
FORMALIZING THE MENTAL MODEL
OF A SOFTWARE ARCHITECTURE

DALILA GUESSOUM* and DJAMEL BENNOUAR**
Department of Computer Science, University Saad Dahleb, Blida, Algeria

*guessoumdali@gmail.com, **dbennouar@gmail.com

ABSTRACT

This paper presents the main concepts of a specification
approach which operates at the architectural level in the
development process of a software solution. The
specification approach has the capacity to deal directly with
the first ideas, called mental model, of a software solution.
The approach is mainly based on a graphical editor which
enables software architects to directly specify their first
ideas which are usually informal. The graphic editor, called
IASA STUDIO, then transforms informal specification to a
formal specification specified in an Architecture
Description Language (ADL) called X3ADL. The X3ADL
specification represents the starting point for a model
transformation process which leads to an implementation
view of a software in a chosen implementation technology.

Keywords: Software architecture; IDE; ADL;
Model transformation; Code synthesis.

1. INTRODUCTION

With the emergence of large communication networks,
new applications become increasingly distributed, large with
a complex architecture. This complexity is due to necessary
and permanent scalability requirements, to hardware and
software heterogeneity and to the high degree of interaction
between different software entities constituting the
application. To better manage the complexity of such
applications, it is recommended to have a high level of
abstraction [13] and to have models that approach the
developer's mental model. A possible answer is the definition
of software architecture systems. Software architecture
describes the set of components that compose the system,
defines their assembly and considers the features needed for
the deployment and the exploitation of the resulting system
[12].

Practitioners have realized that having proper software
architecture is a critical success factor for the design and
development of systems [6]. Although there are several
interesting proposals at both the architectural models and
specification languages for software architecture, these
proposals lack flexibility and reveal several differences both
in the semantics of concepts but also in approaches to
specification. Indeed there are a multitude of ADLs
(Architecture Description Language) in academia and

industry. Some examples are Wright, Darwin, ACME,
AADL, ArchWare, etc. The concepts of components,
connectors and configurations are addressed in different
ways depending on the language.

Our work finds its origins in the inability of current
models to support the specification of software architectures
such as done in the early step of a software elaboration
process. Indeed, what is observable now in the process of
formalizing the specification of software architecture, is the
fact that current ADLs do not support the specification of
software architectures such as made in the initial phases.
This is mainly due to the fact that ADLs depend strongly in
the specification of software architectures for basic
mechanisms, including the concepts of interface and the
concept of procedure call or transaction. Specifications in the
initial phases can be independent of these two mechanisms.
This may explain the difficulty of developing more efficient
software systems, and more particularly to generate the
source code matching those kinds of systems whose
complexity and diversity of used technologies are
characteristics of the latter.

To overcome these limitations, we believe that it is wise
to take advantage of advances in recent software engineering
techniques. In this context, the most suitable engineering
technique seems to be the model-driven engineering (or
MDE), which designs the entire life cycle as a process of
production, of iterative refinement and integration of models.
The use of models allows us to capitalize on the knowledge
and expertise at different levels of abstraction [5, 9]. It thus
covers the different views of the system by moving from an
abstract model to a model specific to the system environment
to develop [11, 14]. This approach ensures consistency of the
system during the different phases of the lifecycle.

Our contribution in this paper consists in developing an
approach for specifying software architecture in a highly
flexible manner. The desired flexibility consists in
supporting the direct specification of mental models of the
architect. This specification is very close to the informal one.
A first transformation from an informal specification to a
formal specification represented by an ADL is required. The
system that handles the capture of the mental model is an
integrated development environment (IDE) called
IASA_STUDIO, which is provided with capabilities for
specification, verification, and transformation of the
architecture into an executable code.

87

MMM
Typewritten Text
The 13th International Arab Conference on Information Technology ACIT'2012 Dec.10-13
 ISSN : 1812-0857

This paper is organized as follows. Section 2 presents the
mental model of a software architect. Section 3 provides an
overview of the behaviors of the architect during the
specification of architecture. Section 4 and section 5 present
the fundamental concept of our approach to support the
mental model of a software architect. In Section 6 we present
the main features of IASAStudio. Finally, in Section 7 we
conclude our article with a conclusion and with some
perspectives to this work.

