

component. With these capabilities, the port model

opens a new way, not supported by nowadays software

architecture tools, to specify any topology an architect

can imagine. In addition, the port represents one of the

fundamentals elements supporting the aspect

orientation of our approach to software architecture.

The aspect orientation is supported through aspect

ports, representing aspect's join point, which must be

connected to specific aspect components.

Keywords: Software Architecture, Component, Port,

ArchJava, Aspect

1. INTRODUCTION

The component represents the core element in

software architecture and component’s ports play

fundamental roles in the definition of a software

component. The expressive power of a component

model and the ease of its use, depend mainly on the

quality of its external view represented by its ports.

Port modeling is considered at the structural level and

the behavioral level. The structural level is based on

interfaces and the behavioural level is typically

performed in the context of an interface [1].

The concept of ports based only on interface,

constrains the free specification of various component

topologies. This is due to at least the two following

points:

• The topologies are specified according to the

ubiquitous procedure call software mechanism, often

visible at interface level. A software designer is then

forced to transform any mental model of a solution

in a specification which must take into account the

constrains imposed by the use of interfaces.

• The connected ports must expose matching

interface names and parameter types. This is not

often the case, since used components may be

developed by different and unrelated sources.

The relevance of defining ports freely from the

concept of interface was outlined in [2]. However, this

orientation is not addressed in the miscellaneous

research in software architecture. One reason for this

situation may be the low impact of strongly related field

to software, mainly, computer and network architecture.

These fields represent the source of the fundamental

concepts of software architecture (component, ports and

connectors). However, software architecture imported

only general concepts of these elements and did not

show interest on advances in such field where the

activity of resolving problem based on architecture

definition has reached a high degree of maturity.

In our approach, called IASA (Integrated Approach

to Software Architecture), the advances in the related

fields were considered in the definition of the

fundamental model element. For port model definition,

the port structure and port organisation of hardware

component (i.e. control port, address port, data port,

enable port) are behind the following characteristics::

the total independence of port from interface concept,

the concept of controlled ports and the concept of aspect

ports.. These characteristics open new ways, not

supported by nowadays software architecture tools, to

specify easily, any component topologies an architect

can imagine. The port model is capable to support

efficiently architect's mental model of a targeted

application. The semantic gap separating problem space

from solution space is then extremely reduced.

The port model represents one of five key concept of

IASA: component, connector, access point, SEAL action

language and a design process. This paper deals mainly

with the port concept. After the discussion of the related

works in section 2, we briefly introduce in section 3, the

component model, which represents the context where

ports are instantiated. Section 4 describes the concept of

access points, which is the core concept of IASA ports,

and the port model. Section 5 discusses the

transformation process of an abstract view of a port to

its concrete view. The evaluation of the port model is

outlined in section 6. It shows how the port model make

easy the specification of a complex software system

2. RELATED WORKS

The external view of a component is represented by

a set of interaction points used to expose the provided

ACIT 2007, 26-28 November 2007, Lattakia, Syria 146

and required resources of a component. Due to the

different environments where researches in software

architecture are conducted, various terms were

introduced to designate an interaction point [3]. In

ACME[4], WRIGHT[5] COSA[6] and ARCHJAVA[7]

it is called port. UNICON[8] uses the term constituent

and RAPIDE[9] tells it a player. C2[10], UML2.0[11]

and FRACTAL[12] use the term interfaces.

DARWIN[13] uses the term port to designate a type of

interaction.

Usually an interaction point has a structure, showing

the element providing or requiring a resource. Each

interaction point may have properties specifying its

communication mode (synchronous or asynchronous).

We notice that this later characteristic is not directly

associated with structural element of an interaction

point.

In ArchJava[7] the port, representing an interaction

point, is composed of method signature. Each method

corresponds either to a provided service or to a required

service. UML2.0 [11] defines a port as a regrouping

technique of provided and required interfaces. A C2

interaction point is oriented to support communication

by messages in the context of particular architectural

style oriented to GUI design. The C2 [10] interaction

point is either a requests or a notification.

RAPIDE[9] distinguish between three kind of

interaction points called constituents: provides, requires

and actions. The constituents provides and requires are

oriented to handle synchronous interaction. These

constituents are represented by functions. The

constituents actions are oriented to support

asynchronous interaction based on event. In

UNICON[8], all interaction points, called players, are

predefined and correspond to well known software

mechanisms (i.e. RPCCal, ReadFile, StreamIn etc..).

