
INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS
Int. J. Commun. Syst.
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/dac.1275

GPM: A generic and scalable P2P model that optimizes tree depth
for multicast communications

Mourad Amad1,∗,†, Ahmed Meddahi2, Djamil Aïssani1 and Gilles Vanwormhoudt2

1L.A.M.O.S. (Laboratory of Modelization and Optimization of Systems), University of Bejaia,
06000 Bejaia, Algeria

2Institut Telecom/Telecom Lille 1, France

SUMMARY

Group communications (real-time and non-real-time) refer to one-to-many or many-to-many commu-
nications. On the one hand, multicast is considered as an appropriate solution for supporting group
communication-oriented applications (we distinguish IP network multicast from application layer multi-
cast). On the other hand, peer-to-peer model tends to be a good candidate for supporting today Internet
applications (e.g. P2P IPTV, P2P VoIP, etc.). In this context, P2P has attracted significant interest in the
recent years. This is mainly due to its properties that also make P2P well adapted to today social networks.
In this paper, we propose GPM (Generic P2P Multicast): a novel generic and scalable approach, that
optimizes multicast tree depth in P2P networks (structured and unstructured), and contributes to control
the network overlay latency. For multicast tree construction, the approach we propose is based on a
distributed algorithm using a specific data structures (adjacency and forwarding matrixes). GPM model
inherits from P2P attributes such as scalability, flexibility and fault tolerance, while taking into consider-
ation the respective characteristics of one-to-many and many-to-many type of applications. We also give
a performance evaluation for validation and comparison purposes while considering some main existing
application layer multicast protocols. Copyright � 2011 John Wiley & Sons, Ltd.

Received 2 August 2010; Revised 6 January 2011; Accepted 6 March 2011

KEY WORDS: GPM; P2P; application layer multicast; multicast tree depth

1. INTRODUCTION

For one-to-many and many-to-many multimedia applications, such as video on demand, media
streaming or media conferencing, the efficient and optimal distribution of the media flow to a
large group of receivers constitutes a key requirement. In response to such a requirement, the
efficient support of multicasting by network layer components (i.e. routers) was proposed in the
form of network IP multicasting. However, the ubiquitous deployment of IP multicasting has been
challenged by several commercial issues, as well as technical challenges related to scalability,
quality of service support, security access or multicast sessions control and management [1].

The relative slow deployment of IP multicast leads to an application layer multicast approach [2].
Application layer multicast refers to the implementation of multicast capability at the application
layer (end hosts) instead of network layer (e.g. building a multicast-capable overlay network over a
unicast-infrastructure). This approach provides relative benefits compared to network IP multicast.

∗Correspondence to: Mourad Amad, Laboratory of Modelization and Optimization of Systems, University of Bejaia,
Targa Ouzemour, 06000 Bejaia, Algeria.

†E-mail: mourad.amad@univ-bejaia.dz

Copyright � 2011 John Wiley & Sons, Ltd.

 23 May 2011
2012; 25: –491 514

M. AMAD ET AL.

They can be used to overcome deployment barriers to router-level solutions of several networking
problems, they also offer flexibility, adaptivity and ease of deployment [3].

Recently, application layer multicast approaches have been applied to the P2P domain for
providing some key benefits [4, 5] such as self-organization, scalability, fault tolerance and robust-
ness. Multicast in P2P enables applications such as P2P IPTV and more generally P2P group
communications [1]. In multicast P2P system with high membership turnover (usual referred as
churn), any node can be the source of a data flow for potentially a large number of receiver
nodes. This causes challenging issues when designing a multicast P2P mechanism. One key issue
is to distribute the media flow with efficiency between multiple and independent participants or
conference groups. Another key issue is to deal with the dynamic and potentially high churn rate
during the media flow distribution.

In this work, we propose GPM (Generic P2P Multicast), a novel approach that aims to deal with
both these issues. The main characteristics of GPM are decentralization (with greedy decision for
each node), operability (in terms of implementation cost) and scalability. In terms of efficiency,
GPM relies on multicast tree and aims to optimize the method for building the multicast tree
from any node (source) to the other receiver nodes in a P2P network. The optimization consists in
minimizing the depth of multicast tree (in terms of hops) and consequently the overlay end-to-end
delay. It is based on a specific data structure called adjacency matrix that is built at each
node from their finger table. GPM is also able to support dynamic node or peers with a rapid
convergence (churn rate), while join and leave operations are considered with a limited cost.

Unlike most of the existing application layer multicast solutions, GPM is not limited to one-to-
many type of applications. It is also defined for many-to-many applications such as P2P multi-party
conferencing. This is made possible by extending GPM with a specific data structure called
forwarding matrix that is built during the multicast tree construction process. Thanks to this
data structure, each node within a multicast tree can forward data in an optimized way and thus
minimizes the overlay network traffic.

The related works on ALM (Application Layer Multicast) for P2P systems (e.g. [6–12]) show an
intense activity. However, as opposed to the existing approaches that consider a specific architecture,
the proposed GPM approach is generic regarding the underlying networks. Thus, GPM can be
implemented on top of any P2P architecture (e.g. CAN, gnutella, Chord, etc.). In contrast with
others works, we will be able to provide the results for multicast tree on both architectures and
give comparison elements.

The paper is organized as follows: Section 2 gives a brief overview of P2P systems and describes
the concepts of application layer multicast and network IP multicast. We also resume the main
related works on application layer multicast (ALM in P2P systems). The proposed GPM approach
(A Generic and Scalable P2P Model that optimizes tree depth for Multicast communications) is
described in Section 3. We particularly focus on the multicast tree calculation, and describe our
proposed approach for both structured and unstructured P2P overlay. In Section 4, we provide an
extention of GPM for many-to-many type of applications. Section 5 illustrates the performance
evaluation for GPM provides analytical and simulation results. Finally, we conclude and give some
perspectives in terms of potential application scenarios and extra functionalities.

2. BACKGROUND AND RELATED WORKS

Peer-to-peer (P2P) network and application layer multicast are two pillars of the proposed GPM.
They are also two alternative models, respectively, to client–server and IP multicast models. This
section gives a brief overview of P2P concepts and a deep analysis of the existing P2P ALM.

2.1. Peer-to-peer networks (P2P)

Unlike client–server architecture, peer-to-peer computing allows mutual exchange of information
and services directly between a sender and a receiver (one or multiple). It is characterized by
self-organization, scalability and resilience. P2P networks support different mechanisms, mainly to

492

Copyright � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/dac

Int. J. Commun. Syst. 2012; 25:491–514

GPM: A GENERIC AND SCALABLE P2P MODEL

N0

N1

N2

N3
N4

N5

N6

N7

N6 + 1 = N7
N6 + 2 = N0
N6 + 4 = N2

N1 +1 = N2
N1 +2 = N3

N1 +4 = N5
Finger table

Finger table

N6

N1of

N0

N1

N2

N3

N4 N5

N6

N7

N8

N9

N10

N11

Undirect links between nodes

Flooding messages from N0
Flooding messages from N6

N2, N5, N7, N9, N10

Finger table of N6

(a)

(b)

Figure 1. Example of (a) structured and (b) unstructured P2P networks.

discover, query other peers and locate resources for content distribution or sharing. P2P architectures
are grouped into two main categories:

• Unstructured P2P systems (e.g. Gnutella [13], Napster [14], ABC [15] and CBT [16]) are
generally based on a global index (partially centralized), or use a flooding algorithm to locate
and discover other peers or resources [17–19]. The architecture and maintenance are globally
simplified, while the scalability represents a key issue.

• Structured P2P systems (e.g. P4L [20], Cycloid [21], Chord [22] and EZSearch [23]) are
based on the concept of Distributed Hash Table (DHT). With the DHT approach, each entity
name in the system can be mapped into a single search space (identifier), by using a hash
function such as SHA-1 or SHA-2. Thus, all the entities in the system have a consistent view
of that mapping. Given that consistent view, various structures of the search space are defined
for locating the target entities. As an example, in Chord, the search space is based on a ring
topology. In P4L, it is structured on hierarchical rings.

