
Acta Informatica Pragensia, 2017, 6(2): 124–137 

DOI: 10.18267/j.aip.105 

Peer-reviewed paper 

  

124 ACTA INFORMATICA PRAGENSIA Volume 06 | Number 02 | 2017 

 

HACS: A Hybrid Framework for Continuous  
Flexible and Controlled Architecting  

Bentlemsan Khadidja*, Bennouar Djamel†, Tamzalit Dalila‡,  
Hidouci Khaled Walid*,    

Abstract  

Systems like e-voting, e-banking or e-health must offer flexibility to continuously meet technical 
and legal changing requirements and must at the same time guarantee robustness to respect 
their security and sensitivity. Component Based Software Engineering (CBSE) and Service 
Oriented Software Engineering (SOSE) with their modular design represent the most suitable 
paradigms for those systems. They have strong complementary advantages, despite their 
similarities, their heterogeneity still hinders systems to benefit from both of them. In this paper, 
we propose a hybrid framework HACS (Hybrid Approach between Component and Service). 
HACS proposes to define sensitive systems as a hybrid architecture where the critical parts 
are controlled according to CBSE coupled to the flexibility and dynamism of SOSE. To address 
heterogeneity and make possible the substitution between hybrid components, HACS uses  
a common syntax with semantic annotations based on SAWSDL related to two ontologies; 
HACS ontology and domain ontology. We illustrate HACS all along the paper through  
an e-voting case study. 

Keywords: CBSE, SOSE, Hybrid Architecture, HACS, E-Voting; Continuous Architecture. 

 

1 Introduction 

E-voting is a technological and effective way to modernize the voting process and administer 

the election (Gibson, Lallet and Raffy, 2008) by enabling voters to cast a secure ballot over the 

Internet. The main advantage is to simplify the voting process, to increase voters’ accessibility, 

to reduce the error rate and to speed up the report of definite results. E-voting is considered as 

a high security sensitive system since it plays a decisive role in democratic organizations. Errors 

are not forgivable, it must offer a free vote and the exact election results. Electronic voting 

systems worthy of the name (Chondros et al., 2014) must meet the following properties: (1) 

Universality: all eligible voters have the right and ability to cast their votes using the e-voting 

system. (2) Equality: equal access to all eligible voters, they all have the same number of votes, 

usually one ballot each. (3) Anonymity: each voter has the right to cast his vote secretly and no 

                                                 

* Laboratoire de la Communication dans les Systèmes Informatiques, Ecole nationale Supérieure d’Informatique (ESI),  

BP 68M Oued Smar, 16309, El Harrach, 16309, Alegria  

 k_bentlemsan@esi.dz, w_hidouci@esi.dz 

† Department of Informatics, Université de Bouira, Rue Drissi Yahia, Bouira 10000, Algeria  

 djamal.bennouar@univ-bouira.dz 

‡ Laboratory of Digital Sciences of Nantes, Department of Informatics, University of Nantes, Nantes 44300, France  

 dalila.tamzalit@univ-nantes.fr 



  

125 ACTA INFORMATICA PRAGENSIA Volume 06 | Number 02 | 2017 

one should be able to relate voters to their vote. (4) Privacy: impossibly to a party to extract 

any information about the voter’s ballot, or votes not cast by legitimate voters. (5) Verifiability: 

which is of two types: individual verifiability that represents the ability for voters to check that 

their votes were correctly recorded and that all the votes were processed and counted correctly. 

(6) Trust: eligible voters must trust the system and believe that e-voting principals were met. 

(7) Robustness: be resilient to the faulty behaviour of a system; partial component system 

malfunction occurs or when it is subject to external malicious attacks.  

We propose in this paper a new framework called HACS combing CBSE and SOSE concepts 

and principals throw e-voting case study. The rest of this paper is organized as follows: in 

section 2, motivation and related works will be exposed. In section 3, the fundamental concepts 

of our approach (HACS) will be presented. In section 4 the substitution process will be 

explained and e-voting case study will be illustrated. Finally, section 5 will conclude the paper. 

