
THE INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT2014)

University of Nizwa, Oman December 9-11, 2014 Page 273

Reconciling Component Based & Service Oriented Software Engineering:

Application to e-Health System

Bentlemsan Khadidja

The National school of

computer

Sciences (ESI)

Oued smar, Algiers, Algeria

k_bentlemsan@esi.dz

Bennouar Djamel

Computer Science

Department

Akli Mouhand OulHadj

University

Bouira, Algeria

dbennouar@gmail.com

Hidouci Walid

The National school of

computer

Sciences (ESI)

Oued smar, Algiers, Algeria

w_hidouci@esi.dz

Abstract— today, with the rise of the internet technology, software systems need to be dynamic, highly

flexible and at the same time controllable and simple to maintain. To achieve this goal, recent studies have

mixed the strength of Component Based Software Engineering (CBSE) and Service Oriented Software

Engineering (SOSE). In the present paper, we show the importance of such collaboration through a

critical e-Health case study: The Organ Transplant Management System (OTMS).

Keywords- Component Based Software Engineering, Service Oriented Software Engineering, Collaboration,

e-Health.

INTRODUCTION

Component Based Software Engineering was a
shift of paradigm from traditional software
development to simplify design of software,
improve quality and reduce costs of development
by ensuring the reuse of pre-existing software
packages known as components. Component is a
part of system, available in ready for use state that
can communicate with other components through
interfaces according to well define Architecture
Description Languages. Despite the success of
CBSE, it does not address all complexities that
software developers are facing today especially
with the emergence of internet; heterogeneity of
platforms and protocols, and the difficulty of
locating and selecting components against system
requirements, have led to the emergence of new
paradigm know as Service Oriented Software
Engineering .

SOSE utilises services as functionality units, a
service is a black box entity done by a provider to
complete desired end results for a consumer. SOSE
ensure loose coupling in order to minimize the
dependencies and thus to reduce the risk that a
change in one part of an application will force
changes in other parts[9].SOSE simplify the
integration of distributed systems build on various
operating systems and technologies but still face
challenges as automatic composition.

Although they are built around similar concepts and
share many characteristics, each paradigm has its
own philosophy, abstraction, issues and challenges.
It would be beneficial to combine the force of the

two paradigms to simplify the architecture and
design of large-scale and distributed systems.

In other side, e-Health systems are facing the
challenge for improving quality, efficiency and
safety of patient’s data especially with systems that
have “life and death implication”. For meeting this
challenge, we propose in this paper to mix
CBSE/SOSE concepts and applied them in Organ
Transplant Management System.

The remainder of the paper is organized as follows;
(Section 2) presents the main characteristics of
CBSE and SOSE and a brief comparison between
them. (Section 3) outline related works in the area;
(Section 4) shows the Organ Transplant
Management System by combining the strength of
CBSE & SOSE, the last section (Section 5)
concludes this paper.

CHARACTERISTICS OF CBSE AND SOSE

Component based software engineering is being

proposed for building high quality, evolvable,

large-scale systems in a timely and affordable

manner through assembling existing components

together with well-defined software architecture.

Although there are many different views on what a

component is, the common consensus regards a

component as (1) An independent part of a system

that fulfils a precise function, (2) Has a specific

behaviour and communicates with other

components through its interfaces that describe

service required and service provided, and

composed of a number of interaction points called

ports or players, (3) May be reused in different

contexts and without knowledge of its internal

THE INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT2014)

University of Nizwa, Oman December 9-11, 2014 Page 274

structure. (4) Works in the context of a well defined

architecture called component model. Currently,

various component models exist; the majority of

them are targeted toward specific application

domains, they are coming either from the industry

such as JavaBeans [16] to build user interfaces,

CCM [17] for the construction of application

servers, or from research teams as Fractal [15] that

aims to be more generic model. In other ways,

Service-oriented software engineering provides

methods for building software systems by

supporting loose coupling. In SOSE functionality is

seen as a collection of interoperable services. A

service is a self-contained function with a well-

defined interface that does not depend on the

context or state of other services. The

communication can involve either simple data

passing or it could involve two or more services

coordinating some activity. SOSE describes the

interaction among three actors: service provider,

service requester and service registry. The service

provider defines services and publishes their

interface descriptions in the service registry in order

to make them discoverable. The service registry

contains service descriptions and references to

service providers. The service requester is a client,

either an end-user application or other service. It

searches in the service registry for a specific service

using the service description and calls the service

provider when a matching service is found. The

Web services and the OSGi [10] platform are the

most likely technology of SOSE. Web services

essentially use XML to create a robust connection

through WSDL, SOAP and UDDI; WSDL (Web

Services Description Language): is an XML-based

language for describing Web services and how to

access them. SOAP (Simple Object Access

Protocol): is a simple XML-based protocol to let

applications exchange information over HTTP.