Figure 1(a) illustrates a Chord architecture (as a structured P2P network) where lookup is
based on DHT with a ring topology. Figure 1(b) illustrates a Gnutella architecture (as unstruc-
tured P2P network) where lookup is based on flooding technique with random topology. In
the following, we use these two representative examples for showing the generic aspect of
GPM as well as for presenting its functional principle and its performance evaluation. We give
two approaches for multicast tree construction: a primitive one (basic approach based on an
epidemic technique) that lets us to construct a multicast tree from any P2P overlay, and show
that is not optimized (especially in terms of tree depth and overlay latency); then we introduce
the optimized approach proposed by GPM that constructs a multicast tree with efficiency and
optimization.

The next sub-section introduces the multicast concept by distinguishing IP multicast from
application layer multicast. We also discuss and compare the existing works related to ALM for
P2P networks.

493

Copyright � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/dac

Int. J. Commun. Syst. 2012; 25:491–514

M. AMAD ET AL.

(a) (c)(b)

Figure 2. (a) Unicast; (b) IP multicast; and (c) application layer multicast.

2.2. Application layer multicast (ALM)

Since IP multicast has not been widely supported by major commercial Internet Service Providers
(ISPs) [24], application layer multicast has been introduced. ALM aims to address unicast scalability
issue by distributing data duplication process among the different group members, in an adaptative
and efficient way. However, ALM is not efficient as IP multicast in terms of data replication. Given
this, ALM optimization is a critical issue. Figure 2 illustrates the dissimilarities between unicast,
IP multicast and application layer multicast. In unicast (Figure 2(a)), paths are constructed from
a source node to each receiver. In IP multicast (Figure 2(b)), a router with multicast capabilities
is needed to duplicate and send messages to each receiver. However, in ALM (Figure 2(c)), any
node can be a multicast router.

ALM does not require any kind of multicast support (from a network point of view) as it is only
based on unicast communications. However, it suffers from a lack of standardization (not generic).
In ALM, the nodes are self-organized, based on mesh or tree topology. The mesh architecture
generates high overhead and scalability issue; the tree-based architecture (where network is initially
a tree) is not fault tolerant.

The main types of the existing protocols for implementing multicast are any source multicast
(ASM), single source multicast (SSM) and application layer multicast (ALM), they are resumed
as follows [25]:

• Any source multicast (ASM): ASM offers several service models that can be used to build a
range of applications. However, due to significant implementation and practical issues, ASM
deployment is relatively limited.

• Single source multicast (SSM): To address a number of implementation and deployment
issues, SSM was introduced. Nevertheless, SSM service model considers one unique sender
per session. So, applications that require multiple senders must either use different protocols
or implement extra functionalities on top of SSM.

• Application layer multicast (ALM): ALM provides a solution to deployment issues of ASM
and SSM, by shifting multicast forwarding process from the network to the terminals. As a
result, ALM offers more flexibility than ASM and SSM. However, it is less efficient, less
powerful and suffers from scalability issues.

GPM belongs to ALM classification where optimization in terms of traffic overhead, tree depth and
consequently end-to-end overlay delay from a source to each receiver represents an open issue and
challenge. Our contribution aims to give a scalable model for ALM, while taking into consideration
the overlay network characteristics (e.g. end-to-end overlay delay). GPM is specifically designed
for P2P architectures. Prior to its description, we give a review of related works in the following.

2.3. ALM for P2P

A taxonomy of application layer multicast solusions was proposed in [25]. In their paper, the
authors present two classes of ALM. The first class is based on centralized algorithms, such as
ALMI protocol [7]. This protocol uses a session controller node that gathers distance information
from all groups of nodes, and calculates an overlay tree used by each node to discover its close
neighborhood. The second class of ALM is based on distributed algorithms, which is divided into
three sub-classes: (a) mesh first algorithm such as Narada [26], (b) Tree first algorithm such as
NICE [27] or HMTP [6] and (c) coordinate system such as SCRIBE [16].

494

Copyright � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/dac

Int. J. Commun. Syst. 2012; 25:491–514

GPM: A GENERIC AND SCALABLE P2P MODEL

Table I. GPM vs some other application layer multicast protocols.

Narada Nice Scribe Overcast MCAN GPM

One-to-many (1)/ (1)
many-to-many (2) (1) (1) (1) (1) (1)
type of applications (2)

Hierarchical
Underlying topology Tree clustering Pastry Tree CAN Generic

architecture
Presence of a central No Yes No No No No
entities

Spanning Spanning Spanning Spanning Epidemic Epidemic and
Mechanism tree tree tree tree spanning

tree

In Narada [26], the overlay network is built according to a two-step process: First, for establishing
and optimizing a well-connected and controlled mesh topology. Second, for building a source tree
from each potential sender to every receiver using a subset of the existing mesh links. Narada
protocol keeps state about all other members that are part of the group. This information is also
periodically refreshed. Distribution of such state information about each member to all other
members leads to a relatively high control overhead.

As opposed to Narada, ALMI [7] relies on a central session controller node to calculate a
bi-directional and minimal spanning tree data distribution overlay, between the registered nodes.
The session controller can be implemented on one of the participating nodes, or on a well-known
external node.

Overcast [28] is a self-organized distribution tree, where nodes select appropriate parent. Overcast
builds sender-specific trees instead of a single shared tree. NICE [27] uses a hierarchical clustering
technique to build an overlay tree, whereby group members arrange themselves into clusters with
the neighboring nodes. However, clustering-based techniques face the scalability problem, and
suppose a certain complexity on supernodes (e.g. management). HMTP [6] builds an overlay tree
by choosing receiver nodes based on a recursive selection of better parents to connect to, in a
distributed way. HMTP uses a limited scope approach, because at each step of the recursive process,
a node measures its distance only from nodes considered as ‘children’ of its ‘current’ parent.

Application-level protocol based on CAN [12] splits a multi-dimensional virtual torus into
adjacent regions; and uses a broadcast mechanism to flood data to all regions. However, flooding
techniques (epidemic technique) are not cost effective, particularly in terms of traffic overhead
when nodes are widely dispersed. Finally, SCRIBE [11] exploits P2P characteristics, to build
application-level multicast tree, by merging P2P search paths to form a tree.

In this work, we focus on combining application layer multicast with any existing P2P architec-
tures, for inheriting and providing some key advantages such as self-organization, scalability, fault
tolerance and robustness. The GPM model constructs an efficient and optimized multicast tree from
any node (source) to the other nodes in a P2P network (structured or unstructured). Table I presents
GPM characteristics for comparison with some existing application layer protocols discussed above.
From this table, we can see that all other works only focus on one-to-many type of applications,
while GPM supports both one-to-many and many-to-many type of applications. A second unique
characteristics of GPM is its genericity regarding the underlying overlay networks. While others
are based on a specific topology such as Tree, CAN or Pastry, GPM can be deployed on any P2P
architectures. As opposed to ALMI and Nice which relies on a central entity (super node), GPM
is distributed (such as Narada and Scribe). However, compared to other distributed approaches,
GPM does not build a shared spanning tree but a source-oriented tree: each node can be a source
of flow and constructs its proper multicast tree. Finally, GPM differs from the existing approaches
by combining both an epidemic mechanism but only on a restricted subset of the network and a
spanning tree mechanism for the rest. This combination allows to take benefit from the robustness
of epidemic techniques and from the efficient coordination provided by spanning tree.

495

Copyright � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/dac

Int. J. Commun. Syst. 2012; 25:491–514

M. AMAD ET AL.

3. GPM: PRINCIPLES AND CONCEPTS

P2P network can be represented as a direct graph G= (V , E), where V and E denote, respec-
tively, the set of network nodes and the logical directed links. From a logical topology perspec-
tive, the oriented edge from node Ni to node N j in G represents the unicast path from Ni
to N j . Then the problem can be formulated as follows: Given any node in a P2P network,
how to build an optimized tree that connects a node N (source) to all other nodes in the
network with efficiency? Or, from any node, how to send a data flow with efficiency to a group
of participants in the network? Also, how to build simultaneously several optimized multicast
trees from each sender to their respective receivers in the context of many-to-many type of
applications?