2 Motivation and related works 

There are several e-voting systems proposed in the literature, the software architecture best 

practices make CBSE or SOSE the most suitable paradigms. Component-based supporters 

consider modular design, reusability and controllability as the key features to meet e-voting 

requirements in a homogeneous environment; as an example, Helios (Adida, 2008) based on 

homomorphic encryption provides universal verifiability and voter privacy. ZEUS (Tsoukalas 

et al., 2013) extends HELIOS in an open source way to address usability and tallying through 

a separate computing system. Mosaic (Abdellatif and Adouani, 2014) allows fine-grained 

control of each task and secure communication between the different system components. Its 

modularity is used for runtime adaptation and scalability.  

Most SOSE voting systems are based on web services. Authors believe that they are the ideal 

technology to design robust e-voting systems when the internet is the communication platform 

because of their interoperability. Zurich (Beroggi, 2008) is a robust service-based system, its 

source code is not available; authors are convinced that attackers with such access could change 

voting and auditing records. DWSBEV (Omidi and Azgomi, 2009) proposes an architecture 

based on dependable web services that  has been evaluated using stochastic Petri nets and 

provides security by replicated systems. SOREV (Cooke and Anane, 2012) is a robust FOO92 

e-voting where robustness is considered from two perspectives protocol level and system level. 

SOREV provides privacy, verifiability and integrity.  

The CBSE vision of e-voting systems supports the most important e-voting requirements 

(privacy, verifiability). Its biggest issues are the lack of interoperability and rigidity that directly 

affects system robustness. The SOSE vision represents the optimal paradigm to ensure 

robustness. Web services have the ability to create composite services dynamically through 

automatic and dynamic composition techniques in a heterogeneous environment. They make e-

voting systems flexible and fully scalable. According to (Cooke and Anane, 2012) the absence 

of the state in SOAP/HTTP makes web services more resilient to failure. The alternating 

connections of web services and the regular flushing of the state that they initiate, make them 

very suitable for e-voting systems. Unfortunately, there are some issues that, to our knowledge, 

are not yet addressed:  

  



  

126 ACTA INFORMATICA PRAGENSIA Volume 06 | Number 02 | 2017 

(1) Anonymity: Web services guarantee a robust, flexible and fully scalable 

architecture. The confidential nature of e-voting must be respected, but there is no 

evidence that the service provider can’t break the voter's anonymity and keeps track of 

votes.  

(2) Availability: web services are created and updated on the fly, some web services 

required by the system may not exist at a precise moment or may be unavailable 

(timeout) which may lead to serious execution issues.  

(3) Trust: Web services are represented by black boxes. We cannot confirm that web 

services properly execute the required functional code. For crucial parts like security 

protocols, it may present a favourable point to attack.  

(4) Election rights: election principles and rights change from a system to another.  

They present system-specific and confidential data. We think that web services can’t be 

the appropriate implementation technology.   

(5) Controllability: In SOSE, web services are exposed as black boxes and their 

functional code cannot be modified. In contrast of CBSE where components can be 

designed using white boxes or grey boxes allowing software architect to make some 

changes to keep fine control especially for critical parts of the system.  

We propose to design the e-voting system as a hybrid architecture and take full advantages  

of CBSE and SOSE (Breivold and Larsson, 2007); this architecture must offer the flexibility of 

SOSE to meet changing requirements and at the same time guarantee controllability of CBSE 

to respect e-voting security and sensitivity. For that reason, we design all components as 

architectural elements of SOSE except for confidential and sensitive parts that have to benefit 

from CBSE controllability, availability and trust. We present in the next section our 

contribution called HACS. 

3 HACS Framework 

HACS proposes to meet together advantages of SOSE and CBSE through a hybrid framework. 

Its main objective is to continuously ensure robustness in security sensitive systems at both 

design-time and runtime. To achieve this, HACS supports flexibility and dynamism of SOSE 

and controllability of CBSE.   

Starting from the fact that the service in SOSE is a specific component (Erl, 2005). HACS leans 

on component-based software architecture. Its components can be implemented as architectural 

elements of CBSE or SOSE. In the rest of paper, to represent SOSE components in HACS we 

use SOAP-based web services because of their biggest success and growing use. HACS 

proposes a meta-model defining its architectural elements and a process describing how the 

substitution is performed at runtime. To represent CBSE, HACS uses proprietary components. 