UDDI (Universal Description, Discovery and

Integration): it is a directory for storing information

about web services described by WSDL. In other

ways, a service in OSGi is published as a service

interface, an object implementing the service and a

set of properties. The properties, defined keys and

values and allow differentiating services that are

registered under the same interfaces. In addition,

the service registry supports a notification

mechanism that allows bundles to be notified when

a service is registered or unregistered.

CBSE and SOSE are similar to each other in

many points. Both are interface based, they share

the same [13] objectives and principals as

modularity, reusability, rapid development of

software system and maintainability. But still have

distinctive characteristics and mechanisms grouped

in the following points:

- Encapsulation type: CBSE support a

variety of encapsulation types ; black box

exposing just the interface , grey box

exposes interface and a part of

implementation with the possibility of

making modifications in the exposed part,

and white box exposing interface with the

full implementation that can be changed as

needed , in contrast of CBSE, SOSE

support just black box.

- Interoperability: it is the ability to build

software systems by assembling pieces of

different nature: In CBSE, components

must have the same nature and follow the

same component model. , SOSE allows

the composition of services of different

nature turned in different platforms.

- Behavioural model: SOSE deal with

service behavioural model either at lower

level of abstraction, tightly coupled with

the underlying programming languages, or

behaviour is described at higher levels of

abstraction than programming languages.

In component based approaches authors

describe behaviour at architectural level

[18].

- Binding: components in CBSE are

connected at the design phase in contrast

of SOSE where integration depends on

external runtime factors (dynamic

composition in SOSE still be a complex

task).

- Dynamic availability: SOSE support the

dynamic availability which means that

service can appear and disappear at

execution time, that characteristic is not

support by CBSE.

Consequently, building enterprise applications

using purely component based or service oriented

software engineering is not sufficient. It would be

necessary to mix the strength of both paradigms to

address issues that each paradigm can’t solve alone.

RELATED WORK

Recent studies have coupled the strength of CBSE

and SOSE ,although they focus on different

objectives , principals are the same, we present

briefly studies related to our work.

.

- Beanome: The authors [1] have found that

OSGi specification is limited to the

definition of a service gateway and does

not cover a sophisticated component

model to build complex applications. They

add a lightweight layer on top of the OSGi

framework that implements a simple

component model. Beanome, however,

http://www.service-architecture.com/web-services/articles/web_services_definition.html
http://www.service-architecture.com/xml/articles/index.html

THE INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT2014)

University of Nizwa, Oman December 9-11, 2014 Page 275

does not provide support for dynamic

changes.

- Gravity : [2] defines a component model

where component provide and required

service. Gravity introduces a new

approach known as service oriented

component model, In Gravity, an

execution environment entity, called the

Service Binder adapts component

instances and compositions with respect of

dynamic changes.

- FROGi (Fractal components deployment

over OSGi): is an extension of Fractal

component model which has been

proposed for two reasons; the first one is

to offer a flexible component model to the

OSGi’s developers to simplify bundles

development. The second reason is to

leverage the OSGi’s deployment

capabilities to package and deploy Fractal

components. FROGi [4] is implemented

on the top of the OSGi Platform by

combining with Julia, the Java-based

reference implementation of Fractal

component model.

- SOFA2: this work exposes a solution that

provides dynamic availability and

discovery by introducing SOFA2 [15] into

OSGi platform. It proposes to use a proxy

that handles method invocations and acts

as a mediator between component

interfaces and matching services. The

services behind the proxy may appear and

disappear dynamically. It uses also aspect-

oriented controllers and annotations. The

annotations serve for specifying service-

enabled components and interfaces in a

declarative way, while the aspects provide

components with the desired functionality

through the corresponding OSGi

controllers. In this way, SOFA 2

components can both access and publish

OSGi services.

- injected POJO (iPOJO): iPOJO [5] is an

extensible component model based on the

POJO principles and implemented also on

top of the OSGi service platform. One of

the main goals of iPOJO is to keep

service-oriented component development

as simple as possible. The code of a

component should focus on business logic,

not on non-functional requirements. To

achieve this objective, iPOJO provides a

component container (handlers) that

manages all service-oriented component

aspects, such as service publication,

service object creation, and required

service discovery and selection. Moreover,

iPOJO containers are extensible to support

other non-functional requirements as

configuration, persistence, security.