Given this, we propose GPM, a generic and scalable model for one-to-many type of applications,
and then an extension to many-to-many type of applications is given. In the first type of applications,
we construct a multicast tree from any source node to each receiver (single source with multiple
receivers). In the second type, GPM is applied to construct a multicast tree from each source node
to each receiver (multiple sources with multiple receivers).

3.1. Multicast tree construction process in GPM

Let us consider the multicast tree construction process from any existing P2P network between one
defined node (source) and a subset or all other nodes (receivers). For this, we consider Chord [22]
as one reference for structured P2P overlay; based on a ring topology (Figure 1(a)), and Gnutella
(Figure 1(b)) for unstructured P2P overlay with random topology. We also consider two types of
solutions for multicast tree construction: The first one based on forwarding messages inside all
the current node neighborhoods (epidemic technique such as MCAN). This basic approach leads
effectively to the construction of a multicast tree while minimizing the complexity, but is not
necessarily optimized in term of overlay latency. The basic approach is introduced for illustration
purpose (we show that the problem in this approach is not the multicast tree construction by itself,
but a multicast tree that is efficient, optimized and converges rapidly).

3.1.1. Basic approach. Let us consider a basic approach based on the epidemic technique, for
sending (from a source node N) and forwarding data (from a relay node) to other receiver peers.
The peer N builds a multicast tree (N is a source) by proceeding as follows: First, node N sends
a message Child (N) to all its neighbors (Invite request) meaning ‘be a child of Ni’. If Child
M (successor of N) accepts the received request, it gives a positive response (ACK) to N and
forwards this request (message Child (M)) to all its respective neighbors, and so on.

In a P2P overlay network, a node N can have more than one directed link (from parents to
node N). With the basic approach as described above, if the node N accepts more than one
similar request messages, it will be a child for more than two nodes (Figure 3), and consequently
the multicast tree construction will be corrupted (loop). As a solution, a node that receives and
acknowledges a message Child (N), will not accept any other similar requests from other nodes
by sending back a negative response (NACK).

N0

N1N2N4

N3N5N7N6

Figure 3. Corrupted multicast tree.

496

Copyright � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/dac

Int. J. Commun. Syst. 2012; 25:491–514

GPM: A GENERIC AND SCALABLE P2P MODEL

N2 N1N4

N3

N5

N7

N6

N0 N0

N1

N3

N4
N5

N9

N2

N6

N10 N7

N8

N11

(b)

(a)

Figure 4. Multicast tree generated with the basic approach: (a) Chord and (b) Gnutella architectures.

Algorithm 1 describes the multicast tree construction process when a basic approach is consid-
ered.

Algorithm 1 : Multicast tree construction algorithm: basic approach
1: Begin
2: If (Ni is a source node) then
3: Send request Child (Ni) to all nodes in the finger table
4: else // Ni is not a source (Relay node)
5: At the reception of a request Child (Nj) do
6: If (Ni has received and accepted similar request previously) then

6.1: Send (NACK) and discard this request
7: Else
8: Accept this request by sending (ACK) and forwarding Child (Nj) to all neighbors in the
finger table
9: End.

As an example, Figure 4(a) and (b) shows a multicast trees with source N0, generated, respec-
tively, from Chord (Figure 1(a)) and Gnutella (Figure 1(b)) architectures.

Basic approach can be sufficient to construct a multicast tree from a source to multiple
receivers as shown in Figure 4. Nevertheless, the constructed tree is not necessarily opti-
mized (e.g. in terms of overlay delay), and leads to increase in the global overhead. From the
example illustrated in Figure 1(a), the node N1 sends request Child (N1) to all its neighboring
nodes (N2, N3, N5), and when the node N3 receives this request (Child (N1)), it forwards
the request Child (N3) to its neighbors (N5, etc.). If node N5 receives this request before N1
(i.e.: Child (N1)), due to the overlay topology, it will accept the first request, while the second
will be rejected, then the generated multicast tree will have a higher depth. This scenario
shows that this approach is not optimized and scalability is not guaranteed (tree depth is not
controlled).

To improve the multicast tree construction in terms of tree depth, we propose another approach
that optimizes the multicast tree in terms of tree depth, which has a significant impact on the end-
to-end overlay delay (if the tree depth is minimized, the average end-to-end delay from sender to
receivers is also minimized). This approach is based on a specific data structure (adjacency matrix)
for the multicast tree construction.

497

Copyright � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/dac

Int. J. Commun. Syst. 2012; 25:491–514

M. AMAD ET AL.

Table II. Example of adjacency matrix for Chord network with eight nodes (Figure 1(a)).

N0 N1 N2 N3 N4 N5 N6 N7

N0 — 1 1 0 1 0 0 0
N1 0 — 1 1 0 1 0 0
N2 0 0 — 1 1 0 1 0
N3 0 0 0 — 1 1 0 1
N4 1 0 0 0 — 1 1 0
N5 0 1 0 0 0 — 1 1
N6 1 0 1 0 0 0 — 1
N7 1 1 0 1 0 0 0 —

3.1.2. Optimized approach. The optimized approach is based on the adjacency matrix (see
Table II), combined with a distributed algorithm (see Algorithm 3) for multicast tree construction.
These two concepts are presented below.

Adjacency matrix description and construction: Based on each P2P neighbor node from
the underlying P2P architecture, we define the adjacency matrix (denoted Adj_Mat) as follows:
Adj_Mat[i, j]=1, if there is a direct link from node Ni to Nj (not bijective). Otherwise, it is equal
to zero. As an example, Table II represents the adjacency matrix that corresponds to the network
illustrated in Figure 1(a). On structured P2P overlay networks such as Chord, the adjacency matrix
is characterized by

∑
j Mat_adj[i, j]= log2(n),∀i and

∑
i Mat_adj[i, j]= log2(n),∀ j , where n is

the number of nodes in the network. The adjacency matrix is represented as a matrix of bit shared
by all the nodes (low cost in terms of memory space), so it is cost effective in terms of resources
usage; particularly, for terminals with limited capabilities (such as PDA and mobile phone).

The adjacency matrix represents the global knowledge at any node of all active participants; it
reflects and gathers the finger table of all network nodes. Adj_Mat is expected to be identical at
each node before GPM builds the multicast tree. This requirement is satisfied by Algorithm 2 as
follows: Each node sends its finger table (entry on its local adjacency matrix) to its successors
(Figure 5(a)), but also at the reception of a finger table entries from its predecessors, it updates the
adjacency matrix locally and forwards the received entries (lines) to its successors (Figure 5(b)).
Figure 5 illustrates the step-by-step process for adjacency matrix construction corresponding to
Algorithm 2. In a network with eight nodes, three iterations are needed for constructing and sharing
this adjacency matrix. More generally, O(log2(n)) iterations is needed for a network with n nodes.

Algorithm 2 : Adjacency matrix construction algorithm
1: Begin
2: Initialization of the adjacency matrix with a new entry corresponding to the local finger table
3: Send this entry to all successors in the finger table
4: For any changes in the finger table (neighboring) or at the reception of a new entry in

the finger table do
4.1: Update this entry in the adjacency matrix.
4.2: Send this entry to all successors in the finger table.

5: End.