In the DARWIN[13] ADL, an interaction point is

associated with a type of service handled by a method

and an interaction type specifying how the service may

be launched. For example, the trace services are

handled by events. They correspond to an asynchronous

communication mode. The outputs and inputs services

are handled by the port interaction type, which operate

in synchronous communication mode.

WRIGHT[5] does not specify any internal structure

or any grouping technique for the port. WRIGHT's port,

is a CSP[5] specification describing the expected

behavior of the component at that port.

3. CHARACTERISTICS OF IASA PORTS

We present in the following the main characteristics

of the IASA port and we outline the capabilities of just

introduced tools and models regarding the support of

such characteristics.

a-The total independence from interface concept:

This characteristic provides the following possibilities:

- The software mechanism is completely

abstracted during software composition process. Such

an abstraction allows the designer to elaborate various

topologies without any constraints from the concept of

interfaces directly related to software mechanisms. The

WRIGHT approaches reach this goal, by the support of

reasoning at high level of abstraction. However

WRIGHT do not support the abstraction refinement.

- The structural elements of port may be accessed

independently. In current software architecture models

and tools, an interaction point, usually represented by

interface, is considered as an atomic element despite its

complexity. It is not possible to deal separately with

element defining the structure of an interaction point

(i.e. method, method parameters). A connexion's end

point, usually named role, is connected only to an

interface. It is not possible to define a connexion

between interface elements as shown in figure 1.

- The structural element of port may be

initialized. This possibility opens the way to specify

default values for interaction point. The default values

play an important role when connecting two ports with

different number of interaction point. In such situations,

a provided service does not require from its user to

bring all necessary resources, especially, when the

service user has no mean to specify all required

resources. Initializing an interaction point is a concept

not supported by current models and tools.

b-Aspect Oriented Architecture: The specification of

the application's architecture is in fact a kind of Aspect

Oriented Programming. The first separation of concerns

met is software architecture is the separation of

communications supported by first class connector from

the business logic supported by components. However,

communication is not the sole aspect found in software

design. Logging, error handling, state reporting, data

persistence, security are other common aspects which

cut across component's business logic. Introducing

aspect in software architecture will make design of

complex software an easier task and will yield clear and

lucid specification. The port model reinforces the aspect

orientation of the IASA approach through the definition

of specific aspect ports, which represent the aspect join

point. In IASA, handling an aspect is realized by

connecting an aspect port to an aspect component. All

previously introduced models and tools do not provide

support for aspects.

c- Control over port and components: controls over

ports and components include operations such as: 1)

enabling port or a component to operate, 2) starting,

pausing, stopping and restarting services on port 3)

controlling the access to resources exposed on ports.

Figure 1: Connections based on port's element

Access point

(method, parameter) Port (Interface)

A

B

D

C

Full and primitive connectors

ACIT 2007, 26-28 November 2007, Lattakia, Syria 147

The support of such controls will give the port a central

role in dynamic architecture (i.e. dynamic component

updating). The specification of control over ports and

components has been addressed partially in some

project such as SOFA/DCUP[14] and OLAN[14], but

for specific purpose such as component administration

in OLAN and dynamic component replacement in

SOFA/DCUP. Controlling ports and component as part

of the business logic of a component seems to be not

addressed in software architecture.

d- Behavioral port modelling: Typically, two

techniques are used for modelling behavior observed on

a port: discrete behavior modelling called also static

modelling[1] and continuous behavior modelling

referred also by the term interaction modelling[1].

Discrete behavior describes the visible properties of a

system at specific snapshots during the system’s

execution. This is achieved primarily by using

invariants on the component states and pre- and post-

conditions associated with the component's operations.

Discrete behavior is not expressive enough to represent

how the ports interact with its environment, how it

reaches some state and when its miscellaneous services

may be used. The interaction behavior modeling is more

accurate since it allows the specification of the allowed

execution traces of the provided or required services.

