
 1

THE DESIGN OF AN EGOVERNMENT APPLICATION
USING AN ASPECT ORIENTED SOFTWARE ARCHITECTURE

Djamal BENNOUAR
Saad Dahlab University

09000 Blida, Algeria
dbennouar@gmail.com

Abberrezak Henni
INI, Oued Smar

16000, Algiers, Algeria
henni@ini.dz

Abdelfettah saadi
CDTA,Baba Hassen,

16000, Algiers, Algeria
asaadi@cdta.dz

ABSTRACT
Software development using software architecture approaches and aspect
oriented programming represents today a very promising way for the design
of high quality software at lower costs. The Integrated Approach to Software
Architecture (IASA) is an Aspect Oriented Software Architecture Approach
using a component model totally independent from any software mechanism,
mainly the interface concept. The IASA component model provides facilities
not supported by nowadays software architecture tools to easily specify any
topology an architect can imagine. It is used here to show how it is easy to
design at a high level of abstraction, an EGovernment application using an
Aspect Oriented approach.

Keywords: Software Architecture, Component, Port, Connector, Aspect,
 E-government

1 INTRODUCTION

After the great success of the object model in
various fields of software system design (RAD,
Distributed Object Infrastructure, Component models
such as EJB, CCM, .Net etc.) the software
engineering has known these last decade a significant
progress in the always searched objective of reducing
the semantic gap between the mental model of
software architect and the models handled by
software tools (diagram, program etc.). This progress
was materialized by the emergence of software
architecture as an autonomous field of
research/development in software engineering. The
purpose of software architecture is to provide the
concepts, mechanisms and tools needed to deal
directly with various aspects of mental models
related to a software system to realize

A mental model was always expressed in an
informal box and line diagram. Each box deals with
a precise functionality of a system. The lines
correspond to interactions semantics or data flow.
This view of software is often called software
architecture and often represents the first step leading
to the realization of a software product.

Software Architecture aims to easily and
efficiently accommodate the mental models of
architect and tries to join other engineering area, like
computer architecture, by adopting the strategy of
designing a system by assembling component.

To reach this objective, the procedural paradigm
of interaction which prevails in the object model and

the component models like JavaBeans, ActiveX, and
EJB must be completely abandoned as was
abandoned structured programming with the
emergence of the object model[1].

A number of research works were conducted
during the last decade concerning software
architecture specification. These efforts resulted in
the proposal of a great number of ADL. The work
presented in [2] summarizes the characteristics of
these ADL and discusses the main concepts of
Software Architecture such as components, ports,
composite component or configuration and
connectors. Recently, UML 2.0, in an attempt to fill
the gaps of UML 1.4, has introduced some
mechanism in order to support the software
architecture concepts [3]. Until now, proposed ADL
have not known the awaited success. This is due to
several factors, such as

- The orientations to solve problems in a
specific domain[4]

- The orientation to deal with a particular
architectural style [5]

- The exclusive use of formal languages like
CSP[6] which are not suited for practitioners.

- The difficulty to design GUI based
application.

- The supported component model deals
usually with coarse grained application

- The component interaction model is usually
based on the interface concept which heavily
constrains the specification of architecture to
a restricted set of well known topologies

 2

fully influenced by the software mechanism,
mainly the procedure call mechanism.

The IASA approach [7],[8] was introduced to fill
most of these deficiencies. It offers an attractive
alternative for the practitioners allowing them to
specify architecture with a high degree of freedom
from any software mechanism constrain. In addition,
IASA support natively Aspect Oriented Software
Architecture (AOSA) specification which reinforces
one step further the modularity of a software system.

The IASA approach was validated by the
effective realization of complex software systems
mainly in the E-government and Telecommunication
fields. In this paper we deal with the design of an
EGovernment oriented application. Java web
technology (ordinary Java classes, Java Beans, Java
Servlets and Java Server Page) represents in this
experience the targeted implementation technology.

In the remaining of this paper, we will briefly
present, in section 2, the fundamental concepts of
Aspect Oriented Programming (AOP) and AOSA.
Section 3 deals with IASA fundamental model
element and with joinpoint specification technique.
A joinpoint is one of the basic elements of AOP. In
section 4 we introduce the global objectives of the
EGovernment project we realized using the IASA
elaboration process. This later is presented in section
5 and section 6 partially shows its application in
order to produce the EGovernment software product.
Section 7 briefly presents the transformation
technique used to generate the application in the
targeted implementation technology and section 8
concludes this work by outlining some challenges
facing the IASA approach in the design of Multi
tiered application based on HTTP servers.

2 ASPECT ORIENTED PROGRAMMING

Aspect-Oriented Programming (AOP) is a recent
software programming paradigm that aims at
providing a better separation of concerns and
reinforces one step further the modularity of a
software system specification. Aspect Oriented
Software Architecture (AOSA) is a recent trend in
Software Architecture [9],[10]. Well known ADLs
such as UNICON, RAPIDE, DARWIN, WRIGHT,
ACME and ArchJava do not provide explicit support
for AOSA. The most interesting works in
Component Based Software Architecture deals with
aspect either at a level of abstraction directly related
to implementation level [11],[12],[13], or use an
existing component model [14],[15] which is usually
extended by the definition of specific interfaces,
connectors and components. This is not the case with
the IASA approach which supports natively AOSA
at a high level of abstraction completely independent
from any software mechanism.

AOP and AOSA are based on the following five
concepts[16]: joinpoint, pointcut, advice, weaver and

advice insertion mode. An advice represents the
logic of a specific concern. The joinpoint indicates
the location in the core business concern where the
code must be altered by injecting the advice to
produce the final system. The injection is achieved
through a special mechanism called the weaver. The
pointcut, specified usually as a regular expression, is
a set of joinpoint where the advice has to be weaved.
The advice insertion mode specifies how to operate
the advice at a pointcut level. The most cited advice
insertion modes are: before (the advice is performed
before the joinpoint), after (the advice is performed
after the joinpoint), and around.

The advice code corresponding to the around
insertion mode, contains a first part that must be
executed before the joinpoint and second part that
must be executed after the joinpoint. The execution
of a service with an around insertion mode is usually
achieved as follows:

- The advice before part is executed.
- An optional call to a special instruction

usually named proceed is made. This later
launch the execution of the service attached
to the joinpoint (a piece of code in
programming language such as AspectJ[16].

- The advice after part is executed.
- The program execution is resumed just after

the joinpoint.
The call to proceed may depend on the result of

the advice before part logic. If proceed is not called,
the joinpoint service is not executed, and the
program execution resumes just after the joinpoint.