Prior to the description of the multicast tree construction process, we assume the function
level(Ni) that gives the level of any node Ni (source node is at level 0), and then we define
sets A, B and C as follows:

A = setA(Ni)={Nj |level(Nj)<level(Ni)} (1)

B = setB(Ni)={Nj |level(Ni)= level(Nj)} (2)

C = setC(Ni)={Nj |∃t<i,Nt ∈ setB(Ni),Nt ∈ setA(Nj)} (3)

498

Copyright � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/dac

Int. J. Commun. Syst. 2012; 25:491–514

GPM: A GENERIC AND SCALABLE P2P MODEL

N0

N1

N2

N3
N4

N5

N6

N7N7N7

Finger Table of N1Finger Table of N1

N1+1= N2
N1+2= N3
N1+4= N5

Finger Table of N6Finger Table of N6Finger Table of N6Finger Table of N6

N6+4=N2

N6+1=N7
N6+2=N0

N0

N0

N1

N1

N2

N2 N3 N4 N5 N6 N7

N7

N6

1 1 1 10 0 0 0

N0 N1 N2 N3 N4 N5 N6 N7
N0
N1

N2

N6

N7

(a)

(b)

(c)

1 11 1 0000

N1 sends its finger table (line 2) to N2, N3 and N5
N1 receives finger tables of N0, N5 and N7
N6 sends its finger table (line 7) to N7, N0, N2
N6 receives finger tables of N5, N4, N2

N0

N1

N2

N3
N4

N5

N6

N7N7

Finger Table of N1Finger Table of N1

N1+1= N2
N1+2= N3
N1+4= N5

Finger Table of N6Finger Table of N6Finger Table of N6Finger Table of N6

N6+4=N2

N6+1=N7
N6+2=N0

N0

N0

N1

NN11 NN22 N3N3 N4 N5 N6 N7N7

1 1 1 10 0 0 0

N0 N1 N2 N3N3 N4 N5 N6 N7
N0N0
N1

1 1 1 10 0 0 0

N7 11 0 1 0 0 0 1
N6

N5

N2

N3
N4

1 1 110 0 0 0

N7

0 1 0 0 0 1 11N6

N5 0 1 0 0 0 1 1 1

N2
N3

N4 1 1 1 01 000

1 1 1 1 0000

Each node sends the new entries of its adjacency matrix to its successors
N1 sends lines: 0, 5 and 7 of its adjacency matrix
N6 sends lines :2, 4 and 6 of its adjacency matrix
Each node receives the new entries of the adjacency matrix of its predecessors

N0

N1

N2

N3
N4

N5

N6

N7

Finger Table of N1

N1+1= N2
N1+2= N3
N1+4= N5

Finger Table of N6

N6+4=N2

N6+1=N7
N6+2=N0

N0

N0

N1

N1 N2 N3 N4 N5 N6 N7

1 1 1 10 0 0 0

N0 N1 N2 N3 N4 N5 N6 N7
N0
N1

1 1 1 10 0 0 0

N7 11 0 1 0 0 0 1
N6

N5

N2

N3
N4

1 1 110 0 0 0

N7

0 1 0 0 0 1 11N6

N5 0 1 0 0 0 1 1 1

N2
N3

N4 1 1 1 01 000

1 1 1 1 0000

1 1 0 1 0 0 0 1

1 0 1 0 0 0 1 1

1 0 0 0 1 1 1 0

0 0 1 1 1 0 1 0

0 1 1 1 0 1 0 0

1 1 1 0 0 00 1

1 1 1 1000 0

0 0 0 1 1 1 0 1

Figure 5. Adjacency matrix step-by-step construction: (a) Iteration 1: Adjacency matrix initialization;
(b) Iteration 2: Adjacency matrix construction; and (c) Iteration 3: Adjacency matrix stabilization.

Algorithm 3 describes the process for building an optimized tree when Ni is a source. Ni sends
message Child(Ni) to all its successors in its finger table, and at the reception of similar request
(message) from another node, the requested node forwards the message also to all its neighboring
nodes except those in sets A, B or C, and so on. These sets allow a greedy decision of GPM for
the multicast tree construction. Set A allows nodes to discard a child that belongs to the higher
level on the multicast tree; set B allows nodes to discard a child at the same level on the multicast

499

Copyright � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/dac

Int. J. Commun. Syst. 2012; 25:491–514

M. AMAD ET AL.

tree, and the set C allows nodes to discard a child that are child of a node on the same level of
Ni but with low identifier. When two nodes at the same level computes their related part of the
multicast tree, it may occur that they have the same child, generating a conflict. To ensure the
consistency of the tree, only one child must be retained. This is ensured by the (k<i) condition (see
example hereafter). The sets A, B and C are derived from adjacency matrix during the multicast
tree construction process (Algorithm 3) and they are stored locally at each node for each multicast
session.

Algorithm 3 : Multicast tree construction algorithm: optimized approach
1: Begin
2: If (Ni is a source node) then
3: Send request Child (Ni) to all nodes in the finger table
4: else // Ni is not a source
5: At the reception of the request Child (Nj) from node Nj do
6: Forwards this request to all nodes in its finger table except those in sets A, B or C
where:

A: The sets of nodes which precede Ni
B: The sets of nodes at the same level of Ni
C: The set of nodes which are children of node Nk , where Nk ∈ setB(Ni) and k< i

7: End.

Example
Figure 6 shows the multicast tree construction process from Chord illustrated in Figure 1(a). The
node N6 (source) initiates the construction of the multicast tree using Algorithm 3 (line 2). It
sends request Child (N6) to all its successors (relay nodes: N0, N2 and N7). Similarly, those
last nodes (relay nodes) execute the same algorithm (line 4), and so on. When the node N1
receives the request (message) Child (N0), it accepts and forwards the request Child (N1) to all
its successors except to the node N2; as it is in set A of N1 (at a higher level), and to the
node N3; as it is in set B of N1 (at the same level). When the node N4 (gray node) receives
and accepts request Child (N0) from node N0, it does not forward it to node N5 since this last
node is a child of N4’s brother (N1) with an identifier lower (1<4) than N4 identifier (set C).
The result is an optimized multicast tree in terms of depth represented by the gray nodes as
shown in Figure 6. We note that there are no other ‘better’ paths (in terms of tree depth) from
any source to any receivers, also the end-to-end overlay latency is controlled and limited (see
Section 5.1).

The generated tree is illustrated in Figure 7(a) (resp. Figure 7(b)) for Chord scenario (resp.
Gnutella scenario). The tree depth in the first case is 3 when a network of eight nodes is considered
(generally O(log2(n))), thus providing a more efficient tree construction than the basic approach
(see Figure 4(a) and 4(b)).

N6

N0
N2

N1

N2 N4 N3 N4 N6 N0 N1
N3

N7
N2

N3 N5 N3

N4

N6

N5

N6

N0

N4

N5

N7

N5

N6
N0

N7

N0

N2

N1

N2

N7
N2

N3

N5 N4

N5

N7

1

2

3

Node N2 belong to the set A

Node N5 belong to the set C
Node N3 belong to the set B

1:

3:
2:

Figure 6. Example of multicast tree construction in Chord based GPM with eigth nodes.

500

Copyright � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/dac

Int. J. Commun. Syst. 2012; 25:491–514

GPM: A GENERIC AND SCALABLE P2P MODEL

N0

N1N2N4

N3N5N6

N7

N0

N1 N3

N2 N5

N9N6

N7

N8

N4

(a)

(b)

N10

N11

Figure 7. Multicast tree generated with the optimized approach for Chord (a) and Gnutella architectures (b).

From Figures 4 and 7, we can note that the tree depth in GPM is optimized by a ratio of
4/3 (for Chord architecture with eight nodes) and 6/5 (for Gnutella architecture with 12 nodes)
comparatively to the basic approach. As we will see in the performance evaluation section, the
ratio increases when the number of nodes in the network increases.

3.2. Join and leave processes

In a dynamic environment, nodes can join or leave the network at any time (churn rate). Given
this, a bootstrapping mechanism constitutes a required key functionality for each P2P networks.
Nodes intending to participate in such overlay network, initially have to locate at least one node
already member of this network.

Four types of bootstrapping mechanism [29] exist: static overlay nodes-bootstrapping servers,
out-of-band address caches, random address probing and employing network layer mechanism.
Owing to the generic approach of GPM, the bootstrapping mechanism depends on the underlying
P2P network, on which GPM is implemented.

Join operation: When a new node joins the system by sending a request join to the node
N given by the bootstrapping mechanism, it takes place on the P2P overlay architecture. This
node constructs its finger table and then the adjacency matrix. The contacted node N compares
its level in the multicasts tree with the levels of their neighboring nodes (in the overlay network)
and sends the identifier of a neighborhood node at a lower level in the tree (closer to the source).
Consequently, just a portion of the multicast tree will be impacted by the update process. As shown
in Figure 8, when node N12 joins the network, and the bootstrapping node gives N9 as relay
node. N12 contacts N9, N9 sends the identifier of N5 (neighboring at the higher level) to N12,
N12 will be linked to node N5 and receives data from it. Finger tables will also be updated by the
underlying P2P stabilization algorithm. Furthermore, the adjacency matrix will be updated using
Algorithm 2 of GPM.

