
A Scalable based Multicast Model for P2P
Conferencing Applications

Mourad AMAD
University of Bejaia, Algeria

mourad amad@yahoo.fr

Zahir HADDAD
Bejaia University, Algeria

haddad-z@hotmail.com

Lachemi KHENOUS
Bejaia University, Algeria

khenous a@yahoo.fr

Kamal KABYL
LAMOS, Bejaia University, Algeria

k kabyle2000@yahoo.fr

Abstract—Multicast conferencing is a rapidly-growing area
of Internet use. Audio, video and other media such as shared
whiteboard data can be distributed efficiently between groups of
conference participants using multicast algorithms that minimize
the amount of traffic sent over the network. This is far more
effective than systems that maintain a separate link between
each participant. On the other hand Peer-to-Peer (P2P) model is
inherently characterized by high scalability, robustness and fault
tolerance. With its decentralized and distributed architecture, a
P2P network is somehow able to self organized dynamically. Peer-
to-Peer model or architecture is well adapted to conferencing
applications, effectively it can greatly benefit from P2P attributes
such as: flexibility, scalability and robustness, particularly in
critical environments such as: mobile networks. In this paper we
propose a novel and scalable approach for P2P Conferencing.
This model combines a call control and signalling protocol (SIP)
with a ”P2P” protocol (Chord) for maintaining (dynamically) a
well stabilized and optimized architecture topology. This model
is also based on an application layer multicast mechanism. Per-
formance evaluation shows that our proposed approach benefits
from SIP protocol flexibility, with the robustness and scalability
of Chord protocol. The use of a multicast mechanism optimizes
the overall traffic flow (control and media) and transmission
efficiency.
Key Words: Conferencing architecture, Application Layer Mul-
ticast, P2P.

I. INTRODUCTION

The N-way conferencing applications[4] connects few-
to-few or many-to-many users, as opposed to streaming
applications which provide one-to-many media distribution.
Generally the conferencing groups (audio or video) are
typically small, involving fewer than ten participants. Also
membership usually changes dynamically and rapidly, where
any member may join, leave or invite other participants to the
conference at any time. This class of applications commonly
requires significant processors and bandwidth resources,
especially if multiple simultaneous users are allowed. For
each group of N-participants, each one must encode its
own media streams and transmits them to the N − 1 other
participants, while receiving and decoding media streams
from the N − 1 other participants. Thus processor and
bandwidth resources can go over the limit and then constitute
a critical issue. Existing conferencing architectures [16] using
Session Initiation Protocol (SIP) or H.323 are generally based
on a registration server for every domain. Scalability of such
server-based systems, representing a single point of failure, is
generally achieved with traditional methods such as DNS.

P2P systems are distributed and scalable, thus providing
a solution to the single point of failure problem [7]. Also
conferencing applications deliver real-time information [4]
between (possibly large) groups of people, requiring real-time
communications and performance optimization.

Given this, our proposed conferencing model derived from
an optimal combination of both protocols: Chord [1] (for
users/terminals discovery, maintaining topology stabilization)
and SIP [2] (for call control and signalization). This approach
benefits from both protocol advantages, and from the use of
an efficient multicast mechanism at application layer for data
streams forwarding.
This paper is organized as follows: Section II gives a brief
overview of the main architectures used for conferencing, with
their limitations. In section III, we present the concept of
application layer multicast. SIP protocol and Chord concepts
proposed for ”P2P” conferencing are resumed in section IV.
Section V describes the concepts and the architecture of our
proposed approach. We also give preliminary results related
to performances of our architecture. Finally we conclude and
give some perspectives and future works.

II. CONFERENCING ARCHITECTURE

Most of the existing SIP and H.323-based systems rely on
a centralized architecture. In [7] a P2P model is proposed
for user location purpose(avoiding the use of a proxy server).
Conferencing applications require exchange of various types
of media. H.323 Conferencing [9] is essentially based on a
centralized server that uses a set of tightly integrated protocols
to control sessions. SIP conferencing makes minimal assump-
tions about the underlying transport protocol; as it can be used
with any type of transport protocol such as: UDP, TCP or TLS
[15]. A comparison between SIP and H.323 [14], [6] shows
that SIP provides a similar set of services to H.323, but with far
lower complexity, rich extensibility, and better scalability, and
facilities fixed mobile convergence. Also, due to its complete
specifications and deployment, SIP can also be considered as
one of the main ”standard” protocol for IP signalling. For
these reasons, SIP constitutes a good candidate for supporting
signaling functions in our architecture. The two types of
conference architecture (Centralized and decentralized) are
described bellow.



