
 THE INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT2014)

University of Nizwa, Oman December 9-11, 2014 Page 131

An MDA Based Derivation process for Software Product Lines

Nesrine LAHIANI
1
and Djamal BENNOUAR

2

1Departement of Computer Science ,Saad Dahlab university, Blida, Algeria
2Department of Computer science, Akli Mohand OulHadj University, Bouira, Algeria

{lahiani.nesrine, dbennouar}@gmail.com

Keywords: Software Product Line, Product Derivation, Model Driven Architecture.

Abstract: Product derivation represents a fundamental aspect in software product line (SPL). It is also the main

challenge that SPL faces. Despite its importance, there is only a little research on product derivation

compared to the large work on developing product lines. In addition, the few available research reports

guidance about how to derive a product from a product line. In this paper we describe a combination of SPL

and MDA which both fit perfectly together in order to build applications in cost effective way. We proposed

an approach for product derivation that adopts MDA with its organized layers of models to achieve SPL

goals.

1. INTRODUCTION

A software product line (SPL) is as a set of

software-intensive systems that share a common,

managed set of features satisfying the specific needs

of a particular market segment or mission and that

are developed from a common set of core assets in a

prescribed way [1]. A feature [2] is a system

property or functionality that is relevant to some

stakeholder and is used to capture commonalities or

discriminate among systems in SPLs.

 Figure 1 graphically represents the general SPL

engineering process, as it can be found in the

research literature [6]. As illustrated the SPL

approach makes the distinction between a domain

engineering part, where a common platform for an

arbitrary number of products is designed and

realized, and an application specific engineering

part, where a customer product is derived (product

derivation process) [6]. The process of creating these

individual products from a product line of software

assets is known as product derivation [4].

Derivation of a product from an SPL seems to be an

easy step since it’s relied on reuse. Actually the

derivation activity represents one of the main

challenges that SPL faces. A number of publications

reported clearly the difficulties associated with this

activity. As an example, Deelstra and al. reported in

Figure1: The software product line engineering

framework.

THE INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT2014)

University of Nizwa, Oman December 9-11, 2014 Page 132

[4] the following assertion: “Contrary to popular

belief, deriving individual products from shared

software assets is a time-consuming and expensive

activity”.

Product derivation has been defined in many

different ways. In [4] Deelstra, Sinnema, and Bosch

define product derivation by, “A product is said to

be derived from a product family if it is developed

using shared product family artifacts. The term

product derivation therefore refers to the complete

process of constructing a product from product

family software assets” and also by “Product

derivation is a key activity in application

engineering. It addresses the construction of a

concrete product from the product line core assets”.

Model Driven Architecture (MDA) [7] defines three

layer of software model specification: the CIM

layer, the PIM layer and the PSM layer. In the

context of MDA, a software system is produced after

series of model transformation which starts from the

CIM layer model. The CIM model is transformed to

a PIM model. This later is finally transformed in a

PIM model.

The work presented in this paper deal with an SPL

derivation process based on MDA concepts. The

main idea is to represent each steps of Application

engineering in SPL with a model of MDA starting

from requirement engineering until the product

implementation. Indeed, there are needs for

decisions model and transformations rules to get at

the end a running application that satisfy customer's

wishes.

The remainder of the paper is structured as
follows: we first outline related work (Section 2).
We then describe how we combine application
engineering and MDA (Section 3), the process of
our product derivation approach (Section 4). We
finish with case study (Section 5) and finally,
conclusions and futures directions are presented
(Section 6).

2. RELATED WORK

In [12] Kim and al. proposed an overview of a

complete method called Dream stands for

DRamatically Effective Application development

Methodology, which integrates both SPL

engineering and model-driven architecture.

DREAM, that adopts the key activities of SPL and

model transformation feature of MDA. The process

consists of 9 phases, and each phase was specified

with work instructions utilizing UML and

representation scheme utilizing PIM and PSM of

MDA. However, there is little support for the

derivation process other than a high level description

of the activities required. A similar approach has

been proposed by Haugen et al. [10] who present a

conceptual model for SPL engineering aligned with

MDA and serves as the basis for both modeling and

product derivation. To derive a product the process

is as follows: first, the “product model” is expressed

using Computation Independent Model (CIM),

which is the same formalism as the product-line

model is defined (modeled in terms of UML 2.0 use

cases). Then, a model transformation taking both

product and product line models as parameters

transform the core assets so that the resulting model,

“Product/System Model”, correspond to the PIM

model of the product (modeled in terms of UML 2.0

composite structures). Finally product

implementation is obtained after several refinements

at the Product Specific Model or PSM level.