Leave operation: When a node leaves the GPM system in the P2P architecture, a stabilization
algorithm is invoked. In this case also, only a part of the multicast tree will be updated and
impacted. Figure 9 illustrates the leave process for a node on a P2P. As an example, while node
N10 leaves the P2P network (Figure 9(a)), this will be detected by node N11 (keep alive or
time out mechanisms) which reconnects to another node as follows: It contacts its neighboring
nodes in the network (N8), N8 sends its neighboring node at a higher level on the tree (N7)
to N11. Then N11 connects to N7 and receives data flow from it. Even with join and leave
operations, the generated multicast tree is kept optimized in terms of depth, after the update
process.

Most of the existing application layer multicast solutions are defined for one-to-many, and
some others for many-to-many applications (e.g. [30–32]). GPM could be applied for both one-
to-many and many-to-many applications. The section below describes the extension of GPM to
many-to-many type of applications.

501

Copyright � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/dac

Int. J. Commun. Syst. 2012; 25:491–514

M. AMAD ET AL.

N0

N1

N2

N3

N4 N5

N6

N7

N8

N9

(a) (b)

N10

N11

N0

N1 N3

N2
N5

N6
N9

N7 N10

N8 N11

N4

N12

join

N12

Figure 8. Joining the multicast tree in GPM: (a) N12 joins the Gnutella
network and (b) multicast tree updated.

N0

N1

N2

N3

N4 N5

N6

N7

N8

N9

(a) (b)

N10

N11

N0

N1 N3

N2
N5

N6
N9

N7

N8

N4

N10

N11

Figure 9. Leaving the multicast tree in GPM: (a) N10 leaves the Gnutella network
and (b) multicast tree updated.

4. EXTENSION TO MULTI TREE FOR MANY-TO-MANY TYPE OF APPLICATIONS

For one-to-many applications, such as P2P IPTV [33], a single and optimized tree from the source
(media server) to all other nodes is sufficient (one source with multiple receivers). Nevertheless, for
many-to-many type of applications (e.g. P2P multiparty conferencing), each node (source) builds a
source-based tree for media forwarding. Then, it is necessary to builtm trees (m sources) in n-nodes
network with m�n. Each tree has one source and multiple receivers, and the nodes can participate
to more than one tree. A node Ni that receives data from another node Nj , should forward it using
the appropriate tree (same data flow). This is one of the key issue for many-to-many applications.

In order to extend our proposed GPM model for many-to-many applications, we propose the
following approach:

We define a new data structure called forwarding matrix, and denoted Tab (see Table III).
Each node N builds and stores its own forwarding matrix that connects each sender node (P
immediate predecessors of N) to its associated receiver nodes (S immediate successors of N). The
forwarding matrix for node N is Tab[i,k], where 1�i�Num represents nodes from which N can
receive flow, and 1�k�Num represents nodes to which N sends flow. Num is the degree of the
underlying P2P overlay, generally, it is equal to log2(n) such as in Chord. The first entry of Table
III contains the nodes from which N can receive data. The other entries contain the nodes to
which N forwards data. The forwarding matrix is derived from Algorithm 3. As an example, the
forwarding matrix of node N3 in Chord-based GPM (see Figure 10) is illustrated in Table III.

502

Copyright � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/dac

Int. J. Commun. Syst. 2012; 25:491–514

GPM: A GENERIC AND SCALABLE P2P MODEL

Table III. Forwarding matrix for node N3 in a Chord-based GPM
with eight nodes (see Figure 1(a)).

Receiving from
N1 N2 N7

Forwarding to

N7 N5 Null
Null N7 Null
Null Null Null

N0

N1 N2 N4

N3 N5 N6

N7

N1

N2 N3 N5

N4 N6 N7

N0

N2

N3 N4 N6

N5 N7 N0

N1

N3

N4 N5 N7

N0 N6 N1

N2

N4

N0 N5 N6

N1 N2 N7

N3

N5

N1 N6 N7

N2 N3 N0

N4

N6

N0 N2 N7

N1 N4 N3

N5

N7

N0 N1 N3

N2 N4 N5

N3 Forwarding matrix

N1 N2 N7

N5N7

N7Null

Null

Null

Null

Null

Null

(a) (b)
(c)

(d) (e)
(f)

(g)

(h)

N6
NB: N3 can receive request only from N1, N2 or N7 in the illustrated example

N3 is a source node

N
3 forw

arding m
atrix

N3 is a leaf, it does not forward or relay the request

Figure 10. Multi-tree for many-to-many applications in Chord-based GPM with eight nodes.

When a node Ni receives and accepts request Child (Nk) from its predecessor, it puts Nk on the
first entry of its forwarding matrix, and when it forwards the request Child (Ni) for discovering
its immediate successors in the associate tree, Ni adds the successors in the same column of Nk .

As shown in Table III, when node N3 receives data from node N1, it forwards to node N7
(column 1), when it receives data from N2, it forwards to nodes N5 and N7 (column 2), and when
it receives data from N7 (end receiver), it discards the received data. Algorithm 4 illustrates the
forwarding process for delivering data from node Ni to the appropriate nodes.

Example
Figure 10 shows an example of multicast trees computed for multiple sources on Chord-based
GPM. These multicast trees are stored in the GPM system as a set of multiple matrices (forwarding
matrix such as Table III), each matrix being constructed and associated with one node. As shown
in the figure, the source multicast trees corresponding to all possible multicast sessions are repre-
sented. The forwarding matrix reflects a part of these trees for a particular node, used locally for
relaying the flow. For instance, N3 forwarding matrix shows that it can receive requests only from
nodes N1, N2 and N7 (this constitutes the first line of the forwarding matrix). When a node is a
source, it forwards data to all its children in the finger table as shown in Figure 10(d) corresponding
to line 2 of Algorithm 4. However, when a node is a leaf of a tree in the corresponding multicast

503

Copyright � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/dac

Int. J. Commun. Syst. 2012; 25:491–514

M. AMAD ET AL.

Algorithm 4 : Media forwarding algorithm
1: Begin
2: If (Ni is a source node) then
3: Send data to all children in the finger table.
4: else //Ni is not a source // it receives data from node Nt (e.g. column c on Tab)

4.1: begin
4.2: For j=0 to (Num−1) do// Num is the degree of the underlying network, generally
it is equal to log2(n) in the structured P2P network.
4.3: if ((Tab[j,c] �=Null) and Ni is not a “leaf” in the tree then
4.3.1: Forward data to the node Tab [j,c]

4.4:End
5: End.

session (Figure 10(e)–(h)), it stops forwarding the received flow. When node N3 receives data from
node N2, N3 participates to the multicast session with N2 as source (as illustrated in Figure 10(c)),
it forwards to both nodes N5 and N7. When it receives from node N1 (in case where N3 partic-
ipates to the multicast session with N0 or N1 as a source or participates to the two sessions
simultaneously), it forwards to node N7 in any case.

Algorithms composition.
Previous and current sections describe several algorithms. These algorithms comprise the overall

GPM approach. Figure 11 gives a flow chart that describes the algorithm interactions for both one-
to-many and many-to-many type of applications. At the GPM initialization, the adjacency matrix
is built and stored at each node. For one-to-many type of applications, only one multicast tree is
considered. In this case, a source node initializes a new multicast session through Algorithm 3
(line 2). At the reception of a request child(Nj), relay nodes execute line 4 of the same algorithm.
The generated multicast tree is used for flow distribution. At a join or leave requests, the multicast
tree will be updated (see Section 3.2) but also the finger tables using the stabilization algorithm
of the underlying overlay network, and consequently the adjacency matrix using Algorithm 2.
The multicast session will not be re-initialized (Algorithm 3 is executed only for a new multicast
session).

For many-to-many type of applications, multiple multicast trees are considered simultaneously.
Algorithm 3 initialized by a source node is executed for each multicast session (like in one-to-many
type of applications), then a forwarding matrix (e.g. Table III) will be constructed for each node,
and updated at each join or leave request. Based on this matrix, Algorithm 4 is used to distribute
the data flow.