Usually, specifying interaction protocols is

done using formal approaches such as CSP[5], Finite

Sate Machines[16], regular languages[17], and temporal

logic[18]. These approaches focus on detailed formal

models of the interaction protocols and enable proofs of

protocol properties. However, due to their mathematical

notation and orientation, these techniques are too formal

and complex for routine use by practitioners. In order to

provide practitioner with familiar tool for specifying the

port's behavior, IASA port use an Action Language,

inspired from UML Precise Action Semantic[19], called

SEAL[20]. The interesting capability of such language

is its easy extension and the support of action context

dedicated to specify interaction behavior.

e- Standard port: While reasoning at high level of

abstraction, an architect often uses instance of abstract

component and link them by a well-known or standard

connector. Such action highlight that even in an early

stage of design process, while various component are

seen at high level of abstraction, the architect often

choose the implementation technology of connector.

This kind of activity must be considered by providing

ports supporting this various interconnection

technology. Examples of such ports includes port

oriented to support standard protocol (i.e. FTP, HTTP,

SOAP) standard middleware (CORBA, RMI), and

interaction with standard execution environment

(operating systems, application servers). Predefined

ports have been addressed only in UNICON which

provide architect with a restricted number of port.

However UNICON do not define any mean to introduce

ports supporting other interconnection technology.

4. THE IASA PORT ENVIRONMENT

In order to clearly understand the port model, we

briefly introduce in the following the IASA component

which is the place where ports are instantiated. Through

port, the IASA component highlights its provision,

requirement and aspects. The full description of all the

IASA models are presented extensively in [21]

4-1 THE IASA COMPONENT MODEL
The component model defines a specific

organization either for the external view applicable to

any component (primitive, composite, COTS, legacy

code) or for the internal view. The external view is

represented by the concept of envelope, which hosts

component's ports. The internal view (Figure 2) is

composed of two parts: the operative part and the

control part. The operative part contains component

realizing the business logic. The control part contains a

number of aspect oriented components and a component

dedicated to control the operative part. Currently, the

component model supports three aspects: logging, error

and state. An aspect component has an external view

made of specific ports called aspect ports.

4-2 ASPECT COMPONENT

An aspect component is the central place where an

aspect is managed. An aspect component is a

behavioural component, completely specified in the

SEAL action language. An aspect component has two

instantiation modes: active and passive mode. In active

mode, the connexions of all aspect port belonging to the

same aspect are performed by the aspect component.

4-3 THE ENVELOPE CONCEPT:

The main goal of the envelope is to provide a total

isolation of the internal view from the external world.

The envelope hosts all the resources needed to support

communication aspect (i.e. adapters) and to enable the

Figure 2: Global view of the component model

AnyComponent

Primitive Composite

InternalViewExternalView

Envelope

OperativvePart

ControlPart

AspectCmp OpPartController

OpPartLogCmp OpPartExceptionCmp OpPartStateCmp

BehavioralComponent

*

1

1,*

1
1

1

1

1

1

1

1
1

1

*

1

1

1

OpPartExceptionCmp OpPartStateCmp

OpPartController

BehavioralCmp

OpPartLogCmp

AspectCmp

ControlPart

OperativePart

InternalView ExternalView

Composite Primitive

AnyCmp

Envelope

ACIT 2007, 26-28 November 2007, Lattakia, Syria 148

specification of connexions involving the port's

structural elements. The envelope represents a sort of

clothes an instance of a component type wears in a

specific situation. Hence, it is possible to associate

instances of the same component type with different

envelopes either in the same composite or at a different

level of the hierarchy describing a composite.

5 THE IASA PORT'S BASIC CONCEPT

 The port model has an internal structure made

of element called access points. An access point is the

smallest structural element defining a port. A port may

be provided with a behavior specifying how the port

must be operated.

 5-1 THE ACCESS POINT CONCEPT

An access point is the basic element exposing

required or provided resources (Figure 3).

Communication mode and the resource time validity are

among its properties. An access point is instantiated

inside a port and it may be wired, in an independent

manner, to another access point which is hosted in the

same port or in a different port.

In order to allow more precise and practical

specification, we have introduced more precise access

point, according to the global role they play in a

component: the DataPoint and the ActionPoint.

A DataPoint (Figure 3, figure 5) is used to transfer

data of any type. It is provided with an attribute

specifying the data direction (in, out, and inout). The

definition of new specific DataPoint follows a specific

style for naming and definition. The naming style uses

the data type name followed by DataPoint (i.e.

IntDataPoint). The definition style is based on the name

of the supported data type and a template file written in

the targeted language (Figure 4).