3 THE IASA BASIC MODEL ELEMENTS

In the process of defining the architecture of an
application the following concepts are used in IASA:
access point, port, component, envelope, connector
and action [8]. These elements represent the
fundamental concepts of the IASA ADL called
SEAL (Simple and Extensible Action, Architecture
and Aspect Language). The action concept, largely
inspired from the OMG Precise Action Semantic|17,
20]), is used to describe miscellaneous architecture
behaviors such as component interactions, port
behaviors and component behaviors. In the following
we first introduce the component model and the
envelope concept then we discuss the concept of
access point, ports and connectors.

3.1 The IASA component Model

The IASA component model defines a specific
organization either for the external view applicable
to any component (primitive, composite, COTS,
legacy code) or for the internal view |8]. The external
view is represented by the concept of envelope. The
internal view consists of two parts: the operative part
and the control part. The operative part, which
appears at the top of the IASA component graphics

 3

notation, contains the components achieving the
objectives of the core business aspect. Any
component which has an internal structure different
from the IASA internal organization of component is
said a primitive component. COTS, legacy code and
component written in a programming language are
examples of primitive components.

The control part which appears at the bottom of
the IASA component graphics notation, is composed
of a controller, which is a specific component
dedicated to control the operative part and a number
of components handling the technical aspects (i.e.
tracing, exception, transaction). The controller is a
mandatory component of the control part. The
components handling technical aspects are usually
called aspect components.

3.1.1 The Envelope Concept

The main goal of the envelope is to provide a
total isolation of the internal view of a component
from the external world. The envelope is mandatory
in the process of instantiating a component type. In
IASA it is not possible to instantiate a component
type without specifying an envelope. For a given
component type, it is possible to associate a number
of different envelopes, each one is used in a specific
situation. The envelope represents a sort of clothes
an instance of a component type wears in a specific
situation. Hence, it is possible to associate instances
of the same component type with different envelopes
either at the same level or at a different level of the
composition hierarchy describing a composite. The
envelope specifies for a component instance its
deployment case which describes the deployment
environment (machine, operating system, process,
application server) and the exact nature of the
component in such environment (PROCESS, MAIN
THREAD, THREADS, SERVLET, EJB etc.).

An envelope hosts all the resources needed to
support communication aspect (i.e. adapters), to
enable the specification of connections involving the
port's structural elements and to handle aspects
weaving operations of code. In addition, the
envelope concept enables to integrate non IASA
components in a design (i.e. legacy code, COTS,
etc.) and to inject advices at their port level.

3.1.2 Aspect Components

An aspect component is the central place where
the aspect advices are specified[18]. It shares the
same component model with business component.
An aspect component is instantiated only in the
control part. Only one instance of an aspect
component may exist in an entire application. The
aspect components are oriented to support technical
aspects which usually correspond to non functional
properties of the system. In IASA, a technical aspect
is identified by a unique aspect identifier (AspectId).

An aspect component, as defined in the current
implementation of IASA, may have three kinds of
aspect ports: advice ports, advice inhibitor ports and
interest for an aspect port. The advice port gives
access to the advice logic provided by the aspect
component. The advice inhibitor port is used to
specify that the architect explicitly ignores an
interest for an aspect in its design. The interest for
an aspect is usually shown in the external view of a
business component. The main role of an interest for
an aspect port is to relay, according to the provided
advice logic, the management of an aspect to the
external world, usually represented by a more
complex component.

3.1.3 IASA Link Component

The link component (LinkCmp) is used to
represent the same component instance across the
composition hierarchy of an application, in order to
produce lucid and clear architecture specification and
to avoid proliferation of delegation connector. The
LinkCmp is widely used in GUI design based on
IASA visual component [7]. It is also used to
represent the execution environment and external
component to an application (i.e the file system, a
DBMS, an HTTP server etc..). The LinkCmp
provides more than the concept of shared component
of FRACTAL[19]. The LinkCmp provides means to
attach to a same component instance, different
personalized external view, in the same or in
different level of the composition hierarchy. The
personalization of LinkCmp is mainly achieved by
using the alias construct of the SEAL language
either to personalize the action name describing the
port behavior [20] or to associate an action to a
specific aspect insertion mode (before, after,
around)[18]. Hence, in each LinkCmp, the same
action may have a different name and the same
aspect insertion mode may be associated with
different actions

3.2 The Access Point Concept

An access point is the smallest structural
element in the specification of an application [8]. It
is used to define the ports of components. An access
point exposes required or provided resources which
may be data or operations. Communication mode
and the resource time validity are among the
properties of an access point. An access point may

Figure 1: IASA Connectors based on port's element

Access point (i.e. method
name, parameters, option) Port (i.e. Interface)

:A

:B

:D

:C

Transport Connector Basic Transport Connector

 4

be wired in an independent manner to another access
point which is hosted in the same or a different port.

In current software architecture models and
tools, an interaction point, usually represented by an
interface is considered as an atomic element despite
its complexity. It is not possible to deal separately
with elements defining the structure of such
interaction points (i.e. method, method parameters).
A connection's endpoint, usually named role, is
connected only to an interface. In current software
architecture models, it is not possible to define a
connection between port’s elements as in Figure 1.

In order to allow more accurate and practical
specification of architecture, IASA defines specific
access points according to their global roles in a
component. The specific access points are organized
into two categories: The Data Oriented Access Point
(DOAP) and the Action Oriented Access Point
(ACTOAP). Figure 2 shows the IASA graphics
notation for access points.

A DOAP is used to transfer data of any type. It
is provided with an attribute specifying the data
direction (in, out, and inout). The definition of a new
specific DOAP is achieved by providing its
implementation level representation which follows a
specific naming and definition style. The naming
style uses the data type name followed by DataPoint
(i.e. IntDataPoint). The definition style is based on
the name of the supported data type and a template
file written according to the targeted implementation
technology. The sample ArchJava code in Figure 3
shows how a template file is used to build an access
point oriented to send or receive Java String type.

An ACTOAP is provided with a set of actions
supported by the service (actionSet). Regarding the
associated service, an access point plays one of two
basic roles: a server or a client. The server role is
played by the ServerPoint and the client role is
played by the ClientPoint

The ServerPoint manages a second set of
actions called the refinedActionSet. Each element of
the refined action set is associated with only one
action in the actionSet. A refinedActionSet describes
one step further the refinement process of the
associated actions.