5. GPM PERFORMANCE EVALUATIONS

For the GPM performance evaluation, we consider the following metrics as defined in [25] for
evaluating application layer multicast:

• Data path quality: Two metrics are defined: (a) Stress: which is defined per link and counts
the number of identical packets sent by the protocol over that link or node. For ALM, there
is no redundant packet (duplication); the stress metric is 1 for each network link. (b) Stretch:
it is defined per member, as the ratio of the path length (along the overlay from the source to
the member) to the length of the direct unicast path.

• Tree depth: It measures the distance from a source node to the far end node. Note that tree
depth has a significant impact on the overlay latency.

• Overhead: Each member exchanges refresh messages with its neighboring peers on the overlay.
These messages constitute the control traffic (overhead) generated by the multicast group.

• Convergence time: It measures the time needed for multicast tree construction.

504

Copyright � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/dac

Int. J. Commun. Syst. 2012; 25:491–514

GPM: A GENERIC AND SCALABLE P2P MODEL

Join/Leave Multicast tree update

GPM initialization Adjacency matrix construction:

(Algorithm 3)

Flow distribution

No
Yes

(Algorithm 3)

Forwarding matrix construction

Flow distribution (Algorithm 4)

Multiple multicast trees updates

Forwarding matrix update

Join/Leave

Finger table
Updates

Updates
Finger table

Single source multicast tree construction
Multiple sources multicast tree constructions

Adjacency matrix sharing (Algorithm 2)

New

session?

multicast

multiple
Single or

session
multicast

source m
any to m

any applications

Many to many type of applicationsOne to many type of applications

One to many type of applications

Figure 11. Chart flow of GPM functional principle for one-to-many and many-to-many type of applications.

For evaluation purpose, we consider two scenarios corresponding to: a structured (e.g. Chord
illustrated in Figure 1(a)) and unstructured (e.g. Gnutella illustrated in Figure 1(b)) P2P overlay.
We also assume that the cost between each neighboring node is one hop. The simulations are down
on machine carried out in a personal computer with the following characteristics: 2.16 GHz and
1GB of RAM. A specific tool‡ was developed for simulation purposes. Simulation tool (version
1.0) provides different performance metrics for GPM, such as Convergence time, tree depth and
traffic overhead under certain conditions (e.g. number of nodes, type of overlay network, churn
rate, etc.). Figure 12 gives an illustration of the user interface and capture screen of the simulation
tool, when considering the construction of a multicast tree based on a network with 50 nodes and
N3 as a source node.

5.1. Stretch evaluation

We generate a Chord topology and randomly a Gnutella topology based on different scenarios
(with different number of nodes). We calculate the shortest path from source node N0 to each
receiver node, from both generated overlay network topology and the generated multicast trees.
Then we calculate the average stretch. Tables IV and V provide two examples.

Table IV illustrates the average stretch in a Chord-based GPM (see Figure 1(a)), for the optimized
(a) and basic (b) approaches. The results show that the average stretch obtained from the optimized
approach (1) is lower compared to the basic approach (1.12). The shortest path from N0 to N5
is 2 hops on Chord, and it is equal to 3 (resp 2) hops on the generated multicast tree from basic
(resp optimized) approach. The same phenomenon is observed on path from N0 to N7. This is
essentially due to the GPM algorithm that computes a multicast tree, where the number of hops
from source to any receiver node is equal to those of the underlying overlay network.

Table V illustrates the average stretch in a Gnutella-based GPM (see Figure 1(b)), for the
optimized (a) and basic (b) approaches. The results show that the average stretch obtained from

‡www.telecom-lille1.eu/people/meddahi/mourad/P2pGpmSim.htm.

505

Copyright � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/dac

Int. J. Commun. Syst. 2012; 25:491–514

M. AMAD ET AL.

Figure 12. Chord-based GPM network with 50 nodes, and the associated multicast
tree with N3 as a source node.

Table IV. AVG Stretch with the optimized (a) and basic approaches (b) for
a structured P2P networks (Chord).

Nodes link Overlay unicast path GPM multicast path Stretch

Links (a) and (b) (a) and (b) (a) and (b)
N0 → N1 1 1—1 1—1
N0 → N2 1 1—1 1—1
N0 → N3 2 2—2 1—1
N0 → N4 1 1—2 1—1
N0 → N5 2 2—3 1—1.5
N0 → N6 2 2—2 1—1
N0 → N7 3 3—4 1—1.33
Avg. stretch 1 (a)—1.12 (b)

the optimized approach (1) is lower compared to the basic one (1.06). The shortest path from N0
to N6 in Gnutella network is 3 hops. However, the same path on the multicast tree generated by
the basic (resp. optimized) approach is 4 (resp. 3) hops. The same phenomenon is observed on
path from N0 to N11.

Considering the GPM approach, the stretch for both trees is equal to one. As a conclusion, GPM
is independent of the underlying network in terms of average stretch which is always equal to one
(we note that the average stretch equal to one means that there is no better tree).

506

Copyright � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/dac

Int. J. Commun. Syst. 2012; 25:491–514

GPM: A GENERIC AND SCALABLE P2P MODEL

Table V. Avg stretch with the optimized (a) and basic approaches (b) for an unstructured
P2P network (Gnutella).

Nodes link Overlay unicast path GPM multicast path Stretch

Links (a) and (b) (a) and (b) (a) and (b)
N0 → N1 1 1—1 1—1
N0 → N2 2 2—2 1—1
N0 → N3 1 1—1 1—1
N0 → N4 2 2—2 1—1
N0 → N5 2 2—2 1—1
N0 → N6 3 3—4 1—1.33
N0 → N7 4 4—5 1—1
N0 → N8 5 5—6 1—1
N0 → N9 3 3—3 1—1
N0 → N10 4 4—4 1—1
N0 → N11 5 5—7 1—1.4
Avg. stretch 1 (a)—1.06 (b)

Figure 13. Tree depth in Chord- and Gnutella-based GPM with eight nodes when Ni is a root.

Tables IV and V show that GPM is generic and independent of the underlying network (structured
or unstructured P2P network), if the stretch is constant and equal to one, then the multicast tree
is more efficient.

5.2. Tree depth and end-to-end delay evaluation

Figure 13 shows the tree depth for both Gnutella- and Chord-based GPM obtained from the
optimized approach when Ni is a source. In Chord-based GPM, the average stretch is O(log2(n)).
As an example, when eight nodes are considered, the tree depth is 3. However, in Gnutella
(unstructured P2P) based GPM, the tree depth not only depends on the source node position in
the network, but also on the current network overlay. When node N2 is a source, it constructs a
multicast tree (depth=3) better than (in terms of depth) if N0 is a source (tree depth=5).

Figure 14 shows the multicast tree depth as a function of the number of nodes in the network. It
grows logarithmically, when using optimized approach in the case of structured P2P networks. On
average, it is equal to O(log2(n)), where n is the number of nodes in the network. This scenario
shows that the GPM approach is well adapted to the structured P2P overlay, where the tree depth
(overlay end-to-end latency) is steady and independent of the source node location, and then
scalability is reinforced. However, in unstructured P2P network, the GPM multicast tree depth
depends on the the source node location in the network.

The generated multicast tree for structured P2P network is balanced compared to unstructured
P2P networks, because GPM takes into consideration the characteristics of the underlying archi-
tecture. As a conclusion, when GPM is applied to structured P2P network and from a source node
perspectives, each source node ‘see’ the same QoS.

Figure 15 presents the average end-to-end delay as a function of the number of nodes for both
GPM and the basic approach when Chord and Gnutella architectures are used. In [34], the authors
measure 137ms as the value between two neighboring openDHT nodes. In our simulation, we

507

Copyright � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/dac

Int. J. Commun. Syst. 2012; 25:491–514

M. AMAD ET AL.

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

number of nodes

M
ul

tic
as

t t
re

e
de

pt
h

Multicast tree depth in structured P2P network

Figure 14. Multicast tree depth as a function of the number of nodes in Chord-based GPM.