An ActionPoint (Figure 3, figure 5) represents a

service, which may support many distinct actions. An

action point is provided with a set of actions supported

by the service (actionSet). Regarding the associated

service, an access point plays one of two basic roles: a

server role played by the ServerPoint or a client role

played by the ClientPoint (Figure 3, figure 5).

The ServerPoint manages a second set of actions

called the refinedActionSet. Each element of the refined

action set is associated with only one action in the

actionSet. A refinedActionSet describes one step further,

the refinement of the associated action (Figure 6).

5.2 SPECIFIC ACCESS POINTS:

The specific access points are oriented to support

specification of controls and to highlight the various

aspects considered in the design of components.

a- Aspect access points: For now the IASA IDE

supports three predefined aspects: logging, state and

error. Each aspect is supported by a specific DataPoint.

The state aspect is handled by GlobalStatePoint which

deals with the stability of a design (STABLE and

package iasa.datapoints; // StringDataPoint Definition

public class StringDataPoint extends DataPoint{

 private String data;

 StringDataPoint(StringDataPoint sdp, int dir) {

 copy(sdp); this.dir = dir;}

 StringDataPoint(String s, int dir) {

 data = new String(s); this.dir = dir;

 this.timeValidity = 0; }

 String get() throws InvalidAccessToInDataPoint,

 AccessPointTimeOut {

 getValidate(); return new String(data); }

 void set(String s) throws InvalidAccessToInDataPoint,

 AccessPointTimeOut {

 setValidate(); data = new String(s);}

 public void copy(DataPoint dp){

 data = new String(((StringDataPoint)dp).data); }

 public void startTimer(){}

}

Figure 4: StringDataPoint in ArchJava

ServerPort

DataPoint

out in inout
with initializer aspect

ActionPoint

ServerPoint ClientPoint ControlledServer

EnableDataPoi

nt.
Controlled Ports

DataPort

Figure 5: Access Points and ports

Fig 6: actionSet and refinedActionSet

sap1.A

// ActionSet

{a0 , b0, aA0}

//RefinedActionSet

{{aA0 = {a0, b0, a1}}}

cap2A

//ActionSet

{a2}

 sap2.A

{d0 , e0} /* ActionSet*/ {} // RefinedActionSet

:A
cap1.A

// ActionSet

{a1, aB0}

b:B

Figure 3: The access point model

DataPoint

AnyPoint

ActionPoint

Actionset

SeverActionPoint

ClientActionPoint

RefinedActionSet

StateDataPoint

ExceptionDataPoint

LongDataPoint ActionStateDataPoint

AspectDataPoint

AspectCmp

*

1

1

1

1

*

LogDataPoint ActionStateDataPoint

RefinedActionSet
ExceptionDataPoint

ServerPoint

ClientPoint

StateDataPoint

AspectDataPoint

AspectCmp

DataPoint ActionPoint

ActionSet AnyPoint

ACIT 2007, 26-28 November 2007, Lattakia, Syria 149

UNSTABLE values) and StructuralStatePoint which

reports the component’s structure at a quite precise

time. The error and logging aspects are successively

handled by ExceptionDataPoint and LogDataPoint.

b- Controlled access point: The control may be seen

as another aspect. However, since most controls are

supported by actions, control aspect is actually

considered as part of the core business aspects of an

application. The access points dedicated to controls are

concerned by 1) reporting the state of services through

ServiceStatePoint, 2) performing control action on

services through ControlledServerPoint and 3)

controlling the availability of a port through

EnableDataPoint. The values ENABLED, DISABLED,

STARTED are examples of services state reported by the

ServiceStatePoint, The ControlledServerPoint (figure

5), is a specific ServerPoint provided with control

actions such as: enable, disable, start, stop, restart and

terminate. EnablelDataPoint (Figure 5) is an in data

point which accepts ENABLE and DISABLE values.

5-3 PORTS:

A port is a grouping technique of related access

points and represents a namespace. It maintains an

abstract view and a concrete view. The abstract view is

represented by the concept of access point, the actions

associated with action point and a behavior. The port's

behavior is represented by a set of valid rules defined in

the SEAL action language.. Each rule shows how the

required or provided resource must be used. While

connecting two ports, the connector is said to be valid, if

the supported interaction use compatible port's

behaviors. Figure 7 shows a partial description in SEAL

language of ports of the component X25CM (Figure 8).