3.3 Ports
A port is a technique for grouping related

access points. It maintains an abstract and a concrete
views. The concrete view may be any model,
provided with a clear way leading to the
implementation level (i.e. an interface based port, a
UML port, an ArchJava port). The abstract view is
represented by three elements: the concept of access
point, the actions associated with access point and a
behavior. The port's behavior is represented by a set
of valid rules defined in the SEAL language. Each
rule shows how the required or provided resource
must be used. When connecting two ports, the
connector is said to be valid if the supported
interactions use compatible port's behaviors. Figure 4
shows a SEAL partial description of port types used
in the external view of the CivilStateCmp component
type shown in Figure 12.

For an efficient and clear specification of
connections between components, a number of ports
organized in four categories are predefined in IASA:
regular ports, aspect ports, controlled ports, and
standard ports. Figure 5 shows the main graphic
notations of ports used in IASA.

A regular port is basically composed of a
fixed number of access points. In the current version
of IASA, three regular ports are predefined:
ClientPort, ServerPort and DataPort. A ClientPort
contains one ClientPoint and zero or more
DataPoint. A ServerPort, as a consequence of the
previous definition, contains one ServerPoint and a
number of DOAP

package iasa.datapoints; // StringDataPoint definition
public class StringDataPoint extends DataPoint{
 private String data;

 StringDataPoint(StringDataPoint sdp, int dir) {
 copy(sdp);
 this.dir = dir;
 }
 StringDataPoint(String s, int dir) {
 data = new String(s);
 this.dir = dir;
 this.timeValidity = 0;
 }
 String get() throws InvalidAccessToInDataPoint,
 AccessPointTimeOut {
 getValidate();
 return new String(data);
 }
 void set(String s) throws InvalidAccessToInDataPoint,
 AccessPointTimeOut {
 setValidate(); data = new String(s);}
 public void copy(DataPoint dp){
 data = new String(((StringDataPoint)dp).data);
 }
 public void startTimer(){} // Not yet Implemented
}

Figure 3: String DOAP in ArchJava

DOAP (Notation used inside a box representing a port)

 out in inout with initializer
ACTOAP (Notation Inside a box representing a port)

ServerPoint ClientPoint Controlled ServerPoint
ASPOAP (Aspect Access Point inside a box representing a port)

Interest On an Aspect (IOA), Source IOA, Sink

 advice server advice client
(Only in aspect component) Injected in client ports

Figure 2: IASA graphic notation of Access Point

 5

An aspect port is either an advice port used by

aspect component to provide advices or an interest
for an aspect port used by business component to
express an interest for one or more aspects. An
advice port is a ServerPort provided with actions
explicitly associated with supported aspect activation
mode. For now, the supported advice activation
mode are: aroundFirstAction, AroundLastAction,
proceeedAction, beforeAction and afterAction.

A controlled port (figure 5) is a port provided
with the EnableDataPoint DOAP, a ServerPort
provided with the ControlledServerPoint instead of a
ServerPoint, or a port provided with both control
techniques. Standard ports are oriented to support
well known connectors such as a standard protocol
or the interaction with a standard execution
environment such as an operating system or an
application server.

3.4 IASA Connectors

The IASA connector model is largely inspired
from computer network architecture. The model
provides a behavioral view and a structural view.
The behavioral view describes an interaction and the
structural view defines the infrastructure needed to
transport the interaction. The connector
infrastructure is based on two kind of fundamental
connector elements:
- Transport Connectors which are point to point

connectors composed by Basic Transport
Connector, which can connect only two
compatible access points (Figure 1).

- Service connectors which are primitive
component oriented to support specific
interconnection functionality (distribution,
multiplexing, load charge balancing, resource
location etc.) as described in [21] and [22].
While defining the architecture of an

application, the designer focuses all his energy on
choosing the accurate component, specifying the
correct interaction and defining the interconnection
infrastructure. Hence, the designer is not concerned
by the definition of new Service Connectors or
Transport connectors which are predefined in the
IASA approach and have a complete realization in
the supported implementation technologies. The
designer is a connectors user and not as a connector
designer. The definition of the interconnection
infrastructure is achieved in IASA by cascading
Service Connectors using Transport Connectors.

3.5 Pointcut specification

A pointcut is the set of joinpoint where an
advice is weaved. In IASA, a joinpoint is localized
only at port level [18]. It may be any action attached
to an ACTOAP, the implicit actions of sending and
receiving data on a DOAP or any rules defining the
port’s behavior.

A joinpoint is identified by a hierarchical name
specifying its location in a design. A complete
joinpoint name (or absolute name) is composed of
four parts separated by the dot symbol (i.e.
docRep.spBirth.sap.birth). The first part is either a
component type or a component instance used in the
design. The second part is either a port type or a port
instance. The third part is either an access point or a
rule name and the last part is usually an action name.
When the third part is a rule name, the last par may

// SEAL ADL: file :CivilStatePortType.seal
package eapc.ports;
import eapc.doap.*;
// Action context definition
actioncontext citizen_basic_actions {

 // all actions of this context are abstract
 actions birth , death, marriage,
 divorce, family;
 }

 }
port { // Port type definition
 port DocumentPort {
 accesspoint{
 ServerPoint docSp (0, SYNC);
 CitizenIdDataPoint citizenId (OUT, 0, SYNC)
 }
 actioncontext {

 uses citizen_basic_actions;
}
behavior {
 rules birth_r, death_r, marriage_r,
 divorce_r, family_r;
 rule birth_r {

 precondition:;
 pattern: birth;success;
 postcondition:;
 fail:;

 }
 rule death_r { // empty section may be omitted
 pattern: death;success;
 }
 rule marriage_r {..}
 rule family_r {..}
 rule divorce_r {..}
}// end of port type behavior

 } // end of DocumentPort type definition
 // other port type definition
}// end of global port type definition

Figure 4: Port Type specification with SEAL

Figure 5: IASA graphic notation of Ports

 Notations appearing on the boundary of a component

OutputDataPort InputDataPort DataPort Controlled DataPort

 ServerPort ClientPort Controlled ServerPort

ServerPort

EnableDataPoint
.

Client Port DataPort

IOA Port Advice ports

 6

be the rule keyword. The rule keyword specifies that
the joinpoint is any valid trace of the specified rule.
The component (instance name or type name)
represents the highest level (left part) of the joinpoint
identification. The lowest part (right part) of the
joinpoint identification is either an action name or
the rule keyword.

The aspect identifier (AspectId), the star
character symbols, and SEAL keywords (i.e.
(serverport, clientport, dataport, interest, rule, send,
receive) may be used to specify joinpoints generic
name in the process of a pointcut definition.
Operation on set (i.e. union, difference) may also be
used to define new pointcuts from others.