A. Centralized architecture

The centralized approach requires a conference bridge or
MCU (Multipoint Control Unit). All participants send audio,
video, data and control streams to the MCU in a point-to-
point mode (see figure 1). The central MCU controls and
manages the conference. It also provides functions such as
media mixing, switching or transcoding.
This centralized conference [10] provides main advantages
such are: Conference control and management simplification,
terminal/user capacity negotiation. Transcoding function can
be provided by the central MCU which constitutes the focus
for the signaling and media flow. This focus represents a single
point of failure and requires expensive functionalities.

B

A

E

F

C

D

A

B

C

D
E

F

B
+

C
+

D
+

E
+

F

A
+

C
+

D
+

E
+

F

A+B+D+E+F

A
+

B
+

C
+

E
+

F

A+B+C+D+F

A
+

B
+

C
+

D
+

E

Conference Server

Participant

Fig. 1: Centralized architecture

B. Decentralized architecture

The second type of architecture (decentralized architecture)
can be based on a full mesh topology connection [17] (see
figure 2), or makes use of a multicast mechanism (as our
proposed model).

The full mesh topology suffered from a lack of scalability,
as each node must store N − 1 information about other nodes
(for maintaining topology stabilization). When the number
of nodes increases, nodes with limited resources (ex. mobile
devices) will present limited storage capacity for keeping this
information. A decentralized architecture (not full mesh) is
well adapted for this class of applications. Thus we propose for
our model a Chord based architecture[1], and use an optimized
algorithm for tree multicast construction. A multicast concept
is presented in section below.

III. APPLICATION LAYER MULTICAST

Application layer multicast aims to address scalability issues
of unicast by distributing data replication process among the
different group members, in an adaptative and efficient way.
However ALM is not efficient as IP multicast in terms of
data duplication. The nodes in ALM organize themselves
into mesh or tree structures. More details are available on
[3][5][11][12][13].
The next section gives a brief overview of Chord and SIP, as
our contribution combines these two protocols for providing
conferencing services.

D

C

B

A

A

A
A

B

B
B

C

C
D

D

D

C

Fig. 2: Decentralized architecture

IV. SIP AND CHORD FOR P2P CONFERENCING

Centralized and decentralized topologies (full mesh) lead to
some critical issues such as scalability. The first one, requires
high resources (memory, bandwidth, processing) particularly
for the server, while the second one, also requires resources,
high bandwidth for each participant. Our architecture is based
on Chord protocol, it makes use of a decentralized architecture
associated with a ring topology (not full mesh), and it uses SIP
as signaling protocol.

A. SIP

Session Initiation Protocol (SIP) is completely specified
in multiple IETF RFCs[2]. It is an IETF application layer
protocol used for VoIP call control and signaling. SIP is a text-
based protocol (derived from HTTP), used for establishment,
modification and termination of all types of media sessions [2].
SIP defines two types of messages: requests and responses.
The request type message is specified by its method. SIP
RFCs defines multiple methods such as: INVITE, ACK, BYE,
CANCEL, OPTIONS and REGISTER. Both requests and
responses contain header and body that provide network or
session description information. A SIP entity or service is
identified by a unique name (SIP URL) using an E-mail type
format address as: ”server/user-name@domain/host-name”.

B. Chord

Chord [1] is a P2P protocol which provides an efficient
approach to resource location (data or user) issue. Chord
uses routing queries to locate a key with a small number of
hops O(ln2(n)), even if the system contains a large number
of nodes. It is characterized by its: simplicity, performance
and robustness. It adapts efficiently as nodes join or leave
the system dynamically. A node in Chord is identified by a
unique identifier, this last is obtained from IP address, using
distributed hash table (DHT) like SHA-1 or SHA-2. Each node
in Chord maintains a routing table of (at most) m entries called
the Finger table (N = 2m where N is the nodes number in
the system). The ith entry in the table at node n contains the
identifier of the first node s that succeeds n by at least 2i−1

on the identifier circle. Chord is organized according a ring
topology (see figure 3). Chord lookup protocol complexity is
O(ln2(n)).
The scalable approach proposed in this paper combines and