The concrete view may be any model, provided with

a clear way leading to the implementation level (i.e.

interface based port, UML port, ArchJava port)

For an efficient and clear specification of

connections between components, we have defined a

number of ports organized in four categories: regular

ports, aspect ports, controlled ports, and standard ports.

Four predefined regular ports were defined:

ClientPort, ServerPort, PeerPort and DataPort. A

ClientPort must contain one ClientPoint and zero or

more DataPoint. A ServerPort, contains one

ServerPoint, a number of DataPoint and a number of

ServiceStatePoint. A PeerPort contains one

ServerPoint, one ClientActionPoint, a number of

DataPoint and any number of ServiceStatePoinjt

associated with the ServerPoint. A single port is

associated with a single service.

A controlled port is any port provided with

EnableDataPoint, or a ServerPort provided with the

ControlledServerPoint instead of a ServerPoint, or

provided with both control techniques. An aspect port is

composed of aspect point belonging to the same aspect.

The three predefined aspect are supported by the

StatePort, the ExceptionPort and the LogPort.

Standard ports are oriented to support well known

connectors such as a standard protocol and the

interaction with a standard environment such as an

operating system or an application server. The

predefined ports are provided with a clear concrete view

corresponding to a well known implementation.

HTTPClientPort, CORBAClientPort, EJBClientPort,

UnixPort are examples of such ports, prepared for use

with specific connectors, such as the HTTP protocol, the

Corba Bus, the EJB component model and the UNIX

operating system. The ports such as FTPServerPort and

HTTPServerPort, represent the server side of standard

protocols. Such ports are provided only with an abstract

view. Their concrete view is fully defined in the server

side.

6- GENERATION OF THE CONCRETE VIEW

The abstract view of a IASA port provides facilities

to specify freely various topologies of components. The

process of generating the concrete view depends on the

specified topology and the deployment of

interconnected component. This process comprises the

following steps:

package x25cm;

import license.ethernet;

component X25CM {

 ports { // external view: structure and behavior

 FTPClientPort pFtp {// FTP Client Port Description

 accesspoint{

 ClientActionPoint cFtpAp (0, SYNC);

 StringDataPoint cFtpReplies (IN, 0, SYNC)

 }

 actioncontext{

 use system.FTPIntercationContext;

 }

 behavior{ // pFtp behavior

 boolean ftpConnexionSet = false;

 rules getTicketFile, ftpReset;

 rule getTicketFile {

 precondition: ftpConnexionSet;

 pattern: rename(O_NAME, N_NAME),

 get(N_NAME), delete(N_NAME),

 success; fail ftpReset;

 postcondition: ;

 }

 rule ftpReset {

 precondition:;

 pattern: close, success;

 postcondition: ftpConnexionSet = false;

 }

} End Description of X25CM component

Figure 7: Partial Seal Description of X25CM's ports

pMAin :MainCmpPort

pFtp

:FtpClientPort

pSql

: SqlClientPort

pPrinter :

PrintSpoolerPort

pAlarm :LogDataPor

licenseFile:FSClientPort

fire: Action

:X25CM

Figure 8: External view of X25 Commerce Manager

ACIT 2007, 26-28 November 2007, Lattakia, Syria 150

a- The normalizing step: This step yields a topology

where IASA ports are transformed on interface based

ports (i.e. an IDL description, a Java Interface

description, an ArchJava port).

b- Generating port in a targeted language: This step

is concerned with the following three actions: 1)

providing port with necessary adapters 2) solving the

distance problem [21] between connected ports 3)

attaching the port to a connector endpoint, often called a

connector role. In the following, we focus the study on

the normalizing step.

6-1 THE NORMALIZING STEP RULES

The transformation process uses many rules in order

to generate an interface based architecture. We highlight

in the following the main rules in order to illustrate this

step.

- An action point corresponds to methods requiring

or providing the associated service. A SEAL action is

handled by one method. (figure 11)

- A DataPoint may be involved in more than one

action of a ServerPort. The associated methods to action

represent the carrier service of data in that DataPoint

- When a DataPoint is wired in an independent

manner, its is associated with a service carrier hosted by

the envelope and composed by a set an a get methods.

The actual method used to transfer data depends on the

connector and direction of DataPoint. If the connector

direction is from an OutDataPoint to an InDataPoint,

the transfer of data is initiated by the OutDataPoint. The

transfer method used is the set method provided by the

InDatapoint. If the connector direction is from an

InDataPoint to an OutDataPoint, the transfer of data is

initiated by the InDataPoint and the transfer method is

the get method provided by the OutDatapoint.

