
Acta Informatica Pragensia, 2016, 5(2): 138–143

DOI: 10.18267/j.aip.90

Peer-reviewed paper

138 ACTA INFORMATICA PRAGENSIA Volume 05 | Number 02 | 2016

A DSL-based Approach to Product Derivation
for Software Product Line

 Nesrine Lahiani*, Djamal Bennouar†

Abstract

Product derivation is an important part of the Software Product Line (SPL) development
process. The quality of a product derivation process has a direct impact in decreasing
software product costs and time-to-market. In this paper, we present an approach that
represents the SPL with a set of integrated models and automatically derives executable
products with model transformations. We combine SPL and Model-Driven Engineering
(MDE) into a comprehensive and extremely effective framework in order to get advantages of
both techniques. In order to evaluate the feasibility of our approach, we have designed and
implemented it using existing and available technologies.

Keywords: Product derivation, Software product line, Domain specific language,
Model-driven engineering.

1 Introduction

A software product line (SPL) is as a set of software-intensive systems that share a common,

managed set of features satisfying the specific needs of a particular market segment or

mission and that are developed from a common set of core assets in a prescribed way

(Clements & Northrop, 2002). The SPL engineering process (see Figure 1) consists of two

major phases: a) domain engineering for analysing the commonality and variability between

members of the product line and establishing reusable SPL models, and b) application

engineering for deriving manually or automatically an individual product from these reusable

models instead of starting from scratch.

We focus in this paper at application engineering known also as Product Derivation (PD). PD

has been defined in many different ways, McGregor (2009) defines it by “Product derivation

is the focus of a software product line organization and its exact form contributes heavily to

the achievement of targeted goals”. Deelstra, Sinnema & Bosch (2005) define product

derivation by, “A product is said to be derived from a product family if it is developed using

shared product family artifacts. The term product derivation therefore refers to the complete

process of constructing a product from product family software assets”.

* Department of Informatics, Université Saâd Dahlab de Blida, B. P. 270, Route de Soumâa, 09000 Blida, Algeria

 lahiani.nesrine@gmail.com

† Department of Informatics, Université de Bouira, Rue Drissi Yahia, Bouira 10000, Algeria

 djamal.bennouar@univ-bouira.dz

139 ACTA INFORMATICA PRAGENSIA Volume 05 | Number 02 | 2016

Figure 1. The software product line engineering framework. Source: (Pohl, Böckle, & van Der Linden 2005).

In this paper, we propose an approach that supports: (i) modelling the variability; and (ii)

deriving product by using existing technologies. We believe that model driven engineering

has a prominent role to play in product-line engineering to define their core assets and support

product derivation.

The remainder of this paper is organized as follows. Section 2 presents existing research

works of product derivation and feature mapping techniques. Section 3 gives an overview of

the main elements and functionalities of our approach. Section 4 describes the approach

implementation using existing model-driven technologies. Finally, Section 5 presents the

conclusions

2 Related works

This section briefly presents related works on product derivation approaches and different

feature mapping techniques. FArM (Feature-Architecture Mapping) method proposed by

Sochos et al. (2006). FArM provides a stronger mapping between features and the

architecture. It is based on a series of transformations on the initial PL feature model. During

these transformations architectural components are derived, encapsulating the business logic

of each transformed feature and having interfaces reflecting the feature interactions.

Tawhid et al. (2011) proposed to derive an UML model of a specific product from the UML

model of a product line based on a given feature configuration is enabled through the

mapping between features from the feature model and their realizations in the design model.

The mapping technique proposed aims to minimize the amount of explicit feature annotations

in the UML design model of SPL. Implicit feature mapping is inferred during product

derivation from the relationships between annotated and non-annotated model elements as

140 ACTA INFORMATICA PRAGENSIA Volume 05 | Number 02 | 2016

defined in the UML metamodel and well-formed rules. The transformation is realized in the

Atlas Transformation Language (ATL).

ArchFeature a recent work proposed by Gharibi et al. (2016) which is a PLA modelling

approach equipped with a graphical environment. ArchFeature integrates feature

specification, PLA, and their relationships in a single monolithic architecture model. This is

enabled by extending an existing XML-based architecture description language (ADL),

xADL that is mostly used for modeling a single system’s architecture consisting of

components and connections. It includes a graphical modelling environment that can (1)

automatically capture, maintain, and visualize the feature-PLA relationship, (2) encapsulate

variability modelling from the user, and (3) support automatic derivation of architecture

instances from the PLA. ArchFeature is integrated in ArchStudio, an Eclipse-based

architecture development platform.