4 THE APPLICATION AND ITS DOMAIN

In this experimental study, we realized for the
Center for the Development of Advanced
Technologies a software system which enables the
citizen to access through the internet to various
services of a local government institution called APC
(the town council). The most required services from
the APC are the production of official documents
exposing important events such as the birth
certificate and the marriage certificate. Inside the
APC, the service delivering such official documents
is called the Civil State Service

Currently a citizen requiring any of these
certificates must present himself to the APC with
necessary proof documents and ask an APC agent to
deliver him the desired documents. In addition to
consume citizen energy and money, the most
important drawbacks of the current situation are the
long time passed waiting the production of a
document (in some situation a day represents the
time unit) and the high rate of errors produced in the
delivered document since this operation is achieved
manually.

The major goal of the targeted EGovernment
application is to reduce the impact of the cited
drawbacks, by enabling citizen to participate through
the internet in the document production process. The
other major goal is the preparation of the APC and
other local government institutions to move to the
intensive use of internet technologies by setting a
whole EGovernment system providing all
government services required by citizens.

The EGovernment system for the APC must
provide efficient solutions to the following
challenges:
- A huge amount of data describing citizen events

has to be captured.
- A high degree of security must be guaranteed

for accessing critical part of the system and
personal data

The first challenge was solved by defining a
strategy where the citizen is indirectly involved in
the process of entering citizen data. The main

benefit of this strategy is the fact that a citizen
natively makes a best effort to guarantee the
correctness of data describing him or any of his
relatives. In addition, with this strategy, the citizen
participates efficiently to highly reduce the problem
of errors produced when delivering documents. This
first challenge was solved as a part of the core
business aspect of the system.

The second challenge was solved by the use of a
predefined aspect component belonging to the
security aspect of IASA. This aspect component
provides many security facilities such as user
management, user authentication, access right
management, session management and solutions to
well known security problem (SQL Injection, Cookie
poisoning, session hijacking etc.).

5 THE IASA ELABORATION PROCESS

The IASA elaboration phase in the design

process of a software system is completely
automated in the context of IASA STUDIO (Figure
6). This process is obviously based on a previous
analysis phase of the problem. The most interesting
result from the analysis phase is the emphasizing of
all needed external components which interact with
the application being designed. The elaboration
process follows a recursive top down strategy made
of a two great phases: An initialization phase and a
recursive phase.

The initialization phase is concerned by

definition of the external view of the whole
application and the determination of external
component. The recursive phase deals with the
design of component’s internal view and its first step
target the whole application internal view. In the next
section we present a partial view of this process. A
complete description may be found in [7]

Figure 6: CivilStateCmp in IASASTUDIO

 7

5.1 Phase 1: Project Initialization phase
5.1.1 Step 1

Based on a previous analysis step of the
problem, this step starts with the specification of the
application name (AN) and the deployment
architecture (DA). Regarding IASA, the application
itself is considered as a component type which may
be instantiated in more complex application.

5.1.2 Step 2: External view definition

The goal of this step is to define the provided
and required services, the definition of actions, the
organization of service inside ports and the
specification of port’s behavior. The following tasks
are performed in an iterative way.
Global informal description: This phase begin with
an abstract definition of the system or component, in
the form of only one box from where leave and
arrive several arrows. Arrows represent the provided
and needed services, data or controls. To eliminate
any ambiguities, the boxes and arrow specification
must be accompanied by a narration explaining the
total functionalities of the system and the semantic
associated with the arrows. The narration may also
contain the requirements and constraints fixed by the
customer.
Resource organization: This task represents the
first task towards formalizing the external view.
From the preceding definition, we must define the
provided and required resources (services and data).
The definition of services is accomplished by
specifying action names and optionally action input
and output pins.
Definition of the external ports: The required and
provided resources are gathered in ports according to
the supported port type (regular port, controlled port
etc.). The behavior of a port is then defined based on
the actions defined previously.

At the end of this first phase, a full SEAL
description of the external view is produced by IASA
STUDIO and ready to be transformed in a supported
implementation technology such as ArchJava[23].

5.1.3 Step3

Let LCmp a set of component and deployment
architecture pair initialized as follows:
LCmp = {(AN, DA)}

5.2 Phase 2

This is the recursive phase of the elaboration
process. For each pair (ANX, DAX) from LCmp , the
following steps have to be performed.

5.2.1 Step 1: Internal view elaboration

This step is concerned by the elaboration of
ANX internal view and the definition of the
controller behavior. This step is realized as follow:

Let ILCmp an intermediate set of components
and deployment architecture pair initialized to
empty.

While the internal view of ANX is not stable
(the stability analysis is done using the SEAL
interpreter) perform the following design action
- Find the component type needed to realize

ANX. Here it is recommended for the first phase
to create new component type instead of
modifying existing instantiated component type.
Modification of instantiated type may create
design exceptions which force the designer to
restart from a stable point in the design process.

- Define the external view for new component
type (Port and action)

- Establish / modify / Remove connectors
- Define connectors SEAL actions needed for the

interaction definition
- Define a mapping between external view and

internal view: This mapping shows exactly
which component handles a provided resource
and which one need a required resource.

- Défine / Adjust the behavior of the controller.
- Verify the component’s stability using the SEAL

interpreter
- Adjust the external view of new component type
- Specify the deployment case for the component

instance according to initial deployment
architecture DAX

- Add new introduced component type to ILCmp
set.

5.2.2 Step 2
 End of internal view elaboration of ANX. The

ANX component is stable

5.2.3 Step 3
Prepare the next recursion. Add new component

types to LCmp:
LCmp = LCmp + ILCmp.

5.2.4 Step 4
 End of the design elaboration process.

6 THE APPLICATION DESIGN

In the following we partially show the use of the

just introduced elaboration process in the design of
the previously described application.

6.1 Phase 1: Project Initialization phase
6.1.1 Identification and deployment architecture

The targeted application is named E_APC. The
deployment architecture is an ordinary three tiers
architecture based on an HTTP server provided with
a Java Servlet Engine such as Apache Tomcat. The
other important element of this architecture is a
database management server. We used for this first
implementation the MySQl server.

 8

6.1.2 The external view
Global description of the system: Figure 7 presents
a global view of the system. It is clear that such a
view is ambiguous. It requires a complementary
narration and could not be treated by software tools.
Such view is usually elaborated in the analysis phase.
Here it serves as a base for the first formal
specification using IASA notation (Figure 8).
Usually the arrows correspond to services and may
include many actions. Hence, the Document arrow
includes at least all the actions performing the
production of specific documents such as birth
certificate, family certificate etc. The Opinion Poll
arrow includes actions of voting and action for
displaying current vote score.