7- VALIDATION OF PORT MODEL

The port model was validated in the context of the

IASA approach validation process. One step of this

validation process was concerned by the design and

implementation, according to the IASA design process,

of a commerce manager of an X25 network's product.

The target language in this validation was the ArchJava

ADL. We present in the following some steps

highlighting how the port model were used.

Figure 9 shows the internal view of the X25CM

component which in fact is the targeted application. In

this internal view, we notice that the instance x25 of

X25CM_CORE component type uses a controlled port

as its main port. According to the wiring plan, the

X25CM_CORE will operate only if controlled data point

(EnableDataPoint) on the main port, receives an

ENABLE value from the LicenseController component.

Figure 10 shows the internal view of the component

type LicenseController. This view highlights the core

business aspect of LicenseController The gma client

port of starter and the server port of EtherAddrReader

are linked by a full connector[21]. Usually, in a full

connection, all the access points related to the service

must be connected to corresponding points in the client

port. The IASA approach enables the specification of

default values for DataPoint, either to freeze the

behavior of a service or to discharge the client from

providing all access points. In such situation, the client's

port does not need to be provided will all access points.

The client port of the starter and the server port of

EtherAddrReader, are both mapped to methods with one

parameter as shown in the SEAL description in the

figure 11. The DataPoint at each side of the connection

LicenseLoader

EtherAddrReader LicenceGen

Action:

licenseGet

OpPartController: starter

Action:

getMacAddr

 macAddr

Action: buildLicence licenseData

licenseData

 = = ENABLE/

DISABLE

licenseLoad

Action:

compare

gma blic cmp licl

pMain

pMain

pMain

enable

pMain

Figure 10: Internal view of LicenseController

package license.ethernet;

component LicenseGen{

 ports { // external view: structure and behavior

 MainCmpPort pMain {

 accesspoint { // Port Structure

 ServerActionPoint pMainAp (0, SYNC);

 StringDataPoint licenseData(OUT, 0, SYNC);

 StringDataPoint macAddr(IN, 0, SYNC);}

 actioncontext{

 action buildLicense implemented by

 macAddr buildLicense (licenseData);}

 behavior{ // Port's rules description ……….}
 } // End of pMain description

. . . } // End description of LicenseGen Component

Figure 11: partial description of LicenseController

LogDataPort: pAlarm

 OpPartLogCmp

MainCmpPort: fire

FtpClientPort:

 pftp

 SqlClientPort:

 pSql

 X25CM

 OpPartController

MainCmpPort::fire

LicenseController:

lc

X25CM_Core:

x25

PrintSpooler:

pPrinter

 lc

FSClientPort:licenseFile

Action:licenseGet

MainCmpPort

fire
enable

x25

Figure 9: Internal View of X25CM component

Control Part

ACIT 2007, 26-28 November 2007, Lattakia, Syria 151

corresponds to the method's parameter. This latter may

be the return value or a parameter of the methods at

both side of the connector.

The DataPoint of the EtherAddrReader’s port is

directly linked to a DataPoint of the LicenceGen’s port.

This is done by using a primitive connector[21]. The

two points are then associated with a transport services

hosted by the component's envelope. As stated before,

the transport service type depends on the direction of

the primitive connector. The arrow is usually attached to

the point providing the transport service. In that case,

the service is a setter provided by the LicenseGen's

DataPoint.

This kind of connector appears also in the

connection between the DataPort of the comparator

(component with == symbol) and the LicenseReport

component. The direction of the connector states that

the transport service is located at the LicenseReport port

and the DataPoint direction states that the data source is

also at LicenseReport. In this situation, the transport

service is a getter provided by the DataPoint of the

LicenseReport component.

The set and get services are connected by delegation

connector to internal set and get if they exist, otherwise

these services are defined and hosted in the envelope.

7-1 NORMALIZING STEP USING ARCHJAVA

Normalizing a IASA architecture using ArchJava is

achieved according to the following complement rules:

- An instance of a IASA ServerPort is mapped to an

ArchJava port, which contains only provided method.

- A ClientPort is mapped to an ArchJava port

containing only required method.

- The instance names of IASA elements (ports,

access point, action) are used for naming the associated

ArchJava elements

The code in figure 12 shows an ArchJava port

representing the pMain port of LicensedLoader, the pftp

port of X25CM and the licenseLoad action.