FeatureMapper an Eclipse-based tool proposed by Heidenreich et al. (2008) supports mapping

features from a feature model to solution artifacts expressed in EMF/Ecore based languages

(e.g. UML2). A feature configuration containing a set of selected features is combined with

the mapping model and interpreted by the FeatureMapper transformation component to derive

a product model. The negative variability technique is applied for product derivation, and the

mapping is done through a separate model.

3 Concepts and motivation

Model-Driven Engineering (MDE) aims at reducing the accidental complexity associated with

developing complex software-intensive systems (Schmidt, 2006). A primary source of

accidental complexity is the large gap between the high-level concepts used by domain

experts to express their problem statements and the low-level abstractions provided by

general-purpose programming languages (France & Rumpe, 2006). Manually bridging this

gap, particularly in the presence of changing requirements, is costly in terms of both time and

effort. MDE approaches address this problem through the use of modelling techniques that

support separation of concerns and automated generation of major system artifacts (e.g., test

cases, implementations) from models. In MDE, a model describes an aspect of a system and is

typically created for specific development purposes. Separation of concerns is supported

through the use of different modelling languages, each providing constructs based on

abstractions that are specific to an aspect of a system (Cheng et al., 2015).

A Domain Specific Language (Stahl et al., 2006) is formalism for building models: It

encompasses a metamodel as well as a definition of a concrete syntax that is used to represent

the models. The concrete syntax can be textual, graphical or using other means, such as

tables, trees or dialogs. Different DSLs can use the same metamodel while varying in their

concrete syntax. The models built with these DSLs will look different, but will all have the

same meaning. The meta-model is what the tools care about; whereas the concrete syntax is

what the DSL users care about. It is essential, that the concrete syntax can sensibly represent

the concepts the DSL is intended to describe.

Incorporating domain-specific concepts and best practices development experience into MDE

technologies can significantly improve developer productivity and system quality. A DSL

provides a bridge between the (problem) space in which domain experts work and the

implementation (programming) space (Cheng et al., 2015).

141 ACTA INFORMATICA PRAGENSIA Volume 05 | Number 02 | 2016

4 Product derivation process

In this section, we present an overview of our approach for product derivation. It is founded

on the principles and techniques of software product lines and model driven engineering.

Figure 2 illustrates the main elements of our approach and their respective relationships.

Figure 2. Overview of proposed approach. Source: Authors.

Before starting the fourth principal activities, two important inputs are required

 Customer’s requirements: to describe what customer wants, its requirements

documented in natural language (textual requirements) or by conceptual models

(model-based requirements)

 Feature Model: Our feature model is based on (Czarnecki et al., 2005) which focus on

identifying external visible characteristics of products in terms of commonality and

variability, rather than describing all details of products such as other modelling

techniques. Features can be common, optional, or alternative.

The proposed derivation approach uses the mapping of features to architecture model (Lahiani

& Bennouar, 2015). Next we briefly explain the activities of the proposed approach. The first

activity of our approach is the feature configuration. A feature configuration is a legal

combination of features that specifies a particular product. Step1 uses feature models as input

to select the feature relevant for customer’s requirements to build the product and identify the

specific-assets of the product. Once the selection is checked and validated by the product

designer the output at this stage is a specialized version of feature model (application feature

model). After that, application feature model is considered an input parameter and then is

processed by a model-to-model (M2M) transformation written in ATL (Atlas Transformation

Language) that creates an Architecture Model which composed of a set of rules and helpers.

The rules define the mapping between the source and target model. The helpers are methods

that can be called from different points in the ATL transformation. This model describes all

components that have to be included to implement this particular Application Feature Model.

The model is then processed by a model-to-text (M2T) transformation which generates an

equivalent textual configuration implemented using Acceleo language to promote the

generation of Java.

142 ACTA INFORMATICA PRAGENSIA Volume 05 | Number 02 | 2016

5 Conclusion

Derivation of a product from an SPL seems to be an easy step since it’s relied on reuse.

Actually the product derivation represents one of the main challenges that SPL faces due to

time-consuming. In this paper, we intend to reduce the development time of a product by

automating the derivation by generating some java code using Acceleo in conjunction with

ATL.

