

DDeeaalliinngg wwiitthh WWeebb SSeerrvviicceess CCoommppoossiittiioonn

aatt tthhee AArrcchhiitteecchhttuurraall LLeevveell

DDjjaammaall BBeennnnoouuaarr
KKaahhddiiddjjaa BBeennttlleemmssaann

DDeeaalliinngg WWiitthh WWeebb SSeerrvviicceess CCoommppoossiittiioonn aatt tthhee
AArrcchhiitteeccttuurraall LLeevveell

Abstract — Design by Component composition using connectors as a

glue to produce software system represents the fundamental practice in

software Architecture. Software Architecture approaches use a

component model which explicitly exposes through its interfaces the

needed and the provided resources. Component in Software Architecture

are deployable unit of composition. They may be instantiated many times

and deployed in different containers. Web Services and services in

general, are usually already deployed software. They may correspond to

third party services which cannot be touched in any way. The Integrate

Approach to Software Architecture (IASA), originally defined for hard

soft co-design, provides a number of concepts, not present in current

Software Architecture approaches, which may use to efficiently deal with

the service concept and the web service composition problem. IASA not

only provides a simple and efficient solution to the web service

composition problem, but enables the definition of aspect oriented

heterogeneous system where some parts are handled by web services

technology and other parts are handled by component deployed in any

other software technology. Defining heterogeneous composition is not

supported by current web services composition languages.

Keywords: Web Service, Software Architecture, IASA,
Composition, Component, Orchestration.

I. INTRODUCTION
Today, the use of web services has become a

common practice in software industry for supporting both
Business-to-Consumer (B2C) interaction and Business-to-
Business (B2B) collaboration. Through Web service
composition, new complex web services may be created by
reusing existing ones. Several organizations have proposed a
number of languages oriented to deal with the Web Service
composition problem such as XLANG, WSFL, BPML,
BPMN, BPEL4WS, BPSS, WSCI, and WSCL.

In practice these languages requires a hard work and
the software designer must have high skills to correctly
construct a composite web service. Experiences conducted by
[1] and [2] has shown how is difficult the design and the
realization of small part of a complex system using web
services composition language even in the context of an
advanced IDE.

As an example, BPEL4WS [3, 4], which seems to be
the most used language, is not only very complex to learn but
hard to be operated. This complexity is due to the low level of
expressivity. The software designer must deeply master the
structure of the BPEL file, i.e. how and where to use the
appropriate BPEL activity.

In addition we have found that the composition
languages of web services are limited to the construction of
complex web services, and cannot provide heterogeneous
composition of ordinary components and web services or an
aspect oriented composition.

The work presented in this paper presents a new
approach to web service composition problem. This approach
not only reduces the composition complexity but allows the
heterogeneous composition of any component with web
service. The main idea dealing with the web service
composition problem is to bring the composition problem
from the implementation level represented by web services
composition languages, to the architectural level. At the
architectural level the composition problem is considered at a
high level of abstraction totally independent from any
implementation technology.

In the work presented here, we use the Integrated
Approach to Software Architecture (IASA)[5] which offers a
high degree of freedom from any software mechanism
constrain when specifying a composite component. In IASA
we can see web services as IASA components. Connection
between web services are then achieved using IASA
connectors.

In the remaining of this paper, we will first introduce
the IASA fundamental model elements used to deal with web
service composition. Then we will show through a case study
how IASA can improve the objectives fixed above

II. THE IASA APPROACH
In IASA, an application is a composite component

type made of instances of other component types which may
be composite or primitive component types. The specification
of an application is achieved through the IASA Architecture
Description Language (ADL) called 3ADL (Architecture,
Action and Aspect Description Language)[6]. The concept of
action, which is the 3ADL base for describing the
miscellaneous behaviors in IASA, is taken form Precise
Action Semantic of UML [7].