FIDJI is a flexible product derivation process [5],

part of an overall model-driven SPL based

development methodology [11]. The FIDJI process

consists in writing a model transformation, using a

set of predefined transformation operations that will

reuse core assets’ models to build the product. This

transformation is written by the product engineer

and checked against instantiation constraints. Hence,

the FIDJI PD process offers the flexibility required

to support product-specific requirements by

supporting them via transformation operations while

controlling their realization through instantiation

constraints.

Ziadi et al. [13] modeled Core assets in terms of

UML. Class diagrams are used to represent the static

part and sequence diagrams to represent the

behavioral part. The decision model which is a set of

requirements and engineering decisions that an

application engineer must resolve in order to

describe and construct a product and determine the

extent of variation that is possible among the

systems of the domain was defined by Ziadi et al. as

a class diagram (as shown in figure 1) which

exposes variants as stereotyped elements. Product

derivation is formalized by using a UML model

THE INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT2014)

University of Nizwa, Oman December 9-11, 2014 Page 133

transformation. An algorithm is given to derive a

static model for a product and an algebraic approach

is proposed to derive product-specific statecharts

from the sequence diagrams of the product line.

Based on product engineer’s choices, relevant

classes are selected and a model transformation

removes unused variants as well as optimizes the

model.

3. INTEGRATE MDA AND SPL

Application engineering is the second process of

SPL which comprises: (1) Application requirement

engineering identifies the specific requirements for

an individual product. Then, (2) Application Design

derives an instance of the feature model, which

conforms to the requirements identified in the

previous step. In parallel product-specific

requirement are captured and also modeled. (3)

Application designed detailed focus on refining the

design model, by considering platform specific

characteristics such as programming language,

middleware and component platform. Finally, (4)

Application Realisation develops the final product

by using the design detailed model.

The main idea is to represent all the 4 phases of

application engineering by MDA model as shown in

Figure 2. The requirements for the system are

modeled in a computation independent model, CIM

describing the situation in which the system will be

used [7]. After that, application design is

transformed in a platform independent model, a

PIM, is built. It describes the system, but does not

show details of its use of its platform [7]. Then

integrate both models into one PIM model.

Application detailed design is modeled in PSM the

platform specific model produced by the

transformation is a model of the same system

specified by the PIM; it also specifies how that

system makes use of the chosen platform [7].

Finally, the PSM obtained contained all the

information necessary to produce computer program

code.

Application

Requirements

Engineering

Application

 Realisation

Application

Design

Application

Detailed

Design

Computational

Independant

Model

 CIM Platform

Independant

Model

PIM
Platform

Specific

Model

PSM

Code

4. DERIVATION PROCESS

The product derivation process consists of six

activities: (1) engineers starts with feature model for

pre-configuration to select feature relevant to

customer’s wishes. (2) Users defined in the feature

instance model perform the actual configuration by

taking decisions visible to them. (3) In parallel, they

capture product-specific requirements in aim to do a

specific-asset implementation. (4) Product

integration uses generic and specific model to obtain

at the end one single model. (5) Product

development uses the final model to develop an

SPL MDA

Figure 1. The Abstract Factory as a decision

model for the Mercure SPL

Figure2. Combination of MDA and SPL

THE INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT2014)

University of Nizwa, Oman December 9-11, 2014 Page 134

executable application. (6) Finally, Product testing

passes a test to the final application. Eventually,

newly captured product-specific requirements are

added to the product line. Figure 3 depicts the

activities of our product derivation approach.

4.1 Pre-Configuration
Initially step1 uses feature models [8] as input to

select the feature relevant for customer’s

requirements to build the product and identify the

specific-assets of the product. Once the selection is

checked and validated by the engineer the output at

this stage is a specialized version of feature model

(instance) based on [3]. In parallel we represent this

instance in MDA with CIM with UML to represent

the model but it can be represented in any form as

long as the semantics of this model is well

preserved.

4.2 Configuration

In this step we start with a reference configuration as

input which is a partial configuration designed as

basis for the development of the new product that

includes all parameters setting. Reselecting or

mapping of customer features according to the final

instance of feature model. After that, we use the

decision model as input to take decision and

customize assets throw answering questions, our

decisions model is based on [9]. Based on this taken

decisions a configuration is generated which is also

the output of this phase. The representation in MDA

at this stage could be represented as PIM (Platform

Independent Model).