The proposed transformation uses Feature-architecture mapping technique by instantiating the

initial feature model, an instance of feature model is constructed according to customer’s

requirements. Then, separate features into two kinds: common and variable. The main idea is

to create for each feature a component or a set of components combined in a specific way.

Linking these created components together based on the relationships among features in the

feature model is the last step of our process.

References

Cheng, B. H., Combemale, B., France, R. B., Jézéquel, J. M., & Rumpe, B. (2015). On the
Globalization of Domain-Specific Languages. In Globalizing Domain-Specific Languages (pp.
1-6). New York: Springer. doi: 10.1007/978-3-319-26172-0_1

Clements, P., & Northrop, L. (2002). Software Product Lines: Practices and Patterns. Boston:
Addison-Wesley.

Czarnecki, K., Helsen, S., & Eisenecker, U. (2004). Staged Configuration Using Feature Models. In
Software Product Lines, Proceedings of the Third International Conference SPLC 2004 (pp. 266-
283). Berlin: Springer. doi: 10.1007/978-3-540-28630-1_17

Dashofy, E. M., Hoek, A. V. D., & Taylor, R. N. (2005). A comprehensive approach for the
development of modular software architecture description languages. ACM Transactions on
Software Engineering and Methodology, 14(2), 199-245. doi: 10.1145/1061254.1061258

Deelstra, S., Sinnema, M., & Bosch, J. (2005). Product derivation in software product families: a
case study. Journal of Systems and Software, 74(2), 173-194. doi: 10.1016/j.jss.2003.11.012

France, R., & Rumpe, B. (2007). Model-driven development of complex software: a research
roadmap. In Proceedings of the Future of Software Engineering Symposium (pp. 37-54). New
York: IEEE. doi: 10.1109/FOSE.2007.14

Gharibi, G., & Zheng, Y. (2016). ArchFeature: Integrating features into product line architecture. In
Proceedings of the 31st Annual ACM Symposium on Applied Computing (pp. 1302-1308). New
York: ACM. doi: 10.1145/2851613.2851764

Heidenreich, F., Kopcsek, J., & Wende, C. (2008). FeatureMapper: Mapping features to models. In
Companion of the 30th international conference on Software engineering (pp. 943-944). New
York: ACM. doi: 10.1145/1370175.1370199

Lahiani, N., & Bennouar, D. (2015). A Software Product Line Derivation Process Based on Mapping
Features to Architecture. In Proceedings of the International Conference on Advanced
Communication Systems and Signal Processing. Tlemcen: University of Abou Bekr Belkaid
Tlemcen.

McGregor, J. (2009). Goal-driven Product Derivation. Journal of Object Technology, 8(5), 7-19. doi:
10.5381/jot.2009.8.5.c1

Pohl, K., Böckle, G., & van Der Linden, F. J. (2005). Software product line engineering: foundations,
principles and techniques. Berlin: Springer. doi: 10.1007/3-540-28901-1

Schmidt, D.C. (2006). Guest Editor's Introduction: Model-Driven Engineering. Computer, 39(2), 25-31.
doi: 10.1109/MC.2006.58

https://doi.org/10.1007/978-3-319-26172-0_1
https://doi.org/10.1007/978-3-540-28630-1_17
https://doi.org/10.1145/1061254.1061258
https://doi.org/10.1016/j.jss.2003.11.012
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1145/2851613.2851764
https://doi.org/10.1145/1370175.1370199
https://doi.org/10.5381/jot.2009.8.5.c1
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1109/MC.2006.58

143 ACTA INFORMATICA PRAGENSIA Volume 05 | Number 02 | 2016

Sochos, P., Riebisch, M., & Philippow, I. (2006). The Feature-Architecture Mapping (FArM) Method
for Feature-Oriented Development of Software Product Lines. In Proceedings of the 13th Annual
IEEE International Symposium and Workshop on Engineering of Computer Based Systems (pp.
308-318). New York: IEEE. doi: 10.1109/ECBS.2006.69

Stahl, T., Voelter, M., & Czarnecki, K. (2006). Model-driven software development: technology,
engineering, management. Hoboken, NJ: John Wiley & Sons.

Tawhid, R., & Petriu, D. C. (2011). Product model derivation by model transformation in software
product lines. In Proceedings of the 14th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing Workshops (pp. 72-79).
New York: IEEE. doi: 10.1109/ISORCW.2011.18

https://doi.org/10.1109/ECBS.2006.69
https://doi.org/10.1109/ISORCW.2011.18