DDjjaammaall BBEENNNNOOUUAARR
CCoommppuutteerr SScciieennccee DDeeppaarrttmmeenntt

TThhee SSaaaadd DDaahhllaabb UUnniivveerrssiittyy
BBlliiddaa,, AAllggeerriiaa

ddbbeennnnoouuaarr@@eennss--kkoouubbaa..ddzz

WWaalliidd KKhhaalleedd HHiiddoouuccii
TThhee NNaattiioonnaall SScchhooooll ooff CCoommppuutteerr

SScciieennccee ((EESSII))
OOuueedd SSmmaarr,, AAllggiieerrss,, AAllggeerriiaa

ww__hhiiddoouuccii@@eessii..ddzz

KKaahhddiiddjjaa BBeennttlleemmssaann
TThhee NNaattiioonnaall SScchhooooll ooff CCoommppuutteerr

SScciieennccee ((EESSII))
OOuueedd SSmmaarr,, AAllggiieerrss,, AAllggeerriiaa

bbeennttlleemmssaann__kkhhaaddiiddjjaa@@yyaahhoooo..ffrr

118

A composite component type has a specific internal
view organization which consists of three parts: the operative
part, the control part and the aspect part (figure 1). The first
contains pure business components. The aspect parts contains
component dealing with technical concerns needed to
efficiently operate the business part such as security, logging,
and persistence. The control part is made of a number of
controllers which are components dedicated to control the
whole composition (i.e. operative part initialization, dynamic
aspect injection, dynamic architecture evolution etc...). At
least one component, named main, must be instantiated as a
controller. The main controller is a behavioral component
which means that it is specified using the action concept of the
3ADL language[6,8].

Figure 1. The Internal View of a Composite Component

A component type is instantiated using the envelope
concept. An envelope is a kind of wrapper [9] which is a well-
known technique used to deal with the architectural mismatch
problem[10] and to isolate component’s incorrect behaviors
from the rest of the system in order to allow nonstop
computing. In addition to the usual objectives of wrappers,
the IASA envelope is used to specify the deployment map, to
enable the specification of connections involving the port's
structural elements and to manage the injection and deletion of
the advices provided by aspect components[11].

The deployment map specified as part of an envelope
describes the deployment environment or container, the
deployment case of the component in such environment and
the preferred implementation technology when the
deployment case is not associated with a specific one. The
deployment environment or container may be a machine name
with its operating system, an application server or an already
deployed component. The deployment case describes the exact
nature of a component instance in its deployment
environment. As an example, PROCESS, EJB (Enterprise Java
Bean), THREAD are three supported deployment cases. The
first is valid in a deployment environment represented by a
machine name and its operating system. The second is valid in
a deployment environment represented by a J2EE compatible
application server. The third is valid for a deployment
environment represented by a component already deployed as
a PROCESS. The preferred implementation technology is
usually a programming language. When a deployment case is
specific for a particular implementation technology, like the
SERVLET or EJB deployment cases which are specific to the

Java language, the deployment technology is implicit in a
deployment map.

A IASA primitive component is totally independent
from the context where it is used. The adaptation of a
primitive component to its execution environment is achieved
through the envelope. In current IASA version which is
mainly based on the java technology, a primitive component is
represented by a POJO1 class. As an example, deploying a
primitive component as a web service will produce an
envelope provided with necessary resources needed to view
this pure primitive component as a web service. The
production of this implementation view of the envelope is
achieved by the IASA transformation process which starts
from a 3ADL description and produce the implementation
view in the chosen implementation technology.

The Link Component (LComponent) is a concept
introduced by IASA [11] to explicitly show the interaction
between the components of a software system with the
external components such as the execution environment, the
file system, servers etc. Such interaction is usually ignored in
current software architecture approaches. The LComponent is
also used to represent the concept of shared component.

Like any other component instance, the LComponent
is associated with an envelope which enable to view the same
external or shared component from a different perspective.
The LComponent and the envelope concept are fundamental
in the composition process of web services according to
IASA.

A IASA component interacts with the external world
through a set of port. A IASA port is made of access points.
As opposite the other approaches, the access points may be
manipulated individually or in group by the IASA
connectors[11]. A IASA access point is either a Data Oriented
Access point (DOAP) or an Action Oriented Access Point
(ACTOAP). An ACTOAP is either a client or a server. It is
associated with a service represented by a number of actions.