- SCA (Service Component

Architecture):[9] is a service-oriented

component model where an application is

constructed of components that can be

hierarchically composed of other

components. Each component typically

implements some business logic, exposed

as one or more services. A service,

provides some number of operations that

can be accessed by the component’s client.

SCA itself is technology-neutral and aims

to support a wide range of implementation

technologies (BPEL, Java, and C++). SCA

bindings are generated at runtime during

the component composition. Moreover,

there is a capability to create bindings

dynamically by components themselves.

Actually, there are several

implementations of the specification such

as Apache Tuscany SCA [9], IBM

WebSphere [8] or FraSCAti [7].

ORGAN TRANSPLANT MANAGEMENT

SYSTEM

In the last years, organ transplantation has played

an important role in the treatment of patients with

end-stage diseases of most major organ systems.

Treatment of patients through the transplantation of

organs is one of the most complex medical

processes currently carried out. This complexity

arises not only from the difficulty of the surgery

itself but also from extra issues as lifetime of

organs (such as heart, lung, intestine, liver,

pancreas, kidney) deteriorate rapidly between when

they become available and implantation (becoming

useless in less than 6 hours in some cases).

The scenario of OTMS is the following [3]:

when a donor becomes available, he is assessed for

potential donations by the duty transplant surgeon.

Data from medical records and examinations are

passed to the medical laboratory to carry out

potential matching tests to the Organ Transplant

Authority to begin the search for a match. After

making a check for extremely urgent cases, the

transplant manager begins a round robin process

following established matching criteria. Hospital

with potential recipients are contacted in order

decide whether or not an organ could be assigned to

one of their patients. Medical analysis results are

used to inform this process where available. Once a

decision is made, the recipient is contacted and

prepared. In most cases a team from the Hospital at

which the recipient will have the organ implanted

will travel to the Hospital where the extraction will

take place to perform the extraction and

subsequently return with the organ to the

THE INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT2014)

University of Nizwa, Oman December 9-11, 2014 Page 276

implantation site. The implantation surgery is

followed by post care.

e-Health systems like Organ Transplant

Management are difficult to develop due to their

complex and decentralized nature. Also,

Interoperability in such system is one of the major

concerns. It is difficult to design exact and flexible

interoperable architecture which transmit data and

exchange information between systems to systems

(hospital to hospital).

The Service Oriented Software Engineering

facilitates the development of such systems by

supporting modular design, application integration

and software reuse that helps to exchange the

information between similar and dissimilar

applications (interoperability) .

OTMS can be seen in this approach as a

complex web services (see Figure 2) composed of

four basic web services (Medical analysis

Controller, Recipient Selector, Patient Matching

and Surgery Order) , Table 1 shows the interface

and the role of each basic web service;

Web service Function

File Medical Analysis

Controller (Patient p)

Gives the result file

of the corresponding

Patient p from

Medical laboratory

List< Patient > Recipient

Selector (List< Patient >

list)

Selects the list of

extremely urgent

cases

Boolean Patient Matching

(Patient donor, Patient

recipient)

Releases the match

between the donor

and recipient

according to

immunological tests

results

Boolean Surgery

Order(Patient donor,

Patient recipient)

When the donor and

the recipient are

ready for the surgery

, this web service

orders the operation

Figure1: UML Activity Diagram of OTMS

Table 1: basic web services in OTMS

Figure2: OTMS as a Web service

THE INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT2014)

University of Nizwa, Oman December 9-11, 2014 Page 277

Disscusion : From a security perspective, data

accuracy and privacy are key issues in e-Health

system and without these; no solution will get any

real success.in other hand , web services with their

interoperable nature present a favorable points to

attacks. An obvious security requirement is the

need to control access to OTMS. many practical

techniques already exist. Thus , OMTS is

considerated as a highly insecure system. In which

time is a matter of life or death, we must adress its

issues with rapid solutions.

For this reason , we must take full advantage of

SOSE concepts as modularity and maintainability,

and as CBSE shares these concepts with SOSE, we

propose to consider security aspect as a separate

component deployed according to CBSE concepts ,

we can use any component model to implement this

idea (for example Fractal).

Security component can be updated at any time, we

can replace a security Algorithm by another without

touching the initial artchitecture.

Security component can be composed of a set of

primitifs components.

This component identifies the sensitivity of

information within a specific data item and then

restrict access to a user base in accordance to their

predefined roles or identities.

Extending this idea directly to our OTMS, we

obtain the following architecture :

By this manner, OTMS is a complex component

composed of a set of hetergenious components

(security component and web services) simple to

maintain and the modularity is not violated.