3.1 HACS Meta Model 

HACS embodies several concepts, following the component and connector architectural 

style(Medvidovic and Taylor, 2000) to handle in a uniform way proprietary components  and 

web services. It introduces new concepts as usability value, brother component and neighbour 

component, Fig.1 exposes the meta-model of HACS and highlights its concepts presented 

hereafter:  



  

127 ACTA INFORMATICA PRAGENSIA Volume 06 | Number 02 | 2017 

Fig. 1. HACS Meta Model. Source: Authors. 

 

• HACS Component: is the basic architectural element in HACS, we distinguish two 

main categories of components; primitive and composite, both share the same external 

view (Fig. 2). The external view of HACS components is composed of a container and 

ports. Each HACS component has a usability value.  

• Container: separates the component from external world and deals with the 

architectural mismatch between components. 

• Ports:  The expressive power of a component model depends mainly on the quality of 

its ports (Bennouar, Khammaci and Henni, 2010).  In HACS ports are the interaction 

points between HACS components, they are classified into two types; data ports and 

control ports.  

• Data ports:  are composed of a set of data Parameters (in, out, in-out) to transmit data 

and action Parameters: to exchange the service flow between components. 

• Control ports: are specific ports divided into three types: 

(1) The exception port is to throw an exception, (2) the event port is to expose conditions 

required to execute a component (3) The usability port contains a float value to express 

the usability value of a HACS component. 

 



  

128 ACTA INFORMATICA PRAGENSIA Volume 06 | Number 02 | 2017 

 

Fig. 2. HACS concepts notation. Source: Authors. 

• Usability value: is a normalized weighted sum calculated from a set of non-functional 

properties (Zou et al., 2014). Suppose that Q(c) is a finite set representing the commonly 

used quality criteria or non-functional attributes for the HACS component c.  

We note Q(c) = {Q1(c), Q2(c), Q3(c), Q4(c), Q5(c)} where: 

- Availability Q1(c): the probability that c is accessible. 

- Reputation Q2(c): the measure of trustworthiness of c.   

- Reliability Q3(c): the probability of success of c. 

- Cost Q4(c):  the execution cost of c. 

- Response time Q5(c): the time interval between the request and response message 

of c. 

 

The usability value serves for determining the optimal value representing the quality 

criteria of a HACS component c by maximizing positive non-functional attributes X, 

such as reputation, availability and reliability and minimizing negative non-functional 

attributes Y, such as the execution cost and response time.  

The usability value of a primitive component c is defined: 

 

𝑈𝑉(𝑐) =  ∑
Qi

max−Qi (c)

Qi
max−Qi

min + ∑
Qi (c)− Qi

min

Qi
max−Qi

minQiϵ YQiϵ X           Qi
max ≠ Qi

min             (1) 

 

• Primitive component: a primitive component can be presented by a black box, white 

box or grey box. It can be implemented as a proprietary component for confidential and 

critical parts or as a web service otherwise. Primitive components can have brother 

components and neighbour components defined at design time by the software architect 

and updated at runtime.  

HACS Component 

Notations   

Data Port   

DataPort 

Data Parameter 

Usability Port 
Event Port 
Exception Port 

Control Port   

Implementation 

PC WS 

Action Parameter 



  

129 ACTA INFORMATICA PRAGENSIA Volume 06 | Number 02 | 2017 

• Composite component: is the combination of other HACS components either 

primitives or composites. 

• Brother component: Two primitive components are said to be brothers, if they offer 

the same interface, the same functionality and are implemented in the same technology, 

this means if the “HACS component” is implemented as a proprietary component 

(respectively web service) all brothers must be implemented as proprietary components 

(respectively web services). 

• Neighbour component: Two primitive components are said to be neighbour; if they 

offer the same interface, the same functionality and are implemented in different 

technologies, in other words, if the “HACS component” is implemented as a proprietary 

component (respectively web service) all neighbours must be implemented as web 

services (respectively proprietary components). 