0 100 200 300 400 500 600 700 800 900 1000
150

200

250

300

350

400

450

Number of nodes

Figure 15. End-to-end delay as a function of the number of nodes.

generate 100 random values in the interval [130 160] and we take the average. This figure shows
that the average end-to-end delay for GPM is better controlled than for the basic approach (such
as MCAN) on any type of P2P networks. The utilization of Chord architecture for both GPM and
the basic approach optimizes the end-to-end delay comparatively to Gnutella architecture. As an
example, for 200 nodes, the average end-to-end delay for GPM (resp. basic approach) when using
Chord architecture is 196 ms (resp. 280ms). However, it is equal to 230ms (resp. 370ms) when
using Gnutella architecture. The optimization of the end-to-end delay is a consequence of the tree
depth optimization which is re-enforced on the structured P2P architecture such as Chord. We can
also notice that the average end-to-end for the GPM approach is below 300ms which is under the
threshold defined by the ITU-T G113-114 recommendation for voice quality.

5.3. Convergence time evaluation evaluation

Figure 16 illustrates the convergence of the multicast tree construction algorithm for Chord (resp.
Gnutella) based GPM, as a function of the number of nodes in the network. As an example, for
12 nodes, the convergence time of GPM algorithm for constructing a multicast tree when N1 is a
source node is 10ms for Chord-based GPM (resp. 8ms for Gnutella-based GPM). For 1000 nodes,
the convergence time is 354ms for Chord-based GPM, and 277ms for Gnutella-based GPM. The

508

Copyright � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/dac

Int. J. Commun. Syst. 2012; 25:491–514

GPM: A GENERIC AND SCALABLE P2P MODEL

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

The number of nodes

M
ul

tic
as

t t
re

e
co

ns
tr

uc
tio

n
tim

e
(m

s)

Figure 16. Convergence time for Chord- and Gnutella-based GPM.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

The number of nodes in Chord

T
he

 m
ul

tic
as

t t
re

e
co

ns
tr

uc
tio

n
tim

e
(m

s)

Figure 17. Convergence time for Chord-based GPM when N1 (resp. N10) is a source
and for different number of nodes.

results show that for both structured and unstructured P2P architecture-based GPM (optimized
approach), the convergence time increases linearly as a function of the number of nodes. This
is because the multicast tree construction is distributed, while enabling the parallel computation
of independent parts locally on each node (greedy decision aspect of GPM algorithms). Both
scalability and operability of the proposed GPM are better improved and enhanced.

Figure 17 (resp. Figure 18) characterizes the convergence time (ms) for Chord- (resp. Gnutella)
based GPM with two scenarios: when N1 is a source node and when N10 is a source node (the
Gnutella network is randomly generated). Convergence times as illustrated in the figure are almost
equivalent when different sources are considered. Consequently, both structured and unstructured
P2P network-based GPM (optimized approach) are independent of the source node position for
GPM convergence. This characterizes the stability of GPM for the underlying overlay network.

5.4. Overhead evaluation

Figure 19 shows the number of messages generated (control traffic overhead) for the multicast
tree construction process on Chord-based GPM, for both basic and optimized approaches. As an
example, for the basic approach and when 12 nodes are considered, the number of generated

509

Copyright � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/dac

Int. J. Commun. Syst. 2012; 25:491–514

M. AMAD ET AL.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

The number of nodes in Gnutella

T
he

 m
ul

tic
as

t t
re

e
co

ns
tr

uc
tio

n
tim

e
(m

s)

Figure 18. Convergence time for Gnutella-based GPM when N1 (resp. N10) is a source
and for different number of nodes.

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5
x 104

The number of nodes

T
he

 n
um

be
r

of
 g

en
er

at
ed

 m
es

sa
ge

s
fo

r
m

ul
tic

as
t t

re
e

co
ns

tr
uc

tio
n

Figure 19. Overhead for multicast tree construction process for Chord-based GPM.

messages is 72, while for the optimized approach, only 11 messages are needed. For 500 nodes,
the basic approach generates 8000 messages, and the optimized one generates 499 messages for
building a multicast tree. The main reason comes from the characteristics of Algorithm 3 that
reduces flooding messages. At each relay node in the multicast tree, due to the greedy algorithm,
only the nodes that are not in the multicast tree or will not be part (with deterministic manner, see
line 6 of Algorithm 3) are considered. This scenario shows that optimized approach (GPM) gives
a better control of traffic overhead than the basic approach. Because the multicast tree generated
from the optimized approach is more balanced in terms of depth and width, as node sends messages
only to a few number of nodes (generally log2(n) nodes on the structured P2P network). As a
result, the flooding mechanism is limited.

5.5. Data structure analysis

Figure 20 shows both the adjacency and the forwarding matrix sizes as a function of the number
of nodes. Both matrices are cost effective in terms of memory size, as they are implemented as a
matrix of bits. As an example, when 256 nodes are considered, the size of the adjacency matrix is

510

Copyright � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/dac

Int. J. Commun. Syst. 2012; 25:491–514

GPM: A GENERIC AND SCALABLE P2P MODEL

0 100 200 300 400 500 600 700 800 900 1000
0

(a) (b)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 105

Number oh nodes

B
its

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

Number of nodes

B
its

Figure 20. Adjacency vs forwarding matrix sizes.

65 536 bits (8 kB), and the size of the forwarding matrix is 72-node identifiers (576 bits= 0,07 kB).
So their impact on GPM performance is limited, which is a key point, particularly for nodes with
limited resources. This scenario illustrates the GPM operability as limited resources are required
for its implementation. In case of high capabilities nodes, scalability increases.

6. CONCLUSION AND FUTURE WORKS

On the one hand, heterogeneity is one of the main attributes that characterize the Internet, and on
the other hand, there is a tremendous development of P2P-based IP services such as P2P IPTV
or more generally group-oriented services as in [35]. For this type of multicast application or
services, not only the physical delay or latency constitutes a critical parameter in terms of QoS,
but also the latency at the overlay (ALM) should be controlled. Given this, it is necessary to create
an efficient, fault-tolerant and scalable solution for flow distribution, while controlling network
latency, especially for group-oriented communications. Existing ALM-based applications use a
different, independent and specific (non-generic) mechanisms for multicast tree construction.

The approach we propose is generic and scalable, while optimizing the multicast tree depth,
and consequently the end-to-end overlay delay for both classes of P2P networks (structured and
unstructured). From a basic intuitive approach that minimizes complexity, but not really cost
effective in terms of traffic overhead and overlay latency. The proposed approach is generic, it can
be implemented on any existing P2P overlay and benefits from its advantages. GPM is more adapted
to the structured P2P network as the multicast tree is balanced, it makes use of particular data
structures called adjacency matrix and forwarding matrix that can be implemented on nodes with
limited capabilities (PDA, mobile phone, etc.). For better considerations, a queuing mechanism
such as proposed in [36] could be used at each node. This generic and cost-effective (overhead, tree
depth) GPM approach for one-to-many applications is extended to support many-to-many type of
applications. Performance evaluations show that GPM is characterized by high scalability (stretch
equal to one, tree depth and delay are much optimized), but also operability, since the specific data
structures are cost effective. Most parts of the multicast tree are calculated in a decentralized and
parallel way, while the convergence time is improved.

We envision several perspectives for this work. One perspective is to implement and experiment
GPM in the context of a P2P multi-conference system developed in a previous work [37]. To
evaluate GPM in a real and critical P2P testbed, we also plan to deploy the GPM approach on
the PlanetLab platform. Another perspective is to optimize some GPM functionalities. A first
optimization is related to the bootstrapping process: the bootstrapping server could store a copy of
the multicast tree topology in order to maintain the tree optimized even when a new node joins the

511

Copyright � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/dac

Int. J. Commun. Syst. 2012; 25:491–514

M. AMAD ET AL.

network. A second optimization will consist in extending the adjacency matrix in order to reflect
the physical characteristics of the underlying network (network delay, loss, etc.) and exploit them
in GPM algorithms.

ACKNOWLEDGEMENTS

The authors thank Mrs N. Khebbache and Mrs O. Assoul from Bejaia University for their comments and
suggestions.

REFERENCES

1. Yeoa CK, Leea BS, Erb MH. A survey of application level multicast techniques. Computer Communications
Journal 2004; 27:1547–1568.

2. Zhang B, Wang W, Jamin S, Massey D, Zhang L. Universal ip multicast delivery. Journal of Computer Networks
2006; 50(6):781–806.

3. Fahmy S, Kwon M. Characterizing overlay multicast networks and their costs. IEEE/ACM Transactions on
Networking (TON) 2007; 15(2):373–386.

4. Steinmetz R, Wehrle K. Peer-to-Peer Systems and Applications, vol. 3485. Springer: Berlin, 2005.
5. Rodrigo R, Peter D. Peer-to-peer systems. Communications of the ACM 2010; 53:72–82.
6. Zhang B, Jamin S, Zhang L. Host multicast: a framework for delivering multicast to end users. IEEE Infocom,

New York, U.S.A., June 2002.
7. Pendarakis D, Shi S, Verma D, Waldvogel M. Almi: an application level multicast infrastructure. The Third

USENIX Symposium on Internet Technologies, San Francisco, CA, U.S.A., March 2001.
8. Hsiao H-C, He C-P. A tree-based peer-to-peer network with quality guarantees. IEEE Transactions on Parallel

and Distributed Systems 2008; 19(8):1099–1110.
9. Mol JD, Epema DHP, Sips HJ. The orchard algorithm: building multicast trees for p2p video multicasting without

free-riding. IEEE Transactions on Multimedia 2007; 9(8):1593–1604.
10. Jiang T, Zhong A. A multicast routing algorithm for p2p networks. GCC’04. Lecture Notes in Computer Science,

vol. 3032. Springer: Berlin, 2004; 452–455.
11. Castro M, Druschel P, Kermarrec AM. Scribe: a large-scale and decentralized application-level multicast

infrastructure. IEEE Journal on Selected Areas in Communications 2002; 20(8):1489–1499.
12. Ratnasamy S, Handley M, Shenker S. Application-level multicast using content addressable networks. Proceedings

of the International Workshop on Networked Group Communication (NGC), London, U.K., November 2001.
13. Gnutella. Available from: http://www.gnutella.com.
14. Napster. www.napster.com.
15. Xu X. A cluster-based protocol for resource location in peer to peer systems. Journal of Parallel and Distributed

Computing 2005; 65:665–678.
16. Yu J, Li M. Cbt: a proximity-aware peer clustering system in large-scale bittorrent-like peer-to-peer networks.

Journal of Computer Communications 2008; 31:591–602.
17. Jiang S, Guo L, Zhang X, Wang H. Lightflood: minimizing redundant messages and maximizing the scope of

peer-to-peer search. IEEE Transaction on Parallel and Distributed Systems 2008; 19(5):601–614.
18. Leu JS, Tsai CW, Lin WH. Resource searching in an unstructured p2p network based on cloning random walker

assisted by dominating set. Computer Networks 2011; 55(3):722–733.
19. Zhong M, Shen K, Seiferas J. The convergence-guaranteed random walk and its applications in peer-to-peer

networks. IEEE Transactions on Computers 2008; 57(5):619–633.
20. Amad M, Meddahi A. P4l: a four layers p2p model for optimizing resources discovery and localization.

Proceedings of APNOMS 2006. Lecture Notes in Computer Science, vol. 4238. Springer: Berlin, 2006; 342–351.
21. Shen H, Xu CZ, Chen G. Cycloid: a constant-degree and lookup-efficient p2p overlay network. International

Journal of Performance Evaluation 2006; 63:195–216.
22. Stoica I, Morris R, Karger D, Kaashoek MF, Balakrishnan H. Chord: a scalable peer-to-peer lookup service for

internet application. Proceedings of the ACM SIGCOMM 01, San Diego, CA, 2001.
23. Tran DA, Nguyen T. Hierarchical multidimensional search in peer-to-peer networks. Journal of Computer

Communications 2008; 31:346–357.
24. Lao L, Cui JH, Gerla M. A scalable overlay multicast architecture for large-scale applications. Technical Report,

TR040008, UCLA, November 2004.
25. Banerjee S, Bhattacharjee B. A comparative study of multicast protocols: top, bottom, or in the middle? Technical

Report, TR040054, UCLA, January 2005.
26. Chu Y-H, Rao S, Zhang H. A case for end system multicast. ACM SIGMETRICS, Santa Clare, CA, U.S.A.,

June 2002; 1–12.
27. Banerjee S, Bhattacharjee B, Kommareddy C. Scalable application layer multicast. ACM SIGCOMM, Pittsburgh,

PA, U.S.A., August 2002.
28. Jannotti J, Gifford DK, Johnson KL, Kaashoek F, O’Toole JW. Overcast: reliable multicasting with an overlay

network. Proceedings of the OSDI, October 2000; 197–212.

512

Copyright � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/dac

Int. J. Commun. Syst. 2012; 25:491–514

GPM: A GENERIC AND SCALABLE P2P MODEL

29. Cramer C, Kutzner K, Fuhrmann T. Bootstrapping locality-aware p2p networks. Proceedings of the
IEEE International Conference on Networks (ICON), Kuala Lumpur, Malaysia, 2005. Available from:
http://i30www.ira.uka.de/research/documents/p2p/20.

30. Firooz MH, Ronasi K, Pakravan MR, Avanaki AN. A multi-sender multicast algorithm for media streaming on
peer-to-peer networks. Journal of Computer Communications 2007; 30:2191–2200.

31. Do TT, Hua KA, Mounir A. Tantaoui, robust video-on-demand streaming in peer-to-peer environments. Journal
of Computer Communications 2008; 31.

32. Enokido T, Tanaka Y, Barolli V, Takizawa M. Distributed multi-source streaming models in peer-to-peer overlay
networks. Journal of Simulation Modelling Practice and Theory 2007; 15:449–464.

33. Bikfalvi A, Garcýa-Reinoso J, Vidal I, Valera F. A peer-to-peer iptv service architecture for the ip multimedia
subsystem. International Journal of Communication Systems 2010; 23:780–801.

34. Rhea S, Chun B-G, Kubiatowicz J, Shenker S. Fixing the embarrassing slowness of opendht on planetlab.
Proceedings of the Second Workshop on Real, Large Distributed Systems (WORLDS ’05), San Francisco, U.S.A.,
2005.

35. Liu D-K, Hwang R-H. P2broadcast: A hierarchical clustering live video streaming system for p2p networks.
International Journal of Communication Systems 2006; 19:619–637.

36. Rajendran RK, Rubenstein D. Optimizing the quality of scalable video streams on p2p networks. Journal of
Computer Networks 2006; 50:2641–2658.

37. Meddahi A, Vanwormhoudt G, Malkawi A. A p2p framework for decentralized xconferencing and its jxta
implementation. 3PGIC-2008, the Second International Workshop on P2P, Parallel, Grid and Internet Computing,
Barcelona, Spain, March 2008.

AUTHORS’ BIOGRAPHIES

Mourad Amad received the Engineer degree from the National Institute of Computer
Science (INI-Algeria) in 2003, and the Magister degree from the University of Bejaia
(Algeria) in 2005. Currently, he is a PhD student at the University of Bejaia, Member of
the laboratory L.A.M.O.S. His research interests include peer-to-peer networks (archi-
tecture, application, security, VoIP).

Ahmed Meddahi is a member of Institut Telecom/Telecom Lille I, Computer Science
and Networks Department. He obtained his Masters degree from the University of
Lille (France) and PhD from the University of EVRY (France) and ‘Institut National
des Telecommunications’. His main interests are focused on IP signalling performance,
‘VoIP’ quality, ‘context aware’ management and P2P networks.

Djamil Aïssani is Professor at Bejaia University, Algeria, head of the Science and
Engineering Department (1999–2000). He is the Director of the LAMOS Laboratory
(Modelling and Optimisation of Systems—http://www.lamos.org), Scientific leader of
the Doctoral Computer School (since its opening in 2003). His research focuses on
Markov chains, queueing systems, reliability theory, inventory, risk theory, performance
evaluation and their applications.

513

Copyright � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/dac

Int. J. Commun. Syst. 2012; 25:491–514

M. AMAD ET AL.

Gilles Vanwormhoudt is a member of the Institut Telecom/Telecom Lille I, Computer
Science and Networks Department. He received his PhD in Computer Science from the
University of Lille 1. His research interests focus on advanced concepts and techniques
for the design and programming of software in distributed systems.

514

Copyright � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/dac

Int. J. Commun. Syst. 2012; 25:491–514

	DAC_1275_Rev