Thus, web services and components are treated at

same level , this idea can be explored to define new

hybrid approches.

CONCLUSION AND FUTURE WORKS

In this paper we have discussed the importance of

the collaboration between Component Based and

Service Oriented Software Engineering to develop

dynamic, highly flexible and controllable

applications and have cited some related works in

this area.

Nowadays there is a lack of systems using web

services and Component Based software

engineering concepts at the same time, Most works

are specific to OSGi, they add a component model

on the top of OSGi Platform as a layer, the service

and component are not manipulated at the same

level of abstraction. So the construction of

hetergenious application composing at the same

time CBSE and SOSE are not possible.

Our intention in this paper is to show how it can be

practical to apply such fusion (web srevice and

compoents) in critical e-Health cases as Organ

Transplant Management System.

Presently, we are working on the definition of a

hybrid approach between CBSE and SOSE called

HACS that consists of Component Model,

Connector Model and Architecture Description

Language.

 In future we would like generalize this idea to

other e-Government systems like e-Learning and

deploy them into HACS approach.

REFERENCE

[1] H. Cervantes, and R. S. Hall., “Beanome, A

Component Model for the OSGi

Framework,” Proceedings of the workshop

Software Infrastructures for Component

Based Applications on Consumer Devices,

Lausanne, 2002

[2] H. Cervantes, and R. S. Hall, “Autonomous

Adaptation to Dynamic Availability Using

a Service-Oriented Component Model”,

Proceeding of the workshop Software

Figure3: OTMS as heterogeneous component

THE INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT2014)

University of Nizwa, Oman December 9-11, 2014 Page 278

Infrastructures for Component Based

Applications on Consumer Devices,

Lausanne, 2002.

[3] Álvarez, S., Vázquez-Salceda, J., Kifor, T.,

Varga, L. Z., & Willmott, S. (2006).

Applying provenance in distributed organ

transplant management. In Provenance and

Annotation of Data (pp. 28-36). Springer

Berlin Heidelberg.

[4] M. Desertot, H. Cervantes and D. Donsez,

“FROGi: Fractal components deployment

over OSGi”, Software Composition,

volume 4089 of Lecture Notes in Computer

Science, pages 275–290. Springer 2006.

[5] C. Escoffier, RS. Hall and P. Lalanda,

“iPOJO: an Extensible Service-Oriented

Component Framework”, 2007 IEEE

International Conference on Services

Computing (SCC 2007).

[6] J. Estublier,. Vega, G.” Reconciling

Components and Services: The Apam

Component-Service Platform”, 2012 IEEE

Ninth International Conference On Service

Computing.

[7] Apache Software Foundation. The Apache

Tuscany Project, 2008

http://tuscany.apache.org/.

[8] IBM Webspher

http://www01.ibm.com/software/webspher

e/

[9] L. Seinturier, P. Merle, D. Fournier, N.

Dolet, V. Schiavoni, and J-B. Stefani.

“Reconfigurable SCA Applications with

the FraSCati platform”. In SCC '09:

Proceedings of the 2009 IEEE International

Conference on Services Computing, pages

268–275, Washington, DC, USA, 2009.

[10] OSGi Alliance: OSGi Technical

Whitepaper. (March 2012) Release 5)

http://www.osgi.org.

[11] M. Jiang, and A. Willy, “Architecting

Systems with Components and Services”,

Information Reuse and Integration, 2005.

[12] Apache Felix, http://felix.apache.org/

[13] H. P. Breivold and M. Larsson,

“Component-Based and Service-Oriented

Software Engineering: Key Concepts and

Principles,” In Proc. of SEAA 2007,

Lubeck, Germany, Aug 2007.

[14] Fractal, http://fractal.ow2.org/

[15] SOFA2, http://sofa2.ow2.org/

[16] S.Bodoff, E.Armstrong, J.Ball,

D.CarsonThe J2EE Tutorial. Addison-

Wesley (2004) 2nd edition.

[17] J.Siegel: CORBA 3 Fundamentals and

Programming. 2nd edition. Wiley (2000).

[18] A. Causevic, A. Vulgarakis, “Towards a

Unified Behavioral Model for Component-

Based and Service-Oriented Systems”,

Computer Software and Applications

Conference, 2009 (COMPSAC '09).

http://tuscany.apache.org/
http://www01.ibm.com/software/websphere/
http://www01.ibm.com/software/websphere/
http://www.osgi.org/
http://felix.apache.org/
http://fractal.ow2.org/
http://sofa2.ow2.org/