Resources organization in the external view: The
preceding informal view is transformed into a more
precise view (Figure 8) which would be the starting
point for a successive operation of refinement until
reaching the desired software product. Figure 8
shows all the ports of the system using the IASA
notation and figure 9 present a partial view of the
E_APC in the SEAL language. Within each port are
defined a number of actions dealing with objectives
assigned to the port.

The interesting observation on the formal
specification of the E-APC, according to IASA
approach notation (Figure 8), is the lack of port
dealing with access control. This situation is in fact
due to the support of aspect oriented software
architecture in the IASA approach. While using the
aspect paradigm in system design, we usually use
following rule:
- Establish the separation of concern between the

core business aspect and the technical aspects.
- Elaborate separately each aspect.

Technical aspects have not to be considered
when designing the core business aspect. This later
has to be designed for an ideal environment which
provides necessary technical support to safely
operate the core business aspect and decides where
and when to place the support. Components realizing
the core business aspect fully implement the concept

of obliviousness [24] since they are completely
unaware of the existence of the technical aspect

.

With Aspect Oriented Design, the application
developer does not need to worry about the
nonfunctional services. It is the aspect developer
who, in addition to designing and writing the code of
the service itself, manages the integration of that
service into the application. The advantage is that the
specialized aspect developer has a better
understanding of the service than the application
developer, who is only a user of this service

6.2 Phase 2: internal view LCmp elements

In the first step of this recursive phase, the
LCmp set contains only the E_APC component
which is the targeted application. Figure 10 shows
some fundamental components of the E_APC
internal view. The operative part is composed of six
business components and the main view of the
application IHM. The control part contains two

Figure 8: E_APC external view using

pStarter: MainCmpPort

pInstall : InstallPort

pSql
:SQLClientPort

:E_APC
pDoc :DocumentPort

pLog
: IALogDataPort

pAdmin : AdminPort
BaseServerPort

pDec :DeclarationPort
BaseServerPort

pAPCMeeting :APCMeetingP
ort

pOpinion :OpinionPollPort
BaseServerPort pClassified :ClassifiedPort
BaseServerPort

pDocVal :DocumentValPort

pDecVal :DeclarationValPort
BaseServerPort

pLocalDoc :LocalDocPort
BaseServerPort

:E_APC

Requirements Provisions

Fig 7: Informal specification of E_APC

Database
connection

Local document

classifier

ReqDoc

OnLine APC meeting

Declaration
DeclarationValidation

Access Authentication

System Administration

Installation

Opinion poll
Offline APC deliberation

Anonymous Access

ReqDocValidation

// SEAL ADL: file : E_APC.seal
package eapc.component;
import IASA.aspect.*;
import eapc.ports;
component E_APC{
 ports { // The external view
 // required Services

SQLClientPort pSql;

 // Provided services

MainCmpPort pStarter;
InstallPort pInstall ;
AdminPort pAdmin ;

 // … other regular ports here
 ClassifiedPort pClassified;

 // Interest for an Aspect (IA) DOAP
 IALogDataPort pLog;
 }
 operativepart {
 components { ……….. } connectors { ………... }
 }
 controlpart {…… }
 }
} //End Description of E_APC component

Figure 9: Partial SEAL description of E_APC

 9

aspect components in addition to the mandatory
controller component (EAPCOPCtrl).

6.2.1 Managing the security aspect

The operative part is designed without taking
any care concerning security and logging aspects. If
at this stage any service has to be secured, the only
thing designer has to do is to connect the advice port
of the security component to the port providing the
service to secure. This operation, called aspect
injection, is achieved by specifying the pointcut
containing the actions concerned by the security
advice. Figure 11 show how the security aspect is
injected in all ServerPort of all business component
except those component which do not need to be
secured.

This step of phase 2 is completed with the
introduction of six new component types:
SysInstallCmp, SysAdminCmp, CivilStateCmp,
CitizenRelationCmp, APCMeetingCmp,
ClassifiedCmp. The used aspect components
(LogACmp and SecurityACmp) are not concerned by
further design step since they are completely defined
and provided by the IASA Design Environment. The
completion of this step results also in the complete
definition of the external view of new instantiated
components. Hence, before joining the LCmp set, a
component type must have a well defined external
view. Further design steps are usually concerned
with the internal view design of components from
the LCmp set.

This step is repeated for each new introduced
component type. In the following we will focus our
interest in the design of the CivilStateCmp, which is
the most important component in the E_APC
application.

6.2.2 The internal view of CivilStateCmp
It is composed of a number of components,

each one oriented to handle a specific functionality
of the civil state department of the APC (figure 12).

The components DeclarationCmp and
DocReqCmp are oriented to enable the participation
of the citizen in the process of populating the E_APC
databases with accurate data concerning them.
DeclarationCmp handles the declaration of new
events such as birth, death, marriage or divorce.
DocReqCmp is used to request miscellaneous
certificates and, in the same time, is used to enter
citizen data if these later were not yet captured in a
previous declaration or document request.

The validation components (DeclValCmp and
DocReqValCmp) are used to validate data entered by
citizen either with DeclarationCmp or DocReqCmp.
The DocReportCmp is used to produce the desired
certificate.

We notice in the internal view the use of link
component to represent the security and log aspect
component previously instantiated in the E_APC
internal view. With this technique the designer can
manage the injection of the same aspect at various
level of the design hierarchy.

pStarter pLog

:SysAdminCmp

:CitizenRelationC
mp

:APCMeetingCmp

:CivilStateCmp

:ClassifiedCmp

:SysInstallCm
p

APCOPCtrl :SecurityACmp :LogACmp

pSql
:SQLClientPort

Figure 10: partial Internal View of E_APC

pAuthAdvice pLogAdvice

:M
ainV

iew

pInstall

pDoc

pAdmin

pDdec

pAPCMeeting

pOpinion

pClassified
BaseServerPort

pDocVal
pDdecVal

plocalDoc

// SEAL ADL: file : E_APC.seal
package eapc.components;
import IASA.aspect.*;
import IASA.ports.*;
component E_APC{
 ports {}
 operativepart {
 components { ……….. }
 connectors { ………... }
 }
controlpart {
 components {
 APCOPCtrl apcOPController;
 SecurityACmp secCmp;
 LogACmp logCmp;
 }
 aspect { // Aspect pointcut and advices management
 pointcuts {
 all_services={ serverport}
 not_secured = { CitizenRelationCmp, APCMeetingCmp,
 ClassifiedCmp};
 partial_secure = all_services – not_secured
 }
 advices {// Advices Management
 inject secCmp. p.AuthAdvice around partial_secure;
 }
 interest {// Interest for Aspect Management
 }
 }
} //End Description of E_APC component