A DOAP is always associated with a specific data
type. Any DOAP is associated with a number of predefined

1 Plain Old Java Object

DOAP (Data Oriented Access Point)
Notation used inside a box representing a port

DOAPout DOAPin DOAPinout IASPOAP with initializer

ACTOAP (ACTion Oriented Access Point)
Notation used Inside a box representing a port

Server Client CtrldServer advice ASPOAP client ASPOAP

Figure 2. Main IASA Graphic Notations

Ports (Notations appearing on the component’s boundaries)

 OutDataPort InDataPort DataPort

 CtrldServerPort CtrldDataPort EnableDataPoint

ServerPort ClientPort advice Port

119

actions enabling data communication and reporting
miscellaneous events (i.e. send receive, open, close, accessed,
updated, changed). The main graphic notation of IASA ports
and access points are shown in figure 2.

A port maintains an abstract view and a concrete
view. The abstract view is represented by the concept of
access point, the actions associated with an access point and
the port’s behavior. This later is represented by a set of valid
rules using the concept of action of the 3ADL language. Each
rule shows how the required or provided resource must be
used. The concrete view may be any model, provided with a
clear way leading to the implementation level.

The Current implementation of IASA is based on a
number of specific ports: the ClientPort, the ServerPort, the
AdvicePort and the DataPort. The ClientPort is made of a
single client ACTOAP and a number of DOAP. The
ServerPort uses one server ACTOAP and a number of DOAP.
The DataPort is made of DOAPs. The AdvicePort[11] is a
ServerPort provided with an Aspect Oriented ACTOAP server
called ASPOAP instead of a server ACTOAP. The concept of
advice ClientPort is not supported, since it strongly reduces
the obliviousness concept of a component [12].

The IASA connector model is based on a behavioral
view and a structural view. The behavioral view describes an
interaction and the structural view defines the infrastructure
needed to transport the interaction (e.g. procedure call, RPC,
FTP, HTTP, SOAP etc..). A valid interaction, described using
the 3ADL action concept, does not violate the behaviors of the
interconnected ports.

III. WEB SERVICE COMPOSITION IN IASA
In IASA, the web services concept is considered as a

concept belonging to the implementation level view. Hence, it
must be described by a deployment case. At the architectural
level, any component instance is manipulated independently
from its deployment nature. The same architecture may be
deployed totally as a composite web services or as an
heterogeneous composition which is a mixture of web services
and other services or completely without web services.
Moreover, in the same composition, an instance of a service,
represented by a component type, may be deployed as a web
service and another instance of the same component type may
be deployed as a non web service.

To be able to deploy a component instance as a web
service, we have introduced in IASA a new deployment case
called JWS (Java Web Services). Like other deployment case
(EJB, SERVLET, JSP, BEAN, CLASS) the JWS is based on
the Java Language2

Theoretically any IASA component may be deployed
in any of the cited implementation technologies. Hence it is
possible in IASA to have in a composition many instances of
the same component type and deploy one instance as an EJB,
another as a SERVLET and a third as as a Web Service etc.
All such instances use the same POJO kernel, but have
different envelope.

2 Currently Java Represents the Unique Language Supported by

IASA

The IASA approach make use of a number of
concepts to achieve the composition of web services without
any impact on the concepts and standards associated with web
services and Service Oriented Architecture (SOA) in general
(table 1). In the general situation, where services are non
deployable unit of composition, IASA uses the LComponent
with the envelope provided with the JWS deployment case.
The LComponent represent an already deployed web service.
The envelope associated with each LComponent representing a
web services will be deployed with the controllers (component
of the control part). The controllers and the envelopes will
encompass the composition logic which may be an orchestrated
logic, a choreography logic or any other logic supported by the
IASA approach .

When a web service is handled by a deployable
component, not an LComponent, the envelope is deployed with
the component instance. The deployment of an internal new
web service may be followed by the registration of its WSDL
descriptor in a specific web services registry.