The normalization process applied to the pMain port

of LicenseGen component, partially described with

SEAL in figure 11, yields three ArchJava ports as

shown in the code of figure 13

This normalization process assumes that internal

access point and ports, which are connected to the

external port by delegation connector, are provided with

the get and set methods. However, in case where the

internal ports do not provide setters and getters, the

transformation process use the envelope to provide

necessary support. In the following we show how this

support is hosted in the envelope.

7-2 NORMALIZING WITH THE ENVELOPPE

Figure 14 shows the generated code of the

LicenseGen component's envelope and its ports. The

envelope is represented by an ArchJava component

(LicenseGenEnvCmp). The methods associated with

envelope's DataPort do not give direct access to internal

data representation. The envelope ensures complete

isolation of internal elements from the external world.

Moreover, before actually performing the

buildLicense method, the envelope start by cashing all

data associated with InDataPoint. Once the

buildLicense return, the envelope performs cashing of

public port pMain_licenseLoader {

provide void licenseLoad(); }

public port pftp {

 require String connect(String hostName);

 require String sendUserName(String userName);

 require String sendPassWord(String userName);

 require String close();

// etc}

Figure 12: pFtp and pMain of LicenceLoader

public port macAddr_mainPort_licenseGen {

provide void setMacAddr(String macAddr);

require String getMacAddr (); }

public port licenseData_mainPort_licenseGen {

provide String getMacAddr ();

require void setMacAddr(String macAddr);}

public port pMain_licenseGen {

provide String buildLicense(String macAddr);}

Figure 13: pMain of LicenseGen

public component class LicenseGenEnvCmp {
 StringDataPoint envLicenceData =
 new StringDataPoint("", DataPort.OUT);
 StringDataPoint envMacAddr
 new StringDataPoint("", DataPort.IN);
 // Internal ports reference
 DataPort internalMainPort;
 // Provided services
 public port pMain_licenseGen {

 provide StringDataPoint

 buildLicense(StringDataPoint macAddr);}

 // Data Ports

 public port macAddr_mainPort_licenseGen {

 provide void

 setMacAddr(StringDataPoint macAddr);

 require StringDataPoint getMacAddr(); }

 public port licenseData_mainPort_licenseGen {

 provide StringDataPoint getLicenseData();

 require setLicenseData(

 StringDataPoint licenseData);}

 // Implementation

 public StringDataPoint

 buildLicense(StringDataPoint macAddr) {

 envMacAddr.copyData(macAddr)

 envLicenseData.copy(new

 internalMainPort.buildLicense(

 envMacAddr.getRef()));

 return new StringDataPoint(envLicenseData);}

 public void setMacAddr(

 StringDataPoint macAddr){

 envMacAddr.copyData(macAddr)}

 public StringDataPoint getMacAddr (){

 return new StringDataPoint(envMacAddr);}

 public void setLicenseData (

 StringDataPoint licenseData){

 envLicenseData.copyData(licenseData) }

 public StringDataPoint getLicenseData(){

 return new StringDataPoint(envLicenseData); }
}// End of envelope component

Figure14: LicenseGen's envelope in ArchJava

ACIT 2007, 26-28 November 2007, Lattakia, Syria 152

all data associated with OutDataPoint. For inout

DataPoint, cashing is performed before and after

method execution.

8- CONCLUSION

The IASA port model reaches many important

objectives due to its various characteristics, such as the

total abstraction of software mechanism, the support of

aspects, the concept of controlled ports, the support of

standard connectors and the participation of ports in

component validation process.

The abstraction of the software mechanism enables

the manipulation of port's elements and the specification

of various component topologies without any constrains

typically imposed by the software mechanism.

The definition of specific ports, each one oriented to

support a specific component’s aspect, will produce

more organized architecture specification, where each

aspect is considered in an independent manner.

The controlled ports enable the specification of

various controls over a whole component or on its

services. This later characteristics opens the way to the

specification of dynamic and complex component

topologies.

The IASA port model through the standard ports,

enables the use at a high level of abstraction of well

known interconnection technologies, mainly the

standard internet protocols, the middleware

communication infrastructure, and the access to run

time environment.

Embedding SEAL actions in ports and the marking

concept of ports gives these later an important role in

the validation process of software architecture at a high

level of abstraction.