• HACS connector: acts as a mediator between HACS components, it is represented by 

simple interaction such as HTTP/RCP/SOAP that binds two ports. This is important to 

ensure loose coupling and the flexibility in HACS.  

• Description: is the interface of a HACS component, its definition is explained in detail 

in the next section. 

3.2 Description of HACS components 

To address heterogeneity between proprietary components and web services, they must be 

described uniformly using the same syntactic elements. This will not only save significant time 

and reduce costs but allow possible substitution between proprietary components and web 

services.  

As both of CBSE and SOSE are interface based, the description can be done using an existing 

Interface Description Language (IDL). Web services are already described by WSDL 

syntax(Chinnici et al., 2007), reusing WSDL to describe proprietary components is very 

beneficial compared to other IDLs, to avoid the re-description of web services and to help the 

software architect to quickly analyse the description with a well-known standard. 

Unfortunately, the interpretation of WSDL file is very ambiguous for the machine because of 

its lack of semantics. SAWSDL (Semantic Annotation for WSDL) is W3C recommendation 

extending WSDL by adding semantics to its elements and makes them interpretable by the 

machine using references to semantic models as ontologies (Kopecký et al., 2007). SAWSDL 

syntax can be extensible by adding new elements related to ontologies’ concepts. We have 

inspired this idea from (Chabeb and Tata, 2008) to provide a mechanism that ease the automatic 

discovery, composition and invocation as explained in Fig. 3.  



  

130 ACTA INFORMATICA PRAGENSIA Volume 06 | Number 02 | 2017 

 

Fig. 3. The HACS Description schema. Source: Authors. 

The semantic model of HACS uses SAWSDL annotations associated to two ontologies. The 

first is called HACS ontology, it contains concepts defining semantic of HACS components, 

their brothers, their neighbours and their non-functional attributes. The second ontology is 

called functional or domain ontology, it contains the domain-specific semantic describing the 

system, E-voting in our case study. Three extension attributes to annotate the operation element 

in HACS description (Fig. 3) are added to XML Schema element declarations and type 

definitions named brotherModel, neighborModel and uvModel.  

 

<xs:attribute name="brotherModel"  type="listOfAnyURI" /> 

<xs:attribute name="neighborModel" type="listOfAnyURI" /> 

<xs:attribute name="uvModel"       type="listOfAnyURI" /> 

… 

… 

<xs:simpleType name="listOfAnyURI"> 

<xs:list itemType="xs:anyURI"/> 

</xs:simpleType> 

 

  



  

131 ACTA INFORMATICA PRAGENSIA Volume 06 | Number 02 | 2017 

The input and output data parameters are expressed as a request message and a response 

message respectively. The main difference between the description of proprietary components 

and web services lies on data related to web service invocations: for instance, the binding and 

the port elements, they are represented by empty elements as details in the following listing: 

 

<description ...> // description of the proprietary Component 

  <types> 

...// Using built-in data types and they are defined in XMLSchema. 

  </types> 

 

  <interface ...> 

    <operation ... > 

   ...// Here annotation of the proprietary Component  

   ...// brother / neighbour / UV 

      <input> 

        ...// the proprietary Component Request 

      </input> 

      <output> 

        ...// the proprietary Component Response 

      </output> 

      ... 

    </operation> 

  </interface> 

 

  <binding /> 

 

  <service ...> 

     ...// Location of the property component 

    <port/> ...// Empty element 

    ... 

  </service> 

</description> 

 

3.3 The Runtime substitution process 

The substitution process of HACS ensures a rapid and a continuous delivery by introducing 

brothers, neighbours and dynamic web services searches (see Fig. 4). 

 



  

132 ACTA INFORMATICA PRAGENSIA Volume 06 | Number 02 | 2017 

 

Fig. 4. The substitution process. Source: Authors. 