N0

N1

N2

N3
N4

N5

N6

N7

N6 + 1 = N7
N6 + 2 = N0
N6 + 4 = N2

N1 +1 = N2
N1 +2 = N3
N1 +4 = N5

Finger Table (N1)

Finger Table (N6)

Fig. 3: Chord Architecture

takes advantages of both protocols described above: Scala-
bility, robustness, stabilization algorithm, efficiency (when a
node joins or leaves the system), interoperability, simplicity
and security which characterized SIP protocol. So the main
objective is to built a peer-to-peer decentralized conferencing
topology based on Chord for assuring scalability and fault
tolerance, while using the ”standard” SIP for signaling. In
one-to-many or many-to-many applications, each node has
to broadcast ”data” streams for M participants (M > 1).
For optimizing data streams forwarding, we use an efficient
application layer multicast mechanism build on top of the
Chord layer. Section 5 presents and describes our contribution,
particularly the architecture and protocol model for providing
conferencing services.

V. NOVEL CONFERENCING APPROACH

The proposed approach combines both protocols described
above: Chord for participant’s discovery, localization, and
topology stabilization management, and SIP protocol for sig-
naling and call control.

A. Functional principle

When a node wants to join the conference group (see
figure 4), it must find a SIP server addresses using DNS. It
sends a SIP REGISTER message for authentication. Using
bootstrapping mechanism[8], it joins the conference group.
The second step for the new participant is to use one or
more existing protocols such as ICE[18], for discovering and
traversing NATs and Firewalls. The third step is to send a Join
message to any group member. If the join process fails, the
participant waits until a ”time-out” period, then the process is
repeated from the beginning. If the join process succeeds, the
participant (node) takes a place in the system and initiates
its finger table. The stabilization algorithm is executed for
maintaining the correctness of the successors list along the
ring. If a node wants to leave the conference, it sends a leave
message to all nodes identified in its finger table, informing
them to its leaving. The figure 4 resumes and describes this
process.
In our approach, each node needs to know a limited topology
related to the existing connections, for maintaining links
correctness (finger table) along the Chord based ring. This
topology is used to build a multicast tree for transmitting
media stream to a set of receivers. The information about other
nodes is stored in a specific data structure called Adjacency
matrix. For data streams forwarding, a transmitting node needs

On start−up

SIP Registration
(bootstrapping )

Firewalls/NATs detection and 
Traversal

Join

accepted ?
rejected

Conference Group

Conference Member

Yes

Start timer

Time expired

Join in the System

Fig. 4: Architecture-functional schema

to store IP addresses of receiving nodes. The next sub-section
describes the multicast tree construction process.

B. Multicast tree construction

The Adjacency Matrix: Based on the finger table defined
in Chord architecture, we define the adjacency matrix (denoted
Adj Mat) as:
Adj Mat[i,j] = 1 : if there is a link between node Ni and node
Nj (link non bijective), else it is equal to zero. The Adjacency
matrix related to figure 3 is shown table I.

N0 N1 N2 N3 N4 N5 N6 N7
N0 1 1 1 0 1 0 0 0
N1 0 1 1 1 0 1 0 0
N2 0 0 1 1 1 0 1 0
N3 0 0 0 1 1 1 0 1
N4 1 0 0 0 1 1 1 0
N5 0 1 0 0 0 1 1 1
N6 1 0 1 0 0 0 1 1
N7 1 1 0 1 0 0 0 1

TABLE I: The adjacency matrix (see figure 3)

Based on the adjacency matrix, we introduce an algorithm for
multicast tree construction, with rapid convergence.
Based on this algorithm, we can build a tree with any node as

Algorithm 1 : Multicast tree construction algorithm
1: begin
2: if (Ni is a source node) then
3: Send message Child (Ni) to all nodes in its finger table
4: else Ni is not a source
5: At the reception of the messages Child (Ni) forwards this
message to all nodes in its finger table excepts those in sets A,
B or C
Where:
A: the set of nodes which precede Ni (Parent)
B: the set of nodes at the same level as Ni (Brothers)
C: the set of nodes which are child of its brothers and those last
have an identifier numerically lower than that of Ni

6: End.



root, and connect it to all other nodes in the system. Figures
5.a and 5.b show the global multicast tree respectively with
N0 and N3 as root.