2.THE MENTAL MODEL OF A SOFTWARE
ARCHITECT

A specification of software architecture represents the
first ideas that an architect makes of his system. This
specification has often a graphic form in which we find
rectangles and links. Sometimes instead of using a rectangle
to represent a system part or component, the architect uses a
specific shape such as a cylinder to represent a database.
The specific shape provides information from their view on
the overall functionality of the associated component. The
graphical specification is often a very abstract view of the
system. It corresponds strongly to what we call the mental
model of the architect. The mental model is inherently
graphical. The document referring the mental model
represents a document that can also involve the client to
specify in a more precise manner his requirements or to
indicate strategic choices.

A software architecture that comes from the mental
model can be more abstract than the PIM (Platform
Independent Model) of MDA. The mental model is not only
independent of platform, but can be independent of software
mechanisms, including those dedicated to interactions.

To find the models that could effectively accommodate
the elements of the informal specification and the various
architectural decisions, it is necessary to understand what
really does an architect during the specification of the
mental model and also during the phases where a solution
begins to become more formal. In the next section, we will
try to highlight the various behaviors, mainly the
architectural decision, of an architect during the elaboration
process of the architecture of a software solution.

3.THE BEHAVIORS OF THE ARCHITECT
DURING THE SPECIFICATION OF AN
ARCHITECTURE

Architecting is actually an art that depends fundamentally
on the architect reasoning. Thus, it is very possible for a
simple solution, that two architects may have totally
different reasoning in the specification of their architecture
[7]. The differences can be mainly at the development
approach (from the global to the detail or the detail to the
global), the choice of building blocks (components) and the
techniques used to specify the various interconnections
between them. Architecture is an art. A graphical editor
must allow a high degree of freedom in the operations of

specification of an architecture in which there is no need to
find the rigor imposed by other approaches of software
architecture (i.e. define the interfaces before binding them,
bind only fully compatible interfaces).

3.1 ARCHITECTURAL ELEMENTS

During the first specification, the architect develops a
sketch that is not really precise. Then this sketch will be
refined with comments at the component and links level
(Figure 1). Before starting the next stage of the development
process, the architect performs manually or by using tools,
an evaluation of his sketches to ensure that they meet
customer requirements.

In general, the basic elements used for the sketch are:
- Boxes to represent general purpose components.
- Specific shapes to represent particular components.
- Lines that connect boxes and shapes.
- Lines that link lines and components.
- Lines connecting other lines.
- Lines representing a group of lines (Bus).

Figure 1. Example of a sketch

3.2 ABSTRACT AND PRIMITIVE COMPONENTS

Often the architect uses abstract component and indicates
progressively its external view. He can also use components
that have an existence and do not require study or
implementation. They require only proper exploitation.
These components, whatever their size are called primitive
components. An HTTP server and a database server are
primitive components. An adder or more precisely an
operator in terms of a programming language is also a
primitive component. The sketch may be a mixture of
abstract components, which have to be realized, and
primitive components.

88

3.3 DRAWING CONNECTIONS

When making connections between components, the
architect operates without constraint by linking a first
component to a second in a point to point connection. This
binding is traced without any constraints. However, we note
that the link always starts from a component or a link. In the
case where the starting and ending points are the boundaries
of two interconnected components, the link may represent
three situations:

- The component containing the starting point may
require a resource from the second component

- The second component may require a resource from the
first component

- The link is a peer to peer connection: the first (or the
second) requires a resource from the second (or the first) and
also provides a resource for the second (first).

In such a situation, and in the formalization process of
IASA_STUDIO, the type of the link, or connection, may be
explicitly specified by the architect, using a context pop up
menu associated with the just drawn connector. The
connector type indicates clearly the provider (server) and the
requester (client).

In the case where no information are added to the
connector, the anticipation task of the formalization process
fixes automatically the provider and the requester based on
the starting point of the connector. The anticipation task
considers the starting point as a resource requester point
(client) and the ending point as a resource provider. The
anticipation resolution process is actually a parameter of
IASA STUDIO.