To ensure system robustness, HACS framework continuously detects malfunction behaviour 

before invoking the HACS component by comparing UV to the limit value, if the failure is 

found, the substitution is launched and is done in two steps: 

• The first step:  HACS Framework based on SAWSDL description, extracts the brother 

components list (BL) from HACS ontology. The optimal brother with the highest UV 

is selected and the faulty component is directly substituted by its brother. If any brother 

is found, HACS searches the optimal neighbour from neighbours component list (NL) 

and proceeds the same way as brother’s search. This first step is introduced in HACS in 

order to enhance rapid delivery. When no component in BL or NL is found, the second 

step is launched.  

• The second step: SAWSDL annotations help to find similar web service from Domain 

ontology according to the following sequence: 

o Discovery: finds the list of similar web services (SL) that offer the same 

functionality as the faulty component from domain ontology. 

o Selection: once (SL) discovered, the optimal web service (WS*) having the 

highest usability value is selected from SL.  

o Substitution: the faulty component is replaced by WS* and deleted from HACS 

ontology, then WS* is added with its existing brothers as new concepts in HACS 

ontology to reduce the execution time of future substitutions. Brothers of the 

optimal web service are the remaining web services from the candidate list {SL-

(WS*)}.  



  

133 ACTA INFORMATICA PRAGENSIA Volume 06 | Number 02 | 2017 

4 E-voting in HACS  

To secure the voting process from various attacks, e-voting protocols have been proposed. One 

of the well-known and proved protocols is FOO'92 based on blind signature, it evolves voter, 

administrator and counter in three phases: registration, casting and tallying. the protocol schema 

is explained in details in (Fujioka, Okamoto and Ohta 1992). Our case study is based on FOO’92 

Protocol. EVSH (E-Voting System in HACS) is seen as a hybrid application, the software 

architect defines at design time its architecture composed of two proprietary components to 

expose critical and very sensitive parts: “FOO92 component” and “the elections rights 

component”, as well as web services components like “Authentication component”, “Voting 

component”, “Duplication component”, the role of each component is explained below:  

1. The FOO 92 component: is a composite HACS component to secure EVHS according to 

the FOO 92 schema composed of four primitive proprietary components (see Fig. 5):  

• FOO Voter: In registration phase, the voter prepares a ballot, encrypts it, signs it then 

sends it to the administrator. in casting phase, removes the blinding encryption layer 

revealing an encrypted ballot signed by the administrator then sends the resultant 

signed-encrypted ballot the counter and finally in tallying phase, verifies that their 

ballots are on the list and sends the counter the decryption keys. 

• FOO Administrator: verifies in registration phase that the signature belongs to an 

eligible voter who has not yet voted, then signs the valid ballot and returns it to the 

voter. 

• FOO Counter: checks in casting phase the signature on the encrypted ballot. If the 

ballot is valid, the counter puts it on a temporary list that is published after closing the 

vote. In tallying phase; FOO counter uses voter keys to decrypt the ballots and add the 

votes to the election tally. 

• FOO Taller: publishes the voting results so that voters can verify their votes. 

2. Election rights component: defines the legal framework of the e-voting system. 

3. Authentication component: gives access to eligible voters after verifying their name, id 

and fingerprint.  

4. Voting component: specifies the voting user interface to cast votes. 

5. Duplication component: replicates the voting results on multiple servers for safety.  

 



  

134 ACTA INFORMATICA PRAGENSIA Volume 06 | Number 02 | 2017 

 

Fig. 5. E-voting process in HACS. Source: Authors. 

 

The software architect defines an acceptable range of values for each quality criteria (Tab. 1). 

From which the limit value is calculated, in this example the Limit =“1.1”, Then he assigns 

eventual brothers and neighbours of all primitive components in EVHS. 

We suppose that UV (Authentication component) =1, it is therefore a faulty component because 

UV < limit value. The substitution process is launched to replace it with the most suitable 

component.  

 

 

Tab. 1. Usability values of Auth1 and Auth2. Source: Authors. 

 

 Non Functional Attributes  

to be  Minimized 

Non Functional Attributes 

 to be  Maximized 

 

Cost 

[1,200] € 

 

 

Response time 

[1,1000] ms 

 

Availability 

[0.6,1] % 

 

Reputation 

[0.4,1] % 

 

Reliability 

[0.6,1] % 

 

UV 

Auth1 180 750 0.8 0.6 0.8 1.68 

Auth2 150 800 0.7 0.5 0.8 1.2 



  

135 ACTA INFORMATICA PRAGENSIA Volume 06 | Number 02 | 2017 

           

 

Fig. 6. HACS semantic model. Source: Authors. 

The substitution process (see Fig. 6) go throw the following steps after extracting information 

from the SAWSDL description file of “Authentication component”: 

 

First step  

1- Searching brothers from HACS ontology. 

                      RESULT:  No brother was found BL= {}. 

       2- Searching neighbours from HACS ontology. 

               RESULT:  No neighbour was found NL= {}. 

Second step 

3- Searching candidate list from Domain ontology (Fig.6).  

               RESULT:  SL = (Auth1, Auth2).  

       4- Selecting the optimal web service. 

               RESULT:  WS* = Auth1. 

 

Auth1 is the optimal UV (WS*) = 1.68, “Authentication component” is substituted by Auth1. 

Auth2 is a web service offering the same functionality of Auth1, so Auth2 is a brother component 

of Auth1. The HACS ontology is updated by adding Auth1 with its brother Auth2, then removing 

“Authentication component” from HACS ontology. If Auth1 falls Auth2 will be found in future 

invocation at the first step of the substitution process. 

  



  

136 ACTA INFORMATICA PRAGENSIA Volume 06 | Number 02 | 2017 

4.1 Discussion  

Our contribution successfully meets the e-voting requirements and offers controllability and 

flexibility. Universality is guaranteed by “Authentication component”.  Anonymity, privacy 

and verifiability are ensured by “FOO’92 component”. Equality is verified through “Election 

rights component”. The use of proprietary components in critical parts and the duplication  

of results increase trust and finally the substitution process strengthen the system robustness at 

runtime. 

5 Conclusion 

In this paper, we presented HACS, a framework to build hybrid and continuous architecture 

mixing the power of CBSE and SOSE. We have shown through the EVSH how the 

requirements of e-voting are fulfilled. To deals with the heterogeneity in HACS we have 

proposed to use a SAWSDL common syntax related to two ontologies; domain ontology to 

describe the domain of the system and HACS ontology to describe non-functional concepts. 

Currently, HACS deals with an existing architecture defined at design time by the software 

architect and updated continuously at runtime. An interesting direction of our future work is to 

define architecture from the scratch. Furthermore, we have proposed to describe HACS 

components using IDLs, this reveals insufficiency to describe the structure of complex 

components, we think that an architecture description language will be more appreciated.  

Additionally, more careful work is needed to define the web service discovery algorithm by 

adopting recent propositions as AI planning graph. 

References 

Abdellatif, T. & Adouani, A. (2014). Mosaic: a secure and practical remote voting system. 
International Journal of Autonomic Computing, 2(1), 1-20. doi: 10.1504/IJAC.2014.059109 

Adida, B. 2008. Helios: Web-based Open-Audit Voting. In Proceedings of the 17th conference on 
Security symposium (pp. 335-348). Berkeley: USENIX Association. 

Bennouar, D., Khammaci, T. & Henni, A. (2010). A new approach for component’s port modeling in 
software architecture. Journal of Systems and Software, 83(8), 1430-1442. doi: 
10.1016/j.jss.2010.03.005 

Beroggi, G. E. G. (2008). Secure and easy internet voting. Computer, 41(2), 52-56. doi: 
10.1109/MC.2008.60 

Breivold, H. P. & Larsson, M. (2007). Component-Based and Service-Oriented Software 
Engineering: Key Concepts and Principles. In Proceedings of the 33rd EUROMICRO Conference 
on Software Engineering and Advanced Applications (pp. 13-20). New York: IEEE. doi: 
10.1109/EUROMICRO.2007.25 

Chabeb, Y. & Tata, S. (2008). Yet another semantic annotation for WSDL. In IADIS International 
Conference on WWW/Internet (pp.437-441). Retrieved from https://hal.archives-ouvertes.fr/hal-
01380984/document 