N0

N1 N2 N4

N3 N5 N6

N7

N3

N4 N5

N6

N7

N1N0

N2 (b)(a)

Fig. 5: Global Multicast tree

C. Shared adjacency matrix

The Adjacency matrix can be viewed as a global knowl-
edge base, associated to the list representing all the current
participants. This data base is maintained in each node. So
this matrix needs to be shared among all nodes. To limit and
optimize the necessary resources (ex. memory space), which
are critical in some environments (ex. PDA, mobile terminal...),
we implement it as a matrix of bits. Then, for any change
in finger table, the corresponding node updates this entry and
sends it to all successors. The shared adjacency matrix is based
on a distributed algorithm described below:

Algorithm 2 : Shared adjacency matrix
1: begin
2: For any changes in finger table (neighboring) or at
reception of a new entry of adjacency matrix do
→ Update this entry.
→ Send this entry to all successors in the finger table.
3: end.

D. Join, leave and fault tolerance

In a dynamic environment, nodes can join or leave at any
time. The main challenge is to preserve the ability to locate and
update every key/user in the network. For this, ”Bootstrapping”
constitutes a vital core functionality, required by every Peer-to-
Peer overlay network. Nodes intending to participate in such
overlay network initially have to find at least one node that is
already part of this network. Four solutions applicable for the
Bootstrapping problem exist [8] and are resumed as : Static
Overlay Nodes-Bootstrapping servers, Out-of-bande Address
caches, Random Address Probing or Employing Network
Layer Mechanism. To reduce system complexity, we advocate
Static Overlay Nodes-Bootstrapping servers for our proposed
model. The figure 6 describes this process.
When a node leaves the system, some nodes must update
their finger table. After a failure detection at node n by its
neighboring nodes, this last node invokes the join operation
process for localizing one node. Then the Chord stabilization
algorithm is executed.

Boostrap Host

2

3

Existing overlay

New node

Join
(I am a new participant)

1
List of nodes 

recently join the group

Fig. 6: The join process

VI. ANALYZE AND DISCUSSION

The analysis of the ”overhead” (control messages traffic)
generated by each participant in the system is represented1

figure 7 and 8. For this we consider the three types of
conferencing architecture (centralized, decentralized full mesh
and based multicast tree). These figures show that the use
of an application layer multicast mechanism, combined with
a peer-to-peer architecture provides satisfactory results. As

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Number of participants

N
um

be
r 

of
 s

en
t/r

ec
ei

ve
d 

m
es

sa
ge

s 
by

 e
ac

h 
pa

rt
ic

ip
an

t

CC: Centralized Conference
DC: Decentralized Conference (Completely connected)
MC: Based Multicast Confererence

1

2

3

1
2

3

Fig. 7: Number of sent/received messages for centralized,
decentralized full mesh and based multicast architectures.

shown in figures 8, for the centralized conference, the server
needs to send n− 1 messages for forwarding data flows to all
participants in the system, and it receives a single data flow
from each active participant (at most n− 1 nodes). The other
nodes send only one control message for forwarding its own
data flow and receive one single message from the server. For
the decentralized conference (full mesh), each node sends n−1
messages2 to other participants and receives n − 1 messages
from them.

1Results are obtained from Matlab V7
2Message is a data flows



0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Number of participants

qu
an

tit
y 

of
 in

fo
rm

at
io

n 
ab

ou
t o

th
er

 n
od

es
 s

to
re

d 
by

 e
ve

ry
 p

ar
tic

ip
an

t

CMC: Centralized Multipoint Conference
DMC: Decentralized Multipoint Conference (Completely connected)
MCB: Multicast Conference Based

1

2

3

1
2
3

Fig. 8: Quantity of information stored by each participant

In based multicast decentralized conference architecture
(our approach), each node sends O(ln2(n)) messages to other
participants and receives O(ln2(n)) messages from them.
Table II shows a numerical examples for n = 32, n = 64
and n = 128.