Figure 11: security pointcut definition and injection

 10

In the case of the internal view of CivilStateCmp
we notice that there is no need to secure the access
for DeclarationCmp and DocReqCmp since these
components are oriented to encourage citizen to enter
their data and participate in the whole process of

capturing citizen miscellaneous information.
However, in the previous step we have injected the
security aspect at all server port, which means that
all actions at those ports are targeted by the security
advice. Consequently, the server ports (spBirth,
spMariage etc..) of DeclarationCmp and
DocReqCmp find themselves secured. To solve this
sort of problem we have two solutions:

- Review the injection statement in the internal

view of E_APC. With this solution we must
restart the design from previous step and the top
down methodology is then noised by this kind of
design decision

- Avoid the design noise in the top down design
strategy by adjusting the security aspect
injection of a previous step. In our case
adjusting operation is realized using the aspect
remove capability of the SEAL language (Figure
13). This tactic seems to be the best suited in
most top down design process since it allows
adjusting efficiently previous design decision
without the need to return to a previous
completed design step.

7 GENERATING THE APPLICATION

7.1 Fixing the deployment properties

Until now, the design of the E_APC appears to
be similar to an ordinary application, since no
element in the design indicates that the application is
a multi-tiered one based on an HTTP server provided
with a Java Servlet Engine. Actually this is one of
the main objectives of the IASA approach: The
independence of an IASA specification from the
software mechanism and the deployment
architecture. Hence a same component may be
deployed as a Java Servlet, an EJB, an ordinary
application or a VLSI chip. In practice, the final form
of generated code of an application depends on the
application’s deployment map which in turn is
strongly impacted by used interaction technology
used (i.e. standard protocol such as FTP, HTTP,
SOAP, RMI etc..) and library components.

The deployment map (Figure 13) is the
specification of the deployment case for each
component instance of the tree representing the
composition hierarchy of an application. The
deployment case is the form a component may get in
the chosen implementation technology (PROCESS,
THREAD, MAIN_THREAD, SERVLET, APPLET,
EJB etc.). Since the E_APC is hosted by a web
server provided with the Servlet Engine, the
deployment cases are restricted for the whole
application to APPLET, JAVASCRIPT, JSP,
SERVLET, BEAN and CLASS

The code generation of an application is guided
by the deployment map and uses a set of
transformation rules. These later take a SEAL

// SEAL ADL: file :CivilStateCmp.seal
package eapc.component;
import IASA.aspect.*;
import eapc.ports.*;
component CivilStateCmp {
 ports {}
 operativepart {
 components { ……….. } connectors { ………... }
 }
 controlpart {
 components {
 CSOPCtrl csOPController;
 LinkCmp (E_APC.secCmp) secCmp ;
 LinkCmp (E_APC.logCmp) logCmp;
 // Since an aspect component is a singleton, the two
 // previous line may be written in a more clearer way
 // LinkCmp (SecurityACmp) secCmp ;
 // LinkCmp (LogACmp) logCmp;
 }
 aspect { // Aspect pointcut and advices management
 pointcuts {
 not_secured = { DeclarationCmp, DocRequestCmp };
 // other pointcut definition …….
 }
 advices {// Advices management // Adjust security
injection
 remove secCmp. pAuthAdvice from not_secured;

// other advices management …
 }
 interest {// Interest for Aspect management
 }
 }
} //End Description of CivilStateCmp component

Figure 13: Adjusting security aspect injection

Figure 12 : CivilStateCmp partial internal view

spReqDoc

spDdec

:DocReqCmp

:DeclarationCmp

:DocReqValCmp

:DeclValCmp

spReqDocVal

spDdecVal

CSOPCtrl :SecurityACmp :LogACmp

pAuthAdvice

docRep
:DocReportCmp

spGetDoc

pLogAdvice

:C
ivilStateView

birth :Action

mariage :Action

cpBirth spBirth

cpSql
spMariage

birth :Action

 11

description and produce a concrete description in the
desired implementation technology. Regarding the
OMG MDA (Model Driven Architecture) [25],
IASA architecture without a deployment map
corresponds to the MDA Platform Independent
Model (PIM). The PIM is transformed on a Platform
Specific Model (PSM) once a deployment map is
applied, or defined, for the IASA specification.

7.2 The main transformation rules

In IASA the transformation rules mainly
target the generation of the envelope. The
transformation of behavior written in SEAL (mainly
the behavior associated with the controller) is usually
straightforward, since an action usually corresponds
to a service call (i.e. procedure call, protocol action
such as HTTP methods). The main goal of the
transformation rules is to produce code in the chosen
implementation technology, needed to support:

- The specification of various kind of
interconnection based on ports (Transport
Connectors) or on access points (Basic
Transport Connector)

- The management of aspect injection
(weaving and ordering injected aspects)

In the following we briefly present the main
transformation rules used in the process of
generating the E_APC application.

7.2.1 Generating the application without aspect

The following rules are used to generate a pure
business application, without any technical concern.

- A Business component may be a JSP page,
a Servlet, an ordinary Java class, a Java
Bean, an Applet or a JavaScript.

- An aspect component is always deployed as
an ordinary java class (or a java bean)
provided with a number of static methods.
Each static method is designed to handle a
specific action belonging to the supported
aspect activation mode.

- Since the application belongs to the
EGovernment domain, any browser
communication bypassing the HTTP
protocol is not supported (i.e. Java RMI).
Communications using protocol built on top
of HTTP (i.e. SOAP) are fully recognized.
As an example, it is not possible to deploy a
component as an applet if this component is
provided with port using a non HTTP
communication protocol.

- For component deployed as JSP, Applet or
JavaScript, there is no need for connector
adapter since all used connectors and ports
are based on standard protocol (HTTP,
SQL) completely defined in IASA.
Component deployed as Ordinary classes,
Java Bean and Servlet may use other

connectors (RMI, CORBA, IP Socket etc..)
requiring adapters on connected ports.

- Due to the stateless nature of the HTTP
protocol (no connection information
maintained between transactions), the after
activation mode is always inhibited for
advices injected on ports of components
deployed as JSP or Servlet. In the same
context, the aroundLastAction of the
around activation mode is only executed if
the advised joinpoint is not executed.

7.2.2 Generating the application with aspect

The injection of aspect is supported by
additional transformation rules fully compatible with
the just introduced ones. The weaving of injected
aspect is achieved at the envelope level. With this
technique we guarantee a complete isolation of
component type from the instantiating environment.
Hence, there is no need at all to touch any realized
code (class, servlet, bean etc..) representing IASA
components.

The aspect injection process results in the
modification of the port behavior. This modification
targets either an action or a complete port behavior
rule. Due to the application nature, we notice the
simple structure of port behavior rule which are often
reduced to a simple action (Figure 4). This was not

////// File E_APC.dpy
// Description of recognized deployment architecture and
// deployment case
package eapc.component
component E_APC {
 architecture {
 environment tomcat {
 machine localhost;
 container tomcat5.5 ; //apache Tomcat 5.5
 namespace eapc ; //localhost:8080/eapc
 os UNIX; // Generic name used.
 deploymentcase {APPLET, JAVASCRIPT,JSP,
 SERVLET, BEAN, CLASS}
 } // Many environment may be defined.
 environment J2ee {

machine eapc.cdta.dz;
container JONAS ; //apache Tomcat 5.5
namespace eapc ; //localhost:8080/eapc
os UNIX; // Generic name used.
deploymentcase { APPLET,

JAVASCRIPT,EJB,
 JSP, SERVLET, BEAN, CLASS}

 }
 }
// Definition of the deployment map.
// Many maps may be defined for the same application
deploymentmap map_for_tomcat {
 // go across the composition tree and associate for
each
 // component instance a supported deployment case
 // regular expression may be used
 deploy this as JSP in tomcat; // produce E_APC.jsp
 // in case where the deployment case is the same,
 // use the keyword all or rall. Extension .jsp
 // is appended to Absolute component instance name

Figure 14: Deployment specification

 12

the case with another experience [26], where some
ports were provided with complex behavior.

The examples in figures 4,11,12,13, and the
following figures briefly outlines some elements of
the transformation process. Figure 4 shows the
original port’s behavior designed far from technical
aspect. This port’s behavior is attached to the server
port (spBirth) of DocReportCmp and the
corresponding client port (cpBirth) of CivilStateView
(Figure 12). Usually we encounter compatible
behavior in the connected client and server ports.

Figure 15 shows the behavior of the client port
after the injection of the security aspect as specified
in figure 11 and 13. According to IASA policy, the
weaving of aspects is located in the client port
connected to the targeted server port containing the
joinpoint. The code in figure 15 is an intermediate
code produced by the SEAL interpreter after
executing the aspect management operation (inject,
remove, inhibit etc..) and before the generation of the
code in the targeted implementation technology.

Figure 16 illustrate the technique used in

IASA approach for a component to contact the
external world. The service call represented by a link
in the CivilStateView deployed as a JSP page, is first
directed to the component’s port (cpBirth) and not
directly to a specific component. This technique
insures the total independence of a component from
the external. Hence the same component type may
have distinct instances connected to distinct
components through the same port.

To insure the total isolation of a component
type from any instantiating environment, the service
call is redirected to the envelope used to instantiate
the component type (Figure 17). Further operation
on component will have no impact on the component
instance. All ad hoc modification needed by the
placement of adapter and injection of aspect are
located in the envelope. Figure 18 shows the
connector implementation which is represented by a

redirection of the service call from the envelope to
the envelope of connected server port (spBirth).

Figure 19 presents the result of weaving the
security aspect using the around activation mode.
We notice in figure 19 that the after part of the
around activation mode is executed only if the
proceed part indicates that the join point is not
executed.

8 CONCLUSION

The work described in this paper is an actual
experience where a software architecture approach is
used to realize a complex EGovernment software
system deployed in Java web technology. In most
works related to software architecture, the examples
used to validate a model or to show its various
qualities are usually reduced to very simple examples
in the context of well known architectural styles
(pipe and filters, client server, blackboard, layered
model etc.). To our knowledge, there is no published
work relating such a true experience where a
software architecture specification is deployed in the
context of a multi-tiered architecture based on an
HTTP server provided with a servlet container.

This true experience has also shown how a
software architecture approach could lead to the fast

rule birth_r {
 precondition:;
 pattern: ArounfFirstAction; proceedAction |birth;

aroundLastAction;success;
 postcondition:;
 fail:;
}

Figure 15: weaving aspect at port behavior level

<!-- Redirect to the envelope port -->
<jsp:forward page=""../envelope/active/cpBirth ">

Figure 17: Inside cpBirth.jsp

<%@ page contentType="text/html; charset=utf-8"
language="java" import="iasa.security.*" %>

<!— Boolean ASPOAP Transformation process -->
<%=boolean proceedState = true%>

<!-- ------ ----- Around body part 1 -->
<% AuthACmp.pAuthAdvice.aroundFirstAction;
 proceedState =
 AuthACmp.pAuthAdvice.proceedAction;
 If (proceedState) {
%>
<!-- ------ ----- Around body end of part 1 -->
<!-- Redirect to the connected port. use of absolute parth -->
<jsp:forward
page="/CivilStateCmp/docRep/envelope/active/spBirth.jsp">

<!-- ------ ----- Around body part 2 -->
<%}
 AuthACmp.pAuthAdvice.aroundLastAction;
%>
<!-- ------ ----- Around body end of part 2 -->

Figure 19: The envelope after aspect Injection

 birth certificate

Figure 16: inside the CivilStateView code

<%@ page contentType="text/html; charset=utf-8"
language="java" %>

<!-- Redirect to the connected port. use of absolute parth -->
<jsp:forward
 page="/CivilStateCmp/docRep/envelope/active/spBirth.jsp"
>

Figure 18: Inside the envelope port cpBirth.jsp

 13

realization of complex software system. In this
experience, the IASA approach and its software
elaboration process were conducted in parallel with
the realization of the same product using the EJB
component model and the elaboration phase of the
Catalysis object oriented design process [27]. This
experience showed the high flexibility and the power
of IASA to easily handle software architecture
specification and to reduce the realization time.
Compared to the object oriented project realized
using an object oriented approach based on EJB, the
realization time in IASA using Java web
technologies was by far the shortest.

This time performance may be explained by the
following facts
- The use of EJB in the context of an object

oriented approach requires the direct control of
several technologies (Servlet, JSP, JavaBeans,
EJB, XML etc.) and concepts, whereas in IASA,
the only concepts to be acquired are the
fundamental concepts of software architecture
(component, port, connectors) and the various
facilities to compose an architecture provided in
IASA, mainly link component and access point.
All complex concept of the chosen
implementation technology are abstracted by the
IASA approach.

- The efficient support of the concept of
composition which allowed the designer to
follow a top down design process. The
composition concept is not natively supported
by the EJB component model.

- The link component concept which allowed the
designer to elaborate simple a clear design
which are easy to maintain and evolve.