The port model represents a fundamental element in

the ECLIPSE based IASA IDE. Currently, the IASA

IDE uses ArchJava as a target language in the

normalization process. However, since ArchJava, don’t

easily and efficiently support various and complex

deployment scheme, we are now studying the

introduction of Java and UML2.0 as new target

languages for the IASA IDE.

REFERENCES

[1] Roshandel R., Medvidovic N. “Relating Software

Component Models”,TR,USC-CSE-2003-504, 2003.

[2] Carrez, Cyril Behavioral Contracts for Component.

PHD Thesis, ENST, Paris 2003 (In Frensh).

[3] N. Medvidovic and R.N. Taylor. A Classification

and comparison framework for software architecture

languages, IEEE TSE, 26(1):70-93, 2000

[4] Garlan, D., Monroe,:Acme: Architectural

Description of Component-Based Systems. Foundations

of Component-Based Systems, Leavens and Sitaraman

(eds), Cambridge University Press, 2000.

[5] R. Allen : A Formal Approach to Software

Architecture. PhD thesis, School of Computer Science,

Carnegie Mellon University, 1997

[6] M. Oussalah, A. Smeda and T. Khammaci, An

Explicit Definition of Connectors for Component-Based

Systems. Proceedings of the 11
th
 IEEE International

Conference on the Engineering of Computer Based

Systems, Brno, Czech Republic, May 2004

[7] Aldrich, J. 2003. Using Types to Enforce

Architectural Structure, Computer Science and

Engineering PHD Thesis, Washington University,

[8] Shaw, M., DeLine, R., Zalesnik, G.: Abstractions

and Implementations for Architectural Connections.

Proceedings of the 3
rd
 International Conference on

Configurable Distributed Systems, May 1996

[9] D. Luckham, J. Kenney, L. Augustin, J. Vera, D.

Bryan and W. Mann. Specification and Analysis of

System Architecture Using Rapide. IEEE TSE, vol.

21(4) :336-355, april 1995.

[10] Nenad Medvidovic, Architecture-Based

Specification-Time Software Evolution, Phd Thesis,

UNIVERSITY OF CALIFORNIA, IRVINE, 1999

[11] Unified Modeling Language: Infrastructure,

version 2.0, 3
rd
 revised submission to OMG RFP ad/00-

09-01, January 2003

 [12] E. Bruneton, T. Coupaye, M. Leclerc, V. Quéma,

J.-B. StefaniThe Fractal Component Model and its

Support in Java Software Practise and Experience.

36(11-12):1257-1284. 2006

[13] J. Magee, N. Dulay and J. Kramer, “Structuring

Parallel and Distributed Programs”, IEE Software

Engineering Journal, Vol.8, No.2, March 1993

[14] D. Balek : Connectors in Software Architectures.

Ph.D. Thesis, Faculty of Mathematics and Physics,

Department of Software Engineering, Malostransk

[15] R. Balter, L. Bellissard, F. Boyer, M. Riveill, J-Y.

Vion-Dury : Architecturing and Configuring

Distributed Applications with Olan. In Proceedings of

IFIP International Conference on Distributed Systems

Platforms and Open Distributed Processing,

(Middleware'98), The Lake District, September 1998.

[16]Yellin D.M., Strom R.E., “Protocol Specifications

and Component Adaptors,” ACM Transactions on

Programming Languages and Systems, V19,N°2, 1997.

[17]Plasil F., Visnovsky S., “Behavior Protocols for

Software Components”, IEEE Transactions on Software

Engineering 28(11), pp. 1056–1076, November 2002.

[18]N. Aguirre, T.S.E. Maibaum : A Temporal Logic

Approach to Component Based System Specification

and Reasoning. In Proceedings of the 5th ICSE

Workshop on Component-Based Software Engineering,

Orlando, FL, 2002

[19] OMG. Action semantics for the UML, Final

submission. TR, Object Management Group, 2001

[20] A. Saadi, D. Bennouar. A Simple and Extensible

Action Language for the IASA IDE, IR, N° SA-005-06,

LSDRI Lab, USDB at Blida, Dec 2006 (In French)

[21] D. Bennouar: The IASA Approach, Internal

Report, N° SA-002-07, LSDRI Lab, USDB at Blida,

April 2007 (In French)

ACIT 2007, 26-28 November 2007, Lattakia, Syria 153