3.4 DRAWING COMPLEX ARCHITECTURE

When specifying a complex architecture, the architect
uses either a large sheet, able to see the entire architecture or
small sheets, each dealing with one part of the overall
architecture. Thus IASA_STUDIO must allow the
specification in a single view (sheet) or in separate views.
Moreover, IASA_STUDIO can cut a sheet into smaller
sheets, according to the indications of boundary between the
sheets. Therefore, IASA_STUDIO must be able to assemble
small sheets in larger sheets and vice versa.

Throughout the process of refinement of architecture,
various other architectural decisions are possible that we
have not cited in this paper, however, in the next section, we
present how it is possible within a flexible specification
approach to software architecture to support and formalize
these informal behaviors that represent the mental model of
the architect.

4.THE BASIC GRAPHICAL NOTATIONS FOR
THE SPECIFICATION OF THE MENTAL MODEL

In this section we try to define the graphical notations
and actions for handling in a direct and effective manner the
mental model of an architect. Generally, the specification of
an architecture is essentially based on:

- A basic set of graphical elements.

- A large degree of freedom in the manipulation of these
elements, particularly when making connections between
different forms representing components.
The graphical notation must address the following

elements:
- The component to be represented graphically by precise
forms, including rectangles.
- Ports of interactions of the component. We call them
ports to distinguish from the concept of interface and also
to indicate that a port has a structure and that it is
possible to manipulate individual elements of the port,
which is not possible with interfaces.
- Simple connectors.
- Buses.
In the specification process and transformation of the

mental model to support various design decisions throughout
the process of refinement of an architecture, we will use
essentially the graphical notation defined in the IASA
approach (Integrated Approach for Software Architecture)
[3].

4.1 THE FUNDAMENTAL CONCEPTS AND MODELS

IN IASA

IASA is an approach to software architecture that allows
the specification of aspect-oriented software architectures
[3]. IASA defines a set of concepts that allows the
specification of software architecture in a very flexible way
with a high degree of freedom from any software mechanism
constraint, allowing to specify the software architecture in a
way that approaches the mental model of the architect. The
full description of the approach IASA is detailed in [4].

The IASA approach is based on a unified component
model oriented to support system design where some
components may be deployed as software components and
others as hardware components. IASA is based on the
following concepts: access point, port, component, envelope,
connector and action.

The component is a fundamental element in defining
software architecture. The component model distinguishes
between two broad categories of components: the primitive
components and composite components.

The component model defines two views in a
component, an external view which must adhere to any
component and an internal view, applicable only to
composites. The external view is represented by the concept
of the envelope. The internal view is organized into two
main parts: the operative part and control part, and one
option part: the aspect part.

In IASA, a component interacts with the external world
through a set of ports. A port has a structure made of access
points and a behavior. The instantiation of a component is
realized in the context of the envelope concept. An envelope
is used to isolate the pure instance of a component from its
operating environment by providing it with the necessary
elements for the operation of the proceeding. The main
graphic notations used by IASA are presented in Figure 2.

89

Figure 2. The main graphic notations in IASA [4]

IASA is based on a Specific ADL named 3ADL (Aspect,
Action and Architecture Description Language) [2].
However the current form of this language covers only
specific parts of the architecture specification. This is why
we have defined an XML extension of this language called
X3ADL (eXtensible Architecture, Aspect and Action
Description Language).The X3ADL specification is the entry
of a model transformation process that would lead to a view
of the executable system.

4.2 NEW GRAPHIC NOTATION FOR IASA

IASA notation is well suited for the transformation of an
informal specification into a specification based on the IASA
notation. However, in certain situations mentioned in the
behaviour of the architect, this notation is not sufficient and
new notations are required. The new notations deal with the
following concepts:
Components: The shape associated to a component is
unique and predefined in IASA. The enrichment of IASA on
this aspect is to provide IASA STUDIO with a predefined
library of forms, each associated with specific functionality.
This library is extensible.
Connectors and bus: IASA uses the same notation for
connectors: a line. There is no explicit distinction in terms of
graphical notation between a connector linking ports and a
connector linking access points. In addition, there is no
notation for buses. In our proposal a connector is represented
by a single line. A connector can only connect access points.
A bus is represented by a thick line. A bus interconnects
ports (Figure 3).