4.3 Specific-Asset Implementation
After capturing and identifying customer's specific

requirements others decision must be taken for these

specific-assets. As input we used the output of the

previous phase that contains taken and open

decisions in order to complete those opens decisions.

Based on decisions and information about their

relationship with the available assets, if it's possible

we just modify an already existing asset to adapt the

new customer's wishes, else we develop completely

a new asset from the scratch. This new developed

assets must be tested individually to make sure that

they work before integration. These newly

developed/modified assets are the output of this

phase. The representation in MDA will be also a

PIM specific model to facilitate integration in a later

phase.

4.4 Product Integration
In this step, we should integrate the two separated

PIM specific-asset model and PIM generic model

into one single PIM model in order to facilitate

implementation and derivate one single coherent

product that satisfy customer's requirements. After

that, we use this final PIM to transform it into a

PSM (Platform Specific Model) that contain all

details about the final application such as component

platform, a specific programming language…etc.

The process of mapping PIM to PSM is automated

by using a set of predefined transformation rules.

The output at this stage is PSM model that represent

all detailed design and includes platform decisions.

Figure3. Product derivation process

THE INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT2014)

University of Nizwa, Oman December 9-11, 2014 Page 135

4.5 Product Development

Based on what we obtained from the previous phase

(PSM model), we use it as an input to produce an

executable application code.

4.6 Product Testing
After the product development, which is finished

when we obtained the application code, this final

product must pass a test before delivering to the

customer. Testing means that if the integration

works properly and the final product satisfies all

customers' requirements, then the product is

validated by the engineer. If the customer validation

is failed we must repeat all the previous activities

until the customer is satisfied.

5. CASE STUDY

In this section we exemplify our approach on a

simplified “e-formation application” used in

educational institutions. The application aim to ease

and improve the teaching-learning process by means

of taking advantage of internet technologies.

Figure 4 shows a part of the feature model we

constructed for e-formation. This feature model

specifies that the e-formation application has three

main features: (1) the Human Machine Interface that

can supply (HMI); (2) the kind of courses that can

the platform provided (Courses); and (3) the

collaboration tool it uses (Collaboration tool).

The HMI could contain or not Theme which is an

optional feature but must contain only one of three

different languages (FR, EN, and AR) since these

features are mutually exclusive alternatives. Two

mandatory features must be used (1) lesson which

users can read the content of the lesson online

(Online reading) or simply download it. (2)

Evaluation the second mandatory feature of courses

could be done by two different kind of Exercise

(Online Test or Work).So, if we select work which is

an optional feature only one of the two features must

be selected (Individual or Group). Depending on the

user needs, several choices are available for the type

of Exercise which can be selected all of them at the

same time (Text, MCQ or Diagram). Also, users can

score Evaluation automatically or manually but not

both since these features are mutually alternative.

Moreover, Collaboration tool is an optional feature

that contains three different features (Forum, Chat

and Email).

In order to evaluate the described approach, we
performed the case study of “e-Formation
application” following the organization proposed in

section 4 in aim to create MDA models shown
previously in Figure 2 (CIM, PIM, PSM and Code)

Pre-Configuration require a feature model which
exposes in a concise way features and their variants

Figure4. Feature Model for e-Formation

application

THE INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT2014)

University of Nizwa, Oman December 9-11, 2014 Page 136

supported by SPL’s core assets. We use the feature
model in figure 4 in aim to select the variants related
to the customer’s requirements. Then, once the
selection is checked we create an instance of the
feature model based on [3] which can be represented
in MDA as CIM. The pre-configuration step ends
when the combination of the selected features is

validated. After that, the configuration phase used
the output of the pre-configuration phase, during this
steps decisions must be taken by the engineer. Based
on this taken decisions a configuration is generated
and could be represented in MDA as PIM as figure 5
shown.

Decision model rely on describing the decisions
that need to be made to derive a specific product
from the product line. Decisions are typically
represented in form of questions with a defined set
of possible answers. Decision-based variability
models are often represented in tables containing
decisions, their attributes, and dependencies.

Products are derived from a decision model by
setting values to the decisions through answering
questions and following the sequence defined by the
decisions’ dependencies. Our product derivation
process is also based on decisions Figure 6 shows a
decision model for the e-Formation application in a
tabular notation

Name Question Range Cardinality

Online test Which type of exercise do you
want to be able to use in your
platform?

Text,
MCQ,
Diagram

1-3

Collaboration tool Which collaboration tool you
want your platform has?