- The aspect management facilities provided by
SEAL language. These concepts allowed the
designers to follow a clear and organized top
down design process as shown in this paper
without the need to return to a previous step for
adjusting previous design decision.

The aspect oriented approach in IASA played a
fundamental role in reducing realization time. With
AOSA, the application developer does not need to
worry about the nonfunctional services and
properties. The application developer focuses all his
work in the core business aspect and do not consider
the technical aspect. It is the aspect developer who,
in addition to designing and writing the code of the
aspect service itself, manages the integration of that
service into the application. The advantage is that the
specialized aspect developer has a better
understanding of the service than the application
developer, who is only a user of this service.

This achieved work has also shown some
challenges the IASA approach is currently facing.
An important research effort is needed to solve these
challenges in future works. Currently, the main
challenge is located in the transformation process

from an abstract view described in SEAL to a
concrete view, represented in one or more
implementation technologies. The transformation
process, as in [26],[28], produces a great amount of
code. This situation is mainly due to the envelope
concept which is associated with each component
instance. As an example, for each component
deployed as a JSP page, the envelope is represented
by a number of JSP page equals to the number of
port of that component. Optimizing the number of
envelope in the transformation process represents
one of the planned future works in the IASA
approach

REFERENCES

[1] C. Carrez: Behavioral Contracts for Component’

Ph.D. Thesis, ENST, Paris, 2003 (In French).
[2] N. Medvidovic, R. N. Taylor: A Classification

and Comparison Framework for Software
Architecture Description Languages, IEEE
Transactions on Software Engineering, Vol. 26,
no1, pp. 70-93, January 2000

[3] Unified Modeling Language: Infrastructure,
version 2.0, 3rd revised submission to OMG RFP
ad/00-09-01, OMG, January 2003

[4] S. Vestal: Scheduling and Communicating in
MetaH. Real-Time Systems Symp., pp: 194-200,
Raleigh-Durham (NC), 1993.

[5] N. Medvidovic, R.N. Taylor and E.J.
Whitehead: Formal modeling of software
architectures at multiple levels of abstraction.
Proc. California Software Symp., pp: 28-40,
1996, Los Angeles, CA.

[6] R. J. Allen: A Formal Approach to Software
Architecture, PHD Thesis, May 1997,
http://www2.cs.cmu.edu/afs/cs/project/able/

[7] D. Bennouar: The Integrated Approach to
Software Architecture, IR2008/SAP01, LRDSI
Lab, CS Department, The Saad Dahlab
University, Algeria, Jan. 2008 (in French),

[8] D. Bennouar, T. Khammaci, and A. Henni: A
New Approach To Component's Port Modeling
In Software Architecture, ACIT’2007, Lattikia,
Syria, Dec; 2007

[9] I. Krechetov, B. Tekinerdogan, , A. Garcia, , C.
Chavez, , U. Kulesza: Towards an Integrated
Aspect-Oriented Modeling Approach for
Software Architecture Design. in 8th
International Workshop on Aspect-Oriented
Modeling, AOSD 2006. 2006. Bonn, Germany

[10] A. Navasa, M. A. Perez, J. Murillo, and J.
Hernandez: Aspect oriented software
architecture: a structural perspective. In
Proceedings of the Aspect-Oriented Software
Development, 2002, The Netherlands.

[11] J. Aldrich: Open modules : Modular reasoning
about advice. In ECOOP 2005 - Object-Oriented
Programming, 19th European Conference,

 14

Glasgow, UK, July 25-29, 2005,Proceedings,
volume 3586, pages 144–168. Springer. 86

[12] R. Norman, F. Marc, S. Scott: JBoss 4.0 - The
Official Guide, Sams, April 2005.

[13] D. Suvée, W. Vanderperren, and V. Jonckers:
JAsCo: an aspectoriented approach tailored for
component based software development. In
Proceedings of the 2nd international conference
on Aspect-oriented software development, pages
21_29. ACM Press, 2003.

[14] H. Fakih, N. Bouraqadi, and L. Duchien:
Aspects and software components: A case study
of the fractal component model, International
Workshop on Aspect-Oriented Software
Development (WAOSD 2004), Beijing, China,
September 2004.

[15] N. Pessemier: Unification of aspects and
components approaches PhD thesis, université
of Science an Technologies at Lille, France (in
french), June 2007

[16] R. Miles - AspectJ Cookbook – Real World
Aspect Oriented Programming with Java,
O'Reilly, 2005

[17] Action semantics for the UML, Final submission.
TR, Object Management Group, 2001

[18] D.Bennouar: Aspect Oriented Software
Architecture in the IASA Approach,
IR2008/SAP02, LRDSI Lab, CS Department,
The Saad Dahlab University, Algeria, April 2008.

[19] É. Bruneton, T. Coupaye, M. Leclercq, V.
Quéma and J.-B. Stéfani: The fractal component
model and its support in java, Software Practice
and Experience, special issue on Experiences
with Auto-adaptive and Reconfigurable Systems,
2006.

[20] A. Saadi: An action language for the
specification and validation of software
architecture behavior, Magister Thesis, LRDSI
Lab; Computer Science Department, The Saad
Dahlab University, Blida, Algeria, June 2008.

[21] N.R. Mehta, N. Medvidovic, S. Phadke:
Towards a Taxonomy of Software Connectors,
Proceedings of ICSE2000, May 2000.

[22] T. Bures, F. Plasil: Scalable Element-Based
Connectors, Proceedings of SERA 2003, SF,
USA, June 2003.

[23] J. Aldrich: Using Types to Enforce
Architectural Structure, PHD Thesis, Computer
Science and Engineering, Washington
University, 2003

[24] R.E. Filman and D.P. Friedman, Aspect-
Oriented Programming is Quantification and
Obliviousness, Workshop on Advanced
Separation of Concerns, OOPSLA 2000

[25] John D. Poole: Model-Driven Architecture :
Vision, Standards And Emerging Technologies,
ECOOP 2001, Workshop on Metamodeling and
Adaptive Object Models, April 2001.

[26] D. Bennouar: The design of a complex software

system using the IASA software architecture
approach, IR2008/SAP03, LRDSI Lab, CS
Department, The Saad Dahlab University,
Algeria, May 2008.

[27] D. D’Souza and A. Wills: Objects, Components
and Frameworks With UML : The Catalysis
Approach.. Addison-Wesley, 1999

[28] K. J. Lieberherr: Adaptive Object-Oriented
Software: The Demeter Method with
Propagation Patterns, PWS Publishing Company,
International Thomson Publishing, Boston, 1995.