TABLE 1: IASA Mechanism to Achieve WS Composition

SOA and Web Services IASA Mechanisms

A third party service or a
third party web service LComponent

Deployable web service Component

Service Interface or WSDL Port Structure

Service Interface Behavior
or WSCI 3ADL Port behavior

Web Service Orchestration Controller and Envelope of
LComponent

Web Service Choreography
(WSCL)

3ADL controllers behavior,
port behavior, connector
interaction (Abstrcat)

Executable choreography Controllers and Envelope of
LComponent

The main difference between IASA web service
composition and current web service composition languages
such as BPEL, is represented by the fact that IASA generates a
number of POJOs handling the orchestration or choreography
logic and the envelopes needed to transform each generated
POJOs to a web service. Deploying IASA composite web
services does not require the installation of a specific and
heavy orchestrator engine as this is the case when the
composition is achieved using a web service composition
languages.

IV. THE TRANSFORMATION PROCESS
One of the main important parts of the IASA

approach is represented by its transformation process
subsystem [5]. This later takes a 3ADL abstract description
and produces an implementation view in the selected
implementation technologies. The transformation process is
made of steps independent from any implementation
technology and steps specific for each implementation
technology, even if these technologies uses the same
programming language. Current policy in the IASA project is

120

to deal in an independent manner with each implementation
technology. The planned objective is to build a repository of
transformation rules which may be used later as a knowledge
base in the context of future research dealing with the
enhancement and optimization of the IASA transformation
process.

The current process of generating the implementation
view in IASA depends on the specified topology, the
communication mode of the access points, the chosen
implementation technology for each component instance, the
deployment case of each component instance and the used
standards for ports and connectors. The transformation process
consists of the three following steps:

- Aspect Weaving: This step, achieved at the envelope
level, modifies the structure and the behavior of a
envelope port and produces an intermediate weaved
3ADL description.

- The Normalization Step: This is the fundamental step in
the process. It is based on a number of transformation
rules and produces a regular architecture where IASA
ports are transformed into ports fully provided with the
required software mechanism (e.g. an IDL description, a
Java Interface description, an ArchJava port, UML).

- The Production of the Implementation View: This third
step is mainly based on the deployment map. It provides
the ports with the necessary adapters, solves the distance
problem between connected component and attaches the
port to a connector endpoint

The deployment of a component as a web service is
achieved at the third step. Two great actions are realized in
this step for producing a composite web service:

- The production of the POJOs representing the behavior of
the controllers described in 3ADL

- The execution of a number of rules to generate the
implementation view of the envelopes of all components
involved in the composition (operative part component,
aspect part component and control part components).

Here is some specific rules used to deploy an instance
of a component type as a JWS.

- A web service envelope is composed of a POJO, the stub
of the required web services, the WSDLs of the required
web services and the WSDLs of the provided web
services.

- The envelope first role is the localization of the needed
web services in order to get the necessary stub and WSDL
files.

- The envelope POJO must implement the same interface as
the wrapped component which is usually represented by a
POJO.

- The envelope POJO must be provided by the reference of
the wrapped component. This operation is achieved at the
envelope POJO constructor.

The following code shows the POJO representing a
component type called AdderCmp, the interface implemented
by AdderCmp and the envelope POJO with necessary java
annotations. The java annotations are used to automatically

generate the WSDL file describing the AdderCmp web
service3 which is here a deployable web service.

package iasa.component.javaws.primitive;
public class AdderCmp implements AdderPort{
 public int add(int a, int b){
 return a + b;
 }
}

package iasa.component.javaws.primitive;
import iasa.ports.*;
public interface AdderPort extends IASAServerPort {
 public int add(int a, int b);
}

package iasa.impl.ws.envelope;
import iasa.component.javaws.primitive.*;
import javax.jws.WebMethod;
import javax.jws.WebService;

@WebService
public class AdderWSEnvelope {
 AdderPort adder;
 AdderWSEnvelope (){adder = new AdderCmp();}

@WebMethod(operationName="add")
 public int add(int a, int b){
 return adder.add(a, b);
 }
}

V. CASE STUDY
The objective of this case study is to show the

usefulness of our approach. First we design a new composite
component using the IASA top down design process [5]. This
composite component implements the following mathematical
function.