Forum,
Chat, Email

1-3

Scoring Do you want to be able to score
student’s evaluation?

Yes,no 1

Figure5. Class Diagram for e-Formation

application

Figure6. Example decision model based on [9]

 THE INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT2014)

University of Nizwa, Oman December 9-11, 2014 Page 137

In parallel, specific-requirements are captured to be

designed and integrated later. The model design of

specific-requirements is represented as a PIM model.

Application specific PIM is identical to the generic

PIM except the content of PIM is only relevant to a

specific application. After implementing two

separate models (generic and specific) product

integration phase integrates those two models into

one single model which will still be a conventional

PIM. Next, the obtained model after integration is

detailed in order to map PIM to PSM that contain

specific characteristics such as programming

language, middleware and component platform.

Finally, product realisation takes PSM to produce an

executable application.

6. CONCLUSION

In this paper we have proposed a product derivation

process using MDA approach. MDA with its

organized layers of models achieving the SPL goals

with more benefits and the generative natures of

MDA makes it a useful approach to derive product

for SPL .MDA consists in the separation of platform

dependent and platform independent models, which

distinct between business (CIM), applications (PIM),

and technology (PSM). The main idea is to represent

each phase of the application engineering

(application requirement engineering, application

design, application detailed design, and application

realisation) by MDA models. The derivation process

proposed consists of six activities, each activities

output was represented by MDA. We also illustrated

each step of the process with an e-Formation

application.

 As future work, we will add more features and also

intend to build a set of components to this e-

Formation application.

At the tool level, improvements may concern the

visual representation of feature models (via the

Ecore reflexive editor provided by Eclipse). A

possibility is to develop our metamodel and generate

this later using tool such as GMF

(http://www.eclipse.org/gmf/).

7. REFERENCES

[1] Clements,P., Northrop,L. Software Product

Lines: Practices and Patterns. The SEI series in

software engineering. Addison-Wesley, Boston,

2002.

[2] Czarnecki, K., Helsen, S.: “Feature-Based

Survey of Model Transformation Approaches”,

IBM Systems Journal, 45, 3, 621-64, 2006.

[3] Czarnecki, K., Helsen, S., Eisenecker, U.:

“Staged Configuration Using Feature Models”.

In Proceedings of the 3rd Software Product-Line

Conference (SPLC’04), September 2004.

[4] Deelstra, S., M. Sinnema, and J. Bosch, Product

Derivation in Software Product Families: A

Case Study. Journal of Systems and Software,

2005. 74(2): p. 173-194.

[5] Guelfi, N. and Perrouin, G., A Flexible

Requirements Analysis Approach for Software

Product Lines, I Requirements Engineering:

Foundation for Software Quality. 2007, Springer

Berlin / Heidelberg. p. 78-92.

[6] Hotz, L., A. Gunter, and T. Krebs, A

Knowledge-based Product Derivation Process

and some Ideas how to Integrate Product

Development, in Proc. of Software Variability

Management Workshop. 2003: Groningen, The

Netherlands.

[7] J. Mukerji, and J. Miller, "MDA Guide," 2003.

[8] Kang, K., Cohen, S., Hess, J., Novak, W.,

Peterson, A.: “Feature-oriented domain analysis

(FODA) feasibility study”, Technical Report

CMU/SEI-90-TR-021, SEI, Pittsburgh, PA,

November 1990.

[9] K. Schmid and I. John. A Customizable

Approach to Full-Life Cycle Variability

Management. Journal of the Science of

Computer Programming, Special Issue on

Variability Management, 53(3), pp. 259-284.

2004.

[10] Ø.Haugen, B. Møller-Pedersen, J. Oldevik, and

A. Solberg. An MDA-based Framework for

Model-Driven Product Derivation. In SEA,

pages 709–714. ACTA Press, 2004.

[11] Perrouin, G., Klein, J., Guelfi, N., and Jezequel,

J.M. Reconciling Automation and Flexibility in

Product Derivation. in 12th International

Software Product Line Conference (SPLC).

2008.

[12] S. D. Kim, H. G. Min, J. S. Her, and S. H.

Chang. DREAM: A Practical Product Line

Engineering Using Model Driven Architecture.

In Information Technology and Applications.

(ICITA), pages 70–75, Washington, DC, USA,

2005.

[13] T. Ziadi and J.-M. J´ez´equel. Product Line

Engineering with the UML: Deriving Products.

In Families Research Book. Springer, 2006.