CC DC MC
n=32 1 31 5
n=64 1 31 6
n=128 1 31 7

TABLE II: numerical examples

VII. CONCLUSION AND FUTURE WORKS

The N-way and multicast conferencing constitute a critical
application for Internet. Audio, video and other type of media
can be distributed efficiently between conference groups using
multicast algorithms, minimizing the amount of traffic sent
over the network. This is far more cost effective than maintain-
ing a dedicated link between each participant. In this paper, we
have proposed a based multicast architecture for conferencing.
It is based on an efficient combination of P2P (Chord) and
SIP protocol. The combination provides the main following
characteristics : simplicity, robustness, scalability and fault
tolerance. Then, we have defined an efficient application layer
multicast algorithm for data flows forwarding. Interoperability
is also facilitated by using SIP protocol but also, by the limited
number of control messages generated by each peer. In term of
future works, we envision to apply and combine a distributed
QoS (Quality of Service) management, by extended our ar-
chitecture to support a ”lookup” mechanism (for selecting
a path or connection with the specified and requested QoS
parameters), and extended our model for other P2P networks.
Finally a complete implementation will be achieved by using
and extending existing P2P middlewares (ex. JXTA3).

REFERENCES

[1] Ion Stoica, Robert Morris, David Karger, M.Frans Kaashoek and Hari
Balakrishnan, Chord: A Scalable Peer to peer Lookup Service for Internet
Applications, SIGCOMM’01 ACM, 2001.

3Project JXTA: ”http://www.jxta.org/

[2] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R.
Sparks, M. Handley and E. Schooler, SIP: Session Initiation Protocol,
RFC 3261, June 2002.

[3] S. Ratnasamy and M. Handley and S. Shenker, Application-Level
Multicast using Content Addressable Networks, In Proc of Intl workshop
on Networked Group Communication (NGC), November 2001.

[4] Peter T. Kirstein, Ian Brown and Edmund Whelan, Secure Multicast
Conferencing, Technical report University College London.

[5] A. Rowstron and A-M. Kermarrec and M. Castro and P. Druschel, Scribe:
A large-scale and decentralized application-level multicast infrastructure,
IEEE Journal on selected Areas in communications, 20(8):1489-1499,
October 2002.

[6] Jiann-Min Ho, Jia-Cheng Hu and Peter Steenkiste, A Conference Gateway
Supporting Interoperability between SIP and H.323, ACM Multimedia
2001, P421-P430.

[7] Kundan Singh and Henning Schulzrinne, Peer-to-Peer Internet Telephony
using SIP, NOSSDAV 2005 P63-P68.

[8] Curt Cramer and Kendy Kutzner and Thomas Fuhrmann, Bootstrapping
Locality-Aware P2P Networks, 2003.

[9] O. Levin, H.323 Uniform Resource Locator (URL) Scheme Registration,
RFC 3508.

[10] http://www.ietf.org/html.charters/xcon-charter.html, .
[11] D. Pendarakis and S. Shi and D. Verma and M. Waldvogel ALMI: an

Application Level Multicast Infrastructure, In 3rd USENIX Symposium
on Internet Technologies, San Francisco, CA, USA, Mars 2001.

[12] S. Ratnasamy and M. Handley and S. Shenker Application-Level
Multicast using Content Addressable Networks, In Proc of Intl workshop
on Networked Group Communication (NGC), November 2001.

[13] L. Mathy and R. Canonico and D. Hutchison An Overlay Tree Building
Control Protocol, In Proc of Intl workshop on Networked Group
Communication (NGC), Page 76-87, November 2001.

[14] Henning Schulzrinne and Jonathan Rosenberg, A comparison of SIP and
H.323 for Internet Telephony, Network and Operating System Support
for Digit Audio and Video (NOSSDAV) Cambridge, England, Jul. 1998.

[15] Henning Schulzirnne and Jonathan Rosenberg, Signaling for Internet
Telephony, Technical Report CUCS-005-98, Columbia University, New
York, Feb. 1998.

[16] Kundan Singh, Gautam Nair and Henning Schulzrinne, Centralized
conferencing using SIP, In Internet Telephony Workshop, New York,
Apr. 2001.

[17] Ling Chen, Chong Luo, Jiang Li and Chipeng Li, Digiparty-A Decen-
tralized multiparty video conferencing system, Microsoft research Asia.
2003.

[18] Victor Paulsamy and Samir Chatterjee, Network convergence and
the NAT/Firewall problems, proceedings of (HICSS’03), IEEE Internet
computing, 2003.