2*)(),,(zyxzyxf +=

We consider that all components are external
components (this is usually the case when composing web
services). The three already deployed components are
represented by an LComponent in the design. The composite
component named FCmp is made using LCAdderCmp,
LCMultiplierCmp and LCSquareCmp (figure 3).

3 Current JWS deployment case is based on the JAX-WS 2.0 API

121

The FCmp component has two ports. The first one,

named inPort, is a service port containing a server ACTOAP
and three DOAP. The server ACTOAP enables the activation
of the f service. The three DOAP handles the x, y and z
operands of f. The second port, named outPort, is a data port
containing only one DOAP used to return the result of the f
service.

The control part is made of one controller. One of the
possible behaviors of the main controller, written in x3ADL
(the XML version of the 3ADL language), is described in
figure 4. This behavior states that all the services provided by
already deployed web services are launched in sequence, in a
synchronous mode. First the adder is invoked and its result is
captured by the controller. Then, the square is launched and
finally the controller launches the multiplier which produces
the final result.

The deployment specification reported in figure 4
first describes the environment where the component may be
deployed and the supported deployment cases. The
deployment map indicates the effective deployment of all the
component instances realizing the composition. Usually the
first specification targets the main controller which represents
the starting point of the component execution. Figure 5 shows
two possible orientations when the deployment target
LComponent. When an LComponent is targeted by the
deployment, the directive in applied only to the envelope
since the LComponent is an already deployed component.

In the first orientation, represented by the directive
“deploy rall in jboss”, all the envelope (which are actually

POJOs provided which necessary stub and skeleton) are
deployed in distinct web service. Each envelope plays the role
of a proxy to the web service specified in the composition.
The composition is here represented by a kind of
multithreaded application where each thread is a web service
by itself. This Orientation is suitable for a choreography
composition.

In the second orientation, represented by the directive
“deploy rall in this”, all the POJOs envelope are inserted in
the main controller, yielding only one web service. This kind
of deployment seems to be more suitable for orchestrated
composition.

The two orientation may be used simultaneously. As
an example, the envelope of adder (figure 4) may be deployed
standalone and the envelope of square and multi(figure 4) may
be deployed as part of the main controller.

VI. CONCLUSION
In this paper, we presented the web service

composition problem solved at the architectural level with the
IASA approach. Regarding the composition using Web
Service Composition Languages, the IASA approach allows
the designer to compose web services in the same way they
compose any other services, by the use of a component model
and connectors. The designers are then insulated from dealing
with the complexity of the implementation level represented
either by programming languages or web service composition
languages. The main difference between the IASA approach
and the current web service composition languages is located
in the representation of the composite web service. While the
IASA approach produces one or more standalone and
lightweight web service based on a POJO, a web service

<fire component = “adder” service= ”add”
 result = “out” mode = ‘synchrone”/>
<fire component = “square” service= ”square”
 result = “out” mode = ‘synchrone”/>
<fire component = “multi” service= ”multiply”
 result = “out” mode = ‘synchrone”/>