Figure 3. Proposed notation for connectors and bus in IASA

Detailed view of an access point: A data access point
(DOAP) conveys information that may be seen as a
particular structure. The structure often brings outs the parts
of information that can be considered independently of other
parts. Thus a DOAP could be seen as a set of DOAPs, each
oriented towards the support of a part of the information. The
IDE of IASA provides mechanisms for the architect to see
the details of a DOAP. The architect could put in evidence
the internal DOAP of a DOAP. A DOAP whatever its depth
may be used individually.
Controlled access point and ports: In the current version of
IASA, a controlled access point or a controlled port has a
graphical view in which the control is represented by a
padlock. The padlock in reality corresponds to a given access
point oriented (DOAP) which is not visible in the detailed
notation, because even in the latter it is represented by a
padlock. To allow a clear specification, and allow the
specification approach to support a wide variety of
architectural reasoning, we propose a new way of looking at
controlled ports. We maintain the concept of padlocks
associated with a port (or an access point) when the port is
not seen in detail (Figure 4a1, Figure 4b1). When the detail
of the port is requested, we propose to show explicitly the
control mechanism, represented by a DOAP. The detail of a
data point or controlled port explicitly shows the access point
used as a control point (Figure 4a2, Figure 4b2). In the detail
view the padlock disappears. With this new view, it is
possible to explicitly link the control point to a data source .

Figure 4a1. Proposed notation
for controlled data port

Figure 4a2. Detailed notation of
controlled data port

90

Figure 4b1. Proposed notation
for controlled server port

Figure 4b2. Detailed notation of
controlled server port

Complex connectors: In IASA, a complex connector is
represented by a communication component. This
component has the same structure as a regular component. It
is represented by a rectangle in which a number of ports are
placed. Presenting a connector as a regular component could
lead to ambiguity when reading architecture. We propose to
maintain the view of component, but to introduce another
notation as a thick line that is necessary to distinguish from
ordinary bus. In IASA, there is actually an aspect that
characterizes communication components. This aspect is the
positioning of client ports and service ports. For example in a
communication component dedicated to load balancing, the
left side of the rectangle corresponds to the server ports and
the right side corresponds to clients ports (Figure 5). In the
IDE it is possible to move from a view as a component to a
view as a line and vice versa.

Figure 5. Example of complex connectors

5.THE TRANSFORMATION PROCESS FOR IASA

The IASA approach, allows free specification of
topologies of components in a high level of abstraction this is
due to the concept of port that provides facilities for free
specification without constraints. With respect to MDA
approach, the component model and port are used to specify
software system that can be positioned at a level of
abstraction higher than the MDA PIM (Platform Independent
Model) level since it is totally independent from any
software mechanism.

The transformation process of a X3ADL specification
into a specification in a very specific implementation
technology starts with the graphical specification. This later
is converted automatically or with assistance (the architect
must provide additional information for making decisions at
the step of interpretation of architectural decisions) in a

X3ADL description. The transformation process includes
four steps:

- The formalization of architectural decisions:
obtaining a X3ADL description from a free
specification of software architecture similar to the
informal specification with minimum of constraints.

- Weaving aspects: This occurs when the aspect-
oriented design is implemented. This is a X3ADL to
X3ADL transformation. In the generated form, the
clauses relating to the oriented aspects specification
are resolved and there is no oriented aspect clause in
the X3ADL generated by this step.

- The normalization of the architecture.
- The production of implementation view.

5.1 THE FORMALIZATION OF ARCHITECTURAL

DECISIONS

As introduced earlier, an architectural decision concerns
the choice of components, how to interconnect them to form
the topology that the architect has in mind, how to specify
various aspects of behavior, including interactions, the
behavior of the components, the conditions to connect ports
imposed by the components. The transformation at this level
concerns architectural actions that seem to be part of the
informal domain, such as deciding to connect two
components by drawing a thick line (bus) or single line
(connector), binding edge (border) of geometric shapes
representing components or connect the border of a
component to a connector or a bus.

The transformation rules applied depend on several
factors including:

- The elements to be interconnected.
- The standards of communication used.
- How the architectural decision is defined: Direction

of the connector, description of the interactions.
- An explicit choice of the architect.
This transformation process is done in real time, it is

carried out progressively as the actions of the architect in the
IDE, and the result of the transformation is immediately
accessible to the architect. Thus for each action the IDE
performs a transformation according to the conditions in
which the architectural decision is specified. Under these
conditions the architect may step in and adjust the
transformation according to the requirements.

5.2 WEAVING ASPECTS

Weaving aspects is mainly based on the concept of
envelope. It is at this step that the port types of component
are transformed by adding new access point called ASPOAP
(Aspect Oriented Access Point). The transformation of these
ports entails the creation of a new type of internal ports. The
result of this phase is a X3ADL description in which
operations of aspects injection are totally resolved.

5.3 THE NORMALIZATION

The normalization phase allows determining a model at
PIM level of MDA. This normalization transforms a X3ADL
description into a description based on the concepts of

91

ordinary port and interface. We recall that the IASA port,
unlike ports based on the concept of interface, allows the
manipulation of any single structural or behavioral element.
This is not the case in other approaches of software
architecture in which the port, also called interface, is an
atomic concept, which does not allow the manipulation of its
components. The architecture which is constructed with the
freedom to manipulate the access points (including DOAP)
is not an ordinary architecture. Its transformation into an
ordinary architecture allows eventually obtaining the
executable code. For example, a diagram using the UML2.0
components and connectors [10] is an ordinary architecture.
A description ArchJava [1] is also an ordinary architecture.

5.4 PRODUCTION OF THE IMPLEMENTATION

VIEW

The main objective of this phase is the production of the
executable code. In other words, it is the projection of the
regular architecture (produced at the normalization phase) in
a chosen implementation technology. At this level, we need
to specify the transformation rules to a specific
implementation technology. We recall that an IASA
component is always instantiated in an envelope. This
concept allows more flexibility in the transformation process.
Indeed, the transformation process is actually the creation of
envelopes. It is easy to adapt the logic of any field, since the
logic of this field is described by specifying the envelope.

6.THE GRAPHICAL EDITOR IASASTUDIO:
PRESENTATION AND FEATURES

The IASA approach is supported by a graphical editor
named IASAStudio [8] that allows the graphical
specification of software architecture to accommodate the
elements of the mental model of the architect. Then these
elements will be transformed into a X3ADL. The architects
will be exempted from the control of this formalism with a
graphical "box and lines" which refers to the informal design
of architectures. Thus the informal behaviour of architects
are supported by the IDE and formalized. For example: when
an architect tries to make a connection between two
components, The IDE helps him to realize this connection by
creating a port at the component interconnected. Depending
on the direction taken for the establishment of the link, the
IDE will determine the type of the port that connects the
connector established. Thus the component from where the
connection begins will have a client port and the other a
server port. Changing the direction of the connection will
change the type of the port interconnected.

Through its graphical interface, the editor also allows
architects to edit the architectural properties of the systems
they design, offering a range of features allowing fast
handling of the various operations like adding, deleting and
editing (rename, copy, paste, zoom etc. ..) of architectural
elements. Moreover IASAStudio corrects errors of design or
of specification, which may occur especially when
developing a new architecture based largely on developing
new types of components, and displaying various warnings
to guide the architect in his work of architecture

specification. IASAStudio has an organization that reflects
the organization of the internal view of IASA components
and allow the designer to easily specify the architecture. The
GUI of the IDE includes the following views (Figure 6):

- Menu: To facilitate access to different features of
the editor;

- Toolbar: For a quick start of the tool and the various
services offered;

- Drawing area: The drawing area contains
sub views to consider the composite component
from various perspectives; thus it is possible
to see all three parts of the internal view of
the component model or see each part individually ;

- The Library of components, ports, and connectors;
- The X3ADL code area: the code corresponding to

the drawing is automatically generated.

Figure 4. The IASAStudio GUI

7.CONCLUSION

One of the main objectives of the IASA approach is to
provide the models and the tools which have the ability to
directly capture the architect mental model about a solution
in the early steps of a software elaboration process. Usually,
in the early step of a design process, boxes, lines and actions
represent the main concepts used in the specification of a
mental model. In this kind of specification, achieved far from
any software mechanism, a software architect draws
connections from one box to another, producing topologies
which cannot be handled directly by current software
architecture models and tools. This objective was reached in
the IASA approach by the definition of the port model that
allows the specification of a wide range of topologies far
from any software mechanism. This aptitude is made
possible by allowing the free manipulation of the elements
defining a port during the specification of interconnections.
The IASA approach has addressed other important concepts
and notations that are well suited for the transformation of an
informal specification to an X3ADL specification. This later
is also transformed to achieve to an executable code in a

92

specific technology, through transformation rules as
recommended by MDA.

Currently we are working on the improvement of the
usability of the IASAStudio and the definition of
transformation rules to support more target technologies for
obtaining the executable code.

REFERENCES
[1] Aldrich, J., Chambers, C., Notkin, D., “ArchJava:

Connecting Software Architecture to
Implementation”,In ICSE'02, Orlando, Florida, USA,
2002.

[2] Bennouar, D., T. Khammaci, A. Henni: “A new
approach for component’s port modeling in software
architecture”, Journal of Systems and Software, Vol.
83, Issue 8, pp. 1430-1442, Elsevier, 2010

[3] Bennouar, D., HENNI, A., “A Review of an Aspect
Oriented Architecture Description Language”, The
Meditaranen Journal of Computers and Networks, Vol
6, N° 1, pp 15-22, 2010, © 2010 SoftMotor Ltd., UK.

[4] Bennouar, D., “The Integrated Approach to Software
Architecture”, 2009, PhD thesis, ESI, Oued Smar,
Algies.

[5] Boer, R., van Vliet, H., “On the similarity between
requirements and architecture”, In Journal of Systems
and Software 82 (3), 544–550, 2009.

[6] Bradbury, J., Cordy, R., Dingel, J., Elinger, M., “A
survey of self management in dynamic software
architecture specifications”, In Proceedings of the ACM
SIGSOFT International Workshop on Self-Managed
Systems (WOSS’2004), ACM Press, 2004.

[7] Castroa, J., Lucenab, M., Silvac, C., Alencara, F.,
Santosa, E., Pimentela, J., “Changing attitudes towards
the generation of architectural models”, The Journal of
Systems and Software, doi:10.1016/j.jss.2011.05.047,
2011.

[8] Guessoum, D., “IASAStudio an IDE for specifying
software architecture according to IASA approach”
, Master Thesis, University of Blida, 2010, Internal
Reports.

[9] Hassam, K., George, B., Régis, F., Sadou, S., “Using
the model transformation to facilitate the selection of
software components”, IDM'2008.Mulhouse.

[10] Roh, S., Kim, K., Taewoong, J., “Architecture
modeling language based on UML2.0”, In APSEC’04 :
Proceedings of the11th Asia-Pacific Software
Engineering Conference, pages 663–669. IEEE
Computer Society,2004.

[11] Ruscio, D., Malavolta, I., Muccini, H., Pelliccione, P.,
Pierantonio, A., “Developing next generation ADLs
through MDE techniques”, ICSE ’10, 2010.

[12] Shaw, M., Clements, P., “The golden age of software
architecture: A comprehensive survey”, IEEE Software,
26(4):70–72, 2009, doi: 10.1109/MS.2009.83.

[13] Taylor, R. N., Medvidovic, N., Dashofy, E. M.,
“Software Architecture : Foundations, Theory, and
Practice”,John Wiley & Sons, 2009.

[14] Weinreicha, R., Buchgeher, G., “Towards supporting
the software architecture life cycle”, The Journal of
Systems and Software, doi:10.1016/j.jss.2011.05.036,
2011.

93