Chinnici, R., Moreau, J.-J., Ryman, A. & Weerawarana, S. (2007). Web services description 
language (wsdl) version 2.0 part 1: Core language. Retrieved from 
https://www.w3.org/TR/wsdl20/wsdl20.pdf 

Chondros, N., et al. (2014). Electronic Voting Systems – From Theory to Implementation. In E-
Democracy, Security, Privacy and Trust in a Digital World. e-Democracy 2013. Communications 
in Computer and Information Science, vol 441 (pp. 113-122). Cham: Springer. doi: 10.1007/978-
3-319-11710-2_11 

Cooke, R. & Anane, R. (2012). A service-oriented architecture for robust e-voting. Service Oriented 
Computing and Applications, 6(3), 249-266. doi: 10.1007/s11761-012-0108-0 

https://doi.org/10.1504/IJAC.2014.059109
https://doi.org/10.1016/j.jss.2010.03.005
https://doi.org/10.1109/MC.2008.60
https://doi.org/10.1109/EUROMICRO.2007.25
https://hal.archives-ouvertes.fr/hal-01380984/document
https://hal.archives-ouvertes.fr/hal-01380984/document
https://www.w3.org/TR/wsdl20/wsdl20.pdf
https://doi.org/10.1007/978-3-319-11710-2_11
https://doi.org/10.1007/978-3-319-11710-2_11
https://doi.org/10.1007/s11761-012-0108-0


  

137 ACTA INFORMATICA PRAGENSIA Volume 06 | Number 02 | 2017 

Erl, T. (2005). Service-oriented architecture: concepts, technology, and design. India: Pearson 
Education. 

Fujioka, A., Okamoto, T. & Ohta, K. (1992). A practical secret voting scheme for large scale 
elections. In International Workshop on the Theory and Application of Cryptographic Techniques, 
(pp. 244-251). Berlin: Springer. doi: 10.1007/3-540-57220-1_66 

Gibson, J. P., Lallet, E. & Raffy, J.-L. (2008). Analysis of a Distributed e-Voting System Architecture 
against Quality of Service Requirements. In The Third International Conference on Software 
Engineering Advances, ICSEA'08 (pp. 58-64). New York: IEEE. doi: 10.1109/ICSEA.2008.18 

Kopecký, J., Vitvar, T., Bournez, C. & Farrell, J. (2007). SAWSDL: Semantic Annotations for WSDL 
and XML Schema. IEEE Internet Computing, 11(6), 60-67. doi: 10.1109/MIC.2007.134 

Medvidovic, N. & Taylor, R. N. (2000). A classification and comparison framework for software 
architecture description languages. IEEE Transactions on software engineering, 26(1), 70-93. 
doi: 10.1109/32.825767 

Omidi, A. & Azgomi M. A. (2009). An architecture for e-voting systems based on dependable web 
services. In International Conference on Innovations in Information Technology, IIT'09 (pp. 200-
204). New York: IEEE. doi: 10.1109/IIT.2009.5413640 

Tsoukalas, G., Papadimitriou, K., Louridas, P. & Tsanakas, P. (2013). From helios to zeus. In 
Presented as part of the 2013 Electronic Voting Technology Workshop and Workshop on 
Trustworthy Elections. Retrieved from http://esdep.web.auth.gr/wp-
content/uploads/2014/06/from_helios_to_zeus.pdf 

Zou, G., Lu, Q., Chen, Y., Huang, R., Xu, Y. & Xiang, Y. (2014). QoS-Aware Dynamic Composition 
of Web Services Using Numerical Temporal Planning. IEEE Transactions on Services 
Computing, 7(1), 18-31. doi: 10.1109/TSC.2012.27 

 

https://doi.org/10.1007/3-540-57220-1_66
https://doi.org/10.1109/ICSEA.2008.18
https://doi.org/10.1109/MIC.2007.134
https://doi.org/10.1109/32.825767
https://doi.org/10.1109/IIT.2009.5413640
http://esdep.web.auth.gr/wp-content/uploads/2014/06/from_helios_to_zeus.pdf
http://esdep.web.auth.gr/wp-content/uploads/2014/06/from_helios_to_zeus.pdf
https://doi.org/10.1109/TSC.2012.27