Figure 4. Partial view of the main controller behavior
specified using x3ADL

Figure 3. FCmp Architecture Based on an Orchestrated
Composition Logic

out

square:
LCSquareCmp

multi
:LCMultCmp

adder
:LCAdderCmp

main

 x
 y
 z

x
y

z

Aspect Part

Control Part Operative Part

 inPort

outPort

////// File FCmp.dpy
// Deployment architecture, GCCF and cases
package fcmp.component
component FCmp { // indicates that the following declaration
 architecture { // are part of the FCmp component type
 environment jboss {
 machine localhost;
 container jboss5.0 ; //JBoss Server 5.0
 namespace fcmp ; //localhost:8080/fcmp
 os UNIX; // Generic name used.
 }
 deploymentcase {JWS}
 }
// Deployment map definition Many maps may be defined for the
// same application
deploymentmap ws_on_jboss5 {
 // First specify the main controller deployment
 deploy this as JWS in jboss;
 // Now specify the deployment for all other component
 // The next line indicates that each envelope will be deployed as a
 // standalone web service. Recommended for orchestrated
 // deploy rall as JWS in jboss ; // rall : Recursive Deployment:
 // target the composition tree
 //uncomment the following deploment directive
 // if you want to represent th ecomoosition by a single
 // web service (recommended for orchestration), we deploy all
 // other envelope in the main controller
deploy rall in this;
}

Figure 5. Deploying FCmp Composite Component
as a Composite Web Service

122

composition languages approaches usually uses a heavy
engine to execute the composition represented by an XML
description. This heavy engine must be installed in the
application server prior to deploy any composite web service.

The conducted work has shown some challenges the
IASA approach is currently facing. The main challenge is
represented by the huge code generated by the transformation
process from an abstract view to an implementation view. The
huge code is due to the envelope concept. Currently, for each
component type instance an envelope is generated. This
situation leads to the generation of redundant information such
as WSDL descriptors, stub and skeleton. Optimizing
redundant information, while generating the implementation
level code, represents one of the most important actions in the
future works of the IASA approach.

REFERENCES:
[1] K. Bentlemsan, “Composing Web Services Using A

Software Architecture Approach”, Magister Thesis,
Computer Science Department, The Saad Dalhab
University at Blida, Algeria, (2010).

[2] D. Bennouar, H. Benasmane, “Evaluation of the Web
services composition approaches using web services
Composition Languages in the Context of the Design of
the eAPC eGovernment System”, Internal Report N°
IR.IASA.LRDSI.CS.2010.04, LRDSI lab, The Saad
Dalhab University at Blida, Algeria, (2010).

[3] M. Keen, J. Cavell, S. Hill, C. K. Kee, W. Neave, B.
Rumph, H. Tran, “BPEL4WS Business Processes with
WebSphere, Business Integration :Understanding,
Modeling, Migrating", IBM Redbook, (2004)

[4] M. Patino, P. Jimenez, S. Perez, “A Visual Web Service
Composition Tool for BPEL4WS”, Visual Languages and
Human-Centric Computing, IEEE Symposium. Page(s):
181 – 188 (2005)

[5] D. Bennouar, “The Integrated Approach to Software
Architecture”, Phd thesis, ESI, Oued Smar, Algiers,
(2009)

[6] D. Bennouar, A. Henni, “A Review of an Aspect Oriented
Architecture Description Language”, The Mediterranean
Journal of Computers and Networks, Vol. 6, No. 1,
(2010)

[7] OMG, “Action Semantics for the UML, Final
Submission”, TR, Object Management Group, 2001

[8] A. Saadi, “An Action Language for the Specification and
Validation of Software Architecture Behavior”, Magister
Thesis, LRDSI Lab, Computer Science Department, The
Saad Dahlab University, Blida, Algeria, June 2008.

[9] R. DeLine, ”A Catalog of Techniques for Resolving
Packing Mismatch”. Proceedings of the 5th Symposium
on Software Reusability, Los Angeles, 1999, p44-53.

[10] D. Garlan, R. Allen, J. Ockerbloom, “Architectural
Mismatch: Why Rreuse is So Hard”, IEEE Software,
12(6):17--26, Nov. 1995

[11] D. Bennouar, T. Khammaci, and A. Henni, “A New
Approach for Component’s Port Modeling in Software

Architecture”, Journal of System and Software,
doi:10.1016/j.jss.2010.03.005, Elsevier, 2010.

[12] R.E. Filman, D.P. Friedman, “Aspect-Oriented
Programming is Quantification and Obliviousness”,
Workshop on Advanced Separation of Concerns,
OOPSLA 2000.

123

	I. Introduction
	II. The IASA Approach
	III. Web Service Composition in IASA
	IV. The Transformation Process
	V. Case Study
	VI. Conclusion
	References:

